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Abstract: One important goal of regression analysis is prediction. In recent years,

the idea of combining different statistical methods has attracted an increasing atten-

tion. In this work, we propose a method, l1-ARM (adaptive regression by mixing),

to robustly combine model selection methods that performs well adaptively. In

numerical work, we consider the LASSO, SCAD, and adaptive LASSO in represen-

tative scenarios, as well as in cases of randomly generated models. The l1-ARM

automatically performs like the best among them and consequently provides a bet-

ter estimation/prediction in an overall sense, especially when outliers are likely to

occur.

Key words and phrases: Adaptive LASSO, ARM, combining model selection meth-

ods, LASSO, SCAD.

1. Introduction

Model selection with a number of predictors has been an exciting research

area. Methods have been proposed in recent years to conduct variable selection

with computationally feasible algorithms, sometimes maintaining familiar sta-

tistical properties of traditional information criteria. These methods have been

increasingly used, and numerous numerical results demonstrate their advantages

in some settings. With multiple model selection tools available, a question a

statistics user faces is: How should one select a model selection method for

his/her data?

Obviously, we should not expect a single choice to perform best in different

scenarios. Some insights have been offered in the literature on this issue. For

example, sparsity of the underlying regression function in terms of the number

of explanatory variables involved is regarded as a key feature that makes some

methods perform better than others. Fan and Li (2001) pointed out that in terms

of model error, the SCAD outperforms the LASSO (Tibshirani (1996)) when the

model noise level is low, while the LASSO does better than the SCAD when the

noise level is high. Zou (2006) observed that the LASSO outperforms the SCAD

and adaptive LASSO in model error when the signal-noise-ratio (SNR) is small,

while the SCAD and adaptive LASSO methods do better than the LASSO when

http://dx.doi.org/10.5705/ss.2010.023
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the SNR is large. However, in applications, with the model noise level and true

regression function unknown, much more needs to be done both theoretically and

through systematic numerical investigations before satisfactory conclusions can

be reached to provide statistical characterizations of the data that determine the

relative performance of the different methods. Intuitively, if one gets to know

when to use which model selection method, there is an advantage if one considers

a list of distinct model selection rules so that at least one of them is optimal or

well-behaving for the unknown underlying data generating process (DGP).

For moderate or high dimensional regression problems, however, with a small

or moderate sample, the task of identifying the best among several model selec-

tion methods is typically very difficult. There is a serious challenge to realize

the potential advantage of sharing strengths of a number of model selection rules

in a pool. For the goal of prediction or estimating the regression function (in

contrast to identifying the important variables), as is the focus in our paper, one

approach is to combine the model selection methods by a proper weighting of the

predictions or estimates from them. If the combination leads to a performance

similar or close to the best method in each scenario of the underlying DGP, the

combined estimator or prediction can outperform all the candidate model selec-

tion methods in repeated applications across different scenarios of the DGP. This

will be seen in our numerical results later.

Combining regression procedures has been studied and allows various inter-

esting theoretical properties. Oracle inequalities show that properly combining

arbitrary regression procedures leads to a risk close to the best among a target

class of combinations of the candidate estimators/predictions plus a minimax-

rate optimal “price of combining” that reflects the largeness of the class of al-

lowed combinations. See Chen and Yang (2010) for a literature review. Successes

of combining different predictions in applications have prompted more interest.

For instance, in the well-known Netflix competition, an ensemble of different

methods was employed by top teams (see, e.g., http://www.netflixprize.com/

leaderboard).

The previous theoretically proven combining methods, in e.g., Yang (2001)

and Catoni (2004), use quadratic-type loss in determining weights for the can-

didates and show that the combined regression estimator achieves the best per-

formance offered by the candidates in an accumulated risk. The quadratic-type

loss is also used in combining methods of Juditsky and Nemirovski (2000), Yang

(2004), and Tsybakov (2003) for larger target classes of combinations.

The mathematically convenient quadratic loss for weighting regression esti-

mators works very well under Gaussian noise. However, when the noise has a

heavier tail, as commonly occurs in practice, a few outliers can destabilize the

weights. A robust combination of estimates or predictions is thus sought.

http://www.netflixprize.com/leaderboard
http://www.netflixprize.com/leaderboard
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In this paper, we propose a robust method, called l1-ARM, to combine re-

gression estimates/predictions from a list of model selection methods. Quadratic

loss in the ARM (adaptive regression by mixing, see Yang (2001)) is replaced

by absolute loss, and an oracle risk bound is presented that allows a screening

step to be incorporated to remove poor model selection methods; this can be

helpful when a large number of methods are considered. In our numerical work,

we focus on combining the LASSO, SCAD (Fan and Li (2001)), and adaptive

LASSO (Zou (2006)) in the linear regression setting. The results are highlighted

as follows.

1. Several representative linear expressions with different degrees of sparsity and

multiple noise levels are considered in comparing the performance of the model

selection methods and l1-ARM. The results show that the l1-ARM performs

like the best model selection method in the different scenarios.

2. The results show the advantage of the l1-ARM over the original ARM: if the

noise is Gaussian, they perform similarly; if the noise has a heavy tail, the

l1-ARM performs significantly better.

3. For randomly generated models, we find that the relative performances of the

LASSO, SCAD, and adaptive LASSO depend on the sparsity of true regression

function and the SNR.

The paper is organized as follows. In Section 2 we propose the l1-ARM

algorithm. In Section 3 we investigate the LASSO, SCAD, adaptive LASSO,

and l1-ARM via various simulation settings and data examples. In Section 4

we present a theoretical result for the l1-ARM. We give concluding remarks in

Section 5. The proof of the theorem of Section 4 is in the Appendix.

