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Abstract: Call-back of nonrespondents is common in surveys involving telephone

or mail interviews. In general, these call-backs gather information on unobserved

responses, so incorporating them can improve the estimation accuracy and effi-

ciency. Call-back studies mainly focus on Alho (1990)’s selection model or the

pattern mixture model formulation. In this paper, we generalize the Heckman

selection model to nonignorable nonresponses using call-back information. The un-

known parameters are then estimated by the maximum likelihood method. The

proposed formulation is simpler than Alho’s selection model or the pattern mix-

ture model formulation. It can reduce the bias caused by the nonignorably missing

mechanism and improve the estimation efficiency by incorporating the call-back

information. Further, it provides a marginal interpretation of a covariate effect.

Moreover, the regression coefficient of interest is robust to the misspecification of

the distribution. Simulation studies are conducted to evaluate the performance of

the proposed method. For illustration, we apply the approach to National Health

Interview Survey data.
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1. Introduction

In survey studies involving phone or mail interviews, the first contact may

be unsuccessful, leading to incomplete data. If respondents and nonrespondents

tend to give different answers to the same questions, the missingness mechanism

is called missing not at random (MNAR) or nonignorable (Little and Rubin

(2002)). It is well known that with MNAR or nonignorably missing data, a

statistical analysis based solely on the respondents may lead to invalid inference.

One popular method for handling nonignorable nonresponse is a selection model,

for example the Heckman selection model (Heckman (1976, 1979)). For more
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discussion of the analysis of nonignorably missing data see Little and Rubin

(2002).

To improve the estimation precision and testing power, additional calls are

typically made if the first contact fails (e.g., Wood, White and Hotopf (2006);

Jackson et al. (2012)). In surveys, information gained from additional calls is

paradata, which is defined to be “data about the process by which the survey

data were collected” (Groves and Heeringa (2006)). Survey paradata includes the

times that interviews were conducted, the length of the interviews, the number

of contacts made with each interviewee or the number of attempts to contact the

interviewee, the level of reluctance of the interviewee, and the mode of communi-

cation (such as phone, internet, email, or in person) (Taylor (2008)). In general,

additional calls gather information on the unobserved responses. Appropriately

using this information can reduce the estimation bias and improve the estimation

efficiency. Therefore, call-backs have been used in many surveys, for example in

the Asthma Call-back Survey, sponsored by the National Asthma Control Pro-

gram of the Centers for Disease Control and Prevention. Call-backs were also

used in the National Survey of Family Growth (Grady (1981)), the National

Comorbidity Survey (Kessler and Walters (2002)), the American Community

Survey (Alexander, Dahl and Weidmann (1997)), and the National Health In-

terview Survey (NHIS). Motivated by the NHIS example in Section 2, we are

interested in incorporating the call-back information to improve the estimation

efficiency in regression analysis.

There are two approaches to using call-back information in regression anal-

ysis. In the context of selection models, Alho (1990) estimated an informative

missing mechanism by modeling the effect of the probability of response at each

attempt on the true outcome and related covariates through a logistic regression

model. Wood, White and Hotopf (2006) and Jackson, White and Leese (2010);

Jackson et al. (2012) further developed this model. In these selection models, the

multiple call-backs provide data on the “continuum of resistance” (Lin and Scha-

effer (1995); Daniels et al. (2015)). Another commonly used model for missing

data is the pattern mixture model (Little (1993, 1995)); it allows for sensitivity

analysis (Daniels and Hogan (2000, 2008)). Daniels et al. (2015) proposed a pat-

tern mixture model for the analysis of repeated-attempt designs; it allows the

type of sensitivity parameter defined by Daniels and Hogan (2000, 2008).

In parallel to the use of call-back information for regression analysis, there

have been developments in its use for other purposes. For example, Potthoff,

Manton and Woodbury (1993) proposed a weighting method based on the num-
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ber of call-backs to reduce nonavailability bias in surveys. Elliott, Little and

Lewitzky (2000) showed that using call-back information potentially improves

survey efficiency. Gendall and Davis (1993) used call-back data for market re-

search. Starting from Alho (1990)’s model, Qin and Follmann (2014) proposed

a semiparametric maximum likelihood method to estimate the mean of the re-

sponses using failed contact attempts to adjust for nonignorable nonresponses;

this approach is more efficient than Alho’s method. Kim and Im (2014) pro-

posed a propensity score adjustment when there are several follow-ups and used

the generalized method of moments to estimate the population total. Other pi-

oneering research can be found in Proctor (1977) and Drew and Fuller (1980,

1981).

The Heckman selection model (Heckman (1976, 1979)) has been widely used

to reduce bias from nonignorably missing data because it provides a simple for-

mulation of the response and missing-data models. In this model, the missing

indicator is assumed to be a manifestation of a latent variable that may be asso-

ciated with some covariates. The nonignorably missing mechanism is found from

the correlation between the response and this latent variable, which is simpler

than Alho (1990)’s selection model and the pattern mixture model. Furthermore,

the Heckman model provides an estimation of the marginal effect of the covari-

ates on the response, so it is easier to interpret than the pattern mixture model.

The estimation of the former model is based on a two-step estimation procedure

or the maximum likelihood method.

It is challenging to incorporate information about the multiple attempts

made to obtain data to improve the estimation accuracy and efficiency of the

Heckman model. Few researchers have explored this problem. In this paper, we

propose a model formulation that adapts the Heckman selection model (Heck-

man (1979)) to incorporate this information. The basic idea is that, in addition

to the response and missing-data models, we build a call-back model and assume

that the call-back success indicator is a manifestation of a latent variable. We

assume a joint distribution of the response and the latent variables from the

missing-data and call-back models, and in this way the nonignorably missing

mechanism is incorporated. Tunali (1986) proposed a double selection model

that is similar to our call-back model, but our proposed model differs in that if

an individual responses, we do not observe the call-back information at all. We

develop a likelihood-based method for the estimation, and our simulation studies

show that it is more efficient than a method based solely on the response and

missing-data models. The proposed method is built under a multivariate nor-
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mality assumption on the joint distribution of the response and latent variables,

but we have proved that the estimator of the regression coefficient of interest

is robust to the misspecification of the distribution. Our method is more flex-

ible than the method of Alho (1990). In Alho’s logistic regression model, the

covariate vector and its slope are assumed to be common for all call-backs, but

the intercepts are different. This assumption can be too strong because, in some

situations, different covariates may affect the probability of different call-backs

(see the NHIS example in Section 6), or the effects may be different at different

call-backs. Our method weakens these assumptions: it assumes the covariate

vector and its slope are different for different call-backs in the call-back models.

Furthermore, our method yields a marginal interpretation of the covariate effect.

Another advantage is that it can be implemented easily.

The rest of this paper is organized as follows. In Section 2, we introduce

the NHIS example. In Section 3, we introduce the Heckman selection model

to model the nonignorable nonresponse and the maximum likelihood estimate

of the unknown parameters. In Section 4, we discuss the call-back model for a

single call-back, derive the maximum likelihood estimate of the unknown param-

eters, and study the robustness of the estimate. In Section 5, we evaluate the

performance of our method via simulation studies. In Section 6, we apply our

method to the NHIS data, and in Section 7 we provide some concluding remarks.

In the Supplementary Material, we provide the regularity conditions, detailed

derivations, and the extension of call-back model to multiple call-backs.

