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Abstract: Gaussian random fields (GRFs) play an important part in spatial mod-

elling, but can be computationally infeasible for general covariance structures. An

efficient approach is to specify GRFs via stochastic partial differential equations

(SPDEs) and derive Gaussian Markov random field (GMRF) approximations of

the solutions. We consider the construction of a class of non-stationary GRFs with

varying local anisotropy, where the local anisotropy is introduced by allowing the

coefficients in the SPDE to vary with position. This is done by using a form of

diffusion equation driven by Gaussian white noise with a spatially varying diffu-

sion matrix. This allows for the introduction of parameters that control the GRF

by parametrizing the diffusion matrix. These parameters and the GRF may be

considered to be part of a hierarchical model and the parameters estimated in a

Bayesian framework. The results show that the use of an SPDE with non-constant

coefficients is a promising way of creating non-stationary spatial GMRFs that allow

for physical interpretability of the parameters, although there are several remaining

challenges that would need to be solved before these models can be put to general

practical use.
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Markov random fields, non-stationary, spatial.

1. Introduction

Many spatial models for continuously indexed phenomena, such as tem-

perature, precipitation and air pollution, are based on Gaussian random fields

(GRFs). This is mainly due to the fact that their theoretical properties are well

understood and that their distributions can be fully described by mean and co-

variance functions. In principle, it is enough to specify the mean at each location

and the covariance between any two locations. However, specifying covariance

functions is hard and specifying covariance functions that can be controlled by

parameters in useful ways is even harder. This is the reason why the covariance

function usually is selected from a class of known covariance functions such as

the exponential covariance function, the Gaussian covariance function, or the

Matérn covariance function.
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But even when the covariance function is selected from one of these classes,

the feasible problem sizes are severely limited by a cubic increase in computa-

tion time as a function of the number of observations and a quadratic increase

in computation time as a function of the number of prediction locations. This

computational challenge is usually tackled either by reducing the dimensional-

ity of the problem (Cressie and Johannesson (2008); Banerjee et al. (2008)), by

introducing sparsity in the precision matrix (Rue and Held (2005)) or the covari-

ance matrix (Furrer, Genton, and Nychka (2006)), or by using an approximate

likelihood (Stein, Chi, and Welty (2004); Fuentes (2007)). Sun, Li, and Genton

(2012) offers comparisons of the advantages and challenges associated with the

usual approaches to large spatial datasets.

We explore a new class of non-stationary GRFs that provide both an easy

way to specify the parameters and allow for fast computations. The main com-

putational tool used is Gaussian Markov random fields (GMRFs) (Rue and Held

(2005)) with a spatial Markovian structure where each position is conditionally

dependent only on positions close to itself. The strong connection between the

Markovian structure and the precision matrix results in sparse precision matrices

that can be exploited in computations. The main problem associated with such

an approach is that GMRFs must be constructed through conditional distribu-

tions, which presents a challenge as it is generally not easy to determine whether

a set of conditional distributions gives a valid joint distribution. Additionally,

the conditional distributions have to be controlled by useful parameters in such

a way that not only is the joint distribution valid, but also that the effect of

the parameters is understood. Lastly, it is desirable that the GMRF is a con-

sistent approximation of a GRF in the sense that when the distances between

the positions decrease, the GMRF “approaches” a continuous GRF. These issues

are even more challenging for non-stationary GMRFs. It is is extremely hard to

specify the non-stationarity directly through conditional distributions.

There is no generally accepted way to handle non-stationary GRFs, but many

approaches have been suggested. There is a large literature on methods based

on the deformation method of Sampson and Guttorp (1992), where a stationary

process is made non-stationary by deforming the space on which it is defined.

Several Bayesian extensions of the method have been proposed (Damian, Samp-

son, and Guttorp (2001, 2003); Schmidt and O’Hagan (2003); Schmidt, Guttorp,

and O’Hagan (2011)), but all these methods require replicated realizations which

might not be available. There has been some development towards an approach

for a single realization, but with a “densely” observed realization (Anderes and

Stein (2008)). Other approaches use kernels which are convolved with Gaus-

sian white noise (Higdon (1998); Paciorek and Schervish (2006)), weighted sums

of stationary processes (Fuentes (2001)) and expansions into a basis such as a
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wavelet basis (Nychka, Wikle, and Royle (2002)). Conceptually simpler methods

have been made with “stationary windows” (Haas (1990b,a)) and with piece-

wise stationary Gaussian processes (Kim, Mallick, and Holmes (2005)). There

has also been some progress with methods based on the spectrum of the pro-

cesses (Fuentes (2001, 2002a,b)). Recently, a new type of method based on a

connection between stochastic partial differential equations (SPDEs) and some

classes of GRFs was proposed by Lindgren, Rue, and Lindström (2011). They

use an SPDE to model the GRF and construct a GMRF approximation to the

GRF for computations. An application of a non-stationary model of this type

to ozone data can be found in Bolin and Lindgren (2011) and an application to

precipitation data can be found in Ingebrigtsen, Lindgren, and Steinsland (2013).

