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Abstract: In this paper, we study the asymptotic properties of a sequence of poste-

rior distributions based on an independent and identically distributed sample and

when the Bayesian model is misspecified. We find a sufficient condition on the

prior for the posterior to accumulate around the densities in the model closest in

the Kullback–Leibler sense to the true density function. Examples are presented.
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1. Introduction

This paper is concerned with asymptotics for Bayesian nonparametric mod-

els. In particular, we consider generalizations of the recent literature on con-

sistency; see for example, Barron, Schervish, and Wasserman (1999), Ghosal,

Ghosh, and Ramamoorthi (1999), and Walker (2004). The standard assumption

for consistency is that the true density function, which we denote by f0, is in the

Kullback–Leibler support of the prior, denoted by Π. Further sufficient condi-

tions on the prior are then established in order to ensure that the sequence of

posterior distributions accumulate in suitable neighborhoods of f0. The three

papers just cited deviate in the precise form of the further sufficient conditions.

We make the support of the prior assumption more general now by assum-

ing that the closest density in the support of the prior is a possibly non–zero

Kullback–Leibler divergence away from f0; specifically, if f1 is the closest den-

sity, in the Kullback-Leibler sense, in the support F of the prior (to be made more

precise later), then δ1 is defined to be the Kullback–Leibler divergence between

f0 and f1. We then look for further sufficient conditions under which the poste-

rior distributions accumulate in suitable neighborhoods of f1. In particular, we

work around the ideas presented in Walker (2004) and the sufficient conditions

for accumulation at f1 can be seen as a generalization of the condition appearing

in Walker (2004).

The convenience of working in this setting is quite evident. When considering

asymptotics, there are two possible scenarios: δ1 = 0 or δ1 > 0. The former

involves a well specified model and the latter a misspecified model. Typically,

the latter is more likely, though in reality it will be unknown. However, one can
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assume δ1 = 0 and derive conditions on the prior for posterior accumulation at

f0, and then assume δ1 > 0 and derive another set of conditions on the prior for

posterior accumulation at f1. It is to be sure that the latter conditions will be

stronger than the former. In this case, and the value of δ1 unknown, it makes

perfect sense to construct the prior under the condition that δ1 ≥ 0, and hence

under the misspecified case.

Early work for the misspecified problem has been done by Berk (1966) and

more recently by Bunke and Milhaud (1998), Shalizi (2009), and Kleijn and van

der Vaart (2006). In particular, the strategy followed by Kleijn and van der Vaart

(2006) consists of defining a neighborhood around f1 according to a suitable semi-

metric on the space of densities that satisfies an entropy condition related to the

Hellinger integral hα (to be defined later); see their equation (2.2). Kleijn and

van der Vaart concentrate on the notion of a single f1 for which accumulation of

the posterior takes place and extend this to a finite number of such f1.

On the other hand, we focus our efforts directly on a set F1 rather than on

a single f1, acknowledging the fact that in general one does not know how big

the set of densities associated with the minimum Kullback-Leibler distance δ1 is.

Hence, we find it appropriate to define

F1 = {f ∈ F̄ : D(f0, f) ≤ δ1}, (1.1)

where F̄ is the Hellinger closure of F and D(f0, f) is the Kullback-Leibler di-

vergence of f relative to f0. When F1 is non–empty, our working assumption

throughout the paper, we show accumulation at F1 with respect to the Hellinger

distance. When F1 is empty, we show that the posterior accumulates in a differ-

ent set that we define and explain at the end of Section 3.

In reality, and in general, it is not known whether F1 is empty or not, since

f0 is not known. A notable exception is when F is convex, in which case F1

reduces to a single density f1. However, our key prior condition, given in Section

3, covers both F1 empty or non–empty. Kleijn and van der Vaart (2006) only

establish what the posterior does when F1 is a finite set. For a chosen Π it may

be possible to find CΠ such that if f0 ∈ CΠ then F1 is empty, whereas if f0 ∈ CcΠ
then F1 is non–empty. But in spite of this being a difficult task, it would not

even be known if f0 was in CΠ or not, and hence the objective in this area would

focus on finding Π for which CΠ can be shown to be empty. To date this is only

known to be true when F is convex. Therefore knowing what happens when

f0 ∈ CΠ is important, and one of the contributions of the paper is to fill this gap

in the literature.

The rest of the paper is organized as follows. In Section 2 we start with some

notation, definitions, and preliminary results. The main results are presented in
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Section 3 and illustrations involving various priors are given in Section 4. We

conclude with a discussion in Section 5.

2. Notation and Preliminary Results

We introduce the notation of the paper, together with essential preliminary

results. Let X be a separable metric space endowed with its Borel σ-field B, and

denote by Ω the space of density functions on (X,B) relative to some reference

measure (that is omitted henceforth for ease of notation). For d a distance on

Ω and A ⊂ Ω, we denote by N(δ,A, d) the minimum number of balls of radius

at most δ, with respect to the metric d, needed to cover A. In particular, on Ω

we consider the Hellinger distance H(f, g) = {
∫
(
√
f −√

g)2}1/2 (which makes Ω

a separable space) and the Kullback–Leibler divergence D(f, g) =
∫
log(f/g)f .

Moreover, we define, for α ∈ (0, 1), the Hellinger integral hα(f, g) =
∫
f1−αgα

and the α-divergence dα(f, g) = α−1[1−hα(f, g)], see Liese and Vajda (2006) and

the references therein. We recall here that hα(f, g) ≤ 1 for any f, g ∈ Ω and that

dα(f, g) is decreasing in α with limα→0 dα(f, g) = D(f, g) whenever D(f, g) <∞.