2. The Proposed Method

Consider a general regression problem Yi = f(xi) + εi, i = 1, . . . , n, f(·) the
true regression function. For estimating f(·), a number of models are considered,

for example, the collection of all the subset models with terms chosen from a

list of predictors (with possible transformations and/or interaction terms). We

focus on linear models in our numerical work, although our proposed method

and the theoretical result are applicable more generally. We apply K model

selection methods on the data: model selection method j yields an estimator

f̂j,n(x). Denote the set of the K candidate methods by Γ.

2.1. The l1-ARM algorithm

Yang (2001) proposed the ARM algorithm for combining a group of regres-

sion models. Yuan and Yang (2005) extended the ARM with model screening.

In the ARM, the l2-norm was used in the core step to apportion the weights to
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each candidate. Under quadratic loss, if the underlying model generates outliers

the weight of the best candidate model can easily be diluted and other models

can unexpectedly obtain more weight. We propose the l1-ARM in the hope that

it performs similarly as the ARM when the noise is normally distributed and

outperforms the ARM when the noise distribution has a heavy tail.

The l1-ARM algorithm is as follows.

Step 1. Apply the model selection methods to the data to get their recommended

models and regression estimates f̂j,n(x).

Step 2. Split the data into two parts, Z(1) = (xi, Yi), 1 ≤ i ≤ n/2, and Z(2) =

(xi, Yi), n/2 + 1 ≤ i ≤ n.

Step 3. Based on Z(1), compute the mean absolute prediction error d̂j = (2/n)∑n/2
1 |Yi − f̂j,n(xi)| for each candidate model j.

Step 4. For each model j ∈ Γ, predict Yi by f̂j,n(xi) for Z
(2). Compute

Dj =

n∑
i=n/2+1

|Yi − f̂j,n(xi)|.

Step 5. Compute the convex weight for model j as

Wj =
d̂
−n/2
j exp(−ηDj/d̂j)∑

k∈Γ d̂
−n/2
k exp(−ηDk/d̂k)

.

Step 6. Randomly permute the order of the data N − 1 times. Repeat Step 2 −
Step 5 and let Wj,r denote the weight of method j computed at the rth

permutation for 0 ≤ r ≤ N − 1. Let Ŵj = (1/N)
∑N−1

r=0 Wj,r.

Step 7. Let

f̂n(x) =
∑
j∈Γ

Ŵj f̂j,n(x)

be the final l1-ARM estimate of the true regression function f . At a new

x′, the combined prediction is Ŷ = f̂n(x
′).

Remarks.

1. When one considers a large number of model selection methods, it may be

helpful to combine a reduced candidate set rather than the full set Γ both for

better accuracy and for saving computation cost. We address this issue later

in Section 4.

2. For ensuring optimal rate of convergence, a fixed splitting ratio such as half/

half works and, in our experience, typically works well for regression estima-

tion/prediction.
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3. Absolute error is used here so that outliers have less influence on the weights.

4. In Step 5, there is a tuning parameter η to control the degree of reliance of

weighting on the predictive performance (note that when η = 0, the prediction

errors Dj have no effect at all on weighting). In our numerical work, we set

η = 1 and it worked well.

2.2. Combining SCAD, LASSO, and adaptive LASSO

In the numerical work of this paper, we focus on combining some recently pro-

posed selection methods: the SCAD, LASSO, and adaptive LASSO (a-LASSO).

We describe some details about applying them.

There are two tuning parameters a and λ in the SCAD. Following Fan and

Li (2001), we set a = 3.7. As suggested by Zou (2006), we estimate the weight

vector in the a-LASSO by ŵ = 1/|β̂|γ , where β̂ is the OLS estimator and γ is

selected from {.5, 1, 2} by fivefold cross validation. The two selection options of

the tuning parameter λ of the three methods are as follows. Denote the full data

set by D and the testing set by Dl, l = 1, . . . , 5. For each λ and l, we get the

estimate β̂l
λ using the training set D − Dl. Then the fivefold cross validation

selection minimizes

CVλ =

5∑
l=1

∑
(xi,Yi)∈Dl

(
Yi − f(xi; β̂

l
λ)
)2

.

The BIC selection minimizes

BICλ = log σ̂2
λ +

dfλ log(n)

n
,

where dfλ is the number of nonzero coefficients of the fitted model (see, Wang,

Li, and Tsai (2007); Zou (2008)).

In numerical work, the LASSO and a-LASSO are computed by using the R

package lars, where the optimal λ is chosen from 100 candidates along the entire

solution path by using fivefold cross validation and BIC selections, respectively.

The SCAD is computed by using the one-step SCAD program provided by Zou

and Li (2008), where the optimal λ is chosen from 100 discretized values by using

fivefold cross validation and BIC selections, respectively. Thus the SCAD in this

work is a one-step SCAD.

The comparison of different estimators is done under regression estimation

loss E(f(x)− f̂(x))2 via simulation, where the expectation is taken on the new

observation x that has the same distribution as the data. For the empirical

comparison usingl data sets, we consider predictive mean squared error as an

objective measure.
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Table 1. Performance comparison for the high sparsity case.

