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Abstract: Standard methods in computer model calibration treat the calibration

parameters as constant throughout the domain of control inputs. In many appli-

cations, systematic variation may cause the best values for the calibration param-

eters to change across different settings. When not accounted for in the code, this

variation can make the computer model inadequate. We propose a framework for

modeling the calibration parameters as functions of the control inputs to account

for a computer model’s incomplete system representation in this regard, while si-

multaneously allowing for possible constraints imposed by prior expert opinion. We

demonstrate how inappropriate modeling assumptions can mislead a researcher into

thinking a calibrated model is in need of an empirical discrepancy term when it is

only needed to allow for a functional dependence of the calibration parameters on

the inputs. We apply our approach to plastic deformation of a visco-plastic self-

consistent material in which the critical resolved shear stress is known to vary with

temperature.

Key words and phrases: Bayesian statistics, Gaussian process, identifiability, model

validation, uncertainty quantification, visco-plastic self-consistent material.

1. Introduction

Many physical phenomena studied in engineering and science disciplines are

driven by complex processes that may only be partially understood. Experiments

are needed to better understand these processes, but conducting them may be

difficult due to economic, technical, or ethical limitations. In response to the need

to study such prohibitively resource-intensive systems, the use of computer sim-

ulations as proxies for physical observations is now common practice. The design

and analysis of computer experiments has become a critical tool in the advance-

ment of numerous fields including national defense, environmental protection,

medicine, and manufacturing.

The utility of any computer model is contingent upon that model’s fidelity

to physical reality. Determining whether or not a specific computer code is an

acceptable surrogate for reality falls under the purview of model validation and
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the closely related area of model calibration. The aim of computer model calibra-

tion is to find appropriate values of the parameters governing the computer code

under which the code will most closely approximate physical observations ac-

cording to a predefined metric. Standard methods in computer model calibration

treat the calibration parameters as fixed (or averaged) values that are constant

throughout the domain of control inputs (e.g., Kennedy and O’Hagan (2001);

Williams et al. (2006); Bayarri et al. (2007); Higdon et al. (2008)). Computer

output and physical data then are combined to obtain the posterior distribution

of the calibration parameters. The posterior distribution serves as the basis for

calibrating the computer code in which the calibration parameters are set to a

point estimate such as the posterior mode (Kennedy and O’Hagan (2001)) or

varied over the plausible range for making predictions of future responses (e.g.,

Reese et al. (2004); Kennedy et al. (2006); Higdon et al. (2008)).

Often in practice the best settings for the calibration parameters may change

with different settings of the control inputs (Fugate et al. (2006); Atamturk-

tur et al. (2015); Pourhabib et al. (2015); Plumlee, Joseph and Yang (2016)).

This may be due to differences between manufacturing runs, raw materials, etc.,

or systematic variation not accounted for in the computer code due to incom-

plete knowledge of the system or computational difficulties. The former case was

considered by Xiong et al. (2009), who used a hierarchical model to treat the

calibration parameters as realizations from a common distribution with param-

eters estimated via maximum likelihood. The purpose of this article is to treat

the latter case by modeling the calibration parameters as functions of the con-

trol inputs. To fully account for the uncertainty associated with the unknown

functional form, we use a Gaussian process prior while allowing for constraints

imposed by opinions of subject matter experts, as is conventionally done in com-

puter experiments. Functional calibration is a topic of interest to many science

and engineering fields. Recently, Plumlee, Joseph and Yang (2016) presented a

case study in which the calibration parameters are similarly modeled with Gaus-

sian process priors to capture functional dependence for the specific application

of the ion channel models of cardiac cells. With this paper, we contribute to solv-

ing the problem in applications where available experimental data are scarce,

in which case the use of expert-elicited prior constraints becomes necessary to

address identifiability issues.

Our aim here is to propose a general framework for nonparametrically model-

ing calibration parameters as smooth functions of the control inputs. We provide

guidance for implementing our so-called state-aware calibration by discussing



NONPARAMETRIC FUNCTIONAL CALIBRATION 723

practical computational considerations, identifiability issues, and determining

when to invoke state-aware analysis. We demonstrate the feasibility and per-

formance of our model through an extensive simulation study as well as an appli-

cation to plastic deformation of a visco-plastic self-consistent (VPSC) material

in which the critical resolved shear stress varies with temperature.

The remainder of this paper is organized as follows: In Section 2 we briefly

review existing approaches, including the framework of Kennedy and O’Hagan

(2001), and state our proposed nonparametric functional calibration model. We

explicate a special case of our model relevant to the VPSC application, including

a discussion of computational considerations when implementing the model via

Markov chain Monte Carlo. This is followed by a simulation study in Section 3

comparing our model under different sets of prior constraints with a model as-

suming a known parametric functional form of the dependence, and with a model

that treats all calibration parameters as fixed throughout the experimental do-

main. We apply our proposed model to the VPSC problem in Section 4. We

conclude with discussion of these results, suggestions for determining when func-

tional calibration is necessary, and thoughts about future research in Section 5.

2. Methods

2.1. General formulation

A key reference for our development is Kennedy and O’Hagan (2001), but the

notions of model validation and calibration appear at least as early as Berman

and Nagy (1983) and Park (1991). Early Bayesian perspectives on calibration

can be found in Craig et al. (2001) and Reese et al. (2004), with a maximum

likelihood approach being presented in Loeppky, Bingham and Welch (2006).