This paper extends on the work of Lindgren, Rue, and Lindström (2011)

and explores the possibility of constructing a non-stationary GRF by varying

the local anisotropy. The interest lies both in considering the different types of

structures that can be achieved, and how to parametrize the GRF and estimate

the parameters in a Bayesian setting. The construction of the GRF is based

on an SPDE that describes the GRF as the result of a linear filter applied to

Gaussian white noise. Basically, the SPDE expresses how the smoothing of the

Gaussian white noise varies at different locations. This construction bears some

resemblance to the deformation method of Sampson and Guttorp (1992) in the

sense that parts of the spatial variation of the linear filter can be understood as a

local deformation of the space, only with an associated spatially varying variance

for the Gaussian white noise. The main idea for computations is that since this

filter works locally, it implies a Markovian structure on the GRF. This Markovian

structure can be transferred to a GMRF which approximates the GRF, and in

turn fast computations can be done with sparse matrices.

This paper presents a new type of model and the main goal is to explore what

can be achieved in terms of models and inference with the model. Section 2 con-

tains the motivation and introduction to the class of non-stationary GRFs that

is studied in the other sections. The form of the SPDE that generates the class

is given and it is related to more standard constructions of GMRFs. In Section 3

illustrative examples are given on both stationary and non-stationary construc-

tions. This includes some discussion on how to control the non-stationarity of

the GRF. Then in Section 4 we discuss parameter estimation for these types of

models. The paper ends with discussion of extensions in Section 5, and general

discussion and concluding remarks in Section 6.

2. New Class of Non-stationary GRFs

A GMRF u is usually parametrized through a mean µ and a precision matrix

Q such that u ∼ N (µ,Q−1). The main advantage of this formulation is that
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the Markovian structure is represented in the non-zero structure of the precision

matrix Q (Rue and Held (2005)). Off-diagonal entries are non-zero if and only

if the corresponding elements of u are conditionally independent. This can be

seen from the conditional properties of a GMRF,

E(ui|u−i) = µi −
1

Qi,i

∑
j ̸=i

Qi,j(uj − µj), Var(ui|u−i) =
1

Qi,i
,

where u−i denotes the vector u with element i deleted. For a spatial GMRF

the non-zeros of Q can correspond to grid-cells that are close to each other

in a grid, neighbouring regions in a Besag model, and so on. However, even

when this non-zero structure is determined it is not clear what values should be

given to the non-zero elements of the precision matrix. This is the framework of

the conditionally auto-regressive (CAR) models, whose conception predates the

advances in modern computational statistics (Whittle (1954); Besag (1974)). In

the multivariate Gaussian case it is clear that the requirement for a valid joint

distribution is that Q be positive definite, not an easy condition to check.

Specification of a GMRF through its conditional properties is usually done

in a somewhat ad-hoc manner. For regular grids, a process such as random

walk can be constructed and the only major issue is to get the conditional vari-

ance correct as a function of step-length. For irregular grids the situation is

not as clear because the conditional means and variances must depend on the

varying step-lengths. In Lindgren and Rue (2008) it is demonstrated that some

such constructions for second-order random walk can lead to inconsistencies as

new grid points are added, and they offer a surprisingly simple construction for

second-order random walk based on the SPDE

− ∂2

∂x2
u(x) = σW(x),

where σ > 0 and W is standard Gaussian white noise. If the precision matrix

is chosen according to their scheme one does not have to worry about scaling

as the grid is refined, as it automatically approaches the continuous second-

order random walk. There is an automatic procedure to select the form of the

conditional means and variances.