2. National Health Interview Survey

Our work is motivated by the NHIS, a cross-sectional household interview

survey initiated in 1957. Its main goals are to monitor the health of the US

population, and to track health status, health-care access, and progress toward

national health objectives. The sampling and interviewing are continuous, and

the data are collected through personal household interviews. The interviewees

may refuse to answer the survey or may be unavailable, leading to a low re-

sponse rate. Since 2006, repeated contacts have been used to obtain extensive

information on the nonrespondents (Taylor (2008)). For more information, see

http://www.cdc.gov/nchs/nhis.htm.

The NHIS data are widely used by the public health research community for

epidemiologic and policy analysis. The data are used to characterize those with

various health problems, determine barriers to health-care access, and evaluate

http://www.cdc.gov/nchs/nhis.htm
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Federal health programs (http://www.cdc.gov/nchs/nhis/about_nhis.htm).

One question of interest is the determination of barriers or predictors that are

associated with medical costs. The potential predictors include: family income

(divided by $10,000) (FIN), number of family members with limitations (FMAL),

family health insurance (FHI) cost (scaled 0–9), and poverty ratio (RAT CAT2).

We use a sample of 2,000 families in the 2011 survey for illustration. Of the

2,000 families, 503 (25.2%) responded the first time, and 756 (37.8%) responded

in the first call-back. The high nonrespondent rates may be associated with

medical cost; those with higher medical costs may be less likely to provide data,

leading to the nonignorably missing mechanism. We propose a generalization of

the Heckman selection model to this nonignorable nonresponse problem.

3. Heckman Selection Model for Nonignorable Nonresponse

Consider a sample involving n individuals, (Yi,X
τ
1i)

τ , i = 1, . . . , n, where Yi
is an outcome of interest and X1i is an associated (p−1)×1 vector of covariates.

Consider the linear regression model

Yi = β0 + Xτ
1iβ1 + σε1i, (3.1)

where β = (β0,β
τ
1)τ is a p × 1 vector of unknown parameters, σ is an unknown

parameter, and ε1i is a random error term. It is typically assumed that ε1i ∼
N(0, 1).

In practice, the outcome Yi may be missing nonrandomly, and we let Ri be

the missing indicator of Yi, 1 if Yi is observed and 0 if Yi is missing. The Heckman

selection model (Heckman (1979)) assumes that Ri is a manifestation of a latent

variable

Zi = Xτ
2iγ + ε2i, (3.2)

where X2i is a q×1 vector with the first element 1 and the remaining q−1 elements

covariates associated with Zi, γ is a q × 1 vector of unknown parameters, and

ε2i ∼ N(0, 1). Specifically, we assume that Ri = I(Zi > 0), where I(A) is an

indicator function, 1 if A is true and 0 otherwise. Furthermore, in the Heckman

model, it is typically assumed that Corr(ε1i, ε2i) = ρ12 and (ε1i, ε2i)
τ follows a

bivariate normal distribution.

Note that

P (Ri = 1|Yi = yi,X1i,X2i) = P (Zi > 0|Yi = yi,X1i,X2i)

= P (ε2i > −Xτ
2iγ|Yi = yi,X1i,X2i)

http://www.cdc.gov/nchs/nhis/about_nhis.htm
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= Φ

(
Xτ

2iγ + ρ12(yi − β0 −Xτ
1iβ1)/σ√

1− ρ212

)
,

where Φ(x) is the cumulative distribution function of the standard normal ran-

dom variable. This means that the Heckman model leads to a nonignorably

missing mechanism when ρ12 6= 0, since the missing probability depends on yi.

Heckman (1979) introduced a two-step procedure to estimate the coefficients

in the response and missing-data models (3.1) and (3.2). Alternatively, one can

estimate the coefficients using a likelihood-based method. The likelihood function

of the unknown parameters is

LM (β,γ, σ, ρ12)=

n∏
i=1

[
{P (Ri=1, Yi=yi|X1i,X2i)}Ri{P (Ri=0|X1i,X2i)}1−Ri

]
,

where

P (Ri = 1, Yi = yi|X1i,X2i)

= P (Ri = 1|Yi = yi,X1i,X2i)P (Yi = yi|X1i,X2i)

= Φ

(
Xτ

2iγ + ρ12(yi − β0 −Xτ
1iβ1)/σ√

1− ρ212

)
× σ−1φ

(
yi − β0 −Xτ

1iβ1

σ

)
, (3.3)

P (Ri = 0|X1i,X2i) = P (ε2i < −Xτ
2iγ|X2i) = Φ(−Xτ

2iγ).

Here φ(x) is the probability density function of the standard normal random

variable. Consequently, the log-likelihood of the unknown parameters is

`M (β,γ, σ, ρ12)

=

n∑
i=1

[
Ri log

{
Φ

(
Xτ

2iγ + ρ12(yi − β0 −Xτ
1iβ1)/σ√

1− ρ212

)}
−Ri log(σ)

+Ri log

{
φ

(
yi − β0 −Xτ

1iβ1

σ

)}
+ (1−Ri) log{Φ(−Xτ

2iγ)}
]
. (3.4)

Maximizing (3.4) with respect to β, γ, σ, and ρ12, we obtain the maximum

likelihood estimators of the unknown parameters:

(β̃, γ̃, σ̃, ρ̃12) = arg max
β,γ,σ,ρ12

`M (β,γ, σ, ρ12).

4. Incorporating Call-Back Information by Generalizing the Heckman

Selection Model

In this section, we discuss how to incorporate call-back information by gen-
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eralizing the Heckman selection model. We further study the consistency of the

estimator of β1 in (3.1) under model misspecification. For convenience of pre-

sentation, we assume that there is a single call-back. For multiple call-backs, see

the Supplementary Material.

4.1. Call-back model and identifiability

Let Di = 1 if the ith subject is called back, and Di = 0 otherwise. In the

spirit of the Heckman model, we assume that the call-back indicator Di is a

manifestation of a latent variable model

Ui = Xτ
3iξ + ε3i, (4.1)

and Di = I(Ui > 0), where X3i is an r × 1 vector with the first element 1 and

the remaining r− 1 elements covariates associated with Ui. We assume that the

error term ε3i ∼ N(0, 1), Corr(ε1i, ε3i) = ρ13, and Corr(ε2i, ε3i) = ρ23, and that

the joint distribution of (ε1i, ε2i, ε3i)
τ is trivariate normal. It is easy to verify that

the probability subject i is called back conditional on nonresponse depends on

the response Yi if ρ13 6= 0, leading to the nonignorably call-back mechanism.

Let θ = (βτ ,γτ , ξτ , σ, ρ12, ρ13, ρ23)
τ denote the p+q+r+4 unknown param-

eters in models (3.1), (3.2), and (4.1). Throughout the paper, we assume that

the components of (1,Xτ
1)τ , the components of X2, and the components of X3

are respectively linearly independent. Here X1, X2, and X3 are the covariates

for the response, missing-data, and call-back models, respectively.

Proposition 1. The parameters (βτ ,γτ , σ, ρ12)
τ in the response and missing-

data models (3.1) and (3.2) are always identifiable. If further X2 contains a

continuous covariate which does not appear in X3, the parameters (ξτ , ρ13, ρ23)
τ

are identifiable.

For presentational continuity, we have relegated the proof to the Supple-

mentary Material. Here the (βτ ,γτ , σ, ρ12)
τ are generally identifiable, but the

identifiability of (ξτ , ρ13, ρ23)
τ is only established under the condition that X2

contains a continuous covariate that does not appear in X3. The identifiability

of (ξτ , ρ13, ρ23)
τ under weaker conditions becomes much more complicated. We

leave it as future research.