Methods for integrating field data and computer output for calibration and anal-

ysis appear in Higdon et al. (2004) and Williams et al. (2006). Bayarri et al.

(2007) suggested a framework for the model validation process, including cali-

bration. Computer models with high-dimensional output were calibrated using

basis function representations in Higdon et al. (2008). Joseph and Melkote (2009)

modified the approach of Kennedy and O’Hagan (2001) to separate estimation

of calibration parameters from determination of a functional form for the model

discrepancy. The determination of appropriate values of tuning parameters and

calibration parameters simultaneously was done in Han, Santner and Rawlin-

son (2009). Calibration was extended to computer models for nonstationary spa-

tiotemporal processes in Pratola et al. (2013). Tuo and Wu (2015, 2016) discussed
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calibration based on L2 projections and studied the estimators’ asymptotic prop-

erties compared to the method of ordinary least squares. Pourhabib et al. (2015)

treated the calibration parameters as latent variables and used monotone sums

of splines to represent the functional relationship between the latent variables

and control inputs. Nonparametric functional calibration ideas appear also in

Atamturktur and Brown (2015) and Plumlee, Joseph and Yang (2016).

Suppose we have N field observations taken at experimental design settings

x1, . . . ,xN , where xi ∈ [0, 1]dx , i = 1, . . . , N, dx ≥ 1. Denote the field data as

yi = y(xi), i = 1, . . . , N . Let η(x, t) denote the output of the approximating

computer code using control input x and calibration parameter input t. Here

we assume that the computer code is fast-running so that a surrogate is not

needed to emulate the computer output. Suppose that any discrepancy between

the computer output and the field data is solely due to misspecified parameters in

the computer model and measurement error. The field data then can be modeled

as

yi = η(xi,θ) + εi, i = 1, . . . , N, (2.1)

where θ is the vector of true parameter values under which the computer model

agrees with reality. We assume that ε = (ε1, . . . , εN )T ∼ NN (0, λ−1y I), where I

is the identity matrix and λy > 0.

Consider a situation in which θ depends on the particular settings of the

experiment (e.g., Xiong et al. (2009); Atamturktur et al. (2015); Pourhabib

et al. (2015); Plumlee, Joseph and Yang (2016)). In the case dim(θ) > 1, we

partition the calibration parameters as θ(x) = (θT1 (x), θT2 )T , where θ1(·) =

(θ11(·), . . . , θ1p(·))T is the vector of state-aware calibration parameters and θ2
contains the constant parameters. Suppose a priori that θ1(·) is independent of

θ2. To accommodate the dependence of θ1 on x without assuming a functional

form of the dependence, we use a nonparametric model for the components of

θ1(x). Specifically, we appeal to Gaussian process (GP) models (O’Hagan (1978);

Neal (1998); Santner, Williams and Notz (2003)). For θ2, we follow convention

and assign the elements independent uniform priors (Higdon et al. (2008)).

Assuming independence a priori among all calibration parameters allows us

to define the prior distribution on θ as π(θ(x)) = π1(θ1(x))π2(θ2), where we

assign Gaussian process priors independently to the elements of θ1(·). In the ab-

sence of prior knowledge and to limit the number of parameters to be estimated,

we use Gaussian processes with constant mean functions, usually sufficient for

interpolating GP models (Neal (1998); Bayarri et al. (2007)). We wish to honor
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any expert-elicited bounds on plausible values for functional parameters as we

would under conventional calibration. Hence, we scale all of the computer code

inputs to lie in the unit hypercube and connect the functional calibration pa-

rameters to the GP models through a known link function mapping the unit

interval to the real line, as done in generalized linear models (GLMs; McCullagh

and Nelder (1989)). Here we suppose that the functional calibration parameters

vary smoothly over the control inputs, so the relationships can be well approxi-

mated by infinitely differentiable functions. Hence, we use a Gaussian correlation

function. We have, for i = 1, . . . , p,

g(θ1i(·))
indep.∼ GP(µθ,i, λ

−1
θ,iRi(·, ·)); Ri(x,x

′) = exp

{
−4

dx∑
k=1

γθ,i,k|xk − x′k|2
}
,

(2.2)

where g : (0, 1) → R is one-to-one and differentiable, dx = dim(x), λθ,i are the

unknown precisions, and γθ,i,k controls the smoothness of the sample paths of

θ1i(·) along the kth dimension of x. The mean functions µθ,i are taken to be

constant and fixed. For instance, if we take g to be the logit link, then we can

center the GPs around log(0.5/(1−0.5)) = 0, and likewise for other link functions.

If we know a priori that θ1i(·) is bounded away from 0 and 1 with high probability,

then we can take g(θ1i) = θ1i as an approximation to the response function. In

Section 3, we compare the performance of the logit, g(z) = log(z/(1− z)), probit

(inverse Gaussian distribution function), g(z) = Φ−1(z), cumulative log-log (c-

log-log), g(z) = log(− log(z)), and identity, g(z) = z, functions on a simulated

example and show that they are all comparable.