The case α = 1/2 yields the Hellinger distance, since d1/2(f, g) = H2(f, g). A

lemma, whose proof is deferred to the Appendix, provides a useful inequality

that relates the Hellinger distance and the Hellinger integral hα. It is used in the

proofs of Theorem 1 and Lemma 2.

Lemma 1. For any f, g, f0 ∈ Ω and 0 ≤ α ≤ 1/2,

|hα(f0, f)− hα(f0, g)| ≤ [H(f, g)]2α.

Note that for α = 1/2, we have H(f, g) ≥ |H2(f0, f)−H2(f0, g)|/2, which is

weaker than the standard triangle inequality, as it can be proved by using (A.2)

in the Appendix and the fact that H(f, g) ≤
√
2.

As we are going to deal with convergence of sets of densities, we consider the

metric space (Ω,H), and define H(A, f) = infg∈AH(g, f) to be the Hellinger dis-

tance between A and f ∈ Ω, and H(A,B) = max{supf∈BH(A, f), supf∈AH(B,

f)} to be the Hausdorff distance (relative to the Hellinger) between A and B. In

particular, it can be shown that

H(A, f) ≤ H(B, f) +H(A,B). (2.1)

Since the Hellinger is a bounded distance, convergence in the Hausdorff metric

of a sequence (An) to A is equivalent to H(An, f) → H(A, f) for every f ∈ Ω

(known as Kuratowski convergence). Moreover, in case of a decreasing sequence

(An), the limit is given by
∩
nAn, see Rockafellar and Wets (2009, Chap. 4).

Now let X1, X2, . . . be independent and identically distributed random vari-

ables taking values in (X,B) with common density function f0 ∈ Ω and, given
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F ⊆ Ω, let Π be a prior probability measure on F . The Bayesian posterior

measure is given by

Πn(A) =

∫
ARn(f)Π(df)∫
F Rn(f)Π(df)

, (2.2)

where A is a measurable subset of F and Rn(f) =
∏n
i=1 f(Xi)/f0(Xi).We denote

by F∞
0 the infinite product measure relative to f0. Finally, upon definition of

δ1 = inff∈F D(f0, f), we refer to F1 in (1.1) as the set of pseudo-true densities

f1. An associate editor has suggested an alternative definition of the minimum

Kullback–Leibler distance as δ1 = inf{t : Π(f : D(f0, f) ≤ t) > 0}; we explicitly

work with the former but note the latter is effectively equivalent for the pur-

poses of our paper, see also (3.5) below. Existence of a pseudo-true density is

a delicate issue. Given the lower semicontinuity of D(f0, ·) as a map from the

metric space (Ω,H) to R, see Lemma 8.2 in Kleijn and van der Vaart (2006),

a (rather) stringent sufficient condition is the compactness of F . To our knowl-

edge, most of the theoretical results are based on the hypothesis of convexity of

F , supf∈F
∫
log(f)f0 being finite the essential additional requirement. See Liese

and Vajda (1987, Chap. 8), Pfanzagl (1990) and Patilea (2001).

3. Main Results

In the well–specified case with δ1 = 0, strong consistency corresponds to

Πn(f : H(f0, f) > ϵ) → 0 F∞
0 − a.s.. (3.1)

for any ϵ > 0, entailing that the posterior concentrates all the mass in an ar-

bitrarily small Hellinger neighborhood of the true f0. In the misspecified case,

it is reasonable to ask that the posterior concentrates mass around the set of

pseudo-true densities F1 in (1.1),

Πn({f : H(F1, f) > ϵ}) → 0 F∞
0 − a.s..

In order to establish this result, we follow a route different from the one in Kleijn

and van der Vaart (2006) in that we keep on working, although in an instrumental

way, on neighborhoods around the true f0. Specifically, we consider the sets

Aα,ϵ = {f ∈ F : dα(f0, f) > δ1 +
ϵ

α
}, (3.2)

Aα = {f ∈ F : dα(f0, f) > δ1 + α}. (3.3)

Note that the latter can be recovered from (3.2) with ϵ = α2, although any

ϵ = ϵ(α) decreasing in α with ϵ(α)/α → 0 as α → 0 would work. The idea is

that Acα is monotonically decreasing in α to F1.
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Lemma 2. Let Aα and F1 be as in (3.3) and (1.1), respectively. Then,
∩
αA

c
α ⊆

F1.

The proof of Lemma 2 is provided in the Appendix. We aim now at estab-

lishing sufficient conditions for

Πn(Aα,ϵ) → 0 F∞
0 − a.s. (3.4)

for any α and ϵ sufficiently small. To this aim, we first adapt the Kullback–Leibler

property to the misspecified case as

Π(f ∈ F : D(f0, f) ≤ δ1 + η) > 0 (3.5)

for any η > 0, see Theorem 2.1 in Kleijn and van der Vaart (2006). In fact, a

simple corollary of Lemma 3 and 4 in Barron, Schervish, and Wasserman (1999)

implies that, for all large n and for any c > 0,

In ≥ e−n(δ1+c), F∞
0 − a.s., (3.6)

where In =
∫
F Rn(f)Π(df) is the denominator of (2.2). As for the numerator,

the key condition can be stated, similar to Walker (2004), in terms of summability

of powers of prior probabilities. To this end, for a given α ∈ (0, 1), let (Bj,ε)j≥1

be Hellinger balls of size ε > 0 that cover F such that∑
j≥1

Π(Bj,ε)
α <∞. (3.7)

We are now ready to state and prove our main result.