Scadcv Scadbic Lassocv Lassobic Alassocv Alassobic Arm l1-Arm
σ = 1 0.25 0.22 0.60 0.53 0.44 0.37 0.34 0.35
σ = 3 0.43 0.36 0.61 0.53 0.49 0.39 0.39 0.41
σ = 5 0.58 0.54 0.60 0.51 0.55 0.55 0.49 0.49

3. Numerical Results

We focus on the performance of the selection and combining methods in

linear regression: Y = xTβ + ε. Assume that x follows a multivariate normal

distribution with zero mean and covariance matrix as defined, and that the ran-

dom noise ε is iid N(0, σ2) or is a contaminated normal.

3.1. Some representative examples

Assume there are 12 predictor variables in x and that the covariance between

xk and xl is ρ
|k−l| with ρ = 0.5, 1 ≤ xk, xl ≤ 12. The sample size n is set to be

50 and 100, and the performance of the competing methods is evaluated at 1,000

independently generated observations from the same distribution. We replicate

each estimation process 100 times and, in each replication, we set N = 100 to

calculate the combining weights. We consider the relative loss, the ratio of the

loss of a competing method over that of the OLS estimate from the full model, and

the median of the relative loss over the 100 replicates is reported as in Fan and Li

(2001). Another measure, the mean of the relative loss, gives similar results, but

the combining methods usually have smaller standard errors than the selection

methods (not reported here due to space limitation), indicating that they are

more robust. Since the results for n equal to 50 and 100 are similar, we present

only the n = 100 case.

High sparsity. In this example, β is (3, 1.5, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0)T , identical to

a model investigated in Zou and Li (2008). The underlying model here is sparse

(3 nonzero coefficients out of 12 potential predictors). In Table 1, the SCAD

methods perform the best when the model noise level is low. However, when

the model noise level is high, the LASSOBIC is more accurate than the SCAD

and a-LASSO. Note that BIC consistently outperforms fivefold CV in this case.

The two combining methods are automatically close to or outperform the best

selection method.

To have an idea of the uncertainty of the reported median relative losses

in the table, we repeated the whole process 100 times. The standard errors

of the reported medians in Table 1 are between 0.003 and 0.006. In contrast,

the computationally less costly bootstrapping of the 100 relative losses gives

substantially larger standard error estimates (ranging between 0.021 and 0.035)
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Table 2. Performance comparison for the low sparsity case.

Scadcv Scadbic Lassocv Lassobic Alassocv Alassobic Arm l1-Arm
σ = 1 0.79 0.76 0.89 0.92 0.83 0.77 0.77 0.77
σ = 3 1.00 1.08 0.85 0.90 0.98 1.00 0.91 0.92
σ = 5 1.00 1.09 0.79 0.84 0.97 0.94 0.81 0.82

Table 3. Performance comparison for the non-sparsity case.

Scadcv Scadbic Lassocv Lassobic Alassocv Alassobic Arm l1-Arm
σ = 1 1.00 1.10 1.00 1.00 0.98 0.98 1.00 1.00
σ = 3 1.00 1.08 0.80 0.86 1.01 1.04 0.86 0.86
σ = 5 0.90 1.06 0.63 1.18 0.72 0.93 0.69 0.68

and thus is not reliable for our problem. Due to high expense in simulating the

median relative losses, henceforth, we report only the median relative losses as

in Fan and Li (2001).

Low sparsity. In this example, β is (3, 1.5, 0, 1.1, 2, 0, 0.9, 0.8, 0.6, 0, 0, 0)T , ex-

panding the model complexity by adding more nonzero coefficients. In Table 2,

the performance of the a-LASSO is comparable to or better than the SCAD.

The LASSO performs relatively better than the others when the model noise

level is moderate or high. It can be seen that fivefold CV starts to show its

advantage in some settings. The two combining methods tend to be close to the

best procedure, and they perform similarly.

Non-sparsity. In this example, β is (0.5, 0.5, 0, 0.5, 0.5, 0.5, 0, 0.5, 0.5, 0.5, 0,

0.5)T . In Table 3, when the model noise level is low, all three selection methods

perform similarly to the OLS estimator. When the model noise level is moderate,

the SCAD and a-LASSO perform worse than the LASSO. When the model noise

level is high, all three selection methods with fivefold CV do better or much bet-

ter than the OLS estimator, but those with BIC give poor results, much worse

than those from fivefold CV. The two combining methods automatically perform

like the best procedure, and their performances are very close to each other.

Heavy-tailed noise case. We investigate the robustness of the selection and

combining methods. As in Fan and Li (2001), let ε be mixed with 90% standard

normal and 10% standard Cauchy distributions in the examples above. In Table

4, the selection methods show different rankings in the three examples: the

SCAD does the best in the first example, the a-LASSO the best in the second,

and the LASSO the best in the third. We observe that the strengths of the

selection methods are weaker when the degree of the model sparsity is reduced.

BIC favors sparse models, while fivefold CV favors non-sparse models with the

existence of outliers. Unlike the previous examples, the two combining methods

perform differently, and the l1-ARM shows a significant improvement over the

ARM.
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Table 4. The robustness of the selection and combining methods.