When stronger plausible limits are known for the calibration parameters at

certain input settings, we can modify the preceding model to

g(θ1i(·))
indep.∼ GP(µθ,i, λ

−1
θ,iRi(·, ·))

∏
c∈Ci

I(Lc < θ1i(xc) < Uc), i = 1, . . . , p, (2.3)

for finite sets of constraints indexed by Ci with Lc, Uc being the bounds and I(·)
the indicator function. In practice, one can use standard techniques for sampling

from truncated Gaussian distributions (e.g., Robert (1995)). In some cases, it

may even be feasible to draw from the unrestricted sample paths and discard

those not satisfying the constraints, making implementation easy.

The model is completed by specifying priors for the hyperparameters in

each Gaussian process. For hyperpriors on the parameters governing the co-

variance structure of the GP, it is convenient to parameterize the correlation

function as ρθ,i,k = e−γθ,i,k and to assign ρθ,i,k independent Beta priors, ρθ,i,k
iid∼
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Beta(1, bθ), i = 1, . . . , p; k = 1, . . . , dx (Williams et al. (2006)). The shape param-

eter bθ is chosen to place most probability mass near one to enforce the assumed

smoothness a priori, say bθ = 0.1 or bθ = 0.2. We take λθ,i
iid∼ Ga(aθ, bθ). If g is

the identity function in (2.2), then we can choose aθ and bθ to place the prior

probability mass around one, since the calibration parameters are scaled. Oth-

erwise, we can take, e.g., aθ = 0.01 and bθ = 0.01 so that the prior is centered

at one with standard deviation
√

0.01/0.012 = 10. Similarly, we take the error

precision to be λy ∼ Ga(ay, by). Since the data are standardized when calibrating

the computer code, we again choose the parameters to concentrate the density

near one.

A common problem in computer model calibration is that of identifiabil-

ity of the calibration parameters (Bayarri et al. (2007)). Bayesian modeling can

mitigate this problem through informative prior distributions (Gelfand and Sahu

(1999); Gustafson (2005)). In our case, the GP induces correlation between θ1(xi)

and θ1(xj), xi 6= xj , so that they are allowed to share information in determining

plausible values in the posterior. However, GP models tend to be erratic near the

boundaries of the domains over which they are studied, and this behavior can

limit the Bayesian learning about θ1(·) or θ2 in the posterior. Another conse-

quence of weak identifiability is the possibility of highly correlated draws in the

MCMC sampling routine, potentially leading to very poor convergence proper-

ties. A possible solution is to elicit informative prior distributions from subject

matter experts. If an informative prior distribution can be elicited for θ2, or if

the possible sample paths of θ1(·) can be constrained using prior information,

identifiability can be improved. We return to this point in Section 3.

A goal of computer model calibration is to facilitate reliable predictions at

untested experimental settings. In the Bayesian paradigm, such predictions are

based on the posterior predictive distribution. Suppose we have training data

y = (y(x1), . . . , y(xN ))T and we wish to make predictions for future realizations

at m untested settings x∗1, . . . ,x
∗
m, y∗ = (y(x∗1), . . . , y(x∗m))T . Since y∗ is deter-

mined by θ
(x∗)
1 := (θT1 (x∗1), . . . ,θ

T
1 (x∗m))T , θ2, and λy, and a posteriori informa-

tion about θ
(x∗)
1 depends on y only through the posterior distribution of θ

(x)
1 =

(θT1 (x1), . . . ,θ
T
1 (xN ))T , ρθ = (ρθ,1, . . . , ρθ,p)

T , and λθ = (λθ,1, . . . , λθ,p)
T , predic-

tions at untested settings are available by drawing θ
(x)
1 ,ρθ,λθ, θ2, and λy from the

joint posterior distribution, sampling from the distribution of θ
(x∗)
1 |θ(x)1 ,ρθ,λθ,

and then drawing from y∗|θ(x
∗)

1 ,θ2, λy. Here, π(θ
(x∗)
1 |θ(x)1 ,ρθ,λθ) is readily avail-

able since (θ
(x∗)
1 ,θ

(x)
1 )|ρθ,λθ follows a multivariate Gaussian distribution.

When an experimenter has more reliable prior information concerning the
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functional forms of the dependencies of calibration parameters on the control

settings, the nonparametric Gaussian process in (2.2) can be replaced with a

parametric function, θ(x) = f(x,β). The problem then is to assign an appropri-

ate prior distribution to β and estimate plausible values from the posterior. This

was done in Xiong et al. (2009) and Atamturktur et al. (2015), with a similar ap-

proach taken in Pourhabib et al. (2015). The parametric calibration problem can

be expressed as a standard calibration approach, though, since the calibration

parameters are still treated as constant and appear in the “augmented” computer

code, η(x,θ(x)) = η(x, f(x,β)) ≡ η(x,β).

2.2. Two parameter model with scalar control input

Our motivating example of modeling plastic deformation of viscoplastic self-

consistent material involves a single control input and two calibration parameters

so that p = 1 and dx = 1 in (2.2). In light of this, it is the scenario we consider in

our simulation study in Section 3. We focus on this special case and consider the

specification of the model, the joint posterior distribution, and computational

considerations for implementation.

