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Abstract: This paper proposes a sequential design methodology for a combined

physical system and computer simulator experiment having multiple outputs, in

the setting where the goal is to find the Pareto Front and Set of the means of

the physical system outputs. The methodology is based on a statistically-calibrated

simulator. In this paper, the simulator is a computer implementation of a deter-

ministic mathematical model of the physical system; it contains the same set of

control(able) inputs as those used to represent the physical system, plus additional

calibration inputs for adjusting the simulator output to better mimic the mean of

the physical system. A minimax fitness function is proposed for guiding the sequen-

tial search for new vectors of control input settings when additional observations

on the physical system are to be taken. Based on a Bayesian calibrated model, the

update step maximizes the posterior expected minimax fitness function over untried

control inputs. When additional runs of the simulator are to be taken, the control

input settings are chosen as above; then calibration input settings are selected to

minimize the sum, over the set of predicted output means, of the posterior mean

squared prediction errors. Using the Hypervolume Indicator function to assess

Pareto Front accuracy, the performance of the sequential procedure is evaluated

using analytic test functions from the multiple-objective optimization literature.

Key words and phrases: Combined physical and simulator experiment, computer

experiment, multiobjective optimization.

1. Introduction

Many applications require the simultaneous optimization of multiple objec-

tive functions. Examples include those of Forrester, Sobester and Keane (2008)

who considered the engineering design of a cantilever beam subject to fabrica-

tion constraints; Leatherman et al. (2014) who studied tissue engineering of the

material properties of a meniscal substitute to provide both small mean and low

variability in the peak contact stresses of the underlying cartilage; and Picheny

(2015) who considered the optimization of a set of measures of the light inter-
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cepted by a tree as a function of breedable tree traits. The references in these

articles provide additional subject matter details.

Experiments using computer simulators have been employed to study phys-

ical systems when the relationship between system inputs and outputs can be

modeled mathematically but experiments using the physical system are infeasible

or costly to run. When only a limited number of runs of the simulator is feasi-

ble, Sacks et al. (1989) proposed a methodology for predicting simulator output

by modeling it as a realization of a Gaussian process (GP). However, computer

simulators often have the defect that they provide biased output for the physical

system due to the simplified biology or physics used in the mathematical model

that they implement. If both physical system observations and simulator output

are available, Bayesian calibration can be used to align simulator output to that

of the target physical system by constructing a bias-corrected simulator.

In this paper, we are concerned with the simultaneous optimization (mini-

mization, hereafter) of multiple objective functions. Because conflicting objective

functions need not have a common optimizer, the minimization is in the sense of

Pareto minimization, a method that identifies a set of compromise solutions. The

inputs of these compromise solutions are termed the Pareto Set for the problem

and the corresponding outputs constitute the Pareto Front. Pareto minimization

of simulators based on surrogate predictors has become an active research area

(e.g., Keane (2006), Picheny (2015), and Svenson and Santner (2016)).

We introduce a sequential design and analysis method based on a Bayesian

calibrated simulator to estimate the Pareto Front of the mean responses of a

multiple output physical system. The inputs to the simulator include the control

inputs for the physical system plus additional inputs, called calibration parame-

ters, that are unknown or difficult to measure in the physical system but which

are needed in the mathematical description of the input/output relationship. In

the sequential procedure, when an additional observation is to be added from

the physical system, a minimax fitness function is proposed to guide the update

step for the selection of the next control input setting. Alternatively, if an addi-

tional run is to be made using the computer simulator, the update step selects

the control input settings for the next simulator run as above and selects the

corresponding calibration input settings to minimize the sum of the posterior

mean square prediction errors.

Section 2 describes the calibration model, while Section 3 defines the Pareto

Front and Pareto Set. The proposed sequential methodology is presented in

detail in Section 4. The methodology is illustrated using analytic functions with



SEQUENTIAL PARETO MINIMIZATION 673

different output dimensions in Section 5. Section 6 provides a discussion.

2. Bayesian Calibration

This paper uses a Bayesian analysis of a statistical calibration model to pre-

dict the mean responses used in the proposed design and analysis methodology.

The calibration model is due to Kennedy and O’Hagan (2001) (the “KO model”).

The Bayesian analysis of this model is provided by Higdon et al. (2004) and Hig-

don et al. (2008). The KO model assumes that data from both a physical system

and a computer simulator of that system are available.

In overview, the KO model consists of two components. First, any dis-

crepancy between the physical system and the computer simulator is estimated;

secondly, the most likely values of the calibration parameters are identified using

prior information about these inputs and the data.

In detail, let X denote the input space, and suppose np runs on a d-input

physical system at control inputs xpi = (xpi,1, . . . , x
p
i,d)
> ∈ X , i = 1, . . . , np, yield

observations denoted yp(xp1), . . . , y
p(xpnp). Here > denotes transpose. Assume

yp(xpi ) can be described as a realization from

Y p(xpi ) = µ(xpi ) + ε(xpi ), (2.1)

where µ(xpi ) denotes the mean response of the physical system at xpi and ε(xp1),

. . . , ε(xpnp) are independent N(0, σ2ε ) measurement errors with unknown variance

σ2ε (or precision λε ≡ 1/σ2ε ).