Scadcv Scadbic Lassocv Lassobic Alassocv Alassobic Arm l1-Arm
Example 1 0.32 0.32 0.54 0.56 0.40 0.42 0.39 0.32
Example 2 0.89 0.86 0.86 0.86 0.83 0.78 0.80 0.73
Example 3 1.00 1.05 0.89 0.96 0.99 1.01 0.99 0.93

Table 5. Performance comparison for highly correlated predictors

Aic Bic Scadcv Scadbic Lassocv Lassobic Alassocv Alassobic Arm l1-Arm
0.84 0.74 1.00 1.00 0.99 0.93 1.00 0.98 0.79 0.79

Highly correlated predictors. For establishing consistency and efficiency

properties of the LASSO, a-LASSO, and the one-step SCAD, regularity con-

ditions are used, one of which is that the design matrix behaves nicely (see, e.g.,

Zou (2006), Zhao and Yu (2006), Meinshausen and Bühlmann (2006), Zou and

Li (2008), and Zhang and Huang (2008)). See Lv and Fan (2009) for discussion

on differences of conditions for l1 and concave penalties. In this example, we

simulated a model in the opposite direction and compare the performance of the

above methods plus forward selections by AIC and BIC. The coefficients of this

model are those in the second example. The predictors xi, i = 1, . . . , n, follow a

multivariate normal distribution with mean 0 and a covariance matrix that is a

random realization of a Wishart distribution with df = 12 and scale matrix the

identity. The maximum eigenvalue of the covariance matrix was 46.032, while

the minimum eigenvalue was 0.0002. The error ε followed a standard normal

distribution. The other simulation settings remain the same as in the previous

examples.

In Table 5, the SCAD and a-LASSO show no advantage compared to the

OLS. For instance, the SCAD with BIC selection on average generates two zero

coefficients for this model and only one of them is correct. The forward selections

by AIC and BIC work more favorably than the other selection methods in this

situation. As before, the performance of the combining methods is close to that

of the best candidate.

3.2. Randomly generated models

Relative performance. The purpose of random model settings is to try to get

an unbiased understanding on the competing methods. We randomly generated

100 models. The number of zero coefficients was uniformly distributed from 2 to

8, and their orders in the 12 potential predictors were also uniformly distributed.

The nonzero coefficients were uniformly on [0, 3]. Other settings remain the

same as in the previous examples. For each model, we calculated the mean of

the relative losses. The median of the mean relative losses of the 100 models
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Table 6. Performance comparison based on randomly generated models.

Scadcv Scadbic Lassocv Lassobic Alassocv Alassobic Arm l1-Arm
σ = 1 0.81 0.85 0.92 0.97 0.87 0.77 0.79 0.79
σ = 3 0.93 0.99 0.89 0.95 0.97 0.85 0.81 0.82
σ = 5 1.00 1.12 0.86 0.97 0.96 0.92 0.83 0.83

heavy tail 0.78 0.84 0.85 0.93 0.84 0.74 0.77 0.69

is shown in Table 6. The a-LASSO with the BIC selection performed the best

with σ = 1, 3, and the heavy-tail noise case. The LASSO with the fivefold CV

selection performed the best with σ = 5. Interestingly fivefold CV did better

than BIC for the SCAD and LASSO, while BIC did better than fivefold CV

for the a-LASSO in the random model settings. The SCAD was close to the

best under low or heavy-tail noise. The two combining methods performed well

consistently. When the underlying model noise was normally distributed, they

performed almost identically. However, when outliers were present, the l1-ARM

had the edge.

How do the SNR and sparsity affect the relative performances? In the

simulation above, the number of zero coefficients was treated as a measure of

the model sparsity. We estimated the variance of the mean function xTβ, Vs,

with sample size equal to 1, 100 and then obtained the SNR of the model by

taking the ratio of Vs/σ
2. To get some insight on how the SNR and sparsity are

associated with the performance of the three selection methods, we regressed the

mean relative losses of the random models on the SNR and sparsity. To save

space, we only consider the case in which the tuning parameters were selected

by BIC with σ = 3. The SNR of the 100 random models ranged from 0.94 to

13.2. For ease of notation, the subscript bic is omitted in Table 7. We also

consider the ratios of the mean relative losses among the three selection methods

as the response variables. Table 7 gives the coefficients of the SNR and sparsity

of each model (the intercept is not presented here). For each model, we check the

linear model assumptions by applying the diagnostic means (e.g., residual plots).

It shows that all the simple linear models look proper. Note that all of these

coefficients are significant at α = 0.01 level and that the interaction effects of

these two predictors in these models are not significant. Thus, in our setting, the

SNR and sparsity have “additive” effects on the performance of these selection

methods.

For the first three rows of Table 7, all coefficients of sparsity are negative,

which indicates the three methods (relative to the full model) perform better with

sparse models. The SNR coefficients of the SCAD and a-LASSO are negative,

but that of the LASSO is positive, which indicates the LASSO does better when

the SNR is small. For the second three rows of Table 7, all coefficients of the SNR
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Table 7. The sparsity vs the signal-to-noise ratio.

SNR sparsity
Scad -0.026 -0.131
Lasso 0.004 -0.035
Alasso -0.008 -0.092

Scad
Lasso -0.033 -0.104

Scad
Alasso -0.020 -0.033

Alasso
Lasso -0.013 -0.066

and sparsity are negative. It seems that for the large SNR and high sparsity cases

the SCAD dominates the LASSO and a-LASSO while the a-LASSO dominates

the LASSO. This suggests that the accuracy of the SCAD relative to LASSO

and a-LASSO increases with higher SNR and sparsity. The same can be said of

the a-LASSO relative to LASSO.

3.3. High-dimensional cases

Forty predictors. Consider high-dimensional cases with the number of the

predictors at 40. Assume that the covariance between xk and xl is ρ|k−l| with

ρ = 0.75, 1 ≤ xk, xl ≤ 40. In Case 1, there are 5 nonzero coefficients, in

Case 2, there are 10 nonzero coefficients, and in Case 3, there are 20 nonzero

coefficients. All nonzero coefficients were uniform [0, 3] and their orders were

uniformly distributed in the model. We considered two scenarios of the model

noise for each case: σ = 2, and having a heavy tail as in the previous examples.