A one-dimensional second-order random walk is a relatively simple exam-

ple of a process with the same behaviour everywhere. To approximate a two-

dimensional, non-stationary GRF, a scheme would require (possibly) different

anisotropy and correct conditional variance at each location. To select the pre-

cision matrix in this situation poses a large problem and there is abundant use

of simple models such as a spatial moving average

E(ui,j |u−{(i,j)}) =
1

4
(ui−1,j + ui+1,j + ui,j−1 + ui,j+1)
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with a constant conditional variance 1/α. There are ad-hoc ways to extend such

a scheme to a situation with varying step-lengths in each direction, but little

theory for more irregular choices of locations.

We start with the close connection between SPDEs and some classes of GRFs

as presented in Lindgren, Rue, and Lindström (2011) that is not plagued by such

issues. From Whittle (1954), it is known that the SPDE

(κ2 −∆)u(s) = W(s), s ∈ R2, (2.1)

where κ2 > 0 and ∆ = ∂2

∂s21
+ ∂2

∂s22
is the Laplacian, gives rise to a GRF u with the

Matérn covariance function

r(s) =
1

4πκ2
(κ||s||)K1(κ||s||),

where K1 is the modified Bessel function of the second kind of order 1. Equa-

tion (2.1) can be extended to fractional operator orders in order to obtain other

smoothness parameters in the Matérn covariance function. However, for practi-

cal applications, the true smoothness of the field is very hard to estimate from

data, in particular when the model is used in combination with an observation

noise model. Restricting the development to smoothness 1 in the Matérn family

is therefore unlikely to be a major practical serious limitation. For practical com-

putations the model is discretized using methods similar to those in Lindgren,

Rue, and Lindström (2011), which does permit other operator orders. Integer

orders are easiest but, for stationary models, fractional orders are also achievable

(Lindgren, Rue, and Lindström (2011, Authors’ discussion response)). For non-

stationary models, techniques similar to Bolin (2013, Sec. 4.2) are possible. This

means that even though we here restrict the model development to the special

case in (2.1), other smoothnesses, e.g. exponential covariances, are reachable by

combining the different approximation techniques.

The intriguing part, that Lindgren, Rue, and Lindström (2011) expanded

upon in (2.1), is that (κ2 −∆) can be interpreted as a linear filter acting locally.

This means that if the continuously indexed process u were instead represented

by a GMRF u on a grid or a triangulation, with appropriate boundary condi-

tions, one could replace this operator with a matrix, say B(κ2), only involving

neighbours of each location such that (2.1) becomes approximately

B(κ2)u ∼ N (0, I). (2.2)

The matrix B(κ2) depends on the chosen grid but, after the relationship is de-

rived, the calculation of B(κ2) is straightforward for any κ2. Since B(κ2) is

sparse, the resulting precision matrix Q(κ2) = B(κ2)TB(κ2) for u is also sparse.

This means that by correctly discretizing the operator (or linear filter), it is
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possible to devise a GMRF with approximately the same distribution as the con-

tinuously indexed GRF. And because it comes from a continuous equation one

does not have to worry about changing behaviour as the grid is refined.

The class of models that are studied in this paper is the one that can be

constructed from (2.1), but with anisotropy added to the ∆ operator. A function

H, that gives 2 × 2 symmetric positive definite matrices at each position, is

introduced and the operator is changed to

∇ ·H(s)∇ =
∂

∂s1

(
h11(s)

∂

∂s1

)
+

∂

∂s1

(
h12(s)

∂

∂s2

)
+

∂

∂s2

(
h21(s)

∂

∂s1

)
+

∂

∂s2

(
h22(s)

∂

∂s2

)
.

This induces different strengths of local dependence in different directions, which

results in a range that varies with direction at all locations. Further, it is neces-

sary for the discretization procedure to restrict the SPDE to a bounded domain.

The chosen SPDE is

(κ2 −∇ ·H(s)∇)u(s) = W(s), s ∈ D = [A1, B1]× [A2, B2] ⊂ R2, (2.3)

where the rectangular domain makes it possible to use periodic boundary con-

ditions. Neither the rectangular shape of the domain nor the periodic boundary

conditions are essential restrictions for the model, but are merely the practical

restrictions we choose to work with, in order to focus on the non-stationarity

itself.

When using periodic boundary conditions when approximating the likeli-

hood of a stationary process on an unbounded domain, the parameter estimates

are biased, e.g., when using the Whittle likelihood in the two-dimensional case

(Dahlhaus and Künsch (1987)). However, as Lindgren, Rue, and Lindström

(2011, Appendix A.4) notes for the case with Neumann boundary conditions,

normal derivatives set to zero, the effect of the boundary conditions is limited

to a region in the vicinity of the boundary. At a distance greater than twice the

correlation range away from the boundary the bounded domain model is nearly

indistinguishable from the model on an unbounded domain. Therefore, the bias

due to boundary effects can be eliminated by embedding the domain of interest

into a larger region, in effect moving the boundary away from where it would

influence the likelihood function. For non-stationary models, defining appropri-

ate boundary conditions becomes part of the practical model formulation itself.