Theorem 1. Suppose Π satisfies (3.5) and that (3.7) holds for some α ∈ (0, 1/2),

where the sets Bj,ε are Hellinger balls of size ε = 2(ϵ/2)1/(2α) whose union covers

F . Then (3.4) holds.

Proof. Let (Aj)j≥1 be a partition of Aα,ϵ (to be specified later) and define fn,j to

be the predictive density with posterior distribution restricted, and normalized,

to the set Aj . Note that

fn,j(x) =

∫
Aj

f(x)
Πn(df)

Πn(Aj)
=

∫
Aj
f(x)Rn(f)Π(df)∫
Aj
Rn(f)Π(df)

,

so that, letting Ln,j =
∫
Aj
Rn(f)Π(df),

Ln+1,j

Ln,j
=
fn,j(Xn+1)

f0(Xn+1)
,
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see also Walker (2004). Then, we have

Πn(Aα,ϵ) =
∑
j≥1

Πn(Aj) ≤
∑
j≥1

Πn(Aj)
α =

∑
j≥1

Lαn,j
Iαn

, (3.8)

E(Lαn+1,j |X1, . . . , Xn) = hα(f0, fn,j)L
α
n,j . (3.9)

Take Aj ⊆ A∗
j = {f : H(fj , f) < ε/2}, where ε = 2(ϵ/2)1/(2α) and (fj)j≥1 are

densities in Aα,ϵ. By using Lemma 1, we have that

hα(f0, fn,j)− hα(f0, fj) ≤ [H(fj , fn,j)]
2α <

ϵ

2

which, together with hα(f0, fj) < 1− α(δ1 + ϵ/α) (since fj ∈ Aα,ϵ), yields

hα(f0, fn,j) < 1− αδ1 −
ϵ

2
.

Hence, from (3.9), we get

E(Lαn,j) < (1− αδ1 −
ϵ

2
)nΠ(Aj)

α < e−n(αδ1+ϵ/2)Π(Aj)
α.

As for the numerator of (3.8), by the Markov Inequality,

P

(∑
j≥1

Lαnj > ende−n(αδ1+ϵ/2)
)
< e−nd

∑
j≥1

Π(Aj)
α.

Since (3.7) implies that
∑

j≥1Π(Aj)
α<∞, we get that

∑
j≥1 L

α
nj<e−n(αδ1+ϵ/2−d)

F∞
0 –a.s. for all large n, for any d > 0. As for the denominator of (3.8), note that

(3.6) implies that, for all large n and for any c > 0, Iαn ≥ e−nα(δ1+c) F∞
0 –a.s..

Therefore,

Πn(Aα,ϵ)≤
∑
j≥1

Lαnj
Iαn

≤e−n(ϵ/2−d−αc) → 0 F∞
0 − a.s.

by taking c and d sufficiently small.

A corollary to Theorem 1 and Lemma 2 provides the sufficient condition for

accumulation of the posterior at F1 in the Hellinger sense.

Corollary 1. Suppose Π satisfies (3.5) and that∑
j≥1

Π(Bj,εα)
α <∞ (3.10)

for all α ∈ (0, 1/2), where εα = 2(α2/2)1/(2α). Then, as n → ∞, if F1 is non–

empty, Πn({f : H(F1, f) > ϵ}) → 0 F∞
0 –a.s. for any ϵ > 0.
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Proof. Condition (3.10) implies that, for all α ∈ (0, 1/2), Πn(Aα) → 0 F∞
0 –a.s..

So, clearly,

Πn(f ∈ F : H(Acα, f) ≤ ξ) → 1 F∞
0 − a.s.

for any ξ > 0 and all α ∈ (0, 1/2). Now define A =
∩
αA

c
α and use (2.1) to get

H(A, f) ≤ H(Acα, f) + H(Acα, A). Since Acα → A in Kuratowski sense, and be-

cause of the equivalence of Kuratowski and Hausdorff convergence, H(Acα, A) → 0

as α→ 0. It follows that, for any ϵ > 0, there are ξ and α sufficiently small such

that {f ∈ F : H(A, f) ≤ ϵ} ⊆ {f ∈ F : H(Acα, f) ≤ ξ}, and we can conclude

that

Πn(f ∈ F : H(A, f) ≤ ϵ) → 1 F∞
0 − a.s.

for any ϵ > 0. The thesis follows from Lemma 2, since A ⊆ F1.

Remark 1. We discuss the alteration of Corollary 1 if F1 is empty. Suppose Π

satisfies (3.5) and (3.10) for all α ∈ (0, 1/2), where εα = 2(α2/2)1/(2α). Then,

as n → ∞, the posterior still accumulates at Acα for any α > 0. The lack of

elements in F1 now means there is no further development possible. However, it

is to be noted that (3.10) is the key condition we need from the prior in order to

establish what happens to the posterior no matter the state of F1. Hence, it is

this condition we examine in the examples of Section 4.

At this point it is useful to see how consistency is recovered in the well–

specified case. First note that (3.4) for α = 1/2 and any ϵ > 0 corresponds to

strong consistency in the well–specified case. In fact it is easy to check that the

conditions of Theorem 1 for δ1 = 0 and α = 1/2 correspond to Theorem 4 of

Walker (2004). However, as noted by Walker, Lijoi, and Prünster (2005), the

prior summability condition can be replaced with an arbitrary power α.