Let ys(xsi , ti), i = 1, . . . , ns, denote the output from ns runs of a deterministic

computer simulator, where xsi = (xsi,1, . . . , x
s
i,d)
> ∈ X is a d × 1 control input

vector, and ti = (ti,1, . . . , ti,b)
> is a b-dimensional calibration parameter required

by the simulator. In this paper, the simulator data are modeled as realizations

of the stationary GP:

Y s(xsi , ti) = η + Z(xsi , ti), i = 1, . . . , ns, (2.2)

where η is the (constant) mean function, and Z(·, ·) is a zero-mean, stationary

GP with variance λ−1Z and correlation function

RZ((xi, ti), (xj , tj)) = exp

{
−

d∑
k=1

θxk(xi,k − xj,k)2 −
b∑

e=1

θte(ti,e − tj,e)2
}

; (2.3)

RZ(·, ·) is the Gaussian correlation function where (θxk , θ
t
e) are positive parameters

that control the smoothness of ys(xsi , ti) in (xsi , ti).

Following Kennedy and O’Hagan, define the bias (or “discrepancy”) of the

simulator at xp to be
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δ(xp) ≡ µ(xp)− ys(xp,φ). (2.4)

Thus δ(xp) measures the error in the simulator when run at t = φ for the target

mean µ(xp). In practice, simulators that are based on first principles regard µ(xpi )

as µ(xpi ,φ) and see φ as a quantity in the physical system whose value can be

solicited from subject-matter experts in the form of a prior distribution. In more

rudimentary models, t in ys(xp, t) is better thought of as a tuning parameter

and a “best value” φ minimizes the simulator error in some mathematical sense

(see Han, Santner and Rawlinson (2009) or Tuo and Wu (2015) for examples of

the latter).

The KO model describes the bias as realization of a zero mean GP, ∆(x),

with covariance λ−1δ Rδ, where the (i, j)th element of Rδ is

Rδ(xi,xj) = exp

{
−

d∑
k=1

θδk(xi,k − xj,k)2
}
. (2.5)

The discrepancy ∆(x) is assumed to be stochastically independent of Z(·, ·) and

ε(·).
As in Higdon et al. (2004), this paper places mutually independent pri-

ors on the unknown parameters Ω = (λ,θ,φ, η) where λ denotes the preci-

sion vector (λZ , λδ, λε)
>, θ denotes the vector of combined smoothness param-

eters (θx>,θt
>
,θδ
>

)>, where θx> = (θx1 , . . . , θ
x
d), θt

>
= (θt1, . . . , θ

t
b), and θδ

>

= (θδ1, . . . , θ
δ
d), φ denotes the unknown calibration parameter vector, and η the

unknown mean of the GP for the simulator responses. In an abuse of notation,

the Ω prior is denoted

π(φ)× π(θ)× π(λ)× π(η).

Bayarri et al. (2007) suggested using plug-in maximum likelihood estimators for

the θ parameters in the GP model, arguing that this typically yields an answer

similar to that of the fully Bayesian approach. However, we use a fully Bayesian

approach to prediction.

Let yp = (yp(xp1), . . . , y
p(xpnp))> denote the vector of the np physical obser-

vations and ys = (ys(xs1, t1), . . . , y
s(xsns , tns))> the vector of the ns computer

simulator outputs. Combining physical observations and computer simulator

outputs, let Y = ((yp)>, (ys)>)>. Assuming (1)-(5), the mean of the physical

system, µ(x), can be described as a realization of the sum

U(x) ≡ Y s(x,φ) + ∆(x). (2.6)

The posterior of Ω given the data Y is formed in the usual way from the

likelihood and the parameter prior. Let 1np+ns denote the (np + ns) × 1 vector
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of 1s, and Inp the np × np identity matrix. The log-likelihood at (λ,θ,φ, η) is

the density

`(φ,θ,λ, η;Y) ∝ −1

2
log(|ΣY |)−

1

2
{(Y − η1np+ns)>Σ−1Y (Y − η1np+ns)},(2.7)

where

ΣY = λ−1Z

[
Rpp
Z Rps

Z

Rsp
Z Rss

Z

]
+ λ−1δ

[
Rδ 0

0 0

]
+ λ−1ε

[
Inp 0

0 0

]
. (2.8)

HereRpp
Z = (RZ((xpi ,φ), (xpj ,φ))) is the np×np correlation matrix corresponding

to the physical system observations with RZ(·, ·) defined as in (2.3), Rps
Z =

(RZ((xpi ,φ), (xsj , tj))) is the np × ns cross-correlation matrix, Rsp
Z = (Rps

Z )>,

Rss
Z = (RZ((xsi , ti), (x

s
j , tj))) is the ns × ns correlation matrix corresponding to

the simulator data, and the components of Rδ are defined by (2.5). Thus, the

posterior distribution of Ω satisfies

π(Ω|Y) ∝ `(φ,θ,λ, η;Y)× π(φ)× π(θ)× π(λ)× π(η). (2.9)

Draws can be made from π(Ω|Y) using an adaptive MCMC based on the random-

walk Metropolis-Hastings (M-H) algorithm; the adaptation adjusts the length of

the random walk based on the acceptance rate in M-H (see Andrieu and Thoms

(2008) for details regarding the adaptive MCMC).