We repeated each case 50 times. To ease the computation burden, for each

replication, we generated 50 random samples and, for each sample, we set N = 50

to get the combining weights. The other simulation settings remain as before.

The median of the relative losses over the 50 replicates is presented in Table 8,

where the two rows in each case correspond to the two model noises, respectively.

For the different high-dimensional cases, we can see that the selection methods

have different performances. The two combining methods are close to the best

performance among the candidates when the model noise is normal. With heavy-

tail noise, the l1-ARM outperforms all the selection methods and the ARM.

Eighty predictors. A useful strategy for dealing with high-dimensional cases is

to add a screening step, so only significant variables are included in the later mod-

eling process. In this example, 80 variables have a distribution as in the above

example. The first eight coefficients are (2, 2, 2, 2, 2, 2, 2, 2)T ; the remaining coef-

ficients are zero. We applied Sure Independence Screening (Fan and Lv (2008))

to reduce the dimension from 80 to 40. Table 9 shows the median relative losses

over 50 random samples of the competing methods. With the screening step,
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Table 8. Performance comparison for the high-dimensional data.

Scadcv Scadbic Lassocv Lassobic Alassocv Alassobic Arm l1-Arm

Case 1
0.22 0.22 0.33 0.30 0.28 0.28 0.22 0.22
0.24 0.24 0.30 0.28 0.25 0.25 0.25 0.18

Case 2
0.42 0.41 0.52 0.42 0.57 0.42 0.37 0.37
0.40 0.41 0.46 0.39 0.46 0.36 0.39 0.32

Case 3
0.77 0.75 0.75 0.62 1.35 0.68 0.62 0.62
0.73 0.73 0.67 0.60 1.11 0.63 0.64 0.55

Table 9. Performance comparison for the high-dimensional data with screening.

Scadcv Scadbic Lassocv Lassobic Alassocv Alassobic Arms l1-Arms
σ = 1 0.14 0.13 0.47 0.29 0.22 0.26 0.16 0.15
σ = 3 0.43 0.47 0.31 0.29 0.39 0.38 0.33 0.32

heavy tail 0.32 0.33 0.33 0.31 0.29 0.33 0.29 0.22

Table 10. Performance comparison for the high-dimensional data (p > n).

Scad Lasso Mcp Sica Arm l1-Arm
σ = 1 0.16 0.33 0.11 0.31 0.15 0.15
σ = 3 3.25 2.85 3.41 1.48 1.43 1.43

heavy tail 0.55 0.69 0.50 0.43 0.38 0.37

the selection methods had different finite sample performances. The combining

methods performed as if they knew which selection method was best for a spe-

cific situation. When there were outliers, the l1-ARMS showed a clear advantage

compared to the selection methods and the ARMS.

Case with p > n. Consider a high-dimensional case with n = 100 and p = 300.

Assume that the covariance between xk and xl is ρ
|k−l| with ρ = 0.5, 1≤xk, xl≤p.

The true coefficients are zero except for the first (3, 1.5, 0, 1.1, 2, 0, 0.9, 0.8, 0.6)T .

The addaptive LASSO is not applicable for this situation. Instead, we consider

SCAD, LASSO, SICA (Lv and Fan (2009)), and MCP (Zhang (2007)), which

all can handle p > n cases. We applied the selection methods with a R package

‘EZPATH’ (Yang and Zou (2010), http://www.stat.umn.edu/~yi) and used

the default non-convex penalty parameters in the R package for SCAD, MCP,

and SICA. The tuning parameter of each method was selected by fivefold CV.

Table 10 shows the performances of the selection and combining methods. For

the p > n case, the relative performances of the selection methods depend on

the noise situation, and no single choice works consistently well. In contrast, the

combining methods are always among the best. When there are outliers, they

significantly outperform the selection methods.

http://www.stat.umn.edu/~yi
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Table 11. Results for Data Example 1.

Scadcv Scadbic Lassocv Lassobic Alassocv Alassobic Arm l1-Arm
0.96 0.99 0.85 0.85 0.79 0.82 0.86 0.82

Table 12. Results for Data Example 2.

Scadcv Scadbic Lassocv Lassobic Alassocv Alassobic Arms l1-Arms
n = 60 0.77 0.82 0.91 0.84 0.91 0.93 0.90 0.77
n = 120 0.93 0.93 0.96 0.94 0.95 0.95 0.95 0.90

3.4. Data examples

Data Example 1. This data set is from the Berkeley Guidance Study (Weis-

berg (1985, pp.55-57)). There are ten predictors, and the response variable is

a measurement of fatness for 32 girls at age 18. The training sample size was

26 and the competing methods were evaluated at the remaining 6 observations.

This process was repeated 100 times with random data splittings. The medians

of the relative prediction MSE, i.e., the ratio of the MSE of these methods over

that of the OLS estimator, are shown in Table 11. The a-LASSO with the fivefold

CV selection performed the best, and the l1-ARM performed similarly.

Data Example 2. This data set is taken from Johnson (1996). It originally

contained 17 predictors and 252 observations. We took 16 predictors, removing a

body density variable that varied narrowly, and 251 observations since the 42nd

observation was apparently incorrect. The training sample size n was 60 and

120, respectively. The medians of the relative prediction MSE are represented

in Table 12. When n = 60, the SCAD with the fivefold CV selection performed

best among the selection methods, while the l1-ARM performed similarly. When

n = 120, the two SCAD selections outperformed the other selections by a small

margin. The l1-ARM even improved over the SCAD methods. Note that when

the training sample size was increased, the OLS method performed better so that

the relative advantage of the selection methods decreased. In these two examples,

the l1-ARM outperformed the ARM.