Theorem 2 (Walker (2004)). Let δ1 = 0. If Π satisfies (3.5) and (3.7) for some

α ∈ (0, 1), then Πn({f : H(f0, f) > ε}) → 0 F∞
0 –a.s..

For completeness, the proof of Theorem 2 is provided in the Appendix. It is

now clear how the sufficient condition in the misspecified case differs from that

in the well–specified case: for the latter, according to Theorem 2, condition (3.7)

needs to be satisfied for a single α ∈ (0, 1) (and any ε > 0) in order to have

Hellinger consistency.

4. Examples

In this section we consider a number of examples. In each case we consider an

infinite–dimensional model and find the prior summability conditions in Section

3 established on each prior Π. If Π has full support and inference is possible for

the infinite–dimensional model, then we revert to the well–specified case and the
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required condition is weaker ((3.7) only needs to hold for a single α). However,

typically infinite–dimensional models are truncated, or do not have full support,

and if f0 is out of the range of the truncation or the support of the prior, then

our results are required for all α, (3.10). Specifically, truncation has to be in-

tended in terms of: the number of components in the mixture of priors of Section

4.1; the number of elements in the orthonormal basis of the infinite–dimensional

exponential family example of Section 4.2; the support of the prior for the scale

parameters σ and λ in Section 4.3 and 4.4, respectively. We find the condition on

the infinite–dimensional model as this obviously covers all levels of truncation.

4.1. Mixture of priors

Consider the prior on Ω given by

Π =
∑
N≥1

pNΠN ,

where
∑

N≥1 pN = 1 and ΠN is supported on a set of densities CN ⊂ Ω. This

example has been considered in Walker (2004). Let CN ⊆ CN+1, CN increasing

to some F ⊆ Ω as N → ∞. We assume that, for each N , CN is totally bounded

with respect to the Hellinger metric, N(ϵ, CN ,H) <∞ for any ϵ > 0. An example

is given by the Bernstein polynomial prior of Petrone and Wasserman (2002).

For fixed ϵ, let (Bj,ϵ) be the Hellinger balls of size ϵ that cover F . We may

assume without loss of generality that, for IN := N(ϵ, CN ,H), CN ⊆
∪
j≤IN Bj,ϵ,

so that ΠN (Bj,ϵ) = 0 for any j > IN . For α ∈ (0, 1), we consider∑
j≥1

Π(Bj,ϵ)
α =

∑
j≥1

( ∑
N :IN≥j

pNΠN (Bj,ϵ)

)α
≤

∑
j≥1

( ∑
N≥Mj

pN

)α
,

whereMj = min{N : IN ≥ j}. Since IN depends on ϵ, so doesMj , hence we write

Mj(ϵ). Consequently, by defining P̄ (m) =
∑

N≥m pN , if
∑

j≥1 P̄ (Mj(ϵ))
α < ∞,

then (3.7) holds. Hence, it is sufficient that

P̄ (Mj(ϵ)) < a j−(1/α)−r (4.1)

for some r > 0 and a > 0 for all large j.

For example if IN = (c/ϵ)N , for some c not depending on ϵ, as in the case of

Bernstein polynomial prior, then Mj(ϵ) = ⌊log j/ log(c/ϵ)⌋, so that (4.1) yields

P̄ (N) < a
(c
ϵ

)−((1/α)+r)N
= a exp{−ψ(ϵ, α)N}, (4.2)

where ψ(ϵ, α) = log(c/ϵ)(α−1+ r). Note that (4.2) puts a constraint on the prior

mass on large CN . Since ψ(ϵ, α) increases to ∞ as ϵ decreases to zero, (3.7) holds
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for any ϵ > 0 (consistency in the well–specified case) if P̄ (N) < ae−ψN for any

ψ > 0 and all large N , which holds if N−1 log P̄ (N) → −∞. Hence, we recover

the condition of Section 6 in Walker (2004). Establishing (3.10) does not change

the result, in fact ψ(εα, α) also increases to ∞ as α decreases to zero. Therefore,

in this example, the required condition for the misspecified case is that for the

well–specified case.

4.2. Infinite–dimensional exponential family

Let Θ = (θj)j≥1 be a sequence of independent random variables with θj ∼
N(0, σ2j ), and let (ϕj)j≥1 be a sequence of orthogonal polynomials on [0, 1]. Define

the family of densities as

fΘ(x) = exp

{∑
j≥1

θjϕj(x)− c(Θ)

}
,

where c(Θ) makes fΘ a density. This example has been considered in Barron,

Schervish, and Wasserman (1999) and Walker (2004). For illustration, we work

with the orthonormal basis

ϕ1(x) = 1 and ϕj(x) =
√
2 cos(jπx) for j ≥ 2,

so that ∥ϕj∥∞ =
√
2 and ∥ϕ′j∥∞ = j, for any j ≥ 2. To ensure that fΘ is a

density with probability 1, it is sufficient that
∑

j σj <∞.

We next consider how to construct a Hellinger covering (Bj,ϵ)j≥1 in (3.7)

for the density set F on which Π is supported, the prior being induced by the

distribution on the infinite sequence Θ. Suppose, for i = 1, 2, we put

fi(x) =
ewi(x)∫
ewi(y)dy

.