To predict the mean response of the physical system at a new point x0, the

approximation

µ̂(x0) = E{U(x0)|Y}
= E{E{U(x0)|Y,Ω}}

=

∫
E{U(x0)|Y,Ω} π(Ω|Y)dφ dθ dλ dη

≈ 1

Nmcmc

Nmcmc∑
q=1

E{U(x0)|Y,Ωq} (2.10)

is used, where Ωq = (φq,θq,λq, ηq) is the qth draw from π(Ω|Y).

The expectation in (2.10) is evaluated using the fact that the conditional

distribution [U(x0)|Y,Ω] is derived from the conditional distribution of the mul-

tivariate normal (see Supplementary Material) yielding

E{U(x0)|Y,Ω} = η + Σ>x0,YΣ−1Y (Y − η1np+ns), (2.11)

where ΣY is defined in (2.8) and

Σx0,Y = λ−1Z

[
R0,p
Z

R0,s
Z

]
+ λ−1δ

[
R0,p
δ

0ns

]
, (2.12)
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R0,p
Z is the np×1 vector of correlations having ith component RZ((x0,φ), (xpi ,φ)),

R0,s
Z is the ns×1 vector of correlations having ith component RZ((x0,φ), (xsi , ti)),

R0,p
δ is the np×1 vector of correlations having ith component Rδ((x0,φ), (xpi ,φ)),

and 0ns is the ns × 1 vector of zeros, and

V ar{U(x0)|Y,Ω} = λ−1Z + λ−1δ − Σ>x0,YΣ−1Y Σx0,Y . (2.13)

When a physical experiment and a computer simulator have multiple out-

puts, our modeling strategy is to assume that the (Z(xs, t), ε(xp),∆(xp)) for the

m output variables are mutually stochastically independent.

3. Pareto Minimization

Let w`(·), ` = 1, . . . ,m, denote m generic functions that are to be minimized

and assume that all m outputs are equally important. Further, assume that the

goal is to minimize all outputs simultaneously. This goal would be achievable if

there were a single control vector (input point) x∗ ∈ X satisfying w`(x
∗) < w`(x)

for all x ∈ X and all outputs ` = 1, . . . ,m. In practice, a single solution to

a multiobjective optimization problem need not exist. In that case, a set of

compromise solutions is obtained via Pareto minimization.

Definitions. The point xi is said to dominate the point xj , written as xi � xj ,
if and only if (i) w`(xi) ≤ w`(xj) for every ` ∈ {1, . . . ,m} and (ii) there exists

at least one output `? ∈ {1, . . . ,m}, such that w`?(xi) < w`?(xj). The vector

x? ∈ X is said to be a Pareto (optimal) minimizing point (or a nondominated

point) provided there is no x ∈ X such that x dominates x?. The Pareto Set

(PS), denoted by PX , is defined to be the collection of all Pareto minimizing

points in X ; the Pareto Front (PF), denoted by PY , is the image of PX in the

output space.

For simplicity, in the output space, we say that w(xi) dominates w(xj) if

(i) and (ii) are satisfied. When seeking to minimize a set of functions w`(x), ` =

1, . . . ,m, simultaneously, a point w(xj) that is not on the PF cannot be the best

choice, because it is dominated by at least one point on the PF.

As an example, consider a set of 15 points X = {x1,x2, . . . ,x15} (not shown)

whose outputs w(xi) = (w1(xi), w2(xi)) , i = 1, . . . , 15, are shown in Figure 1,

wherew(xi) are depicted as filled diamonds clockwise for i = 1, . . . , 6 and as open

circles clockwise for i = 7, . . . , 15. For any point xj , 7 ≤ j ≤ 15, there is at least

one xi, 1 ≤ i ≤ 6, that yields a smaller value of w1(·) and w2(·), so every input

vector yielding a circle point is dominated by at least one input vector yielding a

diamond point. On the other hand, no two input points xi1 ,xi2 , 1 ≤ i1 6= i2 ≤ 6,
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Figure 1. Diamonds are points on the
PF in the set of points denoted by di-
amonds or circles. Each circle is domi-
nated by one or more points on the PF.
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Figure 2. The area represents the hy-
pervolume indicator for the PF of Fig-
ure 1, and the reference point r is the
filled square.

dominate each other and these six input points form the PS, PX , among the 15

input points; the corresponding six output points w(xi), i = 1, . . . , 6 form the

PF, PY .

When the set of points in X is too large to be evaluated by the simulator, an

approximate (estimated) PF is taken to be the set of non-dominated points from

among those output points predicted at the input points of a given design. The

set of input points x for which w(x) is on the approximate PF is then called the

approximate, or current, PS. An important issue in multiobjective optimization

is the evaluation of the quality of an approximate (estimated) PF. In the sequen-

tial procedure proposed in Section 4, the approximate PF is updated after each

subsequent output value is predicted. Although the true PF is unknown, the im-

provement (deterioration) of the approximation can be assessed via the increase

(decrease) in the hypervolume indicator (HI). The HI indicator was introduced

by Zitzler and Thiele (1999) and is a popular real-valued quality measure used to

assess PF accuracy (see, also, Zitzler, Knowles and Thiele (2008)); it is defined

as follows.

