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Abstract: This study provides new classes of nonseparable space-time covariance

functions with spatial (or temporal) margins that belong to the generalized Wend-

land class of compactly supported covariance functions. An interesting feature of

our covariances, from a computational viewpoint, is that the compact support is a

decreasing function of the temporal (spatial) lag. We provide conditions for the va-

lidity of the proposed class, and analyze the problem of differentiability at the origin

for the temporal (spatial) margin. A simulation study explores the finite-sample

properties and the computational burden associated with the maximum likelihood

estimation of the covariance parameters. Finally, we apply the proposed covariance

models to Irish wind speed data, and compare the results with those of Gneiting–

Matérn models in terms of fitting, prediction efficiency, and computational burden.

The necessary and sufficient conditions, together with other results on dynamically

varying compact supports, are provided in the online Supplementary Material.
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1. Introduction

There is growing interest in space-time modeling using covariance functions;

refer to Gneiting (2002a), Stein (2005), Zastavnyi and Porcu (2011), Gneiting,

Genton and Guttorp (2007), and Schlather (2010). Typically, data observed over

space and time are modeled as a realization of a stationary Gaussian random

field that has a covariance function that is spatially isotropic and temporally

symmetric (Gneiting (2002a)). Specifically, for a stationary random field Z(x, t),

with x a point of Rd and t denoting time, spatial isotropy is coupled with temporal

symmetry through a continuous function, φ : [0,∞)× [0,∞)→ R, such that

cov {Z(x, t), Z(x + h, t+ u)} = φ (‖h‖, |u|) , (1.1)

where (h, u) ∈ Rd × R denotes a space-time lag vector and φ(0, 0) = σ2 is the

variance of Z. For the remainder of this paper, we use r for ‖h‖ and u for |u|.
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In addition, the margins φ(r, 0) and φ(0, u) are called, respectively, spatial and

temporal margins. A covariance function φ is called separable if φ factors into

the product of a purely spatial and a purely temporal covariance function.

A popular example of nonseparable space-time covariance functions of the

type in (1.1) is the Gneiting class (Gneiting (2002a); Zastavnyi and Porcu (2011)).

We define it here as

φ(r, u) =
σ2

ψ(u2)d/2
g

(
r2

ψ(u2)

)
, (r, u) ∈ [0,∞)× [0,∞), (1.2)

where g is completely monotonic on the positive real line, such that it is infinitely

differentiable on (0,∞) and (−1)kg(k)(t) ≥ 0, for t ≥ 0. The function ψ is strictly

positive and has a completely monotonic derivative. Additionally, with no loss

of generality, we assume that g(0) = ψ(0) = 1 , such that φ(0, 0) = σ2. Sufficient

conditions for the validity of this class were provided by Gneiting (2002a). Then,

Zastavnyi and Porcu (2011) found the necessary conditions, and relaxed the

hypothesis on the function ψ. A subclass of the Gneiting class in (1.2) that has

become especially popular is expressed as

φ(r, u) =
σ2

ψ(u2)d/2
Mµ

(
r

ψ(u2)

)
, (r, u) ∈ [0,∞)× [0,∞), (1.3)

where

Mµ(r) =
21−µ

Γ(µ)
rµKµ(r), r ≥ 0,

with µ > 0 and Kµ, a modified Bessel function of the second kind of order µ, is

the so-called Matérn class (Stein (1999)). Hence, the class (1.3) is termed the

Gneiting–Matérn class. The parameter µ characterizes the differentiability at

the origin and, thus, the differentiability of the sample paths of a Gaussian field

in Rd with a Matérn covariance function. In particular, for a positive integer k,

the sample paths are k-times differentiable, in any direction, if and only if µ > k.

A spatial covariance function is called compactly supported if it vanishes after

a given spatial distance. There is a large body of literature on compactly sup-

ported covariance functions in many branches of probability theory, geostatistics,

and approximation theory. For further details refer to Golubov (1981), Wend-

land (1995), Schaback and Wu (1995), Wu (1995), Buhmann (2000), Gneiting

(2002b), Zastavnyi and Trigub (2002), Zastavnyi (2006), Schaback (2011), Zhu

(2012), Hubbert (2012), Porcu and Zastavnyi (2014), and Chernih, Sloan and

Womersley (2014), as well as to the more recent results in Bevilacqua et al.

(2018) and the review by Porcu, Zastavnyi and Bevilacqua (2018).

Compactly supported covariance functions are used for computationally ef-
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ficient spatial predictions (Furrer, Genton and Nychka (2006) and the references

therein) and estimations (Kaufman, Schervish and Nychka (2008)) in the co-

variance tapering technique and for fast and exact simulations, as well as being

appealing to practitioners (Gneiting (2002b)). The recent work by Bevilacqua

et al. (2018) revealed importance of such functions for kriging predictions, show-

ing that the generalized Wendland class (Zastavnyi and Trigub (2002); Gneiting

(2002a)) is compatible with the Matérn class. This implies that, under fixed

domain asymptotics, and under some specific conditions on the parameters in-

dexing the covariance functions, the misspecified linear unbiased predictor from

the generalized Wendland class is asymptotically as efficient as the true simple

kriging predictor using a Matérn class. Thus, a kriging prediction can be per-

formed using a compactly supported function, without any loss of asymptotic

prediction efficiency.

The problem of constructing nonseparable compactly supported space-time

covariance functions is almost unexplored. A mathematical formulation of the

problem is provided by Zastavnyi and Porcu (2011), who suggested replacing the

function g in (1.2) with another function that has compact support. However,

they could not find a solution to the problem, a characterization of which remains

elusive. The present study challenges this problem. Specifically, we show how

to generate covariance functions of the type in (1.2) by replacing the function g

with another function that has compact support. Further, we replace the Matérn

function used in the Gneiting–Matérn class in (1.3) with generalized Wendland

functions that are compactly supported. In addition, the latter functions have

the same properties as the Matérn class in terms of differentiability at the origin

(Bevilacqua et al. (2018)).