Then, ∥w1 − w2∥∞ ≤ ϵ implies H(f1, f2) ≤ ϵeϵ/2 (see Lemma 3.1 in van der

Vaart and van Zanten (2008)). Now take f1 = fΘ1 and f2 = fΘ2 for sequences

Θ1 = (θ1j) and Θ2 = (θ2j) such that wi(x) =
∑

j θijϕj(x). Also, take Θ1 and Θ2

close in the sense that

|θ1j − θ2j | < δj =
δωj∑
j≥1 ωj

for some sequence (ωj) satisfying
∑

j ωj <∞. Then

∥
∑

j≥1 θ1jϕj −
∑

j≥1 θ2jϕj∥∞ =
√
2δ

and H(fΘ1 , fΘ2) ≤
√
2δeδ/

√
2. It follows that Bj,ϵ can be taken as set of the type

{fΘ : njδj < θj < (nj + 1)δj}
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for δj = δ(ϵ)ωj/
∑

j≥1 ωj with δ(ϵ) = g−1(ϵ)/
√
2, g−1 being the inverse of g(x) =

xex/2, and integers (nj) that vary between −∞ and +∞. Note that δ(ϵ) is

monotonic increasing in ϵ, with δ(0) = 0. Since θj ∼ N(0, σ2j ), with independence

across j, in view of (3.7), we are interested in the finiteness of

∞∑
n1=−∞

. . .
∞∑

nM=−∞

∞∏
j=1

(
Pr[njδj < θj < (nj + 1)δj ]

)α
.

Due to symmetry, this holds if

∞∏
j=1

∞∑
n=0

(
Pr[nδj < θj < (n+ 1)δj ]

)α
.

Next, we have

∞∑
n=0

(
Pr[nδj < θj < (n+ 1)δj ]

)α ≤ 1 + (2π)−α/2
( δj
σj

)α ∞∑
n=1

exp
{
−
αδ2jn

2σ2j

}
≤ 1 + (2π)−α/2

( δj
σj

)α[
exp

{αδ2j
2σ2j

}
− 1

]−1
.

Note that, for any m ≥ 1, ez − 1 ≥ zm/m!, so that we can use the inequality[
exp

{αδ2j
2σ2j

}
− 1

]−1
≤
m!(2σ2j )

m

αmδ2mj

to get

∞∑
n=0

(
Pr[nδj < θj < (n+ 1)δj ]

)α ≤ 1 + (2π)−α/2
( δj
σj

)αm!(2σ2j )
m

αmδ2mj

= 1 +
( 2

α

)m
m!(2π)−α/2

(σj
δj

)2m−α
.

Substituting for δj = δ(ϵ)ωj/
∑

j ωj , we get

∞∑
n=0

(
Pr[nδj < θj < (n+ 1)δj ]

)α ≤ 1 + ψ(ϵ, α)
(σj
ωj

)2m−α
,

where

ψ(ϵ, α) =
( 2

α

)m
m!(2π)−α/2

( δ(ϵ)∑
j≥1 ωj

)2m−α
.
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The required condition on the (σj) is then that

∞∏
j=1

{
1 + ψ(ϵ, α)

(σj
ωj

)2m−α}
<∞,

or that
∑∞

j=1 log
{
1 + ψ(ϵ, α)(σj/ωj)

2m−α} <∞, which holds if

ψ(ϵ, α)

∞∑
j=1

(σj
ωj

)2m−α
<∞.

The convergence of this series requires a restriction on how the sequence (σj)

grows as j → ∞. Moreover, we see that the size ϵ of the Hellinger covering does

not play any role. Now, if we put ωj ∝ j−1−r for any r > 0, then the condition

∞∑
j=1

(σjj
1+r)2m−α <∞ (4.3)

is sufficient. Therefore, we can actually have σj ∝ j−1−q for any q > 0, by

choosing r < q and m large enough such that (r − q)2m is sufficiently smaller

than −1. We also see that α does not affect condition (4.3), therefore σj ∝ j−1−q

for any q > 0 is sufficient for (3.7) to hold for any ϵ > 0 and for (3.10) to hold for

any α sufficiently small. This means that the condition in Section 6 of Walker

(2004) for consistency works also in the misspecified case.

4.3. Mixtures of normal densities

We consider priors obtained via a nonparametric mixture of normal densities;

see Ghosal, Ghosh, and Ramamoorthi (1999) and Lijoi, Prünster, and Walker

(2005). Let P̃ be a discrete random probability distribution on R with law Λ

and prior guess P0. For ϕσ, the density function of the normal with mean 0 and

variance σ2, we model the density as

f̃
σ,P̃

(x) = ϕσ ∗ P̃ =

∫
ϕσ(x− θ)P̃ (dθ)

and σ, with prior distribution µ, is supported on the interval [0, σ].

We follow the proof of Theorem 1 in Lijoi, Prünster, and Walker (2005) by

defining the sets

F σ
σ,a,δ =

∪
σ<σ<σ

{ϕσ ∗ P : P ([−a, a]) ≥ 1− δ},

where σ, a > 0. Recall that H2(f, g) ≤ ∥f − g∥1, where ∥f − g∥1 =
∫
|f − g| is

the L1-distance between f and g. Hence we have N(
√
δ,G ,H) ≤ N(δ,G , ∥ · ∥1).
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From Ghosal, Ghosh, and Ramamoorthi (1999), the upper bound for the L1-

metric entropy of set F σ
σ,a,δ is given by

logN(δ,F σ
σ,a,δ, ∥ · ∥1) ≤ Cδ

a

σ
,

where Cδ = Kδ−1 log(1/δ) for some constant K. Hence, logN(δ,F σ
σ,a,δ, H) ≤

Cδ2a/σ. Now let (an)n≥1 be an increasing sequence of positive numbers such that

a0 = 0 and limn an = ∞, and let (σn)n≥1 be a decreasing sequence of positive

numbers such that σ0 = σ and limn σn = 0. Set

G σ
σk,aj ,δ2

=
∪

σk<σ<σ

{ϕσ ∗ P : P ([−aj , aj ]) ≥ 1− δ2, P ([−aj−1, aj−1]) < 1− δ2},

so that
∪
j,k G σ

σk,aj ,δ2
= F . Reasoning as in Lijoi, Prünster, and Walker (2005),

for any δ there is an integer N such that G σ
σk,aj ,δ2

is included in F σ
σk,aN ,δ2

, so

logN(δ,G σ
σk,aj ,δ2

,H) ≤ Cδ2
aN
σk
.

This means that for each j and k, G σ
σk,aj ,ϵ2

has a finite Hellinger ϵ-covering {Bjkl,ϵ :
l = 1, . . . , Nj,k}, where Nj,k ≤ exp{Cϵ2aN/σk}, so that we consider (Bjkl,ϵ) in

establishing (3.7). Now, for each j ≥ 1, define the sets

B′
j,ϵ = {P : P ([−aj , aj ]) ≥ 1− ϵ2, P ([−aj−1, aj−1]) < 1− ϵ2}.

The condition (3.7) is implied by the finiteness of the sum

∑
j,k≥1

Nj,k∑
l=1

Π(Bjkl,ϵ)
α ≤

∑
j,k≥1

N1−α
j,k Π

(
G σ
σk,aj ,ϵ2

)α
(4.4)

≤
∑
k≥1

e(1−α)Cϵ2aN/σkµ(σk < σ ≤ σk−1)
α
∑
j≥1

Λ(B′
j,ϵ)

α,

where the inequality (4.4) follows by the monotonicity of power means. We deal

with the inner sum first, showing that
∑

j≥1 Λ(B
′
j,ϵ)

α <∞ for any ϵ > 0 and any

α ∈ (0, 1) is implied by

P0([−a, a]c) ≤ e−ηa (4.5)

for some η>0 and a sufficiently large. In fact, since B′
j,ϵ⊂{P : P ([−aj−1, aj−1]

c)

> ϵ2}, an application of Markov Inequality, together with (4.5), yields∑
j≥1

Λ(B′
j,ϵ)

α ≤ ϵ−2α
∑
j≥1

P0([−aj−1, aj−1]
c)α ≤ ϵ−2α

∑
j≥1

e−αηaj−1 .
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Then, by taking aj ∼ j as j → ∞, aj > (αη)−1(1+ s) log j for j sufficiently large

and some s > 0, so that
∑

j≥1 e
−αηaj−1 <∞ for any α arbitrarily small (the size

of ϵ does not play any role). Note that (4.5) is stronger than the tail condition

on P0 needed for consistency,
∫
|θ|P0(dθ) <∞, see Theorem 1 in Lijoi, Prünster,

and Walker (2005). In fact, the latter only implies P0([−a, a]c) = O(a−(1+r))

for r > 0, and so we get the convergence of the series
∑

j≥1 Λ(Bj,ϵ)
α only for

α > (1 + r)−1. At this stage we are left to establish that∑
k≥1

e(1−α)Cϵ2aN/σkµ(σk < σ ≤ σk−1)
α <∞.

If we assume that

µ{σ < k−1} ≤ e−γk (4.6)

then ∑
k≥1

e(1−α)Cϵ2aN/σkµ(σk < σ ≤ σk−1)
α ≤

∑
k≥1

e−(γα−(1−α)Cϵ2aN )/σk

Let ψ(ϵ, α) = α−1(1−α)Cϵ2aN , which goes to infinity as either α or ϵ go to zero.

Now set σk < ψ(ϵ, α)(1 − s)−1/ log k for k sufficiently large and for some s > 0;

this is possible for any α and ϵ by taking, for example, σk ∼ 1/k as k → ∞.

Then the finiteness of the series in the r.h.s. of the last display is implied by

γ > ψ(ϵ, α) in (4.6), so that in the well–specified case and the misspecified case

we need (4.6) to hold for any γ > 0.

4.4. Gaussian process priors

We consider random densities obtained as logistic transformations of Gaus-

sian processes; see Leonard (1978), Lenk (1988, 1991), Tokdar and Ghosh (2007),

and van der Vaart and van Zanten (2008). Let I be a fixed bounded interval I

in R, and let

f(x) =
eW (x)∫

I e
W (s)ds

,

where {W (x), x ∈ I} is a Gaussian process with mean function µ(t) and covari-

ance kernel σ(s, t) = Cov(W (s),W (t)). Without loss of generality we take µ = 0

and I = (0, 1). Moreover, we let σ depend on a parameter λ > 0 via

σ(s, t) = σ0(λs, λt),

where σ0 is a fixed covariance kernel and λ has prior distribution Πλ, supported

on R+. Let W0 be the Gaussian process with covariance σ0 so that W0(λt) has
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covariance σ0(λs, λt). Then, the random density f is modeled by

f |W,λ =
eW (x)∫

I e
W (s)ds

W |λ =W0(λ·)

with λ and W0 independent. This defines a prior distribution Π on Ω, the space

of densities on I. As before, F is the support of Π.

The Kullback-Leibler support of Π has been studied in Tokdar and Ghosh

(2007), see also Ghosal and Roy (2006). With a regularity condition on σ0, which

we assume to be satisfied (see, e.g., Theorem 5 in Ghosal and Roy (2006)), W0(·)
has differentiable sample paths and the derivative process DW0(·) is Gaussian

with continuous sample paths. If we take

σ1(s, t) =
∂2

∂s∂t
σ0(s, t),

to be the covariance kernel of DW0(t), then the derivative process DW0(·) is

sub–Gaussian with respect to the Euclidean distance

E(DW0(s)−DW0(t))
2 ≤ c1(s− t)2

for some constant c1 depending on σ1. Define σ21(W0) = supt∈I Var(DW0(t)) <

∞. Then, an application of Proposition A.2.7 of van der Vaart and Wellner

(1996), yields

Π

(
sup
t∈I

|DW (t)| > a
∣∣∣λ) ≤ c2 exp{−c3a2λ−2} (4.7)

for some positive constants c2 and c3. Finally, Theorem 2.7.1 of van der Vaart

and Wellner (1996) gives the entropy bound

logN

(
ϵ,

{
w : sup

t∈I
|Dw(t)| ≤ a

}
, ∥ · ∥∞

)
≤ c4

a

ϵ
(4.8)

for some positive constant c4. Let (an)n≥1 be an increasing sequence of positive

real numbers such that a0 = 0 and limn an = ∞. For

Bj =

{
w : aj−1 < sup

t∈I
|Dw(t)| < aj

}
,

define Fj = {f(x) = ew(x)/
∫
I e

w(s)ds : w ∈ Bj}. Then the sets (Fj)j≥1 are

pairwise disjoint and form a partition of F . SinceN(ϵeϵ, Fj ,H) ≤ N(ϵ, Bj , ∥·∥∞),

see Section 4.2, there is no loss of generality in working with the sets Bj and the

sup norm.
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From (4.8), each Bj has a finite ϵ-covering {Cjl,ϵ : l = 1, 2, . . . , Nj}, where
Nj ≤ exp(c4aj/ϵ). Hence we consider (Cjl,ϵ) in establishing (3.7), that is, we are

interested in the finiteness of the sum

∑
j≥1

Nj∑
l=1

Π(Cjl)
α ≤

∑
j≥1

N1−α
j Π(Bj)

α, (4.9)

where we have used the monotonicity of power means as in (4.4). Since N1−α
j

grows exponentially in aj , we need to control the behavior of Π(Bj) as j goes to

infinity. Now, from (4.7),

Π(Bj) ≤
∫ ∞

0
Π

(
sup
t∈I

|DW (t)| > aj−1

∣∣∣λ)Πλ(dλ)
≤

∫ ∞

0
c2 exp{−c3a2j−1λ

−2}Πλ(dλ),

and therefore we need to study the behavior, as aj → ∞, of a Laplace-type

transform of the prior Πλ. To this end, we resort to a suitable version of the

Tauberian Theorem to show that if

Πλ(λ > t) ∼ e−γt
2

(4.10)

for some γ > 0 and t sufficiently large, then there exists a positive constant c5
such that

Π(Bj) ≤ e−c5γaj−1 (4.11)

as j → ∞. The result follows by an application of Theorem 4.12.9 of Bingham,

Goldie, and Teugels (1987). Let µ be a measure on (0,∞) whose Laplace trans-

form M(τ) =
∫∞
0 e−τxdµ(x) converges for all τ > 0. With their notation, we

choose α = −1 and ϕ(τ) ∼ τ−1 as τ → 0+. Then, for B > 0,

− log µ(0, x] ∼ Bx−1 (x→ 0+) iff − logM(τ) ∼ 2B1/2τ1/2 (λ→ ∞).

Now, with y = 1/
√
x, write M(τ) =

∫∞
0 e−τy

−2
dη(y) for the measure η on (0,∞)

defined as η(0, y] = µ[y−2,∞). Then

− log η(y,∞) ∼ By2 (y → ∞) iff − logM(τ) ∼ 2B1/2τ1/2 (λ→ ∞).

(4.12)

Put η(y,∞) = Πλ(y,∞) in (4.12) and assume that (4.10) is in force. Also put

B = γ and τ = c3a
2
j−1 in (4.12). Then

M(c3a
2
j−1) =

∫ ∞

0
e−c3a

2
j−1λ

−2

Πλ(dλ) ∼ exp{−2γ1/2c
1/2
3 aj−1}
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as j → ∞. It is now easy to see that (4.10) implies (4.11). Back to (4.9), by

using (4.8) and (4.11) we get∑
j≥1

N1−α
j Π(Bj)

α ≤
∑
j≥1

exp
{
−

(
αc5γ − c4

ϵ
(1− α)

)
aj
}
.

Thus, under (4.10), finiteness of the series in (4.9) and, in turn (3.7), is implied

by γ > ψ(α, ϵ), where

ψ(α, ϵ) =
c4(1− α)

ϵαc5
.

Since ψ(ϵ, α) goes to infinity as either α or ϵ go to zero, we conclude that the

same sufficient condition applies for (3.7) for any ϵ > 0 (consistency in the well–

specified case) and for (3.10) for any α > 0, namely that (4.10) is satisfied for

any γ > 0.

5. Discussion

In this paper, we have generalized the condition for consistency in the well–

specified case to asymptotic results in the misspecified case. Illustrations consid-

ered suggest that it is not too problematic to implement the sufficient conditions

on the prior.

The sufficient conditions we find for the prior allow us to say what happens

to the posterior under all scenarios. Basically, whether F1 is empty or not, we

establish asymptotics for either case. The search when F1 is finite and non–

empty has been important due to the lack of general theory for the case when

F1 is empty. To our knowledge we are the first to describe some general theory

for the asymptotics when F1 is empty; though we are aware of the special case

of the Bernstein polynomial prior studied in Petrone and Wasserman (2002).

In each case of misspecified prior Π we would find it difficult to find the CΠ

such that if f0 ∈ CΠ then F1 is empty, whereas if f0 ∈ CcΠ then F1 is non–empty.

But of course we would also find it difficult to use this information since the

location of f0 is not known. It would therefore be useful to identify Π for which

CΠ is empty, something which has been established only when F is convex.
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Appendix

Proof of Lemma 1. Start with the inequality

|hα(f0, f)− hα(f0, g)| ≤
∫ ∣∣∣( f

f0

)α
−

( g
f0

)α∣∣∣f0. (A.1)

Next, note that, for any a, b > 0,∣∣aα − bα
∣∣1/α ≤

∣∣aβ − bβ
∣∣1/β, for 0 ≤ α ≤ β. (A.2)

To see this, it is sufficient to take a > b and show that τ(α) = (aα − bα)1/α is

non decreasing for α > 0. The latter is equivalent to (eα − 1)1/α non decreasing

for α ≥ 0, and, in turn, to log(x− 1)/ log(x) non decreasing for x > 1. The last

statement can be easily checked by looking at the first derivative and using the

inequality (x− 1) log x ≤ x log x for x > 1. Since, by hypothesis, α ≤ 1/2, (A.2)

yields an upper bound on the right hand side of (A.1):∫ ∣∣( f
f0

)α − (
g

f0
)α
∣∣f0 ≤ ∫ ∣∣∣( f

f0

)1/2
−

( g
f0

)1/2∣∣∣2αf0.
Now use E|X|p ≤ (E|X|)p for any 0 < p < 1 to get

|hα(f0, f)− hα(f0, g)| ≤
(∫ ∣∣∣( f

f0

)1/2
−

( g
f0

)1/2∣∣∣2f0)α.
Finally, note that

∫ ∣∣(f/f0)1/2 − (g/f0)
1/2

∣∣2f0 = ∫ (
f1/2 − g1/2

)2
= H2(f, g).

Proof of Lemma 2. Let αm and ϵm be two positive sequences decreasing to 0

such that ϵ2αm
m /αm → 0. Next, let f ∈

∩
mA

c
αm

so that, for each m, there exists

a sequence (fm,rm)
∞
rm=1 ∈ F such that

H(f, fm,rm) → 0 as rm → ∞,

dαm(f0, fm,rm) ≤ δ1 + αm for all rm.

Clearly, f ∈ F̄ . Moreover, by using Lemma 1 and the identity dα(f, g) = α−1{1−
hα(f, g)}, we have

dαm(f0, f) < dαm(f0, fm,r) +
1

αm
H(f, fm,rm)

2αm .

By the hypothesis made, we can take, for each m, rm large enough such that

H(f, fm,rm) ≤ ϵm to get

dαm(f0, f) < δ1 + αm +
1

αm
ϵ2αm
m .
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Since the last inequality holds for any m, hence for αm going to 0, we exploit the

convergence of dαm(f0, f) to D(f0, f) to conclude that

D(f0, f) < δ1 + β

for any β small enough. This implies that f ∈ F1, completing the proof.

Proof of Theorem 2. When α ≤ 1/2, Π(Bj,ϵ)
1/2 ≤ Π(Bj,ϵ)

α, so that consis-

tency follows from Theorem 4 in Walker (2004). Let then (3.7) be satisfied for

1/2 < α < 1. We aim at establishing that Πn(A1/2,ϵ2/2) → 0 F∞
0 –a.s. as n→ ∞,

(3.2) when δ1 = 0 and (3.1). Reasoning as in the proof of Theorem 1, we con-

sider a partition (Aj)j≥1 of A1/2,ϵ2/2 such that Aj ⊆ A∗
j = {f : H(fj , f) < ϵ/2},

fj ∈ A1/2,ϵ2/2 so that d1/2(f0, fj) > ϵ2. Then, any f ∈ Aj has d1/2(f0, f) > ϵ2/2

and h1/2(f0, f) < 1− ϵ2/4. Now use the Hölder Inequality∫ ( f0
fn,j

)1−α
fn,j ≤

(∫ ( f0
fn,j

)1/2
fn,j

)2(1−α)

(since 2(1 − α) < 1) to conclude that hα(f0, fn,j) ≤ [h1/2(f0, fn,j)]
2(1−α). More-

over, fn,j ∈ Aj implies that hα(f0, fn,j) < (1 − ϵ2/4)2(1−α) < e−ϵ
2(1−α)/2. Now,

similar to the proof of Theorem 1, we obtain that

P

(∑
j≥1

Lαn,j > e−nd
)
< ende−nϵ

2(1−α)/2
∑
j≥1

Π(Aj)
α.

Thus condition (3.7) implies that
∑

j≥1 L
α
n,j < e−nd F∞

0 –a.s. for all large n and

for any d < ϵ2(1− α)/2. On the oder hand, the Kullback-Leibler property (3.5)

ensures that, for all large n and for any c > 0, Iαn ≥ e−nαc F∞
0 –a.s.. Therefore

Πn(A1/2,ϵ2/2) ≤
∑
j≥1

Lαn,j
Iαn

≤ e−n(d−αc) → 0, F∞
0 − a.s.

by taking c sufficiently smaller than ϵ2(1− α)/2α.
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