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Abstract: Let Y1, . . . , Yn be a sequence whose underlying mean is a step function
with an unknown number of the steps and unknown change points. The detection
of the change points, namely the positions where the mean changes, is an important
problem in such fields as engineering, economics, climatology and bioscience. This

problem has attracted a lot of attention in statistics, and a variety of solutions
have been proposed and implemented. However, there is scant literature on the
theoretical properties of those algorithms. Here, we investigate a recently developed
algorithm called the Screening and Ranking algorithm (SaRa). We characterize the
theoretical properties of SaRa and show its superiority over other commonly used
algorithms. In particular, we develop a false discovery rate approach to the multiple
change-point problem and show a strong sure coverage property for the SaRa.
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1. Introduction

Studies of change-point detection date back to 1950s. In the past half cen-

tury, the topic has attracted a great deal of attention in such fields as statistics,

engineering, economics, climatology and bioscience. Specifically, given a sequence

of ordered or time dependent random variables, denoted by Y1, . . . , Yn, a change

point is a position or time at which the structure of this sequence changes; the

goal of change-point detection is to estimate the locations of change points and

provide an assessment of accuracy. Thus, in climate data series, a change point

is a time at which the climate changes dramatically, a threshold which is of in-

terest to climatologists; in financial econometrics, change-point analysis can help

identify the directions in the market or economy; in engineering, for a continuous

production process, it is important to find out if there is a point where the quality

of the products begins to deteriorate. A recent development is its application to

genetics on DNA copy number variation detection. The DNA copy number of

a region is the number of copies of the genomic DNA. Copy number variation

(CNV) usually refers to deletion or duplication of a region of DNA sequences. It

is shown by recent studies that CNVs account for an abundance of genetic varia-

tion and may influence phenotypic differences. It is then a fundamental problem
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to identify the CNVs in genetics; see Zhang (2010) for a thorough introduction

on the application of change-point model in CNV detection. Finding CNVs in

the massive data produced by modern DNA array technologies is a recent de-

velopment in change-point problems. The main challenges here is in finding

multiple change points accurately and efficiently in an expansive sequence where

the length is typically of hundreds of thousands in SNP genotyping data.

A normal mean, multiple change-point model has played an essential role in

the statistical analysis of the CNV problem (Olshen et al. (2004), Huang et al.

(2005), Zhang and Siegmund (2007), Tibshirani and Wang (2008), Jeng, Cai,

and Li (2010)). Let

yi = θi + εi, εi
i.i.d.∼ N (0, σ2), i = 1, . . . , n, (1.1)

and assume that

θ1=θ2= · · ·=θτ1 ̸=θτ1+1= · · ·=θτ2 ̸=θτ2+1= · · ·=θτJ ̸=θτJ+1= · · ·=θn,

where τ = (τ1, . . . , τJ)
T is the location vector of the change points. We call

model (1.1) with piecewise constant mean θ a normal mean change-point model.

In CNV detection, this model plays an essential role in Olshen et al. (2004),

Huang et al. (2005), and Zhang and Siegmund (2007). Some authors have consid-

ered more restricted models: Tibshirani and Wang (2008) assume that θ itself is

sparse; Jeng, Cai, and Li (2010) assume, in addition, that the nonzero segments

of θ are short. While these additional assumptions are reasonable, the model

considered here is more general. Specifically, we only assume that n is large and

any two change points are “not too close to each other”; this will be clarified later.

We take J ≪ n so while the data are high dimensional in terms of the potential

locations of the change points, the number of true change-points is limited. Thus,

(1.1) is a high-dimensional sparse model with a sequential structure.

For multiple-change-point problem, the number of change points and their

locations are to be estimated. Popular multiple change-point detection tools

include exhaustive search (Yao (1988), Yao and Au (1989)), binary segmentation

(Vostrikova (1981), Olshen et al. (2004)), ℓ1 penalization (Huang et al. (2005),

Tibshirani and Wang (2008)), and hidden Markov model approach (Wang et al.

(2007), Lai, Xing and Zhang (2008)), among others. See Lai and Xing (2011) for

multiple change-point models for the exponential family and for a comprehensive

review of related methods.

Recently, Niu and Zhang (2012) proposed the Screening and Ranking al-

gorithm (SaRa) as an alternative approach for change-point detection. They

observed that when determining whether there is a change at the jth position,
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the information at positions far from j is rarely useful. Therefore, it is more effi-

cient to concentrate on a local neighborhood first, say the interval (j − h, j + h),

when making decisions about j and nearby points. Avoiding complex optimiza-

tion or iterative algorithm, the SaRa is simple to implement with complexity

O(n), which makes the SaRa suitable for analyzing high throughput data. Be-

sides computational efficiency, Niu and Zhang (2012) showed that, under mild

conditions, the SaRa satisfies a sure coverage property that implies that the SaRa

can estimate J and τ consistently. The SaRa, to our best knowledge, is the only

algorithm known to combine both computational simplicity and consistency. In

this paper, we derive deeper and broader theoretical properties for the SaRa that

are useful for our understanding of its performance.

First of all, we propose a novel false discovery rate (FDR) approach to

change-point detection. The multiple change-point problem can be naturally

stated as a multiple testing problem. Although many change-point detection

tools have been proposed recently, few authors have examined the issue of FDR.