A simulation study explores the finite sample properties of the maximum

likelihood (ML) estimation of the covariance parameters. Finally, we apply our

models to Irish wind speed data, and compare the results with those of Gneiting

models in terms of fitting, prediction efficiency based on predictive scores and

computational burden.

The remainder of the paper proceeds as follows. Section 2.1 presents the nec-

essary background and introduces the generalized Wendland class. Section 2.2

provides the results fot the proposed classes of space-time covariance functions.

Section 2.3 discusses examples and parameterization. Section 2.4 provides con-

ditions to improve the differentiability of the temporal margins of the proposed

classes. Section 3 explores our findings using a simulation and real data. Section

4 concludes the paper.
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The online Supplementary Material provides several more technical results:

First, we generalize the results in Section 2 to wider classes of functions with

compact support. Then, a Fourier analysis and completely monotone functions

are used to explore the necessary and sufficient conditions. The online Supple-

mentary Material also provides the figures referred in the paper.

2. Compactly Supported Space-time Covariance Functions

2.1. Background material

For neatness of exposition, several preliminaries are needed. The space-

time covariance function in (1.1) is positive-semidefinite. That is, for any finite

collection {(xk, tk)}Nk=1 ⊂ Rd ×R, and for any system of constants {ck}Nk=1 ⊂ R,

we have
N∑
k=1

N∑
h=1

ckchφ(‖xk − xh‖, |tk − th|) ≥ 0.

In what follows, we propose a class of candidate functions with compact support

that can be used to replace the function g in (1.2), while preserving the positive-

definiteness. We introduce the generalized Wendland class (Gneiting (2002b);

Zastavnyi and Trigub (2002)) ϕν,κ : [0,∞)→ R, defined as

ϕν,κ(r) =
1

B(2κ+ 1, ν)

∫ ∞
r

(t2 − r2)κϕν−1,0(t) dt, r ≥ 0, (2.1)

where κ > 0, and B denotes the beta function,

B(2κ+ 1, ν) =
Γ(2κ+ 1)Γ(ν)

Γ(2κ+ ν + 1)
.

Here, ϕν,0 denotes the Askey family of functions (Askey (1973)), defined by

ϕν,0(r) := (1− r)ν+ , ν > 0, (2.2)

where (·)+ denotes the positive part. Let d be a positive integer. The function

ϕν,0(r) is positive-definite in Rd if and only if ν ≥ (d + 1)/2 (Golubov (1981)).

Zastavnyi and Trigub (2002) show that ϕν,κ is positive-definite in Rd if and only

if ν ≥ (d+ 1)/2 +κ. Additionally, ϕν,κ(·/b) is compactly supported over the ball

of Rd, with radius b > 0. Closed-form solutions of the integral in (2.1) can be

obtained when κ = k, a nonnegative integer. In this case,

ϕν,k(r) = ϕν+k,0(r)Pk(r), r ≥ 0,

where Pk is a polynomial of order k. See the first column of Table 1 for examples

with k = 0, 1, 2, 3. These functions, termed (original) Wendland functions, were
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Table 1. Generalized Wendland correlation ϕν,κ(r) and Matérn correlation Mµ(r) with
increasing smoothness parameters κ and µ. SP (k) means that the sample paths of the
associated Gaussian field are k-times differentiable. Taken from Bevilacqua et al. (2018).

κ ϕν,κ(r) µ Mµ(r) SP (k)
0 (1− r)ν+ 0.5 e−r 0

1 (1− r)ν+1
+ (1 + r(ν + 1)) 1.5 e−r(1 + r) 1

2
(1− r)ν+2

+ (1 + r(ν + 2)
+r2(ν2 + 4ν + 3)(1/3))

2.5 e−r(1 + r + r2/3) 2

3
(1− r)µ+3

+

(
1 + r(ν + 3)

+r2(2ν2 + 12ν + 15)(1/5)
+r3(ν3 + 9ν2 + 23ν + 15)(1/15)

) 3.5
e−r(1 + r/2 + r2(6/15)
+r3/15)

3

originally proposed by Wendland (1995). Other closed-form solutions of the

integral (2.1) can be obtained when κ = k + 1/2, using the results in Schaback

(2011). Hubbert (2012) showed some other closed-forms based on hypergeometric

functions. Finally, Chernih, Sloan and Womersley (2014) showed that, for κ

tending to infinity, a rescaled version of the model in (2.1) converges to a Gaussian

model. As noted by Gneiting (2002b), the generalized Wendland and Matérn

models exhibit the same behavior at the origin when the smoothness parameters

of the two covariance models are related by the equation ν = κ+ 1/2. This fact

is depicted in Table 1, where specific cases of Wendland functions are compared

with the Matérn covariance in terms of the sample path differentiability of the

associated Gaussian random field. Generalized Wendland functions include many

other popular classes of covariance functions with compact support; for a recent

review refer to Porcu, Zastavnyi and Bevilacqua (2018).

We finish this section with a new definition that leads to the results provided

in the subsequent section. Let φ be a space-time covariance function defined in

(1.1). We call a temporally dynamical radius, ψ, the continuous mapping from

[0,∞) to (0,∞), such that, for each uo ∈ [0,∞), the margin φ(·, uo) is compactly

supported on the interval [0, ψ(uo)). Clearly, both Askey and generalized Wend-

land classes are special cases of dynamical compact support, when ψ ≡ b > 0 is

the constant function.