4. Theory

Differently from some previous work on consistency of model selection, our

theoretical focus is on prediction risk. Assume that (x, Y ), (xi, Yi), 1 ≤ i ≤ n,

are independent and identically distributed. Let ε = Y − f(x), where f is the

regression function (conditional mean of Y given x). To derive the theoretical

result, we study a somewhat different version of the algorithm in Section 2.

The differences are: a screening step is allowed to reduce the candidate model

selection methods to be combined, saving computational cost and/or improving

prediction accuracy; model selection methods are applied to part of the data to
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come up with the models to be combined, as this is mathematically tractable

for theoretical investigation in terms of independence; weights are sequentially

averaged. We recommend the earlier algorithm (with screening if so desired) in

practice. The discrepancies between the practical and theoretical algorithms are

due to practical considerations and mathematical tractability, and they do not

have fundamental inconsistencies. As seen in Section 3, the practical algorithm

worked well in simulations and data examples.

We first split the data into Z(1) and Z(2). We obtain β̂j and d̂j on Z(1) and

Dj on Z(2), respectively, for each candidate model j. Let f̂j be the estimate of

the regression function based on Z(1) from method j, 1 ≤ j ≤ K. Consider a

screening procedure that is applied on Z(1) to get a reduced list of candidate

model selection methods, denoted by Γs, with size Ks. Note that Ks is allowed

to be random (depending on Z(1)). For i = n/2 + 1, let Wj,i = 1/Ks for j ∈ Γs

and for n/2 + 1 ≤ i ≤ n, let

Wj,i =
(d̂j)

−(i−n/2−1) exp(−η
∑i−1

l=n/2+1 |Yl − f̂j(xl)|/d̂j)∑
k∈Γs

(d̂k)−(i−n/2−1) exp(−η
∑i−1

l=n/2+1 |Yl − f̂k(xl)|/d̂k)
.

Define

W̃j =
1

n/2

n∑
i=n/2+1

Wj,i,

and let

f̃(x) =
∑
j∈Γs

W̃j f̂j(x)

be the combined estimator.

Condition 1: The true regression function f(·) is bounded by A
2 in absolute

value for some positive constant A, and the estimators f̂j , j ∈ Γ, are clipped

accordingly.

Condition 2: The conditional variance E
(
ε2|x

)
is uniformly upper bounded by

some positive constant B2 with probability 1.

Condition 3: There exist a constant t0 > 0 and a monotone function 0 <

H(t) < ∞ on [−t0, t0] such that, for −t0 ≤ t ≤ t0, E (exp(t|ε|)|x) ≤ H(t) with

probability 1.

Condition 4: Zero is a median of the distribution of the error ε conditional on

x.

For simplicity, we take d̂j,i = 1. Let j∗ be the minimizer of the risk E|Y − f̂j |
in Γ.
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Theorem 1. Assume Conditions 1−3 hold.

1. When the tuning parameter η is chosen small enough,

E|Y − f̃(x)| ≤ (A+B)P (j∗ /∈ Γs) + E|Y − f̂j∗(x)|+ CE

(√
log(Ks)

n

)
,

where C is a positive constant that depends on t0, A, and B.

2. If, in addition, Condition 4 holds,

E|Y − f̃(x)| ≤ AP (j∗ /∈ Γs) + E|Y − f̂j∗(x)|+ CE

(√
log(Ks)

n

)
.

Remarks.

1. The same risk bound holds (due to convexity) when data are randomly split

multiple times and the resulting estimates f̃(x) are averaged.

2. The tuning parameter η is chosen to be of order
√

logKs/n.

3. In the initial theories on combining regression estimators, quadratic loss is

used (see, Yang (2001) and Catoni (2004)). The tools there do not work for

absolute error. The idea used here is to add a small multiple of the quadratic

loss to the absolute loss so that the total loss has a quadratic behavior and is

still close to the absolute loss.

4. When no screening is done, the risk bounds becomes E|Y − f̃(x)| ≤ inf
j
(E|Y −

f̂j(x)|) + C
√

log(K)/n. The theorem shows that the combined estimator

behaves like the best f̂j adaptively, up to an additive penalty term of order√
log(K)/n that cannot be generally improved.

5. For screening of model selection methods, besides approaches such as Fan

and Lv (2008), cross validation can also be used, e.g., to keep the top m

methods for a pre-determined integer m. With a proper data splitting ratio,

as shown in Yang (2007), under some conditions, and for any choice of m ≥ 1,

P (j∗ /∈ Γs) → 0. If one method is taken as a reference and the methods

that perform much worse are removed, the exclusion probability of j∗ can be

exponentially small.

6. The improvement of the risk bound under Condition 4 can be important when

E
(
ε2|x

)
is large.

7. The risk bounds in Theorem 1 do not require consistency or other optimality

properties of the candidate model selection methods. However, those proper-

ties are certainly not irrelevant. For instance, in the now popular setting that

the true model has dimension m∗ = m∗
n increasing in n, if a mode selection

method among a bounded number of candidates is consistent for the DGP
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then, under some favorable conditions, its pointwise squared L2 risk can be

exactly at the optimal rate m∗
nσ

2/n. If the screening method is successful so

that P (j∗ /∈ Γs) is smaller in order than
√

m∗
nσ

2/n, then Theorem 1 implies

that E|Y − f̃(x)| = E (|ε|) + O
(√

m∗
nσ

2/n
)
. Since for symmetric random

noise ε, E (|ε|) is the smallest prediction error under absolute error loss, such

a risk bound means that the combined prediction is of order
√

m∗
nσ

2/n from

the ideal.