Tibshirani and Wang (2008), and Efron and Zhang (2011) studied the FDR

on a normal mean change-point model with sparse mean vector θ, and applied

their theories to the CNV problem. Our theory is different. We do not assume

the sparsity of θ and focus on the FDR of change-point locations. Specifically,

we concentrate on β = (β1, . . . , βn−1)
T where βj = θj+1 − θj and whose support

corresponds to the set of true change-point locations. We demonstrate how to es-

tablish a well-defined multiple testing framework for change-point problem (1.1)

and assess the FDR for the SaRa estimator. In addition, we show how the FDR

control procedure helps us select tuning parameters in the SaRa procedure.

Secondly, we characterize the convergence rate of the location estimator τ̂

for the SaRa. The sure coverage property (Niu and Zhang (2012)) states that

the SaRa estimator for the location vector satisfies, with probability tending to

one, ||τ̂ − τ ||∞ < h, where h is a tuning parameter and is of order O(log n)

under some reasonable conditions. Here we give a sharper convergence rate and

show that ||τ̂ − τ ||∞ = OP (1), where the convergence rate is the same as the

best result known for the single change-point case (Csörgö and Horváth (1997)).

Moreover, we show that our assumptions cannot be weakened further except for

the constant 32 in condition (4.8), implying that the SaRa is a nearly optimal

procedure.

The SaRa can be easily generalized to solve more general change-point prob-

lems. For example, we derive sure coverage properties for some non-normal cases,

although a comprehensive study of non-normal data requires further effort.

The rest of this paper is organized as follows. In Section 2, we briefly recall

the SaRa procedure and introduce an FDR control approach to multiple change-

point detection based on the SaRa. The numerical studies of the FDR approach
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are demonstrated in Section 3. In Section 4, a strong sure coverage property of

the SaRa is verified to illustrate the optimality of the SaRa, which is followed by

some final remarks in Section 5. All proofs are in the Appendix.

2. False Discovery Rate for Change-point Detection

From the hypothesis testing perspective, the change-point problem can be

viewed as a multiple testing problem by testing every data point as a poten-

tial change point. The false discovery rate (FDR) approach to multiple testing

problems has been studied extensively since the seminal paper of Benjamini and

Hochberg (1995). However, the multiple testing problem derived from change-

point detection presents a problem that beyond the classical framework; it has

a distinctive correlation, as well as the sequential, structure. We illustrate our

approach to this problem.

2.1. Change-point detection as a multiple testing problem

Let Y = (Y1, . . . , Yn)
T be a sequence of independent random variables with

probability distribution function F1, . . . , Fn, respectively. The multiple change-

point problem can be stated as the hypothesis testing problem

H0 : F1=F2= · · ·=Fn vs
(2.1)

H1 : F1=F2= · · ·=Fτ1 ̸=Fτ1+1= · · ·=Fτ2 ̸=Fτ2+1= · · ·FτJ ̸=FτJ+1= · · ·=Fn,

where J is an unknown number of change points and 0 < τ1 < · · · < τJ <

n are their unknown locations. The purpose is to make a decision between

two hypotheses and, if the alternative is supported, to estimate the number

of change points J and the location vector τ = (τ1, . . . , τJ)
T . Although this

single hypothesis test has been employed to formulate the multiple change-point

problem in classical works, it does not address the accuracy of estimation of the

change points here.

The testing problem (2.1) is naturally decomposed to the sequence of hy-

potheses

H0(j) : j is a change point; vs H1(j) : j is not a change point, (2.2)

where j = 1, . . . , n− 1.

For the normal mean model where Fj ∼ N (θj , σ
2), H0(j) and H1(j) corre-

spond to βj ≡ θj+1− θj = 0 and βj ̸= 0, respectively. One can use zj ≡ yj+1− yj
as the statistic for testing H0(j) against H1(j). However, its power may be lim-

ited by the fact that it does not fully utilize the sparse and sequential structures.

Observing that the change points are apart from each other in many applications,

we reformulate the hypotheses.
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First, suppose that the minimal distance between two change points is at
least h and modify (2.2) to

H0(j) : Fj+1−h = · · · = Fj+h vs
(2.3)

H1(j) : Fj+1−h = · · · = Fj ̸= Fj+1 = · · · = Fj+h.

Second, it is impossible to recover the true change-point locations exactly in
any reasonable asymptotic settings; see Section 4 for details on this aspect. For
an FDR theory, we cannot treat the testing problems in (2.3) independently in
terms of “true or false” as in the classical framework, so relaxed version of FDR
is introduced.

Definition 1. Suppose that τ̂ = (τ̂1, . . . , τ̂Ĵ)
T is the change point location es-

timator from some procedure such that min
1≤i≤Ĵ

{τ̂i − τ̂i−1} ≥ 2h. Then H0(j) is

rejected for all j ∈ τ̂ . We define τ̂i as a true positive if there exists a true change
point τi′ such that |τi′ − τ̂i| < h, otherwise, τ̂i is a false positive. The false discov-
ery proportion (FDP) is the number of false positives divided by Ĵ . The FDR is
defined as E(FDP ).

For such methods as CBS and ℓ1 penalization, it is not straightforward to
evaluate the quantity τ̂i − τi, or the FDR. In the next two subsections, we recall
the SaRa and establish an FDR theory for the normal mean change-point model
via the SaRa.