4.2. Maximum likelihood method

We now develop the full likelihood function of θ based on the observed data.

If Ri = 1, we observe (Ri = 1, Yi = yi,X1i,X2i,X3i); if Ri = 0 and Di = 1, we

observe (Ri = 0, Di = 1, Yi = yi,X1i,X2i,X3i); and if Ri = 0 and Di = 0, we
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observe (Ri = 0, Di = 0,X1i,X2i,X3i). Therefore, the likelihood function of θ,

conditional on all the covariates, is

L(θ) =

n∏
i=1

[{
P (Yi = yi, Ri = 1|X1i,X2i,X3i)

}Ri
×
{
P (Yi = yi, Ri = 0, Di = 1|X1i,X2i,X3i)

}(1−Ri)Di
×
{
P (Ri = 0, Di = 0|X1i,X2i,X3i)

}(1−Ri)(1−Di)]. (4.2)

By (3.3), the first term in the likelihood (4.2) is

P (Ri = 1, Yi = yi|X1i,X2i,X3i)

= P (Ri = 1, Yi = yi|X1i,X2i)

= Φ

(
Xτ

2iγ + ρ12(yi − β0 −Xτ
1iβ1)/σ√

1− ρ212

)
× σ−1φ

(
yi − β0 −Xτ

1iβ1

σ

)
. (4.3)

The second term in the likelihood (4.2) is

P (Yi = yi, Ri = 0, Di = 1|X1i,X2i,X3i)

= P (Ri = 0, Di = 1|Yi = yi,X1i,X2i,X3i)P (Yi = yi|X1i,X2i,X3i)

= P (ε2i < −Xτ
2iγ, ε3i > −Xτ

3iξ|Yi = yi,X1i,X2i,X3i)P (Yi = yi|X1i)

=

{∫ −Xτ

2iγ

−∞

∫ ∞
−Xτ

3iξ
φ23|1

(
t, u;

(yi − β0 −Xτ
1iβ1)

σ

)
dtdu

}

×
{
σ−1φ

(
yi − β0 −Xτ

1iβ1

σ

)}
, (4.4)

where φ23|1(t, u; s) is the conditional probability density function of (ε2i, ε3i)
τ

given ε1i = s. It can be easily verified that (ε2i, ε3i)
τ |ε1i = s ∼ N(µ23|1,Σ23|1)

with

µ23|1 =

(
ρ12s

ρ13s

)
and Σ23|1 =

(
1− ρ212 ρ23 − ρ12ρ13

ρ23 − ρ12ρ13 1− ρ213

)
. (4.5)

Hence, φ23|1(t, u; s) is the probability density function of a bivariate normal ran-

dom vector from N(µ23|1,Σ23|1).

The third term in the likelihood (4.2) is

P (Ri = 0, Di = 0|X1i,X2i,X3i)

= P (Ri = 0, Di = 0|X2i,X3i) (4.6)

= P (ε2i < −Xτ
2iγ, ε3i < −Xτ

3iξ|X2i,X3i)
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=

∫ −Xτ

2iγ

−∞

∫ −Xτ

3iξ

−∞
φ23(t, u)dtdu,

where φ23(t, u) is the joint probability density function of (ε2i, ε3i)
τ , a bivariate

normal random vector with mean vector (0, 0)τ and covariance matrix

Σ23 =

(
1 ρ23
ρ23 1

)
. (4.7)

Combining (4.2)–(4.6) and taking logarithms of the likelihood function, we

get the log-likelihood function of θ:

`(θ) =

n∑
i=1

`i(θ) =

n∑
i=1

{`1i(θ) + `2i(θ) + `3i(θ)}, (4.8)

where `i(θ) is the log-likelihood contribution from individual i, and

`1i(θ) = Ri log{P (Yi = yi, Ri = 1|X1i,X2i,X3i)}

= Ri log

{
Φ

(
Xτ

2iγ + ρ12ε1i√
1− ρ212

)
σ−1φ(ε1i)

}
,

`2i(θ) = (1−Ri)Di log{P (Yi = yi, Ri = 0, Di = 1|X1i,X2i,X3i)}

= (1−Ri)Di log

{∫ −Xτ

2iγ

−∞

∫ ∞
−Xτ

3iξ
σ−1φ(ε1i)φ23|1(t, u; ε1i)dtdu

}
,

`3i(θ) = (1−Ri)(1−Di) log{P (Ri = 0, Di = 0|X1i,X2i,X3i)}

= (1−Ri)(1−Di) log

{∫ −Xτ

2iγ

−∞

∫ −Xτ

3iξ

−∞
φ23(t, u)dtdu

}
.

In the above presentation, we have used ε1i to replace (yi − β0 −Xτ
1iβ1)/σ for

notational convenience. Importantly, ε1i depends on β0, β1, and σ.

With the log-likelihood function `(θ) given in (4.8), the maximum likelihood

estimator θ̂ =
(
β̂0, β̂

τ

1 , γ̂
τ , ξ̂

τ
, σ̂, ρ̂12, ρ̂13, ρ̂23

)τ
of θ is

θ̂ = arg max
θ

`(θ). (4.9)

Let

Si(θ) =
∂`i(θ)

∂θ
=
∂`1i(θ)

∂θ
+
∂`2i(θ)

∂θ
+
∂`3i(θ)

∂θ

be the score vector contributed by individual i. For continuity, we have relegated

the derivation of Si(θ) to the Supplementary Material. We further define the

Fisher information

J = E

{
−∂

2`i(θ0)

∂θ∂θτ

}
= V ar {Si(θ0)} ,
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where θ0 is the true value of θ. From classical maximum likelihood theory (Ser-

fling (1980)), we have that under the conditions in Proposition 1 and Conditions

A1–A5 in the Supplementary Material, the maximum likelihood estimator θ̂ sat-

isfies

n1/2(θ̂ − θ0)→ N
(
0,J−1

)
in distribution as n→∞. In practice, J can be consistently estimated by

Ĵ = −n−1
n∑
i=1

∂2`i(θ̂)

∂θ∂θτ
or Ĵ = n−1

n∑
i=1

Si(θ̂)Sτi (θ̂).

4.3. Consistency under misspecification of error distributions

In this subsection, we investigate the effect on the estimation of the regres-

sion coefficients β1 when the joint distribution of (ε1i, ε2i, ε3i)
τ is misspecified,

but the linear regression models for (Yi, Zi, Ui) are correct. We show that the

maximum likelihood estimator β̂1 of β1 is consistent under the condition that X1i

is independent of X2i and X3i, even when the joint distribution is misspecified.

Suppose the true model for (Yi, Zi, Ui) is

Yi = βT0 + Xτ
1iβT1 + τw1i, Zi = Xτ

2iγT + w2i, Ui = Xτ
3iξT + w3i, (4.10)

where the joint cumulative distribution function of (w1i, w2i, w3i)
τ is H(s, t, u).