Let y = (y(x1), . . . , y(xN ))T be the vector of observed field data, x =

(x1, . . . , xN )T the experimental settings under which the data were collected,

and η(θ(x)) = (η(x1,θ(x1)), . . . , η(xN ,θ(xN )))T the calibrated computer output

at these experimental settings. For ease of notation, we suppress the constraints

in (2.3) so that any sample path restrictions are implied. Our proposed model is

y|θ(x), λy ∼ NN (η(θ(x)), λ−1y I),

λy ∼ Ga(ay, by), ay, by > 0,

g(θ1(·))|λθ, ρθ ∼ GP(µθ, λ
−1
θ Rρθ(·, ·)), −∞ < µθ <∞,

θ2 ∼ Unif(0, 1),

λθ ∼ Ga(aθ, bθ), aθ, bθ > 0,

ρθ ∼ Beta(1, bθ), bθ > 0,

(2.4)

where g is a known link function as in (2.2), θ
(x)
1 = (θ1(x1), . . . , θ1(xN ))T ,

and Rρθ(·, ·) is the correlation function given by Rρθ(x, x
′) = ρ

4(x−x′)2
θ . With

g(θ
(x)
1 ) = (g(θ1(x1)), . . . , g(θ1(xN )))T , the joint posterior distribution is

π(θ
(x)
1 , θ2, ρθ, λθ, λy|y) ∝ λN/2+ay−1y exp

{
−λy

2
(y−η(θ

(x)
1 , θ2))

T (y−η(θ
(x)
1 , θ2))

}
× exp(−byλy)λN/2+aθ−1θ |Rρθ |−1/2
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× exp

{
−λθ

2
(g(θ

(x)
1 )− µθ1)TR−1ρθ (g(θ

(x)
1 )− µθ1)

}
× exp(−bθλθ)(1− ρθ)bθ−1,

where Rρθ = {Rρθ(xi, xj)}Ni,j=1 and 1 = (1, . . . , 1)T .

We use Markov chain Monte Carlo (MCMC; Gelfand and Smith (1990)) to

sample from the posterior. To eliminate the boundary constraints on θ2 and ρθ,

and to make our sampling algorithm less sensitive to the scale of the data, we

reparameterize with ξ = log(− log(θ2)) and ν = log(− log(ρθ)). Here ν is equiv-

alent to the correlation length parameterization suggested by Neal (1998) when

implementing MCMC for models with GP priors. The subsequent full condi-

tional distributions necessary for the algorithm are given in the Supplementary

Material.

We use Gibbs sampling with Metropolis steps for the non-standard distri-

butions (Metropolis et al. (1953); Geman and Geman (1984); Tierney (1994);

Carlin and Louis (2009)). In drawing sample paths of θ1(·) with Metropolis pro-

posals, we wish to take advantage of the prior smoothness assumptions. Follow-

ing the suggestion of Neal (1998), we sample θ
(x)
1 using a multivariate Gaus-

sian proposal with correlation matrix dependent upon the current value of ρθ.

Thus, to sample from the distribution of θ
(x)
1 |ξ, ν, λθ, λy,y, on the kth iteration,

we find the spectral decomposition of Rν = UΛUT and draw a proposal as

θ
(x),†
1 = cUΛ1/2z+θ

(x),(k−1)
1 , where z ∼ NN (0, I) and c is determined adaptively

during the burn-in period by monitoring the acceptance rate and adjusting peri-

odically. We use the spectral decomposition of Rν despite the fact that it is slower

to compute than the usual Cholesky decomposition, since it is more numerically

stable for generating Gaussian random variables. For ξ, we use a Metropolis step

with candidates ξ† ∼ N(ξ(k−1), c2ξ), where cξ is tuned adaptively, and similarly

for ν.

When the observed design points are close together, the columns of the

correlation matrix Rν are nearly linearly dependent so that R−1ν is numeri-

cally unstable. While the spectral decomposition mitigates the problem when

simulating multivariate Gaussian draws, this technique is not helpful in solv-

ing the matrix or finding its determinant. To address this, we add a nugget δ

to obtain Rν,δ := Rν + δI. Ranjan, Haynes and Karsten (2011) proposed de-

termining the nugget with δ = max{λN (κ(Rν) − ea)(κ(Rν))−1(ea − 1)−1, 0},
where λN is the largest eigenvalue of Rν , κ(Rν) is the condition number, and

ea is the threshold on κ(Rν) for the matrix to be well-conditioned. We use the



NONPARAMETRIC FUNCTIONAL CALIBRATION 729

Cholesky factorization of the modified matrix, Rν,δ = LδL
T
δ , to approximate

log(|Rν |−1/2) ≈ −
∑N

i=1 log(lii), where lii is the ith diagonal element of Lδ.

We obtain acceptable results using the above Metropolis-within-Gibbs sam-

pling scheme, but we still find the smoothness hyperparameter ρθ difficult to

estimate via posterior inference. Approaches to this problem suggested in the

literature include Hamiltonian Monte Carlo (Neal (1998, 2011)), or substituting

an empirical Bayes estimator such as the posterior mode (Qian and Wu (2008)).

The identifiability problem and the dependence it can induce among calibration

parameters in MCMC simulations have motivated useful advances such as de-

layed rejection adaptive Metropolis (Haario et al. (2006)). There is no doubt

more research to be done in this area.