First, let w`(x) be the output of the `th function and X the common domain

for the problem, and select a “reference point” r with `th coordinate satisfying

r` ≥ supX w`(x). However, when w(x) has been evaluated for a finite set of

inputs, the reference point requirement is often relaxed by setting r` equal to

the maximum of the w`(x) over the inputs. Then, intuitively, the HI of an

approximate PF, PY , is the area or volume of the set of points in objective space

that both dominate r and are dominated by one or more points of PY . The
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shaded area in Figure 2 is the HI for the (approximate) PF of Figure 1.

4. Proposed Sequential Design Methodology

This section proposes a sequential design methodology for identifying Pareto

minimizing solutions for the mean of a physical system having multiple outputs

using a calibrated simulator. Section 4.1 defines a maximin fitness function which

will be used for selecting new settings of the control input variables.

4.1. Minimax fitness function

Jones, Schonlau and Welch (1998) and Ranjan, Bingham and Michailidis

(2008) give early proposals of sequential designs based on “improvement func-

tions”; these papers guide the search for the maximum of a simulator surface and

a specified contour of it, respectively. In settings with multiple simulator outputs

Keane (2006) and Svenson and Santner (2016) proposed improvement criteria to

guide the sequential choice of inputs for determining Pareto minimizing solutions.

Specifically, the Svenson and Santner (2016) improvement criterion is based on a

“fitness function.” Here, we propose a modification of fitness-based improvement

methodology for finding Pareto Fronts based on predicted mean values from a

statistically calibrated simulator.

To describe the methodology of this paper, initially assume that the mean

function µ(x) = (µ1(x), . . . , µm(x)) of an m-output physical system is known.

Define Pnp+ns

X to be the current PS based on the calibrated simulator predictions

at the union of the control inputs for the first np physical system observations and

the control portions of the first ns inputs for the simulation runs. The minimax

fitness function of µ(·) at x ∈ X is then defined to be

IF (µ(x)) ≡

[
min

xi∈Pnp+ns

X

max
`=1,...,m

(µ`(xi)− µ`(x))

]
+

, (4.1)

where a+ = max{a, 0}. The intuition for (4.1) is as follows. The difference

µ`(xi) − µ`(x) is the improvement (or degradation) in the `th output at the

new point, x, compared with that at the ith point, xi, in the current PS. The

maximum in (4.1) identifies the output µ`(·), ` = 1, . . . ,m, producing maximum

improvement at x relative to µ`(xi). If the minimum in (4.1) over the points xi
in the current PS is positive, then x is not dominated by any point in the current

PS.

The greater IF (µ(x)), the more desirable is x. Thus an intuitive choice

of additional x ∈ X to add to a current set of training inputs is that x which
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maximizes IF (µ(x)). Since (4.1) is based on only those inputs in the current

PS, Pnp+ns

X , rather than all np + ns design points, the computational expense is

reduced.

In this paper, µ(·) is unknown and is predicted using U(·) in (2.6). The

improvement at a new x is assessed by the conditional expected minimax fitness

function given the current data Yc; that is

E{IF (U(x))|Yc} , (4.2)

where Yc = (Y>1 , . . . ,Y>m)>, and Y` = ((yp` )
>, (ys` )

>)> for ` = 1, . . . ,m. In the

Supplementary Material it is shown that when the mean function µ(x) is known,

the minimax fitness function (4.1) is zero for any x where the simulator has been

previously run or a physical experiment conducted. When µ(x) is predicted as in

(2.10) using the expected U(x), then the expected minimax fitness function (4.2)

need not be zero due to the presence of measurement error or bias in the output,

depending on the experimental platform used. In our examples, maximization of

(4.2) has not led to exact duplication of previously selected inputs.

Section 4.2 gives an algorithm for constructing sequential designs for identi-

fying the PF in two cases: when additional observations can only be taken on the

physical system; when additional runs can only be made from the simulator of

the physical system. The case where the researcher has the flexibility to choose

whether to run the simulator or to observe the physical system at any stage is

discussed briefly in Section 6.

4.2. Pareto minimization algorithms

Consider the setting in which a researcher can only make additional observa-

tions on the physical system and the set of simulator runs is fixed. Assume that

initial training data is available in the form of observations from the physical

system and runs of the simulator based on the initial designs Xnp and Xns , re-

spectively. In the examples of Section 5, the initial training designs are maximin

Latin Hypercube Designs.

Step 1.1 Fit the Bayesian calibrated model (2.6) for each output indepen-

dently and predict the vector of means of the physical system observations

at Xnp and Xns .

Step 1.2 Determine the PS, Pnp+ns

X , based on the predictions in Step 1.1.

Step 1.3 Select the next vector x∗ of control input settings to maximize

the posterior expected minimax fitness function given the current data Yc:
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x∗ ∈ argmax
x∈X

E{IF (U(x))|Yc}. (4.3)

Step 1.4 Observe yp(x∗) and form the augmented matrix of physical

system data ypnp+1 = ((ypnp)>, (yp(x∗))>)>. The details for the calculation

of (4.3) are given in Section 4.3.