Instead of using the true model, we consider a working model for (Yi, Zi, Ui)

as specified in (3.1), (3.2), and (4.1). From the results of White (1982), under

Conditions B1–B4 in the Supplementary Material, the maximum likelihood es-

timator θ̂, obtained from the working model and defined in (4.9), converges to

a unique limit θ∗ = (β∗0 ,β
∗τ
1 ,γ

∗τ , ξ∗τ , σ∗, ρ∗12, ρ
∗
13, ρ

∗
23)

τ . Here θ∗ is the unique

solution to the equations

ET

{
∂`i(θ)

∂θ

}
= 0,

where ET indicates that the expectation is with respect to the true distribution

(4.10) of (Yi, Zi, Ui) and (Xi1,Xi2,Xi3). In the following, we argue that β∗1 = βT1
when X1i is independent of X2i and X3i. We follow the procedures in He and

Lawless (2005). The key step in the argument is that when β1 = βT1,

ET

{
∂`i(θ)

∂β1

}
= 0, (4.11)

no matter what the values of the other parameters. Without loss of generality,

we assume that X1i has mean 0 and that all the expectations below with respect

to (X1i,X2i,X3i) exist.
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Note that

ET

{
∂`i(θ)

∂β1

}
= ET

{
∂`1i(θ)

∂β1

+
∂`2i(θ)

∂β1

}
= − 1

σ
ET

[
X1i

{
∂`1i(θ)

∂ε1i
+
∂`2i(θ)

∂ε1i

}]
.

From the true and working models for Yi, we have

Yi = βT0 + Xτ
1iβT1 + τw1i = β0 + Xτ

1iβ1 + σε1i,

which implies that

ε1i =
1

σ
{βT0 − β0 + Xτ

1i(βT1 − β1) + τw1i}. (4.12)

When β1 = βT1, (4.12) becomes ε1i = (βT0 − β0 + τw1i)/σ, which does not

depend on X1i. By the law of total expectation,

ET

{
∂`i(θ)

∂β1

}
(4.13)

= − 1

σ
E(X1i,X2i,X3i)

[
X1iE(Yi,Ri,Di)|(X1i,X2i,X3i )

{
∂`1i(θ)

∂ε1i
+
∂`2i(θ)

∂ε1i

}]
.

Next we argue that when β1 = βT1, E(Yi,Ri,Di)|(X1i,X2i,X3i ) (∂`1i(θ)/∂ε1i+

∂`2i(θ)/∂ε1i) depends on X2i and X3i, but not on X1i. This claim, together

with E(X1i) = 0, (4.13), and the condition that X1i is independent of X2i and

X3i, implies (4.11).

Let

κ(X2i, ε1i;θ) =
∂ log

{
Φ
(
Xτ

2iγ + ρ12ε1i/
√

1− ρ212
)
σ−1φ(ε1i)

}
∂ε1i

,

which does not depend on X1i. Then

E
(Yi,Ri,Di)

∣∣∣(X1i,X2i,X3i

)(∂`1i(θ)

∂ε1i

)
= E

(Yi,Ri)
∣∣∣(X1i,X2i,X3i

){Riκ(X2i, ε1i;θ)} .

Let H2|1(t|s) be the conditional cumulative distribution function of w2i given

w1i = s and H̄2|1(t|s) = 1−H2|1(t|s). By the law of total expectation, it can be

verified that

E(Yi,Ri)|(X1i,X2i,X3i ){Riκ(X2i, ε1i;θ)}

= Eε1i|(X1i,X2i,X3i )
{
H̄2|1(−Xτ

2iγ|w1i)κ(X2i, ε1i;θ)
}
,

where w1i = {β − βT0 + σε1i}/τ . Since H̄2|1(−Xτ
2iγ|w1i)κ(X2i, ε1i;θ) depends

only on X2i and ε1i, and X1i is independent of X2i, X3i, and ε1i, we have

E
(Yi,Ri)

∣∣∣(X1i,X2i,X3i

){Riκ(X2i, ε1i;θ)}=Eε1i|X2i

{
H̄2|1(−Xτ

2iγ|w1i)κ(X2i, ε1i;θ)
}
,

which is a function of X2i only. Hence, E
(Yi,Ri,Di)

∣∣∣(X1i,X2i,X3i

){∂`1i(θ)/∂ε1i}
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is a function of X2i only. Similarly, E
(Yi,Ri,Di)

∣∣∣(X1i,X2i,X3i

){∂`2i(θ)/∂ε1i} is a

function of X2i and X3i only. This completes the proof of (4.11).

From (4.11), β1 = βT1 is a solution to ET {∂`i(θ)/∂β1} = 0, no mat-

ter the values of the other parameters. Thus, β1 = βT1 is in the solution of

ET {∂`i(θ)/∂θ} = 0. By the uniqueness of the solution of θ∗ (White (1982)), we

conclude that β∗1 = βT1, which establishes the consistency of β̂1.

This result suggests that the estimator of the regression coefficient β1 is

robust to the misspecification of the joint distribution of the outcome and latent

variables if X1i is independent of X2i and X3i. If the dependence between X1i and

(X2i,X3i) is not too strong, our method does not provide substantially biased

results, as we will see in Section 5. For more discussion, see He and Lawless

(2005).

We now derive the asymptotic distribution of β̂. From the results of White

(1982), under Conditions B1–B6 in the Supplementary Material, we have

n1/2(θ̂ − θ∗)→ N
(
0,Γ−11 Γ2Γ

−1
1 ),

where

Γ1 = ET

{
−∂

2`i(θ
∗)

∂θ∂θτ

}
and Γ2 = V arT {Si(θ∗)} .

In practice, we can estimate the covariance matrix Γ−11 Γ2Γ
−1
1 by Γ̂−11 Γ̂2Γ̂

−1
1 , where

Γ̂1 = −n−1
n∑
i=1

∂2`i(θ̂)

∂θ∂θτ
and Γ̂2 = n−1

n∑
i=1

Si(θ̂)Sτi (θ̂).

The estimated covariance matrix of β̂ is the upper p×p sub-matrix of Γ̂−11 Γ̂2Γ̂
−1
1 .

Alternatively, the standard errors of β̂ can be calculated by using the nonpara-

metric bootstrapping method (Efron (1979)).

5. Simulation Studies

We performed simulation studies to compare five methods for estimating β

in the response model (3.1): our estimator β̂ which uses the information from

the response, missing-data, and call-back models (3.1), (3.2), and (4.1), and is

referred to as the “proposed” method; the estimate β̃, which uses the informa-

tion from the response and missing-data models (3.1) and (3.2), referred to as the

“Heckman-1” method, that uses only the information for R and not the infor-

mation for D; the estimate β̃, which uses the information from the response and

missing-data models (3.1) and (3.2), the “Heckman-2” method that combines the

information for R and D and creates a new missing indicator K = 1 if R = 1 or
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D = 1 and 0 otherwise, and we apply K in (3.2) instead of R; the ordinary least

square estimate of β based on model (3.1) and the complete-case data, referred

to as the “cc-OLS-1” method; the ordinary least square estimate of β based on

model (3.1) and the complete-case data, referred to as the “cc-OLS-2” method.

In the simulations, we posited the covariates

(X1i, X2i, X3i)
τ ∼ N


0

0

0

 ,

 1 ρx12 ρx13
ρx12 1 0.4

ρx13 0.4 1


 .

We considered five scenarios with correctly and incorrectly specified models

to evaluate the robustness of our method.

Scenario I: correctly specified model. For i = 1, . . . , n, (Yi, Zi, Ui) was

generated from the models

Yi = β0 + β1X1i + ε1i, Zi = γ0 + γ1X2i + ε2i, Ui = ξ0 + ξ1X3i + ε3i. (5.1)

Further, we took the (ε1i, ε2i, ε3i)
τ ∼ N(0,Σ), where

Σ =

 1 ρ12 ρ13
ρ12 1 ρ23
ρ13 ρ23 1

 . (5.2)

In this scenario, ρx12 = 0.5, and ρx13 = 0.3.