For simplicity we ignore this issue here, leaving boundary specification for future

development, but provide some additional practical comments in Section 5.

Both for interpretation and the practical use of (2.3) it is useful to decompose

H into scalar functions. The anisotropy due to H is decomposed as H(s) =
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γI2 + v(s)v(s)T, where γ specifies the isotropic, baseline effect, and the vector

field v(s) = [vx(s), vy(s)]
T specifies the direction and magnitude of the local,

extra anisotropic effect at each location. In this way, one can, loosely speaking,

think of different Matérn-like fields locally each with its own anisotropy that are

combined into a full process. An example of an extreme case of a process with a

strong local anisotropic effect is shown in Example 2. The example shows that

there is a close connection between the vector field and the resulting covariance

structure of the GRF.

The main computational challenge is to determine the appropriate discretiza-

tion of the SPDE in (2.3), that is how to derive a matrix B such as in (2.2). The

idea is to look to the field of numerics for discretization methods for differential

equations, then to combine these with properties of Gaussian white noise. We

use that for a Lebesgue measurable subset A of Rn, for some n > 0,∫
A
W(s) ds ∼ N (0, |A|),

where |A| is the Lebesgue measure of A, and for two disjoint Lebesgue measurable

subsets A and B of Rn the integral over A and the integral over B are indepen-

dent (Adler and Taylor (2007, pp. 24–25)). A matrix equation such as (2.2) was

derived for the SPDE in (2.3) with a finite volume method. The derivations are

quite involved and technical and are given in a supplementary document. How-

ever, when the form of the discretized SPDE has been derived as an expression of

the coefficients in the SPDE and the grid, the conversion from SPDE to GMRF

is automatic for any choice of coefficients and rectangular domain.

3. Examples of Models

The simplest case of (2.3) is with constant coefficients. In this case one

has an isotropic model (up to boundary effects) if H is a constant times the

identity matrix or a stationary anisotropic model (up to boundary effects) if this

is not the case. In both cases it is possible to calculate an exact expression for

the covariance function and the marginal variance for the corresponding SPDE

solved over R2.

For this purpose write

H =

[
H1 H2

H2 H3

]
,

where H1, H2, and H3 are constants. This gives the SPDE[
κ2 −H1

∂2

∂x2
− 2H2

∂2

∂x∂y
−H3

∂2

∂y2

]
u(s) = W(s), s ∈ R2.
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If λ1 and λ2 are the eigenvalues of H, then the solution of the SPDE is actually
only a rotated version of the solutions of[

κ2 − λ1
∂2

∂x̃2
− λ2

∂2

∂ỹ2

]
u(s) = W(s), s ∈ R2. (3.1)

Here the new x-axis is parallel to the eigenvector of H corresponding to λ1 in
the old coordinate system and the new y-axis is parallel to the eigenvector of H
corresponding to λ2.

The marginal variance of u is

σ2
m =

1

4πκ2
√

det(H)
=

1

4πκ2
√
λ1λ2

.

A proof is given in the supplementary material. One can think of the eigenvectors
of H as the two principal directions and λ1 and λ2 as a measure of the “strength”
of the diffusion in these principal directions. Additionally, if λ1 = λ2, which is
equivalent to H being equal to a constant times the identity matrix, the SPDE
is rotation and translation invariant and the solution is isotropic. If λ1 ̸= λ2, the
SPDE is still translation invariant, but not rotation invariant, and the solutions
are stationary, but not isotropic.

In our case the domain is not R2, but [0, A]× [0, B] with periodic boundary
conditions. This means that a boundary effect is introduced and the above results
are only approximately true.

3.1. Stationary models

For a constant H the SPDE in (2.3) becomes

[κ2 −∇ ·H∇]u(s) = W(s), s ∈ [0, A]× [0, B].

This SPDE can be rewritten as

[1−∇ · Ĥ∇]u(s) = σW(s), s ∈ [0, A]× [0, B], (3.2)

where Ĥ = H/κ2 and σ = 1/κ2. From this form it is clear that σ is only a
scale parameter and that it is enough to solve for σ = 1 and then multiply the
solution with the desired value of σ. Therefore, it is the effect of Ĥ that is most
interesting to study.