5. Concluding Remarks

Exciting new model selection methods have been derived from various per-

spectives. One may naturally consider a number of such methods so that there

is a better chance that the best one works well for the data at hand.

For the goal of regression function estimation or prediction, the LASSO,

SCAD, and a-LASSO behave the best in different scenarios in terms of the model

sparsity and model noise level. For tuning parameter selection, the use of BIC

is not always better than fivefold CV and, in fact, it is sometimes much worse.

In applications, when the sample size is not large relative to the number of

predictors, it is difficult to determine which selection method should be used and

how to choose the tuning parameter.

We propose robust adaptive regression by mixing, l1-ARM, to aggregate the

predictive strengths of the different selection methods so as to perform as if one

knew which selection method is best for each scenario in advance.

Both the theory and the numerical work support that, for estimating the

regression function or prediction, the l1-ARM performs as well as the best candi-

date method in the individual scenarios. When various scenarios are considered,

the l1-ARM shows its predictive advantage over the individual model selection

methods. A contribution of the l1-ARM is that it is more robust than the ARM

when the underlying model tends to generate outliers. Furthermore, when there

are no outliers, it does not lose much efficiency compared to the ARM.

Finally, it must be pointed out that the l1-ARM loses model interpretabil-

ity, and it does not perform variable selection as the important model selection

methods do.

6. Appendix: Proof of Theorem 1

Let L(u) = |u|, and h(u) = exp(−ηL(u)). Let n1 = n2 = n/2. Define

Qn2 =
∑

j∈Γs
(1/Ks)Π

n
i=n1+1h(Yi − f̂j(xi)), where f̂j(xi) is the prediction from

the jth method at time i. Then

− log(Qn2) ≤ log(Ks) + η

n∑
i=n1+1

L(Yi − f̂j(xi)).
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On the other hand,

Qn2 =
∑
j∈Γs

1

Ks
h(Yn1+1 − f̂j(xn1+1))

×
∑

j∈Γs
h(Yn1+1 − f̂j(xn1+1))h(Yn1+2 − f̂j(xn1+2))∑

j∈Γs
h(Yn1+1 − f̂j(xn1+1))

× · · · ×
∑

j∈Γs
Πn

i=n1+1h(Yi − f̂j(xi))∑
j∈Γs

Πn−1
i=n1+1h(Yi − f̂j(xi))

.

That is, Qn2 = Πn
i=n1+1

∑
j∈Γs

Wj,ih(Yi − f̂j(xi)). Accordingly, − log(Qn2)

= −
∑n

i=n1+1 log
(∑

j∈Γs
Wj,ih(Yi − f̂j(xi))

)
=−

∑n
i=n1+1 log(E

Jh(Yi−f̂J(xi))),

where EJ denotes the expectation with respect to J under the distribution P (J =

j) = Wj,i, given each i for j ∈ Γs. Define V = L(Yi− f̂J(xi))−EJL(Yi− f̂J(xi)),

and f̄i(x) =
∑

j∈Γs
Wj,if̂j(x). Then

EJV 2 = EJ(L(Yi − f̂J(xi))− EJL(Yi − f̂J(xi)))
2

≤ EJ(L(Yi − f̂J(xi))− L(Yi − EJ f̂J(xi)))
2

≤ EJ(f̂J(xi)− EJ f̂J(xi))
2

= EJ(f̂J(xi)− f̄i(xi))
2.

By Lemma 3.6.1 of Catoni (2004, p.85), we get

log(EJh(Yi − f̂J(xi))) ≤ −ηEJL(Yi − f̂J(xi)) + I,

where I ≤ (η2/2) exp(η(|L(Yi−f̂J(xi))|+supj≥1 |L(Yi−f̂J(xi))|))EJV 2. Observe

that

I ≤η2

2
exp(2η sup

j≥1
|L(Yi − f̂J(xi))|)EJV 2

≤η2

2
exp(2η sup

j≥1
|Yi − f̂J(xi)|)EJV 2

≤η2

2
exp(2η(|Yi − f(xi)|+ sup

j≥1
|f(xi)− f̂J(xi)|))EJV 2

≤η2

2
e2ηA exp(2η|εi|)EJV 2

≤η2

2
e2ηA exp(2η|εi|)EJ(f̂J(xi)− f̄i(xi))

2,

where the second to last inequality holds because of Condition 1. Under Condi-

tion 3, taking expectation with respect to the randomness of the errors εi and xi
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for n1 + 1 ≤ i ≤ n conditional on the first n1 observations, we have that when

2η ≤ t0,

En1(I) ≤
η2

2
e2ηAH(2η)En1(E

J(f̂J(xi)− f̄i(xi))
2).

For absolute error loss in l1-ARM, our approach is to add a small multiple

of the quadratic loss so that the total loss is still close to the absolute loss

and the tools of Catoni (2004) can be modified to work for our problem. Take

Ls(u) = L(u) + au2, a > 0. Let b0 = Yi − f̄i(xi) and b = Yi − f̂J(xi). Then, as

in Shan and Yang (2009),

Ls(b)− (2ab0 + 1b0≥0 − 1b0<0)(b− b0)− Ls(b0)

= a(b− b0)
2 + b(1b≥0 − 1b<0 + 1b0<0 − 1b0≥0)

= a(b− b0)
2 +


0 if b, b0 ≥ 0

0 if b, b0 < 0

2b if b ≥ 0 and b0 < 0

−2b if b < 0 and b0 ≥ 0

≥ a(b− b0)
2.