To study the robustness of our method, we considered four scenarios in

which the distribution of the error terms is misspecified:

Scenario II: misspecified distribution for (ε1i, ε2i, ε3i)
τ with X1i being in-

dependent of (X2i,X3i). For i = 1, . . . , n, (Yi, Zi, Ui) was generated from

(5.1) with (ε1i, ε2i, ε3i)
τ following a multivariate t-distribution with mean 0,

the covariance matrix Σ in (5.2), and 3 degrees of freedom. Further, we

posited that X1i is independent of (X2i,X3i).

Scenario III: misspecified distribution with X1i being dependent on (X2i,

X3i), with ρx12 = 0.5 and ρx13 = 0.3. For i = 1, . . . , n, (Yi, Zi, Ui) was gen-

erated from (5.1) with (ε1i, ε2i, ε3i)
τ following a multivariate t-distribution

with mean 0, covariance matrix Σ in (5.2), and 3 degrees of freedom.

Scenario IV: misspecified distribution with X1i dependent on (X2i,X3i),

assuming X1i = X2i (X1i overlaps with (X2i,X3i)). For i = 1, . . . , n,

(Yi, Zi, Ui) was generated from

Yi = β0 + β1X1i + ε1i, Zi = γ0 + γ1X1i + ε2i, Ui = ξ0 + ξ1X3i + ε3i,
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with (ε1i, ε2i, ε3i)
τ following a multivariate t-distribution with mean 0, co-

variance matrix Σ in (5.2), and 3 degrees of freedom. Here we took ρx12 =

0.5 and ρx13 = 0.3.

Scenario V: misspecified distribution with X1i dependent on (X2i,X3i),

assuming X1i = X2i = X3i (X1i overlaps with (X2i,X3i) completely). For

i = 1, . . . , n, (Yi, Zi, Ui) was generated from

Yi = β0 + β1X1i + ε1i, Zi = γ0 + γ1X1i + ε2i, Ui = ξ0 + ξ1X1i + ε3i,

with (ε1i, ε2i, ε3i)
τ following a multivariate t-distribution with mean 0, the

covariance matrix Σ in (5.2), and 3 degrees of freedom.

For each scenario, the missing indicator was determined by Ri = I(Zi > 0),

and the call-back indicator is determined by Di = I(Ui > 0), and the true values

were β0 = β1 = 1, γ1 = 1, ξ1 = 1. We set γ0 = ξ0 and adjusted the values for

different missing proportions. For example, in Scenario I, when γ0 = ξ0 = 0,

the response proportion (probability Ri = 1) is about 50%, and the call-back

success rate (probability Di = 1) is about 15%; when γ0 = ξ0 = 1, the response

proportion is about 80%, and the call-back success rate is about 12%. We set

ρ12 = ρ13 = ρ23 = ρ in (5.2) and adjusted the value of ρ for the degree of

nonignorability.

For each scenario, we considered sample sizes 100 and 200, values for ξ0 of 0

and 1, and values for ρ of 0.8 and 0.5. Hence, we had 8 combinations of sample

size, values of ξ0, and value of ρ in each scenario. For each combination, we

calculated the bias, standard deviation (SD), and mean square error (MSE) for

each of five estimates of (β0, β1) based on 2,000 repetitions.

The results for Scenario I are summarized in Table 1. In Scenario I the model

for (ε1i, ε2i, ε3i)
τ is correctly specified for all five methods. The proposed and two

Heckman methods yield consistent estimators, but two cc-OLS methods yield

biased estimators. Our estimate is more efficient than both Heckman estimates,

and the Heckman-2 estimate is more efficient than the Heckman-1 estimate. As

the missing proportion increases, the efficiency gain of our method increases.

The results for Scenario II are summarized in Table 2. In Scenario II the

model for (ε1i, ε2i, ε3i)
τ is misspecified for all five methods, and X1i is independent

of (X2i,X3i): X1i = (X1i), X2i = (1, X2i)
τ , and X3i = (1, X3i)

τ . In this scenario,

all methods yield small biases for β1, but our method yields the smallest MSE in

all combinations.

The results for Scenario III are summarized in Table 3. In it the model

for (ε1i, ε2i, ε3i)
τ is misspecified for all five methods, and X1i is dependent on
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Table 1. Bias, standard deviation, and mean square error for five estimates of (β0, β1) in
Scenario I, in which the model for (ε1i, ε2i, ε3i)

τ is correctly specified for all five methods.

β0 β1
n γ0 ρ Methods Bias SD MSE Bias SD MSE

100 0 0.8 Proposed 0.009 0.144 0.021 0.001 0.110 0.012
Heckman-1 −0.006 0.231 0.053 −0.004 0.136 0.018
cc-OLS-1 0.490 0.128 0.257 −0.141 0.132 0.037
cc-OLS-2 0.367 0.110 0.147 −0.109 0.115 0.025
Heckman-2 −0.011 0.207 0.043 −0.001 0.127 0.016

100 0 0.5 Proposed 0.005 0.168 0.028 0.006 0.126 0.016
Heckman-1 0.009 0.286 0.082 −0.012 0.164 0.027
cc-OLS-1 0.310 0.141 0.116 −0.095 0.146 0.030
cc-OLS-2 0.224 0.119 0.064 −0.073 0.121 0.020
Heckman-2 0.011 0.222 0.049 −0.010 0.135 0.018

100 1 0.8 Proposed −0.008 0.110 0.012 0.008 0.103 0.011
Heckman-1 0.003 0.153 0.023 −0.002 0.130 0.017
cc-OLS-1 0.246 0.103 0.071 −0.096 0.115 0.023
cc-OLS-2 0.151 0.099 0.033 −0.063 0.108 0.016
Heckman-2 0.001 0.146 0.021 −0.004 0.120 0.014

100 1 0.5 Proposed 0.004 0.119 0.014 −0.001 0.109 0.012
Heckman-1 −0.001 0.174 0.030 0.000 0.133 0.018
cc-OLS-1 0.149 0.110 0.034 −0.059 0.118 0.017
cc-OLS-2 0.081 0.098 0.016 −0.037 0.107 0.013
Heckman-2 −0.006 0.153 0.023 −0.001 0.124 0.015

200 0 0.8 Proposed −0.005 0.102 0.010 0.002 0.074 0.005
Heckman-1 0.010 0.148 0.022 0.000 0.094 0.009
cc-OLS-1 0.494 0.093 0.252 −0.136 0.096 0.028
cc-OLS-2 0.367 0.080 0.141 −0.103 0.082 0.017
Heckman-2 0.014 0.131 0.017 0.000 0.088 0.008

200 0 0.5 Proposed 0.007 0.118 0.014 0.003 0.089 0.008
Heckman-1 −0.002 0.187 0.035 0.001 0.109 0.012
cc-OLS-1 0.310 0.101 0.107 −0.087 0.101 0.018
cc-OLS-2 0.220 0.085 0.055 −0.065 0.086 0.012
Heckman-2 0.004 0.142 0.020 0.001 0.092 0.008

200 1 0.8 Proposed −0.002 0.083 0.007 0.000 0.068 0.005
Heckman-1 0.006 0.101 0.010 0.000 0.079 0.006
cc-OLS-1 0.243 0.075 0.064 −0.091 0.078 0.014
cc-OLS-2 0.148 0.069 0.027 −0.058 0.072 0.009
Heckman-2 0.000 0.098 0.010 0.002 0.080 0.006

200 1 0.5 Proposed −0.002 0.076 0.006 −0.003 0.074 0.006
Heckman-1 0.007 0.117 0.014 −0.004 0.089 0.008
cc-OLS-1 0.155 0.079 0.030 −0.062 0.083 0.011
cc-OLS-2 0.084 0.072 0.012 −0.038 0.075 0.007
Heckman-2 0.008 0.102 0.011 −0.003 0.082 0.007
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Table 2. Bias, standard deviation, and mean square error for five estimates of (β0, β1)
in Scenario II, in which the model for (ε1i, ε2i, ε3i)

τ is misspecified for all five methods,
and X1i is independent of (X2i,X3i).