Step 1.5 Set np = np + 1, and go to Step 1.1 unless the sampling budget

has been exhausted or a stopping criterion has been met.

Now consider the case when a researcher can only make additional runs of the

simulator while no further observations can be made using the physical system.

The proposed sequential design uses Steps 1.1–1.3 to select a control input x∗. To

run the simulator, a calibration parameter denoted t∗, must also be determined;

Steps 2.4 and 2.5 are used to select t∗.

Steps 2.1-2.3 Perform Steps 1.1–1.3 to select x∗.

Step 2.4 Construct t∗ to minimize the sum of the posterior mean squared

prediction errors (MSPE) given the current data Yc and the selected x∗:

t∗ ∈ argmin
t∈T

m∑
`=1

E{[Û`(x∗)− U`(x∗)]2|Yc}, (4.4)

where Û`(x
∗) is the posterior mean of [U`(x

∗)|Y`, Y s
` (x∗, t)]. The mean,

Û`(x
∗), is a function of t through Y s

` (x∗, t); Û`(x
∗) can be expressed in

closed form (see Section 4.4 for additional details).

Step 2.5 Evaluate ys(x∗, t∗) and form the augmented matrix of simulator

data ysns+1 = ((ysns)>, (ys(x∗, t∗))>)>.

Step 2.6 Set ns = ns + 1, and go to Step 2.1 unless the sampling budget

has been exhausted or a stopping criterion has been met.

4.3. Calculation of the expected minimax fitness function

Applying the Bayesian framework, the iterated expectation formula and the

Law of Large Numbers show that

E{IF (U(x))|Yc} ≈ 1

Nmcmc

Nmcmc∑
q=1

E{IF (U(x))|Yc,Ωq}, (4.5)

where Ωq, 1 ≤ q ≤ Nmcmc, are draws from the posterior distribution [Ω|Yc], and

IF (U(x)) is defined in Section 4.1. The evaluation of E{IF (U(x))|Yc,Ω}} can

be provided in near-closed form as follows. Calculation gives
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E{IF (U(x))|Yc,Ω} = E

{
max

(
0, min

xi∈Pnp+ns

X

max
1≤`≤m

U∗` (xi,x)

)∣∣∣∣∣Yc,Ω
}

(4.6)

= E {max (0, U∗min(x)) |Yc,Ω} , (4.7)

where U∗` (xi,x) = U`(xi)− U`(x) and

U∗min(x) = min
xi∈Pnp+ns

X

max
1≤`≤m

U∗` (xi,x).

Because conditional on (Yc,Ω), U`(xi) and U`(x) are bivariate normally

distributed random variables, U∗` (xi,x) is normally distributed with mean

µ∗` (xi,x) = (Σ`,xi,Y − Σ`,x,Y)>Σ−1`,Y(Y` − η`1np+ns) (4.8)

and variance

(σ∗` (xi,x))2 = 2(λ−1`,Z + λ−1`,δ )− Σ>`,xi,YΣ−1`,YΣ`,xi,Y − Σ>`,x,YΣ−1`,YΣ`,x,Y

− 2(Σ`,xi,x − Σ>`,xi,YΣ−1`,YΣ`,x,Y), (4.9)

where

Σ`,xi,x = λ−1`,ZR`,Z((xi,φ`), (x,φ`)) + λ−1`,δR`,δ((xi,φ`), (x,φ`)), (4.10)

(see Supplementary Material), and the notation R`,Z , R`,δ, Σ`,Y , and Σ`,x,Y
denotes (2.3), (2.5), (2.8), and (2.13), respectively, for the `th output.

The distribution of max1≤`≤m U
∗
` (xi,x) in (4.6) can be derived as follows.

In general the distribution of the maximum of several normal random variables is

not normal. Let φ(·) and Φ(·) denote the probability density function (PDF) and

the cumulative distribution function (CDF) of the standard normal, respectively.

Since independent Bayesian calibration models described in Section 2 are fit to

each output, the PDFs and CDFs of max1≤`≤m U
∗
` (xi,x) can be calculated using

Lemma 1.

Lemma 1. Suppose that V1, . . . , Vm are mutually independent Gaussian random

variables with mean µ` and standard deviation σ`, for ` = 1, . . . ,m, respectively.

Let V = max`=1,...,m(V`). Then the PDF of V is

fV (v) =

m∑
`=1

 1

σ`
φ

(
v − µ`
σ`

) m∏
j=1,j 6=`

Φ

(
v − µj
σj

) , (4.11)

and the CDF of V is

FV (v) =

m∏
`=1

Φ

(
v − µ`
σ`

)
. (4.12)

Finally, E{IF (U(x))|Yc,Ω} can be evaluated once the PDF of U∗min(x) in (4.7)
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is determined; this density can be calculated using Lemma 2.

Lemma 2. Suppose that W1, . . . ,Wm are mutually independent random variables

with PDF f`(w`), and CDF F`(w`), for ` = 1, . . . ,m, respectively. Let W =

min`=1,...,m(W`). Then, the PDF of W is

fW (w) =

m∑
`=1

f`(w)

m∏
j=1,j 6=i

(1− Fj(w))

 . (4.13)

Our implementation uses (4.13) to evaluate E{IF (U(x))|Yc,Ω} numerically

using standard integration techniques implemented in the MATLAB function

integral.m.