3. Simulation Study

To illustrate our proposed method, we simulated field data yi, i = 1, . . . , N ,

by supposing that y(xi) = c1(xi) + c2x
2
i + εi, where εi

iid∼ N(0, 0.052), i =

1, . . . , N . The computer model was η(x, t1, t2) = t1 + t2x
2 so that both calibra-

tion parameters t1 and t2 were assumed constant in the computer code. We

supposed that, in reality, c2 = 2.5 is constant across the domain and that

c1(·) is determined by c1(x) = 2
√
x. The field data were generated at x =

(0.00, 0.05, 0.10, . . . , 0.90, 0.95)T . The responses y∗ = (y(0.45), . . . , y(0.65))T were

held out as a validation set, leaving the remaining 15 observations as a train-

ing dataset. We used the logit link, g(θ(x)) = log(θ(x)/(1 − θ(x))), and took

aθ = bθ = 0.01 in the prior on λθ. We set ay = by = 5, encouraging λy to be close

to one since the data are standardized. For ρθ, we concentrated the prior near one

with bθ = 0.2. The field data were standardized and the calibration parameters

were scaled to lie in the unit hypercube prior to calibrating the computer model,

θi = (ci − cmin,i)(cmax,i − cmin,i)
−1, i = 1, 2, in (2.4).

To illustrate what is at stake, Figure 1 plots the simulated data along with

the computer model predictions obtained when using the posterior means as the

calibrated estimates inside the code. The left panel plots the estimated posterior

means using both a constant assumption on θ1 (with a uniform prior) as well

as the functional assumption with the logit link. When treating both calibration

parameters as constant, the calibrated code yields strong disagreement between

the predictions and field data. In practice, this disagreement would likely be

absorbed by adding an extra term to (2.1) to represent model discrepancy. Such

an approach would conceal the true nature of the system, illustrated in the left
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Figure 1. Simulated data used for calibration under the logit link along with poste-
rior means. All values are plotted on the original scale. The right panel compares the
corresponding mean predictions.

panel of Figure 1. By allowing θ1(·) to change over the experimental settings,

reality is represented in a manner more consistent with experiments without

resorting to a purely empirical discrepancy term. Our approach thus allows what

would be a previously unknown functional form to emerge. We discuss these

results further below. Notably, we show that treating θ1 as constant still results

in posterior concentration about the “average” value, so that a researcher could

gain a false sense of security in their assumptions.

We simulated draws from the posterior via MCMC as described in Section

2. For each of the scenarios considered, we ran three chains in parallel using

different starting values to assess convergence. Each chain used a burn-in period of

5,000 iterations, after which the chains were run for an additional 4,000 sampling

iterations. Each chain was thinned to reduce autocorrelation. Trace plots were

examined to assess convergence, after which the draws for the three chains were

combined.

We a priori enforced the constraints −0.075 ≤ c1(x1) ≤ 0.075 and 1.85 ≤
c1(x20) ≤ 2.05 so that the range c1(x1) had a width of 3 error standard deviations

and the range of c1(x20) had a width of 4 error standard deviations. By contrast,

we took the prior on c2 to be uniform between c2,min = 1 and c2,max = 3, so that it

measured 40 error standard deviations in width. Figure 2 illustrates the results. In

the left panel we see a strong contrast between the prior and posterior densities

of c2, demonstrating the considerable Bayesian learning about this parameter

that occurred. Further, the posterior is correctly concentrating about c2 = 2.5.
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Figure 2. Posteriors of c1(·) and c2 under the logit link with constraints on the boundary
values of c1(·). The dashed and solid curves in the left panel are the prior and posterior
densities of c2, respectively. The thick line in the right panel is the true function c1(·).
The heavy tick marks at the bottom indicate the x values of the training data.

The right panel plots sample paths from the distribution of c1(·)|y. Here we see

our model’s ability to recover the true functional dependence on x, despite c1
being treated as constant inside the computer code. The posterior draws tend to

closely agree with the truth at each of the holdout points.

For the second scenario, we placed more informative prior bounds on c2 so

that it was uniform between c2,min = 2.35 and c2,max = 2.65. We removed the

constraints on the values of c1(x) at any x so that the possible realizations were

unrestricted. Figure 3 illustrates the prior and posterior of c2 and posterior sam-

ple paths of c1(·). We see the weak Bayesian learning about c2 that has occurred

in this case. This reflects the fact that, given the bounds we have already im-

posed on the possible values for c2, the data contain little additional information

concerning plausible values. We again see posterior concentration of c1(·) about

the true parameter path at both the observed design points as well as at the

untested design settings. Despite allowing for unconstrained functional paths, we

were able to recover the functional form.

Suppose we know that c1(·) can be approximated with c1(x) = βU0 + βU1
√
x,

where βU0 and βU1 are unknown. In this case, we altered Model (2.4) by writing

θ
(x)
1 = (β0 + β1

√
x1, . . . , β0 + β1

√
xN )T and assigning prior distributions to β0

and β1, where we drop the superscripts to indicate the rescaling. Calibration

then involved determining probable values of β = (β0, β1)
T . To give the data

as much freedom as possible in determining appropriate values, we used a flat
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Figure 3. Posteriors of c1(·) and c2 with logit link and tight prior bounds on c2. The
dashed and solid curves in the left panel are the prior and posterior densities of c2,
respectively. The thick line in the right panel is the true function c1(x). The heavy tick
marks at the bottom indicate the x values of the training data.

prior, π(β) ∝ 1. We used the same prior distribution for λy as in the previous

simulations and again took c2 to be a priori uniform between c2,min = 2.35 and

c2,max = 2.65. We simulated the posterior distribution with the same burn-in

period and the same number of chains as with the GP model.