β0 β1
n γ0 ρ Methods Bias SD MSE Bias SD MSE

100 0 0.8 Proposed −0.081 0.253 0.071 0.002 0.153 0.023
Heckman-1 −0.177 0.428 0.214 −0.010 0.202 0.041
cc-OLS-1 0.722 0.226 0.572 −0.012 0.241 0.058
cc-OLS-2 0.565 0.192 0.356 −0.007 0.202 0.041
Heckman-2 −0.087 0.343 0.125 −0.007 0.183 0.034

100 0 0.5 Proposed −0.044 0.295 0.089 −0.004 0.196 0.038
Heckman-1 −0.105 0.575 0.341 0.007 0.240 0.058
cc-OLS-1 0.457 0.226 0.260 0.009 0.245 0.060
cc-OLS-2 0.335 0.191 0.149 0.005 0.205 0.042
Heckman-2 −0.030 0.399 0.160 0.005 0.205 0.042

100 1 0.8 Proposed 0.012 0.164 0.027 0.002 0.143 0.020
Heckman-1 −0.027 0.261 0.069 −0.004 0.164 0.027
cc-OLS-1 0.422 0.164 0.205 −0.002 0.175 0.031
cc-OLS-2 0.305 0.153 0.117 −0.002 0.159 0.025
Heckman-2 0.034 0.242 0.060 −0.004 0.159 0.025

100 1 0.5 Proposed 0.008 0.185 0.034 −0.001 0.165 0.027
Heckman-1 −0.021 0.326 0.106 −0.005 0.199 0.039
cc-OLS-1 0.262 0.184 0.103 −0.007 0.174 0.030
cc-OLS-2 0.172 0.170 0.058 −0.006 0.163 0.027
Heckman-2 0.025 0.297 0.089 −0.008 0.197 0.039

200 0 0.8 Proposed −0.103 0.291 0.096 −0.004 0.118 0.014
Heckman-1 −0.203 0.320 0.144 0.002 0.135 0.018
cc-OLS-1 0.720 0.152 0.542 −0.001 0.158 0.025
cc-OLS-2 0.565 0.131 0.336 0.000 0.135 0.018
Heckman-2 −0.094 0.233 0.063 0.000 0.125 0.016

200 0 0.5 Proposed −0.076 0.261 0.074 0.007 0.139 0.019
Heckman-1 −0.130 0.405 0.181 −0.002 0.167 0.028
cc-OLS-1 0.443 0.164 0.224 −0.001 0.173 0.030
cc-OLS-2 0.327 0.140 0.127 −0.001 0.142 0.020
Heckman-2 −0.040 0.289 0.085 0.000 0.140 0.020

200 1 0.8 Proposed 0.002 0.126 0.016 0.005 0.102 0.011
Heckman-1 −0.055 0.174 0.033 −0.001 0.111 0.012
cc-OLS-1 0.421 0.126 0.193 0.001 0.122 0.015
cc-OLS-2 0.303 0.115 0.105 0.001 0.113 0.013
Heckman-2 0.012 0.165 0.027 0.000 0.111 0.012

200 1 0.5 Proposed 0.005 0.146 0.021 0.000 0.115 0.013
Heckman-1 −0.046 0.227 0.054 0.000 0.130 0.017
cc-OLS-1 0.265 0.131 0.087 −0.001 0.135 0.018
cc-OLS-2 0.174 0.122 0.045 −0.001 0.123 0.015
Heckman-2 0.024 0.171 0.030 −0.004 0.130 0.017



GENERALIZATION OF HECKMAN SELECTION MODEL 1777

Table 3. Bias, standard deviation, and mean square error for five estimates of (β0, β1)
in Scenario III, in which the model for (ε1i, ε2i, ε3i)

τ is misspecified for all five methods,
and X1i is dependent on (X2i,X3i).

β0 β1
n γ0 ρ Methods Bias SD MSE Bias SD MSE

100 0 0.8 Proposed −0.079 0.257 0.072 0.023 0.175 0.031
Heckman-1 −0.210 0.754 0.612 0.042 0.308 0.096
cc-OLS-1 0.755 0.233 0.625 −0.191 0.239 0.094
cc-OLS-2 0.573 0.193 0.366 −0.134 0.201 0.058
Heckman-2 −0.067 0.381 0.150 0.020 0.220 0.049

100 0 0.5 Proposed −0.052 0.349 0.125 0.004 0.215 0.046
Heckman-1 −0.093 0.578 0.343 0.031 0.274 0.076
cc-OLS-1 0.470 0.261 0.289 −0.106 0.255 0.076
cc-OLS-2 0.340 0.211 0.160 −0.070 0.210 0.049
Heckman-2 −0.018 0.409 0.167 0.029 0.244 0.060

100 1 0.8 Proposed 0.011 0.155 0.024 0.008 0.149 0.022
Heckman-1 −0.015 0.293 0.086 0.012 0.197 0.039
cc-OLS-1 0.432 0.180 0.219 −0.123 0.180 0.047
cc-OLS-2 0.303 0.164 0.119 −0.082 0.167 0.035
Heckman-2 0.038 0.276 0.078 −0.001 0.195 0.038

100 1 0.5 Proposed 0.004 0.211 0.044 0.007 0.166 0.028
Heckman-1 0.023 0.343 0.118 −0.004 0.225 0.051
cc-OLS-1 0.277 0.190 0.113 −0.082 0.189 0.042
cc-OLS-2 0.176 0.171 0.060 −0.056 0.169 0.032
Heckman-2 0.042 0.283 0.082 −0.009 0.201 0.040

200 0 0.8 Proposed −0.098 0.192 0.047 0.029 0.130 0.018
Heckman-1 −0.225 0.379 0.194 0.049 0.159 0.028
cc-OLS-1 0.761 0.171 0.609 −0.187 0.175 0.066
cc-OLS-2 0.577 0.138 0.352 −0.130 0.146 0.038
Heckman-2 −0.109 0.259 0.079 0.033 0.139 0.020

200 0 0.5 Proposed −0.087 0.263 0.077 0.033 0.149 0.023
Heckman-1 −0.140 0.495 0.264 0.022 0.191 0.037
cc-OLS-1 0.476 0.181 0.259 −0.129 0.175 0.047
cc-OLS-2 0.342 0.143 0.138 −0.096 0.152 0.032
Heckman-2 −0.037 0.337 0.115 0.008 0.168 0.028

200 1 0.8 Proposed −0.007 0.115 0.013 0.012 0.112 0.013
Heckman-1 −0.051 0.186 0.037 0.032 0.127 0.017
cc-OLS-1 0.439 0.123 0.208 −0.115 0.134 0.031
cc-OLS-2 0.310 0.114 0.109 −0.073 0.123 0.020
Heckman-2 0.019 0.181 0.033 0.015 0.126 0.016

200 1 0.5 Proposed 0.000 0.151 0.023 0.002 0.130 0.017
Heckman-1 −0.052 0.263 0.072 0.018 0.152 0.024
cc-OLS-1 0.270 0.131 0.090 −0.076 0.137 0.025
cc-OLS-2 0.172 0.119 0.044 −0.051 0.123 0.018
Heckman-2 0.032 0.178 0.033 −0.006 0.144 0.021
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(X2i,X3i): X1i = (X1i), X2i = (1, X2i)
τ , X3i = (1, X3i)

τ , Corr(X1i, X2i) = 0.5,

and Corr(X1i, X3i) = 0.3. Our method and two Heckman methods yield smaller

biases than two cc-OLS methods, and our method gives the smallest MSE for β1
in all combinations.

The results for Scenario IV are summarized in Table 4. Here the model for

(ε1i, ε2i, ε3i)
τ is misspecified for all five methods, and X1i is dependent on and

overlaps with (X2i,X3i): X1i = (X1i), X2i = (1, X1i)
τ , and X3i = (1, X3i)

τ . Our

method still yields the smallest MSE for β1 in all combinations.

The results for Scenario V are summarized in Table 5. Here the model

for (ε1i, ε2i, ε3i)
τ is misspecified for all five methods, and X1i is dependent on

and overlaps with (X2i,X3i) completely: X1i = (X1i), X2i = (1, X1i)
τ , and

X3i = (1, X1i)
τ . Our method and two Heckman methods yields smaller biases

than two cc-OLS methods, and our method still produces the smallest MSE for

β1 in all combinations.

In summary, our method can reduce the bias caused by a nonignorably miss-

ing mechanism and yield more efficient estimates than the Heckman model. Al-

though our method is built under the normal distribution, the estimate of β1 is

robust to the misspecification of the distribution, even when the condition that

X1i and (X2i,X3i) are independent does not hold.

6. Application to NHIS Data

We applied our method to the NHIS data. We conducted a two-step pre-

liminary analysis to select the important covariates in models (3.1), (3.2), and

(4.1). In the first step, we fit the Heckman models (3.1) and (3.2) with all four

covariates (FIN, FMAL, FHI, RAT CAT2) in each model using the R function

selection in the R package sampleSelection (Toomet and Henningsen (2008)). In

(3.1) and (3.2), the covariates with p-values smaller than 0.1 were kept for further

analysis. In the second step, we fit a probit model on all four covariates with

Di treated as the response variable. The covariates with p-values smaller than

0.1 were kept for further analysis in the call-back model. After the preliminary

analysis, we included FHI cost and FIN for the response model (3.1), we include

FMAL and RAT CAT2 for the missing-data model (3.2), and we included FMAL

and FHI cost for the call-back model.

Next, we fit the regression, missing-data, and call-back models (3.1), (3.2),

and (4.1) with the selected covariates using the proposed method. We considered

the Heckman-1, cc-OLS-1, Heckman-2 and cc-OLS-2 results for comparison. Ta-
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Table 4. Bias, standard deviation, and mean square error for five estimates of (β0, β1)
in Scenario IV, in which the model for (ε1i, ε2i, ε3i)

τ is misspecified for all five methods,
and X1i is dependent on and overlaps with (X2i,X3i) partially.

β0 β1
n γ0 ρ Methods Bias SD MSE Bias SD MSE

100 0 0.8 Proposed −0.102 0.284 0.091 0.078 0.234 0.061
Heckman-1 −0.001 1.389 1.929 0.048 0.772 0.598
cc-OLS-1 0.971 0.283 1.023 −0.500 0.293 0.336
cc-OLS-2 0.608 0.192 0.406 −0.236 0.207 0.099
Heckman-2 −0.044 0.557 0.312 0.041 0.307 0.096

100 0 0.5 Proposed −0.076 0.319 0.108 0.058 0.261 0.071
Heckman-1 0.006 1.724 2.973 0.040 0.954 0.912
cc-OLS-1 0.603 0.292 0.449 −0.291 0.296 0.172
cc-OLS-2 0.358 0.213 0.174 −0.134 0.241 0.076
Heckman-2 −0.004 0.581 0.338 0.032 0.353 0.125

100 1 0.8 Proposed −0.018 0.207 0.043 0.061 0.204 0.045
Heckman-1 0.015 0.575 0.331 0.036 0.392 0.155
cc-OLS-1 0.479 0.188 0.265 −0.272 0.197 0.113
cc-OLS-2 0.309 0.164 0.122 −0.129 0.174 0.047
Heckman-2 0.090 0.359 0.137 −0.018 0.249 0.062

100 1 0.5 Proposed −0.024 0.216 0.047 0.042 0.226 0.053
Heckman-1 0.043 0.704 0.498 0.000 0.486 0.236
cc-OLS-1 0.310 0.177 0.127 −0.177 0.197 0.070
cc-OLS-2 0.175 0.174 0.061 −0.074 0.218 0.053
Heckman-2 0.023 0.382 0.146 0.017 0.278 0.078

200 0 0.8 Proposed −0.130 0.200 0.057 0.089 0.172 0.037
Heckman-1 −0.181 1.021 1.076 0.130 0.553 0.322
cc-OLS-1 0.946 0.193 0.933 −0.485 0.196 0.274
cc-OLS-2 0.614 0.134 0.395 −0.222 0.138 0.068
Heckman-2 −0.083 0.340 0.122 0.077 0.207 0.049

200 0 0.5 Proposed −0.078 0.262 0.074 0.058 0.198 0.043
Heckman-1 −0.029 1.028 1.058 0.034 0.589 0.349
cc-OLS-1 0.588 0.193 0.383 −0.298 0.204 0.131
cc-OLS-2 0.357 0.143 0.148 −0.137 0.154 0.043
Heckman-2 −0.011 0.374 0.140 0.032 0.239 0.058

200 1 0.8 Proposed 0.004 0.129 0.017 0.030 0.134 0.019
Heckman-1 −0.018 0.442 0.196 0.043 0.301 0.093
cc-OLS-1 0.491 0.128 0.257 −0.294 0.142 0.107
cc-OLS-2 0.305 0.115 0.106 −0.134 0.113 0.031
Heckman-2 0.051 0.235 0.058 −0.003 0.189 0.036

200 1 0.5 Proposed 0.003 0.142 0.020 0.021 0.140 0.020
Heckman-1 0.042 0.438 0.194 −0.005 0.324 0.105
cc-OLS-1 0.302 0.129 0.108 −0.177 0.142 0.051
cc-OLS-2 0.170 0.115 0.042 −0.089 0.129 0.024
Heckman-2 0.049 0.207 0.045 −0.019 0.182 0.034
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Table 5. Bias, standard deviation, and mean square error for five estimates of (β0, β1)
in Scenario IV, in which the model for (ε1i, ε2i, ε3i)

τ is misspecified for all five methods,
and X1i is dependent on and overlaps with (X2i,X3i) completely.

β0 β1
n γ0 ρ Methods Bias SD MSE Bias SD MSE

100 0 0.8 Proposed −0.144 0.347 0.141 0.095 0.284 0.089
Heckman-1 −0.088 1.315 1.737 0.095 0.741 0.558
cc-OLS-1 0.948 0.252 0.962 −0.489 0.260 0.307
cc-OLS-2 0.817 0.251 0.731 −0.451 0.262 0.272
Heckman-2 0.032 0.981 0.964 0.026 0.605 0.367

100 0 0.5 Proposed −0.076 0.431 0.192 0.042 0.345 0.121
Heckman-1 −0.043 1.619 2.622 0.034 0.868 0.754
cc-OLS-1 0.602 0.291 0.447 −0.320 0.297 0.191
cc-OLS-2 0.470 0.247 0.282 −0.269 0.264 0.142
Heckman-2 0.089 0.909 0.834 −0.026 0.575 0.331

100 1 0.8 Proposed −0.023 0.185 0.035 0.049 0.224 0.052
Heckman-1 0.090 0.597 0.364 −0.025 0.409 0.168
cc-OLS-1 0.496 0.172 0.276 −0.300 0.197 0.129
cc-OLS-2 0.411 0.178 0.201 −0.262 0.187 0.103
Heckman-2 0.096 0.466 0.226 −0.023 0.375 0.141

100 1 0.5 Proposed 0.001 0.234 0.055 0.023 0.236 0.056
Heckman-1 0.015 0.720 0.519 0.014 0.493 0.243
cc-OLS-1 0.310 0.188 0.132 −0.185 0.219 0.082
cc-OLS-2 0.217 0.175 0.078 −0.158 0.192 0.062
Heckman-2 0.046 0.425 0.182 −0.027 0.355 0.127

200 0 0.8 Proposed −0.186 0.290 0.119 0.075 0.243 0.065
Heckman-1 −0.171 0.988 1.005 0.129 0.543 0.311
cc-OLS-1 0.953 0.185 0.942 −0.483 0.198 0.272
cc-OLS-2 0.818 0.169 0.698 −0.449 0.184 0.236
Heckman-2 −0.075 0.751 0.570 0.076 0.468 0.225

200 0 0.5 Proposed −0.099 0.362 0.141 0.048 0.273 0.077
Heckman-1 −0.066 1.030 1.065 0.043 0.563 0.319
cc-OLS-1 0.590 0.210 0.392 −0.306 0.204 0.135
cc-OLS-2 0.471 0.173 0.252 −0.274 0.187 0.110
Heckman-2 0.116 0.573 0.342 −0.050 0.397 0.160

200 1 0.8 Proposed −0.025 0.147 0.022 0.036 0.165 0.029
Heckman-1 −0.001 0.418 0.175 0.034 0.297 0.089
cc-OLS-1 0.500 0.121 0.265 −0.296 0.140 0.107
cc-OLS-2 0.402 0.119 0.176 −0.259 0.132 0.084
Heckman-2 0.033 0.327 0.108 0.013 0.259 0.067

200 1 0.5 Proposed 0.002 0.173 0.030 0.031 0.181 0.034
Heckman-1 0.000 0.445 0.198 0.031 0.313 0.099
cc-OLS-1 0.320 0.138 0.121 −0.179 0.146 0.053
cc-OLS-2 0.221 0.130 0.066 −0.158 0.144 0.046
Heckman-2 0.080 0.257 0.073 −0.045 0.239 0.059
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Figure 1. Dependence of the response probabilities on the medical cost for the NHIS
data.

Table 6. Application to the NHIS data: response model.

Intercept FHI cost FIN
Method Estimate Se p-value Estimate Se p-value Estimate Se p-value
Proposed −0.542 0.023 <0.001 1.078 0.007 <0.001 −0.017 0.003 <0.001
Heckman-1 −0.493 0.088 <0.001 1.077 0.011 <0.001 −0.016 0.005 <0.001
cc-OLS-1 −0.578 0.029 <0.001 1.077 0.011 <0.001 −0.018 0.005 <0.001
cc-OLS-2 −0.598 0.018 <0.001 1.070 0.007 <0.001 −0.014 0.003 <0.001
Heckman-2 −0.567 0.027 <0.001 1.069 0.007 <0.001 −0.012 0.003 <0.001

bles 6 and 7 report the response models, missing data and call-back models. The

significance of ρ12 and ρ13 indicates that the nonignorably missing mechanism

is reasonable. Our method, the Heckman-2 and cc-OLS-2 methods yield similar

estimates for the response model. This may because that the degree of nonig-

norable missingness is not too strong (the estimates of ρ12 and ρ13 are small),

which is consistent with the observations of the simulation studies. All methods

indicate that FHI cost is positively associated with medical costs, while family

income is negatively associated with medical costs.

The covariate vectors for the missing-data (first response) and call-back mod-

els are different, indicating that the method of Alho (1990) is not appropriate

for this data analysis. Although both the missing-data and call-back models in-

dicate that the nonignorably missing mechanism is reasonable, the dependence

of the response probabilities on the outcome is different. Figure 1 plots the de-
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Table 7. Application to NHIS data: missing data and call-back model

Proposed Heckman-1 Heckman-2
Parameter Estimate Se p-value Estimate Se p-value Estimate Se p-value
Missing-data model:
Intercept −0.461 0.071 <0.001 −0.510 0.071 <0.001 0.548 0.069 <0.001
FMAL 0.097 0.053 0.066 0.097 0.053 0.065 0.155 0.053 0.004
RAT CAT2 −0.023 0.006 <0.001 −0.019 0.006 0.001 −0.029 0.006 <0.001
Call-back model:
Intercept 0.092 0.207 0.658
FMAL 0.189 0.067 0.005
FHI cost −0.095 0.019 <0.001
Error terms:
σ 0.314 0.035 <0.001 0.320 0.015 <0.001 0.309 0.008 <0.001
ρ12 −0.111 0.056 0.045 −0.164 0.254 0.519 −0.193 0.117 0.097
ρ13 −0.343 0.103 0.001
ρ23 −0.030 0.474 0.949

pendence of the response probabilities on the outcome for the first-response and

call-back models; the other covariate values are replaced by their sample means.

Both plots indicate that the response probability decreases as the medical cost in-

creases. When the medical cost is not extremely high (for example, below $3,000),

the rate of decrease is lower for the probability of first response and higher for

the probability of call-back success. This also indicates that the method of Alho

(1990) is not appropriate, since Alho’s method assumes a common effect of the

outcome on the response probability.

In the missing-data model, the poverty ratio is negatively associated with

the probability of first response; and the number of family members with lim-

itations is positively associated with the probability of first response, but the

significance is moderate. In the call-back model, the number of family members

with limitations is positively associated with the probability of call-back success,

while FHI cost is negatively associated with the probability of call-back success.

7. Conclusions and Discussion

We have proposed a likelihood-based method that incorporates call-back

information and reduces the bias caused by the nonignorably missing mechanism.

It is based on an adapted Heckman selection model. The missing-data and call-

back indicators are assumed to be manifestations of latent variables, and the

nonignorably missing mechanism is incorporated via correlations among these

latent variables. The proposed method has a simple formulation, but it can
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reduce the bias and improve the estimation efficiency. We have proved that, under

some conditions, the coefficient estimator of the response model is robust to the

misspecification of the error distribution. Simulation studies have demonstrated

that the method performs well under different scenarios.

In the Heckman selection model, the response and latent variables are as-

sumed to follow a multivariate normal distribution. Marchenko and Genton

(2012) extended the normality assumption to the t-distribution. The derivation

is tedious, but our method can easily be extended to the t-distribution by as-

suming that the response and latent variables follow a multivariate t-distribution.

We leave this to future research.

In this paper, we mainly discussed how to incorporate single call-back infor-

mation by generalizing the Heckman selection model. In applications, there may

be multiple call-backs. Our methods can be easily extended to this situation.

We refer to the Supplementary Materials for more details.

Supplementary Materials

The Supplementary Material contains proof of Proposition 1, regularity con-

ditions, derivation of score functions, and the extension of the proposed method

in main paper to multiple call-backs.
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