4.4. The calculation of the MSPE

Given the update x∗ for the control portion of the simulator input, the

selection of the update of the calibration parameter requires the evaluation of the

sum of the expectations in (4.4). In (4.4), Û`(x
∗) denotes the posterior mean of

[U`(x
∗)|Yc, Y s

` (x∗, t)]. Let Q`(x
∗) = [Û`(x

∗)−U`(x∗)]2 be the squared prediction

error for the `th output at x∗. The expectation in (4.4) can be approximated by

E{Q`(x∗)|Yc} ≈
1

Nmcmc

Nmcmc∑
q=1

E{Q`(x∗)|Yc,Ωq}. (4.14)

Conditioning on the output at a potential new t, the expectation in (4.14)

can be written

E{Q`(x∗)|Yc,Ω} = E[Y s
`(x

∗,t) |Yc,Ω]E{Q`(x∗)|Yc, Y s
` (x∗, t),Ω}. (4.15)

This method of conditioning is termed “Stepwise uncertainty reduction” and has

been used by numerous authors (see, for example, Williams, Santner and Notz

(2000) and Picheny (2015)).

The inner expectation in (4.15) depends on the data in Yc only through the

`th output which is Y`. Thus

E{Q`(x∗)|Yc, Y s
` (x∗, t),Ω} = V ar{U`(x∗)|Y`, Y s

` (x∗, t),Ω}.

This variance is

V ar{U`(x∗)|Y`, Y s
` (x∗, t),Ω} = λ−1`,Z + λ−1`,δ

− Σ>`,x∗,Y,Y s
` (x∗,t)Σ

−1
`,Y,Y s

` (x∗,t)Σ`,x∗,Y,Y s
` (x∗,t), (4.16)

from (2.13), where the conditioning data are [Y`, Y s
` (x∗, t)], and where
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Σ`,x∗,Y,Y s
` (x∗,t) =

[
Σ`,x∗,Y λ−1`,ZR`,Z((x∗,φ`), (x

∗, t))
]
, and

Σ`,Y,Y s
` (x∗,t) = λ−1`,Z

R
pp
`,Z Rps

`,Z Rpt
`,Z

Rsp
`,Z Rss

`,Z Rst
`,Z

Rtp
`,Z Rts

`,Z 1

+ λ−1`,δ

R`,δ 0 0

0 0 0

0 0 0


+ λ−1`,ε

Inp 0 0

0 0 0

0 0 0

 . (4.17)

The definitions ofRpp
`,Z ,Rps

`,Z ,Rss
`,Z ,Rsp

`,Z ,andR`,δ can be found in (2.8) for `th out-

put. The symbol Rpt
`,Z is the np×1 vector of correlations (R`,Z((xpi ,φ`), (x

∗, t))),

and Rst
`,Z is the ns × 1 vector of correlations (R`,Z((xsi , ti), (x

∗, t))). In addition,

Rsp
`,Z = (Rps

`,Z)>, Rtp
`,Z = (Rpt

`,Z)>, and Rts
`,Z = (Rst

`,Z)>.

Because the inner expectation in (4.15), calculated by (4.16), is independent

of Y s
` (x∗, t) (but depends on the inputs x∗ and t), the expectation in (4.14) can

be calculated as

1

Nmcmc

Nmcmc∑
q=1

V ar{U`(x∗)|Y`, Y s
` (x∗, t),Ωq}. (4.18)

5. Examples

This section demonstrates the performance of the proposed sequential design

methodology for two analytic test functions that are adapted from the multiple-

objective optimization literature. In each case, the mean of the physical system

is taken to be the multiple-objective function for the given system while the bias

(and hence simulator output) is constructed separately. The first example has

d = 2 control inputs, b = 1 calibration input, and m = 2 outputs; the second

example has d = 4 control inputs, b = 1 calibration input, and m = 4 outputs.

For both examples, the initial designs for the physical system and simulator

experiments were taken to be maximin LHDs (obtained from the website https:

//spacefillingdesigns.nl). The expectation in (2.11) was evaluated using

MATLAB code written by the first author. The MATLAB function paretoset.m

was used to calculate Pnp+ns

X in (4.1) (Cao (2009)). The optimizations in (4.3)

and (4.4) were performed using a hybrid algorithm that identified a starting point

for a quasi-Newton search by using the Dividing Rectangles DIRECT global search

algorithm of (Finkel (2003)) and the optimizer fmincon.m from the MATLAB

Optimization toolbox.