2.2. The screening and ranking algorithm

The SaRa was proposed by Niu and Zhang (2012) to detect change points
in the normal mean model (1.1). For a position i, they considered the locally
defined statistic,

Dh(j) =
( j+h∑

k=j+1

Yk −
j∑

k=j−h+1

Yk

)
h−1, (2.4)

where h ≪ n. Intuitively, if j is a local maximizer of |Dh(·)| and |Dh(j)| is
quite large, it is likely that there is a change point at or around j. Therefore,
it is reasonable to consider all local maximizers of |Dh(·)| and search for change
points among them. First, the SaRa calculates Dh(·) for all positions and finds
all h-local maximizers of |Dh(·)|. Here, j is a h′-local maximizer of |Dh(·)| if
|Dh(j)| ≥ |Dh(k)| for all k ∈ (j − h′, j + h′). One can take h′ different from h,
h′ = h was used as a default setting in Niu and Zhang (2012). Second, the SaRa
estimator is obtained by a thresholding rule |Dh(·)| > λ, that is applied to all
local maxima. Thus

Jh,λ = {τ̂i : τ̂i is a local maximizer of |Dh(·)|, and |Dh(τ̂i)| > λ}
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is the SaRa location estimator. Let τ̂ = (τ̂1, . . . , τ̂Ĵ)
T , where τ̂1 < τ̂2 < · · · < τ̂Ĵ ,

Ĵ = |Jh,λ|.
An important observation is that the local statistic Dh(j) employed in the

SaRa is the natural test statistic for the multiple testing problem (2.3) when the

Fj ’s are normal. If we define η
(h)
j = E(|Dh(j)|), then H0 and H1 correspond to

η
(h)
j = 0 and η

(h)
j is a local maximum, respectively. We illustrate how to combine

the SaRa with our extended FDR criterion to establish an FDR theory below.

2.3. A false discovery rate approach via the SaRa

First, we restate the SaRa procedure from the viewpoint of hypothesis testing

for the general setting (2.3). Let D(j) be a test statistic that can be used to test

(2.3), and p(j) be the corresponding P-value when available. Without loss of

generality, we assume that larger values of D tend to support the alternative

hypothesis. The SaRa is as follows. In Step 1, calculate the test statistic D(j),

or the P-value p(j) for each j. Then pick out all local maximizers of D(j) or,

equivalently, local minimizers of p(j). Here, for technical reasons, we temporarily

use the h′-local extremizer for h′ = 2h. For example, we call j∗ a local minimizer

of p(·) if
p(j∗) ≤ p(j) for all j ∈ (j∗ − 2h, j∗ + 2h). (2.5)

We denote the set of the local extremizers by LM. In Step 2, the SaRa estimator

Ĵh,λ = {τ̂1 < · · · < τ̂Ĵ} ⊂ LM for the locations of change points is defined by a

thresholding rule

D(j) > λ or p(j) < p∗.

We can rank the elements in LM by their D values or P-values and get a solution

path.

From now on, we use thresholding rule p(j) < p∗ to conform with the litera-

ture on FDR theory, although calculating D may be more convenient in practice.

An advantage of the SaRa is that we can easily control the minimal distance

min
i
{τ̂i− τ̂i−1} of the SaRa estimator τ̂ by choosing a proper neighborhood when

defining the local extremizer. Under (2.5), for any j1, j2 ∈ LM with j1 ̸= j2, we

have |j1 − j2| > 2h. Because the P-values are derived from local statistics, p(j1)

and p(j2) are independent. Therefore, we obtain a sequence of independent P-

values {p(j)|j ∈ LM}. When the null distribution, F0, of the P-value at a local

minimizer is known or can be estimated accurately, the standard FDR control

procedure can be applied to the P-value sequence directly. Specifically, suppose

F0 is known and consider the set of modified P-values

{F−1
0 (p(j))|j ∈ LM} = {p̃(1) < p̃(2) < · · · < p̃(m)},
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where m = |LM|. Under the null hypothesis H0(j), F
−1
0 (p(j)) ∼ Uniform(0, 1).

By the Benjamin–Hochberg procedure (Benjamini and Hochberg (1995)), for a

target FDR q∗, let k be the largest i for which p̃(i) ≤ i
mq∗, and then reject allH(j)

corresponding to p̃(1), . . . , p̃(k). In other words, to determine the SaRa estimator

from the set LM, a thresholding rule

p(j) ≤ p∗ = F0(p̃(k)) (2.6)

is used in order to control the FDR at target rate q∗. Following the results in

Benjamini and Hochberg (1995), and Benjamini and Yekutieli (2001) directly, we

have our result.

Theorem 1. If the SaRa procedure with the thresholding rule (2.6) is applied,

then the FDR of Definition 1 is controlled at a level less than or equal to

((n− J)/n)q∗ ≈ q∗.

By definition, F0 is the distribution of p(j) under H0(j) provided p(j) is a

local minimizer. Given a change-point model, F0 depends on only the bandwidth

h in (2.4) and (2.5). Although it is usually unknown, the distribution F0 can be

estimated in many situations. For the normal mean change-point model, we can

generate a long sequence of i.i.d.N (0, σ2) random variables and find the empirical

distribution F̂0. In practice, σ2 is unknown but can be estimated accurately

because of the fact J ≪ n. Without normality, we can use permutation methods.

Let ν be the index set {1, . . . , n} and π be a permutation of ν. Take yπ(ν) =

(yπ(1), . . . , yπ(n))
T . If θ is sparse, the empirical distribution of the local minima

of p(j) can be calculated from a sequence of permutations yπ1(ν), . . . ,yπN (ν).

Otherwise, we can estimate θ by local regression and apply permutation to the

residuals.

3. Numerical Study

The contemporary genome-wide SNP genotyping array techniques, which

can measure half a million SNPs along the whole genome, offer a more sensitive

approach to CNV detection, compared to the aCGH techniques. For each subject,

the SNP genotyping data usually consist of a sequence of the measurements of Log

R ratios. The segments with concentrated high or low Log R ratios correspond

to gains or losses of copy numbers. See Peiffer et al. (2006) for more details. The

SaRa has been established in to analyze such data. The numerical properties of

the SaRa has been investigated intensively by simulation and for data examples

in Niu and Zhang (2012), so we focus on the FDR theory in this section.
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Figure 1. Plot of Log R ratios along Chromosome 11 of the subject father.

Figure 2. The CNVs found by the SaRa.

3.1. An application to SNP genotyping data

We illustrate the SaRa using SNP genotying data for a father-mother- off-

spring trio produced by Illumina 550K platform, which is available http://www.

openbioinformatics.org/penncnv/.

For each subject, the Log R ratios along Chromosomes 3, 11, and 20 are

included in the data set. There are 37768, 27272, and 14296 SNPs on Chromo-

somes 3, 11, and 20, respectively. In Figure 1, we plot the sequence of Log R

ratios along along Chromosome 11 for the father. Since there are 27272 points,

it is very difficult to eyeball the changes. In Figure 2, we zoomed in on a short

interval where a CNV was detected by the SaRa.

Before we applied the SaRa, we found the Log R ratios to be approximately

normal. We chose the bandwidth parameter h = 7 and threshold p∗ by controlling

the FDR to 5%, 10%, and 15%, respectively. Specifically, we calculated the local

http://www.openbioinformatics.org/penncnv/
http://www.openbioinformatics.org/penncnv/
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Table 1. Number of change points and CNVs detected by the SaRa on
Chromosome 11 of the father, mother, and offspring. (A CNV is suggested
only when two adjacent change points are within 200 SNPs).

q = 0.05 q = 0.10 q = 0.15
Source Change Points CNV Change Points CNV Change Points CNV

father 2 1 9 2 9 2
mother 4 1 5 1 5 1
offspring 3 1 3 1 4 1

statistic Dh(·) and p(j) = 2
(
1− Φ(|D7(j)|/(σ̂

√
2/h))

)
, where σ̂ can be easily

estimated because of the sparsity of the change points. Note that under the

normality assumption the distribution of F0 is independent of σ2. Therefore, F0

can be approximated empirically by the distribution of the local minimizers in a

long i.i.d. standard normal sequence. Then we calculated the corrected P-values

and applied the Benjamini-Hochberg procedure to determine the threshold. The

numbers of change points detected by the SaRa on Chromosome 11 for the father,

mother and offspring are listed in Table 1. Because the CNVs are believed to

be short, in dozens of SNPs for our data, (Zhang et al. (2009), Jeng, Cai, and

Li (2010)), the intervals that are flanked by two relatively near change points

are more likely to be CNVs. On the other hand, it is reasonable to treat those

isolated change points as false positives. In Table 1, we report the number of the

detected changes by the SaRa, requiring each suggested CNV be flanked by two

change points within 200 SNPs. Therefore, the number of the suggested CNVs

in Table 1 is fewer than the number of adjacent change points. In particular, on

Chromosome 11 of the father, the SaRa suggested two short CNVs as plotted in

Figure 2. The CNV in Figure 2(a) was also detected by PennCNV, although the

one in Figure 2(b) was not detected before.

3.2. A simulation example on the FDR control

We tested our theory on FDR control through an example. Consider model

(1.1) with n = 30, 000 and σ = 1. We set J = 50 and drew 50 change points

uniformly between 1 and 30,000 that were multiples of 5, to get τ = (650, 855, . . .,

29630)T . Here L = min(τj+1−τj) = 15. We designed the mean vector θ by letting

θi = 0 when τ2j ≤ i ≤ τ2j+1, and θi = δ otherwise, where δ = 1.5 or 3.

We set the SaRa with h = 10, 20, and 30, and chose threshold p∗ by control-

ling FDR via the Benjamini-Hochberg procedure BH(q) with q = 0.05, 0.10, 0.15.

We counted τ̂k as a false positive if there was no τj such that

|τ̂k − τj | < 10. (3.1)

Otherwise, τ̂k was counted as a true positive. We present our results in Table 2.

We see that the average false discovery proportion was close to the target FDR,
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Table 2. The average estimated number of change points Ĵ , true positives
(TP), and false discovery proportion (FDP). The results were based on 100
replications.

q = 0.05 q = 0.10 q = 0.15

Ĵ TP FDP Ĵ TP FDP Ĵ TP FDP
δ = 1.5, h = 10 3.700 3.520 0.4% 20.860 19.130 7.6% 27.690 23.640 13.6%
δ = 1.5, h = 20 45.730 43.600 4.5% 50.710 45.600 9.9% 54.620 46.560 14.5%
δ = 1.5, h = 30 50.580 47.130 6.7% 53.800 47.380 11.7% 56.740 47.460 16.1%
δ = 3, h = 10 51.500 49.920 3.0% 53.680 49.970 6.7% 57.040 49.980 12.1%
δ = 3, h = 20 50.380 49.070 2.5% 52.820 49.070 7.0% 55.000 49.070 10.6%
δ = 3, h = 30 50.770 48.650 4.1% 53.000 48.650 8.0% 55.490 48.650 12.1%

suggesting that our methodology worked well. In particular, when the signal was

strong (δ = 3), the SaRa with bandwidth h = 10 achieved the best performance.

The SaRa with bandwidths h = 20 and 30 performed well also. However, because

there were two true change points at positions 11,070 and 11,085, it was difficult

to detect both using a large bandwidth. When the signal was weak (δ = 1.5),

the SaRa with h = 10 was less powerful. Although the FDR can be controlled,

only a small portion of true change-points can be detected. The SaRa with larger

bandwidths are more powerful. When the bandwidth was too large (h = 30), the

FDP was somewhat greater than the target FDR. There were two reasons. First,

our assumption h < L was not satisfied for large h; second, the rule in (3.1) for

counting true positives was too strict.

4. Optimality of the Screening and Ranking Algorithm

We start this section with a brief summary of results on change-point detec-

tion when the number of change points is at most 2.

Among all change-point problems, the simplest case is the detection of the

mean change for a sequence of independent Gaussian random variables with

common variance. This has been investigated by Page (1955, 1957), Chernoff

and Zacks (1964), Gardner (1969), and Sen and Srivastava (1975), among others.

If Yi ∼ N (θi, σ
2) for i = 1,. . . ,n, the change-point problem can be stated as the

hypothesis test:

H0 : θ1 = θ2 = · · · = θn; vs H1 : θ1 = · · · = θj ̸= θj+1 = · · · = θn.

For simplicity, we assume σ2 is known and set to 1. We refer to Csörgö

and Horváth (1997), Chen and Gupta (2000), and the references therein for the

unknown variance and non-Gaussian cases. Among all methods, the likelihood

ratio test is popular. Consider the change point at j, and let Λj denote the
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likelihood ratio statistic. Then,

−2 log Λj =
(Ȳj+ − Ȳj−)

2

j−1 + (n− j)−1
, (4.1)

where Ȳj− =
∑j

k=1 Yk/j and Ȳj+ =
∑n

k=j+1 Yk/(n− j).

When j is unknown, a commonly used test statistic is T1= max
1≤j≤n−1

(−2 log Λj),

and

ĵ = argmax
1≤j≤n−1

(−2 log Λj) (4.2)

serves as the location estimator.

The distribution of the statistic T1 is quite complicated. However, as in

Csörgö and Horváth (1997), under the null hypothesis the limiting distribution

of
√

T1(n) satisfies

lim
n→∞

P{an
√

T1(n)− bn ≤ t} = exp(−2e−t) for all t, (4.3)

where an =
√
2 log log n and bn = 2 log log n+ (1/2) log log log n− (1/2) log π.

If the experiment is designed in a way such that, at the true change point

position j(n) with the mean change of δ(n) = θj − θj+1, either of the following

two conditions holds

0 <
j(n)

n
→ t < 1, δ(n) → 0, with lim

n→∞

nδ2

log log n
= ∞; (4.4)

j(n)

n
→ 0, δ(n) → 0, with lim

n→∞

j(n)δ2

log log n
= ∞, (4.5)

it is shown in Csörgö and Horváth (1997) that

δ2|ĵ − j| = OP (1). (4.6)

In the less challenging case that δ(n) → c > 0, it can be shown that |ĵ− j| =
OP (1), implying |ĵ/n − j/n| = OP (1/n). If all data points are collected from

a fixed interval (e.g. [0, 1] or a chromosome), this implies a convergence rate of

1/n. From (4.3), it is easy to see that (4.4) and (4.5) cannot be relaxed further.

Otherwise, the signal is too weak to be detectable.

The second simplest case for the change-point problem has two change points

with an epidemic alternative Yao (1993); Arias-Castro, Donoho, and Huo (2005).

Specifically, test

H0 : θ1 = · · · = θn = θ; vs (4.7)

H1 : θ1 = · · · = θl = θr+1 = · · · = θn = θ, θl+1 = · · · = θr = θ + δ.
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Arias-Castro, Donoho, and Huo (2005) showed that no method can detect
the segment reliably if δ2(r− l) < 2 log n, which offers a benchmark for necessary
conditions to solve the general multiple change-point problems. In the next two
subsections, we derive the theoretical properties of the SaRa.

4.1. Normal case

Consider the normal mean change-point model (1.1) and define

L = min
1≤j≤J+1

(τj − τj−1), δ = min
1≤j≤J

|θτj+1 − θτj |
σ

,

where J , τ , θ and σ depend on n. Here L is the minimal distance among all
change points, δ measures the ratio of the minimum jump size to the standard
deviation at change points. The key quantity that reflects the strength of the
signal is S2 = δ2L. When the signal is too weak, it is not distinguishable from
the noise and cannot be recovered by any methods. Here we consider the setting

S2 = δ2L > 32 log n. (4.8)

In the conventional setting of multiple change-point analysis, it is usually
assumed that J is constant, τ/n converge to a constant vector t as n → ∞,
which implies S2 = cn ≫ logn. However, in some applications, L is quite small
compared to n. Hence it is useful to consider the more flexible condition in (4.8).

Theorem 2. Under (4.8), there exist h = h(n) and λ = λ(n) such that Ĵ =
Ĵh,λ = {τ̂1, . . . , τ̂Ĵ} satisfies

lim
n→∞

P
({

Ĵ = J
})

= 1;

Moreover, conditional on Ĵ = J ,

δ2(τ̂i − τi) = OP (1). (4.9)

In particular, taking h = L/2 and λ = δσ/2, we have

P

({
Ĵ = J

}∩∩
i

{
|τ̂i − τi| < h

})
> 1− 4

√
2√
π
S−1 exp{log n− S2

32
}.

Remark 1. In Niu and Zhang (2012), it was shown that

lim
n→∞

P

({
Ĵ = J

}∩∩
i

{
|τ̂i − τi| < h

})
= 1. (4.10)

This is called the sure coverage property since it basically says that the true
change points locations τi’s are covered by neighborhoods (τ̂i − h, τ̂i + h) with
probability tending to one.



MULTIPLE CHANGE-POINT DETECTION VIA SaRa 1565

Remark 2. The main improvement from Theorem 1 is the convergence rate

(4.9), the same as the convergence rate of the likelihood ratio estimator in the

single change-point case.

Remark 3. The choices of h and λ in Theorem 1 may not be optimal in general,

especially when S2 ≫ log n. Basically, it is enough to use an h that is slightly

greater than 16 log n/δ2.

Corollary 1. If there is only one change point at position τ ≤ n/2 with δ2τ >

32 log n, then there exist h, such that τ̂ = argmax j |Dh(j)| satisfies δ2(τ̂ − τ) =

OP (1).

Note that in this corollary, the convergence rate of the location estimator τ̂

is the same as for the likelihood ratio estimator. The assumption δ2τ > 32 log n

is slightly stronger than (4.5). Since the likelihood ratio test statistic −2 log Λj

involves all the data points while the local statistic Dh(j) uses only 2h data

points, where h is usually O(log n/δ2).

Remark 4. The assumption (4.8) cannot be relaxed further except for the con-

stant 32. For example, in the epidemic case (4.7) even if we know that there

exists, at most, one segment whose mean is shifted from zero, Arias-Castro,

Donoho, and Huo (2005) suggested that (4.8) should be required except for the

constant. In our setting, the sparsity of θ and number of change points are not

restricted. Therefore, we do not expect that the 32 can be significantly improved.

We conclude that the SaRa is a nearly optimal procedure.

4.2. Beyond normality

Suppose

yi = θi + εi, i = 1, . . . , n, (4.11)

where the mean vector θ = (θ1, . . . , θn)
T is a piecewise constant with change

points at 0 < τ1 < · · · < τJ < n, and the noise is not necessarily normal but

satisfies the following.

(C0) The noises are i.i.d. with E(εi) = 0 and Var (εi) = σ2 < ∞. Moreover, the

density function of εi is symmetric. With

L = min
1≤j≤J+1

(τj − τj−1), δ = min
1≤j≤J

|θτj+1 − θτj |
σ

,

and, for easy presentation, σ2 = 1, we consider three cases:

(C1) εi ∼ N (0, 1), S2 = δ2L > 32 log n.

(C2) E(exp |εi|/a) ≤ b, δ2L/(8ab2 + 2aδ) ≫ log n.



1566 NING HAO, YUE SELENA NIU AND HEPING ZHANG

(C3) E(|εi|t) = mt < ∞ for some t > 2, δtLt−1 ≫ n and δ2L ≫ log n.

The case (C1) has been characterized in Theorem 1. We give results for the

other two cases.

Theorem 3. If (C0) and one of (C2) and (C3) hold, there exist h = h(n) and

λ = λ(n) such that Ĵ = Ĵh,λ = {τ̂1, . . . , τ̂Ĵ} satisfies

lim
n→∞

P
({

Ĵ = J
}∩∩

i

{
|τ̂i − τi| < h

})
= 1;

In particular, taking h = L/2 and λ = δ/2, we have, under (C0) and (C2),

P
({

Ĵ = J
}∩∩

i

{
|τ̂i − τi| < h

})
> 1− 2 exp

{
log n− δ2L

64a2b+ 8aδ

}
,

and, under (C0) and (C3),

P
({

Ĵ = J
}∩∩

i

{
|τ̂i − τi| < h

})
> 1− C1

n

δtLt−1
+ exp{log n− C2δ

2L},

where C1 = (1/2)mt(4 + 8/t)t and C2 = (1/8)(t+ 2)−2e−t.

5. Discussion

Change-point detection is a classic problem with emerging applications across

a spectrum of fields from finance to engineering and bioscience. In this work, we

focused on the detection of multiple change points, arising from the need to

identify CNVs from genomic data. We invoked the recently developed algorithm

SaRa of Niu and Zhang (2012), evaluating it as the only algorithm that is shown

to reach optimal computational complexity and to possess the sure coverage prop-

erty. We introduced a concept of false discovery proportion to address the specific

setting in the detection of multiple change points, and established FDR theory

for the dependent and sequence data pertinent to CNV. We proved a stronger

sure coverage property and showed that the convergence rate is optimal, and the

same as the existing one for the detection of a single change point. When we

applied our procedure to a well-known data set, we confirmed a known CNV and

detected a new one, highlighting the potential of the method to detect CNVs

that are difficult to detect by existing methods.
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Appendix. Proofs

In this appendix, we prove Theorems 1 and 2, and Corollary 1. Although

Corollary 1 is implied directly by Theorem 1, providing its proof might help

readers understand the technique.

A direct proof of Corollary 1. First note that the condition τ ≤ n/2 does

not put any restrictions on the position of the change point, by symmetry. The

only condition we need is that the position τ is not too close to the boundary,

which is guaranteed by δ2τ > 32 log n.

Without loss of generality, we assume σ2 = 1 and θτ+1 − θτ > 0. Fix an

integer h such that 16 log n/δ < h < τ . By definition,

Dh(τ) =
1

h

(
τ+h∑

k=τ+1

yk−
τ∑

k=τ−h+1

yk

)
= δ+

1

h

(
τ+h∑

k=τ+1

εk−
τ∑

k=τ−h+1

εk

)
∼ N (δ,

2

h
).

We consider the local statistic Dh at points right of τ and study the behavior

of estimator τ̂ = argmax
j≥τ

Dh(j). Let Wm = ετ+h+m − 2ετ+m + ετ−h+m, m =

1, . . . , h. Note the following.

(1) For m ≥ 2h, Dh(τ +m) ∼ N (0, 2/h) is independent of Dh(τ).

(2) For h < m < 2h, Dh(τ + m) ∼ N (0, 2/h) and corr (Dh(τ +m), Dh(τ)) =

−(2h−m)/2h.

(3) For m ≤ h, Dh(τ + m) ∼ N ((h−m)/m, 2/h) and Dh(τ + m) − Dh(τ) =

−(m/h)δ + (1/h)
∑m

ℓ=1Wℓ.

To show limM→∞ limn→∞P(δ2|τ̂ − τ | < M) = 1, it suffices to verify that

lim
M→∞

lim
n→∞

P

(
max

m>M/δ2
{Dh(τ +m)−Dh(τ)} < 0

)
= 1. (A.1)

Note that in (A.1), h > 16 log n/δ2 ≫ M/δ2 as n → ∞. Therefore, we can

bound the probabilities

P1 = P

(
max
m>h

{Dh(τ +m)−Dh(τ)} < 0

)
,

P2 = P

(
max

h≥m>M/δ2
{Dh(τ +m)−Dh(τ)} < 0

)
.

By (1) and (2), we have

Dh(τ +m)−Dh(τ) ∼N (−δ,
4

h
), m ≥ 2h,

Dh(τ +m)−Dh(τ) ∼N (−δ,
6−m/h

h
), h < m < 2h.
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Therefore,

1− P1 = P

(
max
m>h

{Dh(τ +m)−Dh(τ)} > 0

)
<

2h−1∑
m=h+1

P (Dh(τ +m)−Dh(τ) > 0) +
∑
m≥2h

P (Dh(τ +m)−Dh(τ) > 0)

< (h− 1)Φ(−δ

√
h√
5
) + (n−m− 2h+ 1)Φ(−δ

√
h

2
)

< nΦ(−δ

√
h√
5
)

<

√
5

2π

1

δ
√
h
exp

{
log n− δ2h

10

}
. (A.2)

In the last step, we have used the bound on the Gaussian tail probability

Φ(−t) = 1− Φ(t) <
1√
2π

t−1e−t2/2.

Obviously, P1 → 1 as n → ∞ when δ2h > 10 log n.
To bound the second part, the Bonferroni inequality is not sharp enough.

First, by 3),

P2 = P
(

max
h≥m>M/δ2

{
− m

h
δ +

1

h

m∑
ℓ=1

Wℓ

}
< 0
)
,

where W1, . . . ,Wh are i.i.d. N (0, 6). If B(t) is a standard Brownian motion,
observe that

P2 = P
(

max
h≥m≥M/δ2

{ 1

m

m∑
ℓ=1

Wℓ√
6
− δ√

6

}
< 0
)

≥ P
(

max
t≥M/δ2

{B(t)

t
− δ√

6

}
< 0
)

= P
(

max
t≥M/δ2

{ tB(1/t)

t
− δ√

6

}
< 0
)

= P
(

max
t≤δ2/M

{
B(t)− δ√

6

}
< 0
)

= P
(

max
t≤δ2/M

{
δB(t/δ2)− δ√

6

}
< 0
)

= P
(

max
t≤1/M

{
B(t)− 1√

6

}
< 0
)

= P
(

max
t≤1/M

{
B(t)

}
<

1√
6

)
.
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Therefore, lim
M→∞

lim
n→∞

P2 = 1. By symmetry, the behavior of τ̂ = argmax
j≤τ

Dh(j)

is exactly the same. The proof is finished.