It is useful to parametrize Ĥ as Ĥ = γI2 + βv(θ)v(θ)T, where v(θ) =
[cos(θ), sin(θ)]T, γ > 0, and β > 0. In this parametrization one can think of
γ as the coefficient of the second order derivative in the direction orthogonal to
v(θ) and γ + β as the coefficient of the second order derivative in the direction
v(θ). Ignoring boundary effects, γ and γ + β are the coefficients of the second
order derivatives in (3.1) and θ is how much the coordinate system has been
rotated in the positive direction.
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Example 1 (Stationary GMRF). Here we consider the effects of using a constant

Ĥ. Use the SPDE in (3.2) with domain [0, 20] × [0, 20] and periodic boundary

conditions, and discretize with a regular 200× 200 grid. Two different values of

Ĥ are used, an isotropic case with Ĥ = I2 and an anisotropic case with γ = 1,

β = 8, and θ = π/4. The anisotropic case corresponds to a coefficient 9 in the

x-direction and a coefficient 1 in the y-direction, and then a rotation of π/4 in

the positive direction. The isotropic GMRF has marginal variances 0.0802 and

the anisotropic GMRF has marginal variances 0.0263.

Figure 1 shows one realization for each of the cases. Comparing Figure 1(a)

and Figure 1(b) it seems that the direction with the higher coefficient for the

second-order derivative has longer range and more regular behaviour. Compared

to the corresponding partial differential equation (PDE) without the white noise,

this is what one would expect since large values of the coefficient penalize large

values of the second order derivatives.

One expects that the correlation range increases when the coefficient is in-

creased. This is in fact what happens. Figure 2 shows the correlation of the

variable at (9.95, 9.95) with every other point in the grid for the isotropic and

the anisotropic case. This is sufficient to describe all the correlations since the

solutions are stationary. One can see that the iso-correlation curves are close to

ellipses with semi-axes along v(θ) and the direction orthogonal to v(θ), and that

the correlation decreases most slowly and most quickly in the directions used to

specify Ĥ, with slowest decrease along v(θ). It is interesting that the isotropic

and the non-isotropic cases have approximately the same length for the minor

semi-axis of the iso-correlation curves, and that the major semi-axis is longer for

the anisotropic case, lengths being connected with
√
γ and

√
γ + β.

The use of 3 parameters thus allows for the creation of GMRFs that are

more regular in one direction than the other. One can use the parameters γ, β,

and θ to control the form of the correlation function, and σ to get the desired

marginal variance.

3.2. Non-stationary models

To make the solution of the SPDE in (2.3) non-stationary, either κ2 or H

has to be a non-constant function. One way to achieve non-stationarity is by

choosing H(s) = γI2 + βv(s)v(s)T, where v is a non-constant vector field on

[0, A] × [0, B] satisfying the periodic boundary conditions and γ > 0 and β > 0

are constants.

Example 2 (Non-stationary GMRF). Use the domain [0, 20]2 with a 200× 200

grid and periodic boundary conditions for the SPDE in (2.3). Let κ2 be 1 and

let H be given as H(s) = γI2 + βv(s)v(s)T, where v is a 2-dimensional vector
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Figure 1. 1(a) Realization from the SPDE in Example 1 on [0, 20]2 with a
200 × 200 grid and periodic boundary conditions with γ = 1, β = 0, and
θ = 0. 1(b) Realization from the SPDE in Example 1 on [0, 20]2 with a
200 × 200 grid and periodic boundary conditions with γ = 1, β = 8, and
θ = π/4.

Figure 2. (a) Correlation of the centre with all other points for the solution
of the SPDE in Example 1 on [0, 20]2 with a 200 × 200 grid and periodic
boundary conditions with γ = 1, β = 0, and θ = 0. (b) Correlation of the
centre with all other points for the SPDE in Example 1 on [0, 20]2 with a
200×200 grid and periodic boundary conditions with γ = 1, β = 8, θ = π/4.

field on [0, 20]2 which satisfies the periodic boundary conditions and γ > 0 and

β > 0 are constants.

To create an interesting vector field, start with the function f : [0, 20]2 → R
defined by

f(x, y) =

(
10

π

)(
3

4
sin(

2πx

20
) +

1

4
sin(

2πy

20
)

)
.
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(a) The function used to create the vector field. (b) The resulting vector field.