2.2. Space-time Gneiting–Wendland functions with dynamical com-

pact support

The following results are based on a constructive criterion provided by Porcu

and Zastavnyi (2012).
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Lemma 1. Let d be a positive integer. Let (Ω,F , P ) be a measure space with P

a positive measure. Let H(·; ·) : Ω × [0,∞) → R and F (·; ·) : [0,∞) × Ω → R,

such that

1. H(ξ; ·) is a temporal covariance function, for all ξ ∈ Ω;

2. F (·; ξ) is an isotropic spatial covariance function in Rd, for all ξ ∈ Ω;

3. H(·;u)F (r; ·) ∈ L1(Ω,F , P ), for any r, u ≥ 0.

Then, the mapping

φ(r, u) = σ2

∫
Ω F (r; ξ)H(ξ;u)P (dξ)∫
Ω F (0; ξ)H(ξ; 0)P (dξ)

, (r, u) ∈ [0,∞)× [0,∞), (2.3)

with σ2 > 0, defines a space-time covariance function in Rd ×R that is isotropic

in the spatial argument and symmetric in time.

An intuitive way to understand the formal statement in Lemma 1 is to con-

sider the integral in (2.3) as a scale mixture of a spatial and a temporal co-

variance. Conditions 1 and 2 are needed for well-defined spatial and temporal

covariances. Condition 3 ensures the integral in (2.3) is well defined. Note that

the denominator in (2.3) is a normalization constant, such that φ(0, 0) = σ2.

Theorem 1. Let d be a positive integer. Let ϕν,0 be the Askey function in

(2.2). Let ψ be a continuous and positive function on the positive real line, with

ψ(0) = 1 and such that 1/ψ is increasing and concave on the positive real line,

with limt→∞ ψ(t) = 0. Then, the mapping

φ(r, u) = ψ(u)αϕν,0

(
r

ψ(u)

)
, (r, u) ∈ [0,∞)× [0,∞), (2.4)

defines a space-time covariance function in Rd × R, provided that ν ≥ (d+ 5)/2

and α ≥ (d+ 3)/2.

Proof. The proof is an application of Lemma 1. Specifically, we use the scale

mixture argument of (2.3) under appropriate choices of the functions H and F .

We now proceed formally and consider the mapping F (r; ξ) = ϕn,0(r/ξ).

Golubov (1981) shows that F (·; ξ) is an isotropic spatial covariance function in

Rd, for any ξ > 0, provided that n ≥ (d+ 1)/2. Thus, Condition 2 in Lemma 1

is satisfied. For the choice of the function H, we consider the mapping

H(ξ;u) = Hn,γ(ξ;u) = ξnϕγ,0

(
1− ξ

ψ(u)

)
+

, ξ > 0, u ≥ 0, γ ≥ 1, n > 0.
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Given the properties of the function ψ, we have that Hn,γ is positive, decreasing

and convex, with limt→∞Hn,γ(ξ; t) = 0, for any ξ > 0. Thus, we can invoke the

Pólya criterion (Pólya (1949)) to show that Hn,γ(ξ;u) is a covariance function in

R. Therefore, Condition 1 in Lemma 1 is satisfied. Finally, note that Condition

3 of Lemma 1 holds trivially. Thus, we can now apply the scale mixture in (2.3),

with Ω = [0,∞) and P the Lebesgue measure:

φ(r, u) =

∫
(0,∞)

F (r; ξ)H(ξ;u)dξ

=

∫
(0,∞)

(
1− r

ξ

)n
+
ξn
(

1− ξ

ψ(u)

)γ
+

dξ

=
1

ψ(u)γ

∫ ψ(u)

r
(ξ − r)n(ψ(u)− ξ)γ dξ

=
1

ψ(u)γ

∫ ψ(u)−r

0
tn(ψ(u)− r − t)γ dt

=
1

ψ(u)γ

∫ 1

0
(ψ(u)− r)n+γ+1vn(1− v)γ dv

= B(n+ 1, γ + 1)ψ(u)n+1

(
1− r

ψ(u)

)n+γ+1

= B(n+ 1, γ + 1)ψ(u)n+1 ϕn+γ+1,0

(
r

ψ(u)

)
, (2.5)

where B denotes the beta function. The third line in the chain of equalities is

justified by the fact that, by definition, φ is identically equal to zero whenever

r > ψ(u). We now let α = n + 1 and ν = n + γ + 1. Thus, (2.4) and (2.5)

agree modulo a positive factor, that is the normalization constant. This fact

completes the proof. The conditions on α and ν are easily verified from the

previous identities.

Theorem 2. Let d be a positive integer and κ > 0. Let ϕν,κ be the generalized

Wendland class of functions in (2.1). Let ψ be a continuous and positive function

on the positive real line, with ψ(0) = 1 and such that 1/ψ(·) is increasing and

concave on the positive real line, with limt→∞ ψ(t) = 0. Then, the mapping φ,

defined as

φ(r, u) = ψ(u)αϕν,κ

(
r

ψ(u)

)
, (r, u) ∈ [0,∞)× [0,∞), (2.6)

defines a space-time covariance function in Rd×R, provided that ν ≥ (d+5)/2+κ

and α ≥ (d+ 3)/2 + 2κ.
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Proof. We give a constructive proof by applying Lemma 1 for specific choices of

the functions H and F in the scale mixture (2.3). For the choice of the function

F , let κ > 0, n ≥ (d+ 1)/2 + κ, and F (r; ξ) = ϕn,κ(r/ξ), with ϕn,κ defined as in

(2.1). Clearly, Condition 1 in Lemma 1 is satisfied. Furthermore, Zastavnyi and

Trigub (2002) show that ϕn,κ can be rewritten as:

ϕn,κ(w) =
1

B(n, 2κ+ 1)

∫ 1

w
(1− t)n−1(t2 − w2)κ dt , w ≥ 0.

In particular, following Daley, Porcu and Bevilacqua (2015), we have that, for

0 < y < ξ ≤ 1,

ϕn,κ

(y
ξ

)
=

1

B(n, 2κ+ 1)

∫ 1

y/ξ
(1− t)n−1

(
t2 − y2

ξ2

)κ
dt

=
1

B(n, 2κ+ 1)

∫ ξ

y

(
1− v

ξ

)n−1
(v2 − y2)κ

dv

ξ2κ+1
.

We now choose the function

H(ξ;u) = Hn,κ,γ(ξ;u) = ξn+2κ

(
1− ξ

ψ(u)

)γ
+

, ξ > 0, u ≥ 0, γ ≥ 1, n > 0,

with κ positive and ψ as stated. Again, it is easy to show that Hn,κ,γ(ξ; ·) is

positive, decreasing, and convex, with limt→∞Hn,κ,γ(ξ; t) = 0, for all ξ > 0.

Thus, Condition 2 of Lemma 1 is satisfied. Condition 3 holds trivially. We can

thus apply the scale mixture argument in (2.3), with Ω = [0,∞) and P being the

Lebesgue measure. We write ψ for ψ(u), and have∫ ∞
0

ϕn,κ

(r
ξ

)
Hn,κ,γ(ξ;u)dξ =

∫ ψ

r
ϕn,κ

(r
ξ

)
ξn+2κ

(
1− ξ

ψ

)γ
dξ

=
1

B(n, 2κ+ 1)

∫ ψ

r
ξn+2κ

(
1− ξ

ψ

)γ
dξ

∫ ξ

r

(
1− v

ξ

)n−1
(v2 − r2)κ

dv

ξ2κ+1

=
ψ−γ

B(n, 2κ+ 1)

∫ ψ

r
(v2 − r2)κ dv

∫ ψ

v
(ψ − ξ)γ(ξ − v)n−1 dξ

=
ψ−γ

B(n, 2κ+ 1)
B(n, γ + 1)

∫ ψ

r
(ψ − v)n+γ(v2 − r2)κ dv

= ψn+2κ+1 B(n, γ + 1)

B(n, 2κ+ 1)

∫ 1

r/ψ
(1− t)n+γ

(
t2 − r2

ψ2

)κ
dt

=
B(n, γ + 1)

B(n, 2κ+ 1)
B(n+ γ + 1, 2κ+ 1) ψn+2κ+1ϕn+γ+1,κ

( r
ψ

)
= B(n+ 2κ+ 1, γ + 1) ψn+2κ+1ϕn+γ+1,κ

( r
ψ

)
,

where B is the beta function, as before. We now let ν = n + γ + 1 and α =
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n+ 2κ+ 1. Rescaling at the origin and using the same arguments as in Theorem

1, we easily arrive at the assertion.

Using the arguments in Gneiting (2002b), it can be shown that for any

increasing sequence {cn}n≥0, we have ϕcn,κ{r/(ψ(u)cn)} → M1/2+κ{r/ψ(u)},
with the convergence being uniform on any bounded set. Thus, the class in

(2.6) converges to the Gneiting–Matérn class, and when u = 0, the smoothness

parameters of the two covariance models are related by the equation µ = κ+ 1/2

(see Table 1).

2.3. Examples and parameterizations

Several examples from the mappings ψ that satisfy the requirements in The-

orems 1 and 2 can be found in Table 1 in Porcu and Schilling (2011). A notable

example comes from the choice

ψ(t; δ, β) = (1 + tδ)−β/δ, t ≥ 0, (2.7)

for 0 < δ ≤ 1 and 0 ≤ β ≤ δ. In particular, in the following sections, we work

with the special case ψ(·;β) := ψ(·; 1, β), valid for β ∈ [0, 1].

For κ = k, a nonnegative integer, we find that the classes in (2.6) can be

written as

φ(r, u) = ψ(u)αϕν+k,0

(
r

ψ(u)

)
Pk

(
r

ψ(u)

)
, r, u ≥ 0,

where the constraints on α and ν are specified in Theorems 1 and 2, and Pk is a

polynomial of degree k. In particular, we use k = 0, 1, 2 for ease of illustration.

Using the first three entries in Table 1 together with (2.4) and (2.6), we obtain

φ(r, u) = ψ(u)α
(

1− r

ψ(u)

)ν
+

,

φ(r, u) = ψ(u)α
(

1− r

ψ(u)

)ν+1

+

(
1 + (ν + 1)

r

ψ(u)

)
, (2.8)

φ(r, u) = ψ(u)α
(

1− r

ψ(u)

)ν+2

+

(
1+(ν + 2)

r

ψ(u)
+

1

3

(
(ν+2)2−1

)(
r

ψ(u)

)2
)
,

where α and ν must be determined according to Theorems 1 (for the first ex-

ample) and 2 (for the other two examples). For geostatistical applications, it

is useful to consider rescaled versions φ(r/b, u/a), because these enable us to

consider the marginal spatial compact support b > 0, the dynamical compact

support bψ(u/a), and the temporal scale parameter a > 0. In many instances,

a reparameterization of the proposed covariance models is useful. For instance,
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using (2.7) in the construction (2.8), and replacing βα with τ > 0, we obtain the

space-time correlation functions:

φ(r, u) =
1

(1 + u/a)τ
ϕν,k

(
r

b(1 + u/a)−β

)
, r, u ≥ 0, (2.9)

where τ ≥ 2.5 + 2k and k = 0, 1, 2. If we fix τ , we obtain a parametric family

with an easily interpretable space-time nonseparable parameter 0 ≤ β ≤ 1, which

includes as special case a separable covariance, obtained when β = 0.

Figure S1 (see the Supplementary Material) shows a contour plot of the

nonseparable space-time correlation functions with dynamical compact support

in (2.9). Specifically, we fix b = 0.15, a = 0.2, ν = 3.5 + κ, and τ = 2.5 + 2κ,

for κ = 0, 1 and β = 0, 0.5, 1. As β increases, the rate of decay of the dynamical

compact support becomes more severe. Therefore, this parameter affects the

dynamical compact support, that is, the sparsness of the associated correlation

matrix.

Figure S2 (see the Supplementary Material) shows a simulation on a regular

grid of 12,544 sites over a unit square and over temporal instants u = 1, 1.5,

obtained using a Cholesky decomposition, of a space-time Gaussian field with

correlation (2.9) (top), fixing κ = 1, τ = 6.5, ν = 4.5, b = 0.15, a = 0.2, and

β = 0.5. The same figure depicts a realization of a space-time Gaussian random

field with a covariance function from the Gneiting–Matérn class:

φ(r, u) =
1

(1 + u/0.2)6.5
M1.5

(
r

0.0226(1 + u/0.2)1/4

)
, r, u ≥ 0. (2.10)

The two simulations share the same Gaussian realization after using the Cholesky

decomposition method. The two covariance models have the same marginal

temporal correlation and the spatial scale parameter in the Gneiting–Matérn

model is chosen such that the marginal spatial correlation is lower than 0.01

when r > 0.15; that is, it is greater than the marginal compact support of

the generalized Wendland model. It is apparent from Figure S2 that the two

simulations look very similar.

Remark 1. The members of the classes in Theorems 1 and 2 are dynamically

compactly supported in space. Thus, they are computationally suitable covari-

ance models for space-time data with a relatively large number of location sites

with respect to the temporal instants.

Note that the constructions in Theorems 1 and 2 can be interchanged, yield-

ing space-time covariances that are compactly supported over time, and have a

compact support that evolves dynamically with spatial distance. We omit such
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a specification of the mathematical conditions because the analogue specification

is literal. Then, for instance, an analogue version of the model in (2.9) is

φ(r, u) =
1

(1 + r/b)τ
ϕν,κ

(
u

a(1 + r/b)−β

)
, r, u ≥ 0. (2.11)

In this model, the parameter a is the marginal temporal compact support, and

the decreasing dynamical compact support is given by aψ(r/b).

This kind of model is computationally more suitable for space-time data with

a relatively large number of temporal instants with respect to the sites, as in the

Irish wind speed data in Section 3.2.

2.4. Improving temporal differentiability at the origin

The ψ functions used for Theorems 1 and 2 are, by construction, nondifferen-

tiable at the origin. This implies that we can govern the degree of differentiability

in the spatial component, but not in the temporal one. This issue is studied in

detail in the Supplementary Material, where we show the necessary conditions us-

ing a Fourier analysis that preserves the positive-definiteness of the constructions

proposed in Theorems and 1 and 2.

Having a model that allows for different degrees of temporal differentiability

at the origin is important for attaining greater flexibility in analyses of space-

time data sets. In addition, differentiability at the origin has a crucial impact on

spatial and temporal predictions (Stein (1999)). Because we are approximating

the Gneiting–Matérn class with a compactly supported structure, it is important

that we attain the same level of differentiability for both spatial and temporal

margins.

The sufficient conditions that allow us to improve the differentiability of

the temporal margin can be improved upon, based on the following facts. The

function

$τ,λ(r) := ϕτ,0(rλ) = (1− rλ)τ+, r ≥ 0, λ ∈ (0, 2), τ > 0, (2.12)

has attracted the interest of several mathematicians in the past; refer to Gneiting

(2001), and the references therein. In particular, the univariate case, d = 1, has

an interesting history; again refer to Gneiting (2000). We have that $ν,2 is not

positive-definite on R, regardless of the value of ν. Kuttner (1944) showed that

there exists a function κ1(λ), for λ ∈ (0, 2), such that $τ,λ(r) is positive-definite

on R if and only if τ > κ1(λ). The function κ1(λ) is continuous and strictly

increasing, with limλ→0 κ1(λ) > 0, κ1(1) = 1, limλ→2 κ1(λ) =∞ , and κ1(λ) > λ

if λ 6= 1.
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Table 2. Lower bounds for κ1(λ) for given values of λ. Taken from Gneiting (2000).

λ 1.05 1.15 1.25 1.45 1.55 1.75 1.95
κ1(λ) 1.0507 1.1572 1.2706 1.5247 1.7234 2.3462 3.9084

We now apply our results to Theorem 2 and consider the function

φ(r, u) = (1 + uλ)−αϕν(τ),κ

(
r

(1 + uλ)

)
, (r, u) ∈ [0,∞)× [0,∞),

where ν is a function of τ , as described in (2.12). The same scale mixture

arguments as in the proof of Theorem 2 apply (see Lemma 1); hence we omit

them here. We have that, for a given d ∈ N, φ is positive-definite on Rd × R,

provided that α ≥ (d+ 3)/2 and

ν ≥ (d+ 3)

2
+ κ+ τ, τ ≥ κ1(λ), λ ∈ (0, 2).

Table 2, taken from Gneiting (2000), allows to obtain the corresponding values

for a given λ ∈ (0, 2).

3. Numerical Results

We start by describing the performance of the ML estimation of the param-

eters of the Gneiting–Wendland model. Then, we compare the Gneiting–Matérn

model with the proposed Gneiting–Wendland model from a modeling, prediction

performance, and computational point of view when used as space-time covari-

ance models for the Irish wind speed data.