Supplementary Figure 1 displays the smoothed approximate posterior densi-

ties of c2, β
U
0 , and βU1 . We see that βU0 = 0 and βU1 = 2 are contained in the high

density regions of their respective posteriors. Thus, we recover the true functional

relationship c2(x) = 2
√
x with high probability, as evident in the far right panel

of the Figure.

Another situation we considered is the conventional approach in which all cal-

ibration parameters were assigned flat prior distributions over ranges determined

from, e.g., expert opinion. In this case, we took π(c2) ∝ I(2.35 < c2 < 2.65)

and π(c1) ∝ I(−0.5 < c1 < 2.5). For the MCMC implementation with the

rescaled calibration parameters, we reparameterized the joint posterior in terms

of log(− log(θ1)) just as we did with θ2 to eliminate boundary constraints and

facilitate Gaussian proposals for Metropolis sampling.

Figure 4 presents the smoothed approximate posterior densities for c1 and c2
resulting from treating both as constant throughout the domain of applicability.

Similar to the previous models with informative bounds on c2, we see little addi-

tional Bayesian learning about c2. In spite of the simplistic treatment of c1, we

see considerable posterior concentration around 1.25. This belies the fact that c1
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Figure 4. Smoothed approximate posterior distributions of c2 (left panel) and c1 (right
panel) when replacing the GP prior on θ1(·) with θ1 ∼ Uniform in Model (2.4).

is truly state-dependent. Hence, strongly identified parameters are no guarantee

that the assumed model is the best a researcher can do in describing the system

of interest. This could be misleading to the practitioner, who might instead rely

on an empirical model discrepancy term to correct the prediction errors seen in

Figure 1.

Supplementary Figure 2 plots posterior predictions and approximate 95%

error bars about the holdout design settings for each of the models considered

above. While each model is capturing the true responses within its prediction

tolerance, an obvious difference between them is in the associated uncertainties.

As expected, the model assuming the correct functional form for θ1(x) results in

the best predictions. We see, however, that the more flexible GP model still yields

competitive predictions. Little is lost by relaxing the assumption of a specific

parametric function. Note the loss of predictive certainty from treating θ1 as

constant. The root mean squared predictive errors (RMSPE) are displayed in

Table 1, which indicate that all three models assuming functional dependence

vastly outperform the model treating both calibration parameters as constant.

The most common link functions for unit interval-valued data are the logit,

probit, and cumulative log-log functions. When the values can be assumed to be

away from the boundaries with high probability, the identity link also can be

used. Supplementary Figure 3 compares posterior sample paths obtained from

our simulated data using each of these link functions with unconstrained sample

paths and informative prior bounds on c2. We see that all of them are competitive

in terms of recovering the true functional relationship. The differences arise from
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Table 1. Root mean squared predictive error (RMSPE) of the posterior predictions at
the holdout settings.

Model Parametric θ1(·) Constrained θ1(x1), θ1(xN ) Informative π(θ2) Constant θ1
RMSPE 0.0538 0.1185 0.0902 0.2783

each link function’s effect on the Bayesian learning in the posterior and hence

the convergence of the MCMC algorithm. When the Gaussian approximation is

justified, faithful posterior estimates of the function are obtained. This approxi-

mation also results in the smallest out of sample prediction error, as evident in

Supplementary Table 1, which shows the RMSPE for each of the considered link

functions.

To demonstrate what can go wrong, suppose in our example that both c2
and c1(·) are given vague priors. The danger here is that weak identifiability

might result in highly correlated parameters in the sampling algorithm, leading

to convergence difficulties. Supplementary Figures 4 and 5 display trace plots of

the sampled values of c2, c1(x10), and c1(x15) from three different chains using

different initial values along with sample paths of c1(·) obtained from these chains

when using vague priors. The chains do not mix well so that posterior inference

is unreliable. Weak identifiability is a concern when resource-intensive collection

of field data limits the available sample size. In this case, using available prior

information is crucial.

Simulation results demonstrate that our proposed model can calibrate com-

puter codes and adequately capture unknown functional behavior of the calibra-

tion parameters. We see that eliciting such prior information about the parame-

ters can mitigate identifiability problems that are ubiquitous in model validation.

Our results suggest the counterintuitive fact that allowing the calibration param-

eter θ1 to vary across the experimental domain results in much less uncertainty

about future predictions, in spite of the strong Bayesian learning that occurs

when treating θ1 as constant. This behavior is particularly appealing since the

reduction in uncertainty occurred regardless of whether we imposed the correct

functional form or assigned θ1(·) a nonparametric Gaussian process prior. We

illustrate further that similar results can be obtained under a variety of link

functions. We emphasize, however, that our experience suggests that the identity

link approximation is best when the true values can be safely assumed to be far

from the boundaries.
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4. Application to VPSC Material Plastic Deformation

As an application, we consider a viscoplastic self-consistent material (VPSC)

model for the plastic deformation of polycrystals. This model, developed by

Lebensohn and Tomeé (1993) and studied by Atamturktur et al. (2015), treats

a polycrystal as a set of single crystals with a texture represented by crystol-

lographic orientations that evolve during plastic deformation. Relationships be-

tween deviatoric stress and strain-rate tensors are used to model this viscoplastic

deformation. The VPSC formulation imposes a strain-rate during each incremen-

tal deformation step, resulting in stress-strain curves as part of the output of the

model. The so-called glide-only version of the VPSC model allows dislocations

of single crystals to move within the slip plane and hence describes simple shear

deformations on this plane. The strain rate at the level of a single crystal, ε̇, is

approximated by

ε̇ = γ̇0

Ns∑
s=1

ms

(
|ms : σ|
τ0

)ng
sign(ms : σ), (4.1)

where σ is the applied stress, ms is the Schmid tensor, τ0 is the critical resolved

shear stress associated with glide, ng is the inverse rate sensitivity for the glide ac-

tivity, Ns is the total number of active slip systems, γ̇0 is a normalizing constant,

and : denotes the tensor product.