Figure 3. The gradient of the function illustrated in 3(a) is calculated and
rotated 90◦ counter-clockwise at each point to give the vector field illustrated
in 3(b).

Then calculate the gradient ∇f and let v : [0, 20]2 → R2 be the gradient rotated

90◦ counter-clockwise at each point. Figure 3(a) shows the values of the function

f and Figure 3(b) shows the resulting vector field v. The vector field is calculated

on a 400× 400 regular grid, because the values between neighbouring cells in the

discretization are needed.

Figure 4(a) shows one realization from the resulting GMRF with γ = 0.1

and β = 25. A much higher value for β than γ is chosen to illustrate the

connection between the vector field and the resulting covariance structure. From

the realization it is clear that there is stronger dependence along the directions of

the vector field shown in Figure 3(b) at each point than in the other directions.

In addition, from Figure 4(b) it seems that positions with large values for the

norm of the vector field have smaller marginal variance than positions with small

values, and vice versa. This feature introduces an undesired connection between

anisotropy and marginal variances. It is possible to reduce this interaction by

reformulating the controlling SPDE, as discussed briefly in Section 5.

From Figure 5 one can see that the correlations depend on the direction

and norm of the vector field, and that there is clearly non-stationarity. Fig-

ure 5(a) and Figure 5(c) show that the correlations with the positions (4.95, 1.95)

(4.95, 7.95) tend to follow the vector field around the point (5, 5), whereas Fig-

ure 5(b) and Figure 5(d) show that the correlations with the positions (14.95, 1.95)

and (14.95, 7.95) tend to follow the vector field away from the point (15, 5). Fig-

ure 5(e) shows that the correlations with position (4.95, 4.95) and every other

point are not isotropic, but concentrated close to the point itself, and Figure 5(f)
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(a) One realization. (b) Marginal variances.

Figure 4. One observation and the marginal variances of the solution of the
SPDE in Equation (2.3) on a 200× 200 regular grid of [0, 20]2 with periodic
boundary conditions, κ2 ≡ 1 and H = 0.1I2 + 25vvT, where v is the vector
field described in Example 2.

Figure 5. Correlations for different points with all other points for the solu-
tion of the SPDE in Example 2.
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shows that the correlations with position (14.95, 4.95) have high correlation along

four directions that extend out from the point.

We see that allowingH to be non-constant can vary the dependence structure

in more interesting ways than in stationary anisotropic fields. Using a vector

field to control how H varies means that the resulting correlation structure can

be partially visualized from the vector field. When γ > 0 this construction

guarantees that H is everywhere positive definite.

4. Inference

4.1. Posterior distribution and parametrization

For inference, we introduce parameters that control the behaviour of the

coefficients in (2.3) and, in turn, the behaviour of the GMRF. This is done by

expanding each of the functions in a basis and using a linear combination of the

basis functions weighted by parameters. For κ2 only one parameter, say θ1, is

needed as it is assumed constant, but for the function H a vector of parameters

θ2 is needed. Set θ = (θ1,θ
T
2 ) and give it a prior θ ∼ π(θ). Then for each

value of θ, a discretization, described in the supplementary document, is used

to construct the GMRF u|θ ∼ N (0,Q(θ)−1). Combine the prior of θ with this

conditional distribution to find the joint distribution of the parameters and u.

With a model for how an observation y is made from the underlying GMRF, one

forms a hierarchical spatial model. The relationship between y and u is chosen

to be particularly simple, namely that linear combinations of u are observed with

Gaussian noise, y|u ∼ N (Au,Q−1
N ), where QN is a known precision matrix.

The purpose of the hierarchical model is to do inference on θ based on an

observation of y. With a Gaussian latent model it is possible to integrate out

the latent field u exactly and this leads to the log-posterior

log(π(θ|y)) = Const + log(π(θ)) +
1

2
log(|Q(θ)|)

−1

2
log(|QC(θ)|) +

1

2
µC(θ)

TQC(θ)µC(θ), (4.1)

where QC(θ) = Q(θ) + ATQNA and µC(θ) = QC(θ)
−1ATQNy. In (4.1) one

sees that the posterior distribution of θ contains terms that are hard to handle

analytically. It is hard to say anything about both the determinants and the

quadratic term as functions of θ. Therefore, the inference is done numerically.

The model is of a form that could be handled by the INLA methodology (Rue,

Martino, and Chopin (2009)), but when this was written, the R-INLA software

did not have the model implemented. Instead the parameters are estimated with

maximum a posteriori estimates based on the posterior density given in (4.1).
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Standard deviations are estimated from the square roots of the diagonal elements

of the observed information matrix.

The parametrization of H in the previous section employs a pre-defined

vector field and a parameter β that controls the magnitude of the anisotropy

due to this vector field. This is a useful representation for achieving a desired

dependence structure, but in a inference setting there may not be any pre-defined

vector field. Therefore, the vector field itself must be estimated. In this context

the decomposition, H(s) = γI2 + v(s)v(s)T, is more useful. For inference it is

necessary to control the vector field by a finite number of parameters. The simple

case of a constant matrix requires 3 parameters. Use parameters γ, v1, and v2
and write

H(s) ≡ γI2 +

[
v1
v2

] [
v1 v2

]
.

If H is not constant, it is necessary to parametrize the vector field v in some

manner. Any vector field is possible for v, so a basis that can generate any vector

field is desirable. The Fourier basis possesses this property, but is only one of

many possible choices. Let the domain be [0, A]× [0, B] and assume that v is a

differentiable, periodic vector field on the domain. Then each component of the

vector field can be written as a Fourier series of the form∑
(k,l)∈Z2

Ck,l exp

[
2πi

(
k

A
x+

l

B
y

)]
,

where i is the imaginary unit. But since the components are real-valued, each of

them can also be written as a real 2-dimensional Fourier series of the form

A0,0 +
∑

(k,l)∈E

[
Ak,l cos

[
2π

(
k

A
x+

l

B
y

)]
+Bk,l sin

[
2π

(
k

A
x+

l

B
y

)]]
,

where the set E ⊂ Z2 is given by E = (N× Z) ∪ ({0} × N).
Putting these Fourier series together gives

v(s) =

[
A

(1)
0,0

A
(2)
0,0

]
+

∑
(k,l)∈E

[
A

(1)
k,l

A
(2)
k,l

]
cos

[
2π

(
k

A
x+

l

B
y

)]

+
∑

(k,l)∈E

[
B

(1)
k,l

B
(2)
k,l

]
sin

[
2π

(
k

A
x+

l

B
y

)]
,

where A
(1)
k,l and B

(1)
k,l are the coefficients for the first component of v and A

(2)
k,l and

B
(2)
k,l are the coefficients of the second component. This gives 2 coefficients when

only the zero-frequency is included, then 18 parameters when the (0, 1), (1,−1),
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(1, 0) and (1, 1) frequencies are included. When the number of frequencies used

in each direction doubles, the number of required parameters quadruples.

4.2. Inference on simulated data

In the supplementary material, we consider data generated from known sets

of parameters for models of the type

u(s)−∇ ·H(s)∇u(s) = W(s),

where W is a standard Gaussian white noise process and H(·) is a spatially

varying 2×2 matrix, with periodic boundary conditions on a rectangular domain.

The matrix is parameterized as H(s) = γI + v(s)v(s)T. The results illustrate

the ability to estimate the vector field controlling the anisotropy for four test

cases.

These examples focus on simple cases where specific issues can be high-

lighted. The inherent challenges in estimating a spatially varying direction and

strength are equally important in the more general setting where also κ and the

baseline effect γ are allowed to vary. The estimation of the vector field presents

an important component that must be dealt with in any inference strategy for

the more general case.

5. Extensions

To make the model applicable to datasets it is necessary to also make the

parameters κ and γ spatially varying functions. This results in some control also

over the marginal variance and the strength of the local baseline component of

the anisotropy at each location. A varying κ is discussed briefly in Section 3.2 in

Lindgren, Rue, and Lindström (2011).

This comes at the cost of two more functions that must be inferred together

with the vector field v that, in turn, means two more functions need to be

expanded into bases. This could be done with a Fourier basis, but any basis

which respects the boundary condition could in principle be used. The amount of

freedom available by having four spatially varying functions comes at a price, and

it would be necessary to introduce some apriori restrictions on their behaviour.

In the supplementary material we demonstrate the challenge with the non-

identifiability of the sign of the vector field. It would be possible to make the

situation less problematic by enforcing more structure in the estimated vector

field. For example, through spline penalties which adds a preference for compo-

nents without abrupt changes. Such apriori restrictions make sense both from

a modelling perspective, in the sense that the properties should not change to

quickly, and from a computational perspective, in the sense that it is desirable
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to avoid situations as the one encountered in the previous section where the

direction of the vector field flips.