Proofs of Theorems 1 and 2. The only difference between Theorems 1 and

2 is that they assume different conditions on the noise distribution. We give a

unified proof of the nonasymptotic result for both. We first give notation and

two lemmas.

For L an even number fix h = L/2 and λ = δ/2. Recall that we set σ2 = 1.

We say a point j is a flat point if there is no change point in the neighborhood

[j − h + 1, j + h] so H0(j) is true at (2.3). Let Fh = {j : H0(j) is true } be the

set of all flat points and J = {τi : i = 1, . . . , n} be the set of all change points.

Consider the event Aτ = {|D(τ, h)| > λ} for a change point τ ∈ J and the event

Bj = {|D(j, h)| < λ} for a flat point j ∈ Fh. Let

En =
( ∩

τ∈J
Aτ

)∩( ∩
j∈Fh

Bj

)
.

Lemma A.1. On En, Ĵ = J and |τi − τ̂i| < h for all i.

This lemma, shown in Niu and Zhang (2012), says that En implies τi ∈
(τ̂i−h, τ̂i+h). The next lemma shows the nonasymptotic properties of Theorem

1 and 2.

Lemma A.2. If (C0) and one of (C1), (C2), and (C3) hold, then P(En) → 1 as

n → ∞. In particular, under (C1),

P(En) > 1− 4
√
2√
π
S−1 exp

{
log n− S2

32

}
; (A.3)

under (C2),

P(En) > 1− 2 exp
{
log n− δ2L

64a2b+ 8aδ

}
; (A.4)

under (C3),

P(En) > 1− C1
n

δtLt−1
+ exp{log n− C2δ

2L}, (A.5)

where C1 = (1/2)mt(4 + 8/t)t and C2 = (1/8)(t+ 2)−2e−t.

Proof of Lemma 2. Under (C1), we have

Dh(j) ∼N (0,
2

h
) for j ∈ Fh,

Dh(τ) ∼N (δτ ,
2

h
) for τ ∈ J ,
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where δτ = θτ+1 − θτ .

For a fixed flat point j,

P(Bc
j) = P

(
|Dh(j)| >

δ

2

)
= 2
(
1−Φ

(δ√h

2
√
2

))
= 2
(
1−Φ

(δ√L

4

))
= 2
(
1−Φ

(S
4

))
,

where Φ is the standard normal distribution function. Similarly, for a change

point τ , since |δτ | > δ by definition, we have

P(Ac
τ ) = P

(
|Dh(τ)| <

δ

2

)
< 1− Φ

(S
4

)
.

By the Bonferroni Inequality and the bound on the Gaussian tail probability, we

have

P(Ec
n) <

∑
τ∈J

P(Ac
τ ) +

∑
j∈Fh

P(Bc
j) < 2n(1− Φ(

S

4
)) <

4
√
2√
π
S−1 exp{log n− S2

32
}.

Therefore, (A.3) holds.

Under (C0) and (C2), the probabilities P(Ac
τ ) and P(Bc

j) can be bounded

using Lemma 2.2.11 in van der Vaart and Wellner (1996).

Note that E(exp |εi|/a) ≤ b implies E|εi|m < bm!am = m!am−2(2a2b/2).

For a flat point j,

h ·Dh(j) =

j∑
i=j−h+1

Yi −
j+h∑

i=j+1

Yi =

j∑
i=j−h+1

εi −
j+h∑

i=j+1

εi.

Because εi is symmetric, h ·Dh(j) is a sum of 2h i.i.d. random variables. By

the Bernstein’s Inequality,

P(Bc
j) = P(|Dh(j)| >

δ

2
)

= P(|h ·Dh(j)| >
δh

2
)

≤ 2 exp
{
− 1

2

δ2h2/4

2a2b · 2h+ aδh/2

}
= 2 exp

{
− δ2L

64a2b+ 8aδ

}
P(Ac

τ ) can be bounded by the same probability. By the Bonferroni Inequality,

we have

P(Ec
n) < 2n exp

{
− δ2L

64a2b+ 8aδ

}
= 2 exp

{
log n− δ2L

64a2b+ 8aδ

}
.
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Under (C0) and (C3), the inequality (A.5) can be obtained via results on

large deviation of sums of independent random variables. For example, applying

Corollary 1.8. in Nagaev (1979),

P(Bc
j) = P

(
|h ·Dh(j)| >

δh

2

)
≤ C1δ

−tL1−t + exp{−C2δ
2L},

where C1 = (1/2)mt(4 + 8/t)t and C2 = (1/8)(t+ 2)−2e−t. The same is true for

P(Ac
τ ), τ ∈ J . By the Bonferroni Inequality, we have

P(Ec
n) < n(C1δ

−tL1−t + exp{−C2δ
2L}) = C1

n

δtLt−1
+ exp{log n− C2δ

2L}.

Theorem 2 and part of Theorem 1 are straightforward corollaries of Lemmas

1 and 2. The remaining part of Theorem 1, δ2(τ̂i − τi) = OP (1), can be shown

in the same way as the proof of Corollary 1. In fact, from the discussion above,

we know |τ̂i − τi| < h on event En, which holds with probability close to 1. To

sharpen our result to δ2(τ̂i− τi) = OP (1), it suffices to repeat the procedure used

to bound P2 in Corollary 1.
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