Stout et al. (1998a,b) reported experiments concerning the plastic defor-

mation of 5182 aluminum to which the glide VPSC model is applicable. Two

inputs, temperature and strain-rate, were varied in the experiments and stress-

strain curves subsequently measured. The experiments were performed until each

specimen attained a strain of 0.6, at which time the corresponding stress of the

specimen was recorded. Eleven experiments were originally conducted at temper-

ature settings between 200 and 550 ◦C and strain-rate equal to 10−3 and 1. In the

VPSC computer code for implementing (4.1), the glide stress exponent ng and

the critical resolved shear stress τ0 are to be calibrated against the experimen-

tal data. Previous empirical work suggests that τ0 is a function of temperature.

We thus incorporated this functional dependence into calibrating Model (4.1).

A parametric functional form was used for τ0(·) in Atamturktur et al. (2015).

This model is purely empirical in the absence of any existing theory. Hence, we

relaxed the parametric assumption and used a Gaussian process model for τ0(·).
We used as our field data the experiments conducted at strain-rate equal to 10−3

while varying temperature. The experimental data are given in Table 2.

We relied on expert opinion and previous empirical work to determine ranges
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Table 2. Experimental results of plastic deformation of 5182 aluminum (Stout et al.
(1998a,b)).

Experiment A B C D E F
Temperature (◦C) 200 300 350 400 500 550
Maximum Stress (MPa) 226.2 91.4 50.0 30.6 14.9 7.0

Table 3. Bounds on control and calibration parameters for the VPSC application.

Parameter Temperature (◦C) ng τ0 (MPa) τ0(x1) τ0(xN )
Range [180.00, 570.00] [2.50, 4.50] [1.20, 1343.40] [519.03, 693.07] [7.78, 42.15]

for ng and τ0. We also had available the extrema for the control input, temper-

ature. These bounds, displayed in Table 3, are used to scale the parameters to

lie in the unit hypercube prior to calibration. Atamturktur et al. (2015) used

nonlinear constrained optimization to obtain optimal values for τ0 at different

temperature settings for use in estimating a parametric function for τ0(·). We

used this information to refine the constraints on τ0(·) at the boundaries of the

experimental domain. These values are given in Table 3, as well.

Figure 5 displays the prior and smoothed approximate posterior distributions

of ng along with sample paths drawn from the approximate posterior distribution

of τ0(·) using the identity link approximation. Superimposed on the sample paths

are the pointwise mean curve and the constraints on the boundary values of the

paths. For reference, experimental temperature settings used in the calibration

are denoted with the large tick marks along the x-axis. The density about ng
has updated to become slightly more concentrated about 3.5, in agreement with

previous empirical work. The boundary constraints on τ0(·) are obviously influen-

tial in determining posterior sample paths, as we would expect given the limited

experimental data available.

As a check of model adequacy, we examined the distributions of selected test

quantities of interest, p(T (y∗)|y) =
∫
p(T (y∗)|θ)π(θ|y)dθ, where y∗ is a poste-

rior replication of the dataset. The test quantities we used were the sample mean,

T1(y) = N−1
∑N

i=1 yi, the sample variance, T2(y) = (N−1)−1
∑N

i=1(yi−y)2, and

the sample inner product T3(y) =
∑N

i=1 xiyi. These are sufficient statistics for

a linear regression of y on x and thus summarize salient features of the data.

The distributions of these test quantities also enabled us to approximate the

Bayesian p-values (Gelman et al. (2014, chap. 6)), p
(i)
B = P (Ti(y

∗) ≥ Ti(y)|y) =∫ ∫
I[Ti(y

∗) ≥ Ti(y)]p(y∗|θ)π(θ|y)dy∗dθ, i = 1, 2, 3. The Bayesian p-value is a

simple measure of discrepancy between a hypothesized model and observed data,
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°  

Figure 5. Smoothed prior and posterior histogram for ng (left panel) and sample paths
drawn from the posterior of τ0(·) (right panel). The dark curve in the center is the
pointwise mean of the sample paths; the dark vertical lines on the boundaries indicate
the prior constraints imposed on the curves. The large tick marks along the x-axis denote
the experimental temperature settings used for the calibration.

with values close to zero or one indicating a model’s failure to explain features of

the data. Supplementary Figure 6 displays histograms of realizations of T1, T2,

and T3 based on 2,000 replications drawn from p(y∗|y). In each plot, the dark

vertical line represents the observed value of the statistic from the experimental

data. In all three cases, the observed value is well within the range of plausi-

ble values posited by our model. The Bayesian p-values for each statistic were

p
(1)
B = 0.831, p

(2)
B = 0.616, and p

(3)
B = 0.785. Supplementary Figure 7 displays

the posterior predictions with approximate 95% error bars at the observed tem-

perature settings, where we see that the field data are well within the bounds

predicted by our model. We can conclude that our modeling assumptions and

the subsequent calibrations are consistent with the experimental data.