The full model could be used in an application through a three-step ap-

proach. First, choose an appropriate basis to use for each function and select an

appropriate prior. This means deciding how many basis elements one is willing

to use from a computational point of view, and how strong the apriori penalties

need to be. Second, find the maximum aposteriori estimate of the functions κ,

γ, v1, and v2. Third, assume the maximum aposteriori estimates are the true

functions and calculate the predicted values and prediction variances. Full de-

tails of such an approach are beyond the current scope. This is being studied in

current work on an application to annual rainfall data in the conterminous US

(Fuglstad, Simpson, Lindgren, and Rue (2013)).

Another way forward deals with the interactions of the functions κ, γ, v1,

and v2. The functions interact in difficult ways to control marginal variance and

to control anisotropy. As seen in Example 2 the vector field that controls the

anisotropic behaviour is also linked to the marginal variances of the field. It would

be desirable to try to separate the functions that are allowed to affect the marginal

variances and the functions that are allowed to affect the correlation structure.

This may present a useful feature in applications, both for interpretability and

for constructing priors.

One promising way to reduce interaction is to extend ideas presented in Sec-

tion 3.4 of Lindgren, Rue, and Lindström (2011), linking the use of an anisotropic

Laplacian to the deformation method of Sampson and Guttorp (1992). The link

is too restrictive, but the last comments about the connection to metric tensors

leads to a useful way to rewrite the SPDE in (2.3). This is work in progress and

involves interpreting the simple SPDE

[1−∆]u = W

as an SPDE on a Riemannian manifold with an inverse metric tensor defined

through the strength of dependence in different directions, in a similar way as

the spatially varying matrix H. This leads to a slightly different SPDE where

a separate function, that does not affect correlation structure, can be used to

control marginal standard deviations. However, the separation is not perfect

since the varying metric tensor gives a curved space and thus affects the marginal

variances of the solution of the above SPDE, though the effect of the metric tensor

on marginal standard deviations appears small.

Another issue which has not been addressed is how to define relevant bound-

ary conditions. For rectangular domains, periodic boundary conditions are simple

to implement, but a naive use of such conditions is typically inappropriate in prac-

tical applications due to the resulting spurious dependence between physically
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distant locations. This problem can be partly rectified by embedding the region of

interest into a larger covering domain. It is also possible to apply Neumann-type

boundary conditions similar to the ones used by Lindgren, Rue, and Lindström

(2011). These are easier to adapt to more general domains, but they still require

a domain extension in order to remove the influence of the boundary condition on

the likelihood. A more theoretically appealing, and computationally potentially

less expensive, solution is to directly define the behaviour of the field along the

boundary so that the models would contain stationary fields as a neutral case.

Work is underway to design stochastic boundary conditions to accomplish this,

and some of the solutions show potential for extension to non-stationary models.

6. Discussion

The paper explores different aspects of a new class of non-stationary GRFs

based on local anisotropy. The benefit of the formulation presented is that it

allows for flexible models with few requirements on the parameters. Since the

GRF is based on an SPDE, there is no need to worry about how to change the

discretized model in a consistent manner when the grid is refined. This is one of

the more attractive features of the SPDE-based modelling.

The focus of the examples has been the matrix H introduced in the Laplace-

operator. The examples show that a variety of different effects can be achieved

by using different types of spatially varying matrices. As shown in Section 3,

anisotropic fields have anisotropic Matérn-like covariance functions, through

stretching and rotating the domain, and can be controlled by four parameters.

It is possible to control the marginal variances, the principal directions, and

the range in each of the principal directions. A spatially varying H gives non-

stationary random fields. And by using a vector field to specify the strength and

direction of extra spatial dependence in each location, there is a clear connection

between the vector field and the resulting covariance structure. The covariance

structure can be partially visualized from the vector field.

There are many avenues that are not explored here. The chief motivation

is to explore a class of models for what can be achieved, and for the associated

challenges of inference with the models. We show that a vector field constitutes a

useful way to control local anisotropy in the SPDE-model of Lindgren, Rue, and

Lindström (2011). What remains for a fully flexible spatial model is to allow κ

and γ to be spatially varying functions, this is a simpler task than the anisotropy

component since they do not require vector fields. For this more complex model

there are four spatially varying functions to estimate and an expansion of each of

these functions into a basis leads to many parameters. It remains to investigate

appropriate choices of priors for use in applications. This question is connected

with the discussion in Section 5 on other constructions of the model that separate
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the functions allowed to affect marginal variances and the functions allowed to

affect correlation structure.
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