3.1. Simulation studies

Following Remark 1, we consider two possible scenarios:

1. A data set with many spatial sites and few temporal observations. Specifi-

cally, we have xi, for i = 1, 2, . . . , 60 sites, uniformly distributed on the unit

square, and u = 0, 0.25, . . . , 2.25 temporal instants;

2. A data set with few spatial sites and many temporal observations, that is

xi, for i = 1, 2, . . . , 10 sites, uniformly distributed on the unit square, and

u = 0, 0.25, . . . , 14.75 temporal instants.

For both scenarios, the total number of observations is kept relatively small (600

observations) in order to make the ML estimation feasible. Under Scenario 1,

we simulate 1,000 zero-mean space-time Gaussian random fields, with covariance

given by (2.9), setting k = 0, 1, 2 in order to consider different levels of differen-
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Table 3. Top: Bias and standard deviation (SD) for the ML estimation of the spatial
and temporal scales and variance for the Gneiting–Wendland model in Equation (2.9),
for κ = 0, 1, 2 and β = 0, 0.5, 1 under Scenario 1. Bottom: Scenario 2.

a b σ2

κ β bias SD bias SD bias SD
0 0 −0.00016 0.02168 0.00076 0.04889 0.00024 0.06181

0.5 −0.00018 0.02145 0.00092 0.04796 0.00021 0.06164
1 −0.00017 0.02121 0.00105 0.04690 0.00019 0.06156

1 0 0.00036 0.01342 −0.01943 0.12685 0.00027 0.06156
0.5 0.00038 0.01342 −0.01841 0.12194 0.00028 0.06156
1 0.00042 0.01342 −0.01596 0.11485 0.00034 0.06156

2 0 0.00054 0.01225 0.01040 0.18746 0.00034 0.06132
0.5 0.00053 0.01225 0.00910 0.18185 0.00035 0.06132
1 0.00054 0.01225 0.00636 0.17438 0.00037 0.06140

0 0 −0.00228 0.05000 0.00209 0.06812 0.00038 0.06419
0.5 −0.00158 0.04743 0.00251 0.06745 0.00043 0.06411
1 −0.00140 0.04506 0.00257 0.06626 0.00037 0.00409

1 0 −0.01809 0.11091 0.00064 0.03768 0.00084 0.06395
0.5 −0.01763 0.10266 0.00086 0.03768 0.00040 0.06496
1 −0.01741 0.09644 0.00103 0.03782 0.00095 0.06496

2 0 −0.01131 0.16199 0.00021 0.03674 0.00040 0.06380
0.5 −0.01388 0.15556 0.00033 0.03688 0.00095 0.06372
1 −0.01692 0.15063 0.00040 0.03688 0.00098 0.06372

tiability in the spatial covariance margin. Then, following Theorems 2.1 and 2.2,

we fix τ = 2.5 + 2κ and ν = 3.5 + κ.

We set σ2 = 1, b = 0.15, and a = 0.2 and fix β = 0, 0.5, 1. For each

simulation, we use the ML to estimate the parameters σ2, a, and b. Table 3

reports the bias and variance associated with the ML estimations of σ2, a, and

b, for k = 0.1, 2 and β = 0, 0.5, 1.

Similarly, under Scenario 2, we simulate 1,000 zero-mean space-time Gaus-

sian random fields, with covariance given by (2.11), with k = 0, 1, 2, fixing

τ = 2.5 + 2k and ν = 3.5 + k. We set σ2 = 1, a = 0.75, and b = 0.2 and

consider β = 0, 0.5, 1. For each simulation we use the ML to estimate the param-

eters σ2, a, and b. The spatial and temporal scale parameters in both scenarios

are chosen to attain a small dependence in space and time. Table 3 reports the

bias and standard deviation (SD) associated with the ML estimations of σ2, a,

and b, for k = 0, 1, 2 and β = 0, 0.5, 1. Overall, the bias is negligible, and increas-

ing β does not affect the bias or the SD of the ML estimation. Under Scenario 1,

the SD of the spatial marginal compact support b increases considerably with k.
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Similarly, under Scenario 2, the SD of the temporal marginal compact support a

increases with k.

The bottleneck when evaluating a Gaussian likelihood is the computation

of the inverse and the determinant of the covariance matrix, both of which can

be obtained from its Cholesky decomposition. Some computational gains can be

achieved using specific algorithms for sparse matrices in our models. The sparsity

of the covariance matrix changes at each iteration of the maximization algorithm.

In our implementation, a Gaussian likelihood optimization is performed by ex-

ploiting algorithms for sparse matrices, as implemented in the R package spam

(Furrer and Sain (2010)) using the maximization algorithm of Nelder and Mead

(1965), and implemented in the optim function of the R package (R Development

Core Team (2016)).

Substantial further computational gains are achieved when performing a krig-

ing prediction, because in this case, the sparsity of the covariance matrix is fixed.

More details are given in the next section.

3.2. Irish wind speed data

The main goal of this section is to compare the Gneiting–Matérn model

with the proposed Gneiting–Wendland model from a modeling, prediction per-

formance, and computational point of view. To do so, we employ the models as

space-time covariance models which we apply to Irish wind speed data (Haslett

and Raftery (1989)).