Since EJ(b− b0) = 0, we have EJLs(b)− Ls(b0) ≥ aEJ(b− b0)
2, namely,

EJLs(Yi − f̂J(xi))− Ls(Yi − f̄i(xi)) ≥ aEJ(f̂J(xi)− f̄i(xi))
2.

Thus,

En1(E
JLs(Yi − f̂J(xi))− Ls(Yi − f̄i(xi))) ≥ aEn1(E

J(f̂J(xi)− f̄i(xi))
2).

Then we have

En1(I) ≤
a−1η2

2
e2ηAH(2η)En1(E

JLs(Yi − f̂J(xi))− Ls(Yi − f̄i(xi))).

Let η/2 ≥ (a−1η2/2)e2ηAH(2η). Then we have

En1(I) ≤
η

2
En1(E

JLs(Yi − f̂J(xi))− Ls(Yi − f̄i(xi))).

Recall there are two constraints on η: 2η ≤ t0 and η/2 ≥ (a−1η2/2)e2ηAH(2η).

When we choose a and η so that η ≤ t0/2 and a ≥ ηe2ηAH(2η), the constraints

are met. Let aη = ηet0AH(t0). With such a choice of η and aη,

En1(logE
J exp(−ηL(Yi − f̂J(xi))))

≤− ηEn1(L(Yi − f̄i(xi))) + ηEn1(L(Yi − f̄i(xi))− EJL(Yi − f̂J(xi)))

+
η

2
En1(E

JLs(Yi − f̂J(xi))− Ls(Yi − f̄i(xi)))
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≤− ηEn1(L(Yi − f̄i(xi)))−
η

2
En1(E

JL(Yi − f̂J(xi))− L(Yi − f̄i(xi)))

+
aηη

2
En1(E

J(Yi − f̂J(xi))
2)− aηη

2
En1((Yi − f̂J(xi))

2)

≤− ηEn1(L(Yi − f̄i(xi))) +
aηη(A

2 +B2)

2
.

The last inequality holds because of the convexity of L and Conditions 1 and

2. Assume j ∈ Γs for the moment. Then we have

n∑
i=n1+1

En1L(Yi− f̄i(xi)) ≤
log(Ks)

η
+

aη(A
2 +B2)n2

2
+

n∑
i=n1+1

En1L(Yi− f̂j(xi)).

Under the iid assumption on the data and n2 = n/2, we have

1

n2

n∑
i=n1+1

En1L(Y − f̄i(x)) ≤ En1L(Y − f̂j(x)) +
2 log(Ks)

ηn
+

aη(A
2 +B2)

2
.

With an optimal choice of η, η′ =
√

(4 log(Ks))/(net0AH(t0)(A2 +B2)),

1

n2

n∑
i=n1+1

En1L(Y − f̄i(x)) ≤ En1L(Y − f̂j(x)) + C

√
log(Ks)

n
,

where C is a positive constant depending on t0, A, and B. By convexity of L,

together with that f̃ = (1/n2)
∑n

i=n1+1 f̄i, we have for each j ∈ Γs,

En1 |Y − f̃(x)| ≤ En1 |Y − f̂j(x)|+ C

√
log(Ks)

n
.

Therefore, if j∗ ∈ Γs,

En1 |Y − f̃(x)| ≤ En1 |Y − f̂j∗(x)|+ C

√
log(Ks)

n
.

When j∗ /∈ Γs, En1 |Y − f̃(x)| ≤ En1 |ε|+En1 |f(x)− f̃(x)| ≤ B +A. Thus

E|Y − f̃(x)| ≤ (B +A)P (j∗ ∈ Γc
s) + E|Y − f̂j∗(x)|+ CE

(√
log(Ks)

n

)
.

This risk bound can be improved if the error ε has a distribution with median 0

given x, as shown below. From before, if j∗ ∈ Γs,

En1 |Y − f̃(x)| − En1 |ε| ≤ En1 |Y − f̂j∗(x)| − En1 |ε|+ C

√
log(Ks)

n
,
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and if j∗ /∈ Γs, En1 |Y − f̃(x)| − En1 |ε| ≤ En1 |f(x)− f̃(x)| ≤ A. Then,

En1 |Y − f̃(x)| − En1 |ε|

≤ AIj∗∈Γc
s
+

(
En1 |Y − f̂j(x)| − En1 |ε|+ C

√
log(Ks)

n

)
Ij∗∈Γs ,

where I denotes the indictor function. If the error distribution (given x) has

median zero, we must have En1 |Y − f̃(x)| − En1 |ε| ≥ 0 with probability 1 and

thus

En1 |Y − f̃(x)| − En1 |ε| ≤ AIj∗∈Γc
s
+ En1 |Y − f̂j(x)| − En1 |ε|+ C

√
log(Ks)

n
.

That is,

En1 |Y − f̃(x)| ≤ AIj∗∈Γc
s
+ En1 |Y − f̂j∗(x)|+ C

√
log(Ks)

n
.

Thus,

E|Y − f̃(x)| ≤ AP (j∗ /∈ Γs) + E|Y − f̂j∗(x)|+ CE

(√
log(Ks)

n

)
.

When there is no screening step, Γs = Γ and Ks = K. Then we have

E|Y − f̃(x)| ≤ E|Y − f̂j∗(x)|+ C

√
log(K)

n
.

This completes the proof.
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