This application illustrates our model’s ability to adapt to changes in appro-

priate calibration values as a function of the experimental settings while treat-

ing other calibration parameters constant. The example also illustrates how the

additional uncertainty introduced by omitting the assumption of a parametric

functional form is incorporated into model predictions. In the presence of this

uncertainty, we still obtain calibrated model predictions that are consistent with

field data.

5. Discussion

Standard practice in computer model calibration is to use elicited prior in-
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formation to construct relatively simple prior distributions on the calibration

parameters and treat them as constant throughout the domain of applicability.

While this methodology has proven to be effective, the situation can be improved

by acknowledging the fact that the calibrated values might vary as a function of

the control inputs and modeling this phenomenon appropriately. Indeed, when

models are simplified, the dependence of parameters on the state of the sys-

tem can be lost. The proposed nonparametric functional model presented here

makes the calibration “state-aware” through a Gaussian process on the parame-

ters thought to change over the domain.

Through simulation and application, we show that the posterior distribu-

tion of our proposed model effectively incorporates prior information and fully

accounts for the remaining uncertainty in the presence of small sample sizes

while still yielding predictions consistent with experimental observations. We

demonstrate that knowing the correct functional form a priori yields the best

predictions with the most precision. However, we are able to obtain competitive

predictive performance even after relaxing the parametric assumption in favor of

a nonparametric model.

Our results suggest that the constant parameter assumption could be mis-

leading in that the posterior distribution may still concentrate around particular

calibration parameter values despite this assumption being incorrect. In this case,

a researcher might opt for a purely empirical model discrepancy term to account

for the differences between the calibrated predictions and the field data. Such an

approach works well when prediction is the only goal of the calibration proce-

dure. Often, however, inferences about the calibration parameters are desired in

addition to reliable prediction of future outcomes. In this case, the presence of

a discrepancy term exacerbates identifiability problems that are already present

(Bayarri et al. (2007)). Our proposed approach can reveal when a discrepancy

term is unnecessary, facilitating stronger inferences while increasing a researcher’s

confidence in using their model for extrapolation.

Small sample sizes are the norm rather than the exception in computer model

calibration, so identifiability is of utmost concern. This paper illustrates that un-

constrained functional calibration with vague priors limits posterior inference. We

demonstrate the utility of incorporating prior information which is often avail-

able from subject matter experts. There has been considerable discussion, though,

about interpreting the calibration parameters in certain applications and whether

such interpretations even admit the possibility of expert-elicited prior distribu-

tions (Kennedy and O’Hagan (2001)). However, uncertainties from sources other
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than existing expert opinion can be used to construct prior distributions, as well

(Bayarri et al. (2007)). Thus nonparametric functional calibration is still feasible.

We demonstrate how it produces reliable inference and predictions while fully ac-

counting for the uncertainty about the functional form. In addition to boundary

constraints, it also might be possible to incorporate prior information such as

known monotonicity to further improve identifiability (Golchi et al. (2015)).

Our proposed model assumes fast-running computer code, circumventing the

need for a surrogate model. It is common in practice, though, for the computer

code to be computationally expensive. Indeed, while we are able to obtain the

results in Section 4 without an emulator for the VPSC model, the code does

in fact take a couple of seconds to execute a single run, making the MCMC

routine slow. A natural extension that will be explored in future work is the

replacement of the actual computer code in (2.4) with a surrogate model. As the

dimension of the parameter space increases in a computer model, however, the

sensitivities and parameter correlations are much easier to understand when a

GP emulator is avoided (Hemez and Atamturktur (2011)). We thus recommend

using the computer model directly if at all feasible, but acknowledge that the

extension of our proposed method to include an emulator is needed.

There remains the question of deciding when to invoke our so-called state-

aware calibration, as it may not always be obvious which parameters to treat

as functional and which to treat as constant. We suggest beginning with the

conventional calibration approach in which all the calibration parameters are

treated as constant. The presence of systematic model bias can point to the need

for incorporating functional relationships into the calibration. If it is not obvi-

ous which parameters might follow a functional relationship, then a sensitivity

analysis can be performed, after which the most influential parameters would

naturally be the first ones assigned a functional model. Through this approach, a

researcher may gain an idea of which parameters to treat as functionally related

to the control inputs, but might not know the functional form. At this point, a

nonparametric Gaussian process model can be fit to the functional calibration

parameters, which then may suggest a specific parametric functional form. Both

the parametric and nonparametric versions of the model can be fit and com-

pared using a model assessment tool such as the deviance information criterion

(DIC; Carlin and Louis (2009)). If it is found suitable, the parametric model is to

be preferred, since it can improve extrapolation and, more importantly, suggest

missing physics in the system. State-aware calibration, then, can be a valuable

tool for determining when to expand on a currently accepted physics model by
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revealing previously unknown functional relationships. When found to be consis-

tent with experimentation, suitable parametric functions suggested by the initial

nonparametric model will help researchers fill gaps in scientific knowledge.

Supplementary Materials

The online Supplementary Material includes the full conditional distributions

necessary for Gibbs sampling, additional figures referred to in the text, and our

MATLAB implementation of the MCMC algorithm discussed in this paper.
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