We consider daily wind speeds collected over 18 years, from 1961 to 1978, at

12 sites in Ireland. Following Gneiting, Genton and Guttorp (2007), we omit the

Rosslare station, consider a square root transformation of the data, and remove

the seasonal component. The latter is estimated by calculating the average of

the square roots of the daily means over all years and stations, and regressing

this on a set of annual harmonics. The resulting transformed data, {z(xi, tj)},
for i = 1, . . . , 11, j = 1, . . . , 6,574, are assumed to be a realization from a zero-

mean space-time Gaussian random field. Because we perform an ML estimation,

we focus on a subset of the data for computational reasons. Specifically, we

focus on z = {z(xi, tj)}, for i = 1, . . . , 11, j = 366, . . . , 910. Thus, we have

11× 545 = 5,995 observations, and an ML estimation is still feasible.

Figure S3 (Supplementary Material) shows that the empirical temporal

marginal semivariogram attains the sill at a temporal distance of approximately

three days. Thus, following Remark 1, a nonseparable, temporally compactly

supported covariance model, as defined in (2.11), seems to be a natural choice
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for this kind of data. We compare the following space-time covariance models:

the Gneiting–Matérn model

CM (r, u;θM ) =
σ2
M

ψ(r/aM )τM
Mµ

(
u

bMψ(r/aM )βM/2

)
, µ = 0.5, 1.5, 2.5, (3.1)

and our Gneiting–Wendland model

CW (r, u;θW ) =
σ2
W

ψ(r/aW )τW
ϕν,k

(
u

bWψ(r/aW )−βW

)
, k = 0, 1, 2, (3.2)

where ψ(r) = 1 + r, for r ≥ 0, and θM = (σ2
M , aM , bM , βM )> and θW =

(σ2
W , aW , bW )>.

For the model in (3.2), based on the choices of k = 0, 1, 2, we fix τW = 2.5+2k

and ν = 3.5 + k, according to Theorem 2, such that positive-definiteness is

attained. Then, for each k, we deliberately choose βW equal to 0, 0.5, 1 in order

to increase the sparsity of the associated covariance matrix. Then we estimate

θW using the ML. Similarly, for model (3.1) we consider the cases µ = 0.5, 1.5, 2.5

fixing τM = 2.5 + 2(µ− 0.5) and we estimate θM using ML.

This setting makes the models defined in (3.1) and (3.2) comparable, because

they share the same spatial margin. In addition, the temporal margins are of

the Matérn and generalized Wendland types respectively, with the same level of

differentiability at the origin for µ = 0.5, 1.5, 2.5 and k = 0, 1, 2, respectively.

Table 4 (top) reports the ML estimation of θW for each k = 0, 1, 2 and for

each βW = 0, 0.5, 1, with the associated loglikelihood. Table 4 (bottom) reports

the ML estimation of θM for each µ = 0.5, 1.5, 2.5, with the associated loglikeli-

hood.

A comparison of the two models in terms of the loglikelihood shows that the

best models are obtained when k = 0 and µ = 0.5, that is, when the tempo-

ral margin is not differentiable at the origin for both cases. For the Gneiting–

Wendland model, the best fit is obtained for βW = 0. Increasing this parameter

leads to a small loss in terms of fitting and, at the same time, a decreasing

number of nonzero values in the associated covariance matrix. Overall, the es-

timations of the spatial scale and the variance parameters are very similar, as

expected, for k = 0, 1, 2 and µ = 0.5, 1.5, 2.5. A graphical comparison between

the empirical and estimated temporal semivariograms using model (3.1), when

µ = 0.5 and model (3.2), when k = 0 and βW = 0, is provided in Figure S3 in

the Supplementary Material.

In order to compare the covariance models in (3.1) and (3.2) from prediction

performance and computational viewpoints, we use three predictive scores, as



734 PORCU, BEVILACQUA AND GENTON

described in Gneiting and Raftery (2007) and Zhang and Wang (2010). Let

Ẑ(xi, tj) be the best linear prediction of Z at the space-time location (xi, tj),

based on all data except z(xi, tj). The first prediction score is the root mean

squared error (RMSE), defined as

RMSE =

 1

545× 11

11∑
i=1

910∑
j=366

(
z(xi, tj)− Ẑ(xi, tj)

)2

1/2

. (3.3)

The logarithmic score is defined as

logS =
1

545× 11

11∑
i=1

910∑
j=366

[
1

2
log(2πσ(xi, tj)) +

1

2
(Y (xi, tj))

2

]
, (3.4)

where Y (xi, tj) = (z(xi, tj)− Ẑ(xi, tj))/σ(xi, tj), and {σ(xi, tj)}2 is the pre-

diction variance associated with Ẑ(xi, tj). Finally, we consider the continuous

ranked probability score (CRPS), which can be expressed in the Gaussian case

as

CRPS =
1

545× 11

11∑
i=1

910∑
j=366

σ(xi, tj)

(
Y (xi, tj) [2F{Y (xi, tj)} − 1]

+ 2F{Y (xi, tj)} −
1√
π

)
, (3.5)

where F is the Gaussian cumulative distribution. In Table 4, the RMSE, logS,

and CRPS are shown for each covariance model. Comparing the covariances

in (3.1) and (3.2), for µ = 0.5, 1.5, 2.5 and k = 0, 1, 2, respectively, we find a

very small loss of prediction efficiency for the compactly supported models. For

instance, when µ = 0.5 and k = 0 and βW = 0, the associated RMSE is 0.2174

and 0.2198, respectively.

The three prediction scores can be computed efficiently without calculating

all of the drop-one predictions in (3.3), (3.4), and (3.5) (Zhang and Wang (2010)).

This efficient computation depends on the inverse of the covariance matrix. Let

Σ(θ̂) be the estimated covariance matrix associated with one of the covariance

models considered in (3.1) or (3.2). Then, for instance, the RMSE can be written

as RMSE= (f>f/5995)1/2, where f = DΣ(θ̂)−1z and D = (diag(Σ(θ̂)−1))−1.

As outlined in Furrer, Genton and Nychka (2006), an efficient computation

of the inverse of a (possibly large) symmetric positive-definite matrix, with a

given Cholesky matrix factorization, requires the solution of two triangular linear

systems using back substitution. In our implementation, for covariance models

obtained from (3.2), the solution can be obtained using a Cholesky factorization
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Table 4. Top: ML estimation of σ2
W aW , and bW for the covariance model in Equation

(3.2), for κ = 0, 1, 2 and βW = 0, 0.5, 1. RMSE, logS, and CRPS computed using the
ML estimated covariance matrix, the percentage of nonzero values associated, and time
(in seconds) needed to compute the inverse, respectively. Bottom: ML estimation of σ2

M

aM , bM , and βM for the covariance model in equation (3.1), for µ = 0, 1, 2.

βW aW bW σ2
W Loglik RMSE logS CRPS % Time

κ = 0 0 1,313.13 4.64 0.325 −691.23 0.2198 −0.1212 0.4399 1.64 4.5
0.5 1,274.87 3.95 0.323 −724.74 0.2210 −0.1140 0.4396 1.28 3.8
1 1,342.21 3.12 0.335 −788.79 0.2234 −0.1020 0.4419 0.95 3.6

κ = 1 0 2,451.25 3.21 0.319 −765.29 0.2234 −0.1020 0.4419 1.28 3.7
0.5 2,500.77 2.88 0.324 −795.82 0.2240 −0.1036 0.4487 0.09 2.8
1 2,648.16 2.56 0.338 −829.81 0.2246 −0.1018 0.4504 0.09 2.8

κ = 2 0 3,586.95 3.33 0.319 −773.65 0.2235 −0.1065 0.4492 1.28 3.7
0.5 3,637.85 3.09 0.323 −795.05 0.2239 −0.1043 0.4494 1.20 3.5
1 3,768.07 2.86 0.332 −818.62 0.2244 −0.1028 0.4503 0.09 2.8
βM aM bM σ2

M Loglik RMSE logS CRPS % Time
µ = 0.5 0.54 1,374.01 1.322 0.333 −634.44 0.2174 −0.1343 0.4375 100.00 109
κ = 1.5 1.0 2,498.58 0.528 0.326 −702.77 0.2205 −0.1196 0.4437 100.00 393
κ = 2.5 1.0 3,604.60 0.368 0.323 −724.16 0.2214 −0.1153 0.4454 100.00 441

and the block sparse Cholesky algorithm of Ng and Peyton (1993), implemented

in the spam package (Furrer and Sain (2010)). In Table 4, for a given per-

centage of nonzero values in the covariance matrix, we report the total time

(in seconds) needed to compute the Cholesky factor and the inverse using back

substitution for the Gneiting–Wendland models. In Table 4 (bottom), we show

the total time needed to compute the Cholesky factor using classical Cholesky

decomposition, and the inverse using back substitution for the Gneiting–Matérn

models. The time in seconds is expressed in terms of elapsed time, using the

function system.time of the R software on a laptop with a 2.4 GHz processor

and 16 GB of memory. As expected, the computational gains obtained using the

Gneiting–Wendland models are significant. For instance, computing the inverse

is approximately 30 times faster than when using the Gneiting–Matérn model for

comparing the cases k = 0, βW = 1, and µ = 0.5, and approximately 157 times

faster for comparing the cases k = 2, βW = 1, and µ = 2.5. Similar compu-

tational gains can be achieved when computing classical space-time kriging and

when performing a simulation using a Cholesky decomposition.

In conclusion, we have shown that our models allow for a substantial compu-

tational gain at the expense of a very small loss in terms of fitting and prediction

performance.
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4. Conclusion

As outlined in Bevilacqua et al. (2018), the sizes of data sets associated

with spatially or spatio-temporally correlated random processes have steadily in-

creased, making straightforward statistical tools computationally too expensive.

The use of covariance functions with an inherent or induced compact support,

leading to sparse matrices, is an accessible and scalable approach. The nonsepa-

rable compactly supported space-time covariance models introduced in this paper

have a spatial (temporal) marginal covariance of the generalized Wendland type

and a dynamical decreasing compact support. This is an appealing feature from

a computational viewpoint, particularly when dealing with data sets with a large

number of sites (temporal instants) and a relatively small number of temporal

instants (sites).

The recent work of Bevilacqua et al. (2018) highlights the importance of

our covariance models, with its dynamical compact support, for prediction pur-

poses. In fact, Bevilacqua et al. (2018) showed that under specific conditions,

Matérn and generalized Wendland covariance models are compatible; that is,

the induced Gaussian measures are equivalent. This implies that, under fixed

domain asymptotics, a missspecified linear unbiased predictor with a generalized

Wendland model is asymptotically as efficient as a true simple kriging predictor

using a Matérn model. To some extent, this applies to our space-time dynamical

support. However, caution is needed because of the lack of a solid asymptotic

framework that would allow us to merge the fixed domain asymptotic in space

with the increasing domain in time.

Finally, the construction of nonseparable covariance models with marginal

covariances of the generalized Wendland type and with dynamical decreasing

compact support is very challenging, from a theoretical point of view. This topic

is left for future research.

Supplementary Material

The online Supplementary Material integrates the main results provided in

the manuscript. Specifically, Section 2 provides generalizations of Theorems 1

and 2 to a broad class of functions, called multiply monotonic functions. Section

3 explores the necessary and sufficient conditions in a general framework using a

Fourier analysis. The Supplementary Material also provides the figures discussed

in the paper.
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Gneiting, T. (2000). Kuttner’s problem and a Pólya type criterion for characteristic functions.

Proceedings of the American Mathematical Society 128, 1721–1728.
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