https://spacefillingdesigns.nl
https://spacefillingdesigns.nl
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All calculations in (2.11) were made using Nmcmc = 250 equally-spaced sam-

ples drawn from MCMC runs with 5,000 burn-in and 5,000 production draws

from the posterior distribution of Ω. As in Higdon et al. (2004), the software

used to fit the model of this paper assumes two standardizations that help pro-

vide numerical stability in the calculations and facilitate the choice of priors:

each input was standardized to [0, 1]; the mean and standard deviations of the m

simulator outputs were used to standardize both the simulator outputs and the

corresponding physical system outputs so that the former had sample mean 0 and

sample variance 1. Thus the prior for Y s(x, t) was taken to be a zero mean GP

with unknown precision λZ that was modeled with prior mean 1. The calibration

parameter φ was assumed to have the (non-informative) normal prior with mean

.5 and standard deviation .25. All θ parameters for Y s(x, t) and ∆(x) were given

priors induced by assuming the components of exp{−4θ} are independent and

identically Beta(5, 5) distributed. Let Γ(a, b) denote the Gamma distribution

with mean a/b and variance a/b2. The prior distributions of the λ components

were assumed to be independent with π(λZ) ∼ Γ(5, 5), π(λδ) ∼ Γ(12, 2), and

π(λε) ∼ Γ(40, 4).

5.1. The MOP2 function

Introduced by Fonseca and Fleming (1995), the MOP2 function has m = 2

outputs and d = 2 inputs. The input space is (x1, x2) ∈ [−2, 2]2 and the outputs,

used as the mean of the physical system, are

µp` (x) = 1− exp

{
−

2∑
k=1

(
xk +

(−1)`√
2

)2
}
, for ` = 1, 2. (5.1)

The goal was to identify the input settings that minimize µp1(x) and µp2(x) in the

Pareto sense.

The physical system observations were generated from Y p
` (x) = µp` (x) + ε`,

` = 1, 2, where ε` ∼ N(0, 0.052). The simulator runs were taken to have a single

calibration input, t ∈ [−2, 2]. The simulator output was ys` (x, t) = µp` (x) +

|t|/50 + 0.4 + (x1x2/20)2 for ` = 1, 2. The parameter φ was taken to be 0 so that

the bias function was δ(x) = µp` (x) − ys` (x, 0) = −0.4 − (x1x2/20)2. Thus the

simulator output ys` (x, 0) was biased for the target µp` (x).

The true PS of µp1(x) and µp2(x) consists of all x in

PX =

{
xk : x1 = x2 and − 1√

2
≤ x1, x2 ≤

1√
2

}
. (5.2)

In the assessment of the performance of our sequential method, PX was approx-
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Figure 3. Left Panel: (µp
1(x), µp

2(x)) for the 10 points identified by the Sequential Pareto
minimization procedure that adds only physical observations are labeled 1, . . . 10 and denoted
by filled diamonds. Right Panel: (µp

1(x), µp
2(x)) for the 10 points identified by the Sequential

Pareto minimization procedure that adds only simulator runs are labeled 1, . . . 10 and denoted
by filled diamonds. In both panels, the initial observations of physical experiment are denoted
by stars (∗), and the initial runs of computer simulator are denoted by circles (◦).

imated by 100 x points uniformly spread over the line segment in (5.2) and the

PF was approximated by the images of these points.

For both physical and computer experiments, the size of the initial maximin

LHDs was chosen to be 5 × the number of input dimensions, an initial 10 points

for the physical experiment and 15 points for the computer simulator. These

initial designs were augmented sequentially using the algorithm in Section 4 with

10 new inputs either by adding physical observations (Case 1) or simulator runs

(Case 2).

The left and right panels of Figure 3 plot (µp1(x), µp2(x)) for 10 added points

from the proposed method for Cases 1 and 2, respectively. For either sampling

option, simulator or physical system, the (µp1(x), µp2(x)) at each x identified by

the algorithms are close to the true PF and spread over the entire PF. Thus the

method provides many good options for the experimenter.

In practice, the mean functions of the physical systems are unknown and so

the quality of the PS and PF identified by the proposed procedure was assessed by

the following method. After each output was added, using either the Case 1 or the

Case 2 procedure, the simulator was used to predict (µp1(x), µp2(x)) at the control

portion of the inputs for all initial data and all data added up to that stage.

Then, from among these predicted physical means, the set of non-dominated

predicted means was identified, together with their corresponding inputs; these

inputs were treated as the approximate PS. The hypervolume indicator (HI) was
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Figure 4. In both panels: the top solid horizontal line is the hypervolume indicator of the true
Pareto Front. The two line segments show the hypervolume indicator of the set of (µp

1(x), µp
2(x))

evaluated at the approximate Pareto Set at each stage, 1 to 10, of the Sequential Pareto mini-
mization procedure when adding only physical observations (circles) or when adding only sim-
ulator runs (diamonds). Left Panel: the MOP2 example; Right Panel: the DTLZ2 example.

calculated relative to the reference point r = (1, 1) for the set of (µp1(x), µp2(x))

evaluated at the approximate Pareto Set. The left panel of Figure 4 shows the

HI for the resulting set of points for the proposed method for the Case 1 and

Case 2 sampling plans. It also plots the maximum HI which is obtained from the

true PF. As new data is acquired the HI of the non-dominated points approaches

the HI of the true PF. This figure, and other examples not shown, suggests that

adding physical system observations can be more valuable than adding simulator

runs.

5.2. The DTLZ2 function

This example evaluates the performance of the proposed sequential method

in a higher-dimensional input and output setting. Introduced by Deb et al.

(2005), the version of the DTLZ2 functions used here have d = 4 inputs and

m = 4 outputs. The input space is taken to be [0, 1]4 and the DTLZ2 functions

are used as the means of the four physical system outputs:

µp1(x) = (1 + g(x4)) cos
(πx1

2

)
cos
(πx1

2

)
cos
(πx3

2

)
,

µp2(x) = (1 + g(x4)) cos
(πx1

2

)
cos
(πx1

2

)
sin
(πx3

2

)
,

µp3(x) = (1 + g(x4)) cos
(πx1

2

)
sin
(πx2

2

)
,

µp4(x) = (1 + g(x4)) sin
(πx1

2

)
, (5.3)
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where g(x4) = (x4− 0.5)2. The true Pareto Set of (µp1(x), µp2(x), µp3(x), µp4(x)) is

PX = {x : x4 = 0.5};

PX was approximated by 1,000 points uniformly spread in PX ; the approximation

of the true Pareto Front was taken to be the means evaluated at this set of 1,000

points.

The physical system observations were generated from Y p
` (x) = µp` (x) + ε`,

` = 1, 2, 3, 4, where ε` ∼ N(0, 0.012). The simulator runs were taken to have

a single calibration input, t, with domain [0, 1] and were obtained by adding

µp` (x) + (t − 0.5)2 to modified versions of µp` (x) in which g(x4) was replaced

by gs(x1, x4, t) = x1 + (x4 − 0.5)2. The true value of φ was set equal to 0.5;

this quantity minimizes the additive bias, although the simulator is still biased

because the multiplicative term (1 + g(x4)) is perturbed.

While there is difficulty visualizing the augmented PF, the hypervolume

indicator plots were simple to visualize. The right panel of Figure 4 plots all HIs

based on the reference point r = (1.1, 1.1, 1.1, 1.1). This figure shows that adding

the proposed experimental output from the physical system was more effective,

in the sense of increasing HI, than adding simulator run data.

6. Discussion

No formal stopping rule has been included in the sequential Pareto min-

imization methodology in Section 4. Basing such a rule, e.g., on the expected

minimax fitness function is possible, although an average of these values over a

number of observations is more stable than any single value because this function

is not monotone decreasing. The lack of monotonicity is due to the estimated

mean response of the physical system being updated after each new observation

is taken.

When bias in the simulator is non-additive, we have seen through examples

(not shown here) that our proposed approach is more efficient for Pareto mini-

mization than a simulator-only based method. This is not surprising since the

PF of the biased simulator is not necessarily the same as that of the true PF of

the means of the corresponding physical system.

For minimizing the integrated mean squared (prediction) error of the physical

system output, Ranjan et al. (2011) found that addition of physical observations

is more valuable than addition of simulator data. However, as seen in the left

panel of Figure 4, this conclusion is not necessarily true for Pareto minimization

of the means of the physical system. This leads to the important issue of which
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experimental platform should be selected at a given stage of the sequential pro-

cedure when it is possible to add either an observation from the physical system

or a run of the computer simulator.

A possible way to select the experimental platform is first to compute the

next control and calibration inputs x∗ and t∗, respectively, as in Section 4.2.

Then compare the posterior mean squared prediction errors (MSPE) for outputs

from the two experimental platforms given the current data Yc and select the

platform producing the smaller of these two posterior MSPEs. The posterior

MSPEs are calculated as follows. The posterior MSPE of adding the simulator

runs Y s
` (x∗, t∗), ` = 1, . . . ,m, is

MSPES =

m∑
`=1

E{[Û s` (x∗)− U`(x∗)]2|Yc}, (6.1)

where Û s` (x∗) is the posterior mean of [U`(x
∗)|Y`, Y s

` (x∗, t)]. The posterior

MSPE of adding one physical observations Y p
` (x∗), ` = 1, . . . ,m, is

MSPEP =

m∑
`=1

E{[Ûp` (x∗)− U`(x∗)]2|Yc}, (6.2)

where Ûp` (x∗) is the posterior mean of [U`(x
∗)|Y`, Y p

` (x∗)]. Both expressions

depend only the current data Yc. The performance of this procedure is currently

under study.

An issue raised by a referee concerns the performance of the single-platform

procedures proposed here compared with a mixed-platform procedure in an ap-

plication where a researcher may wish to implement an alternative predetermined

sequence of computer and physical system experiments. The need for such an

alternative may be due to constraints on the availability of an experimental ap-

paratus or that of a subject-matter specialist to run a (complicated) simulator.

While no comparisons of the two single-platform procedures have been made

with such a predetermined mixed-platform procedure, we speculate that, based

on the closeness of the HIs shown in Figures 4, the performance of a mixed-

platform procedure would be similar to either of the single platform procedures.

A further issue raised by a referee concerns the efficacy of the adaptive pro-

cedures compared to that of space-filling, but non-adaptive, designs of the same

size. Regarding the HIs of the estimated PFs as a measure of efficiency, Figure 5

plots the HI values for the two adaptive sequential procedures and two sequences

of non-adaptive designs for the MOP2 example. All four procedures start with

10 initial inputs for the physical experiment and 15 runs for the computer sim-
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Figure 5. Hypervolume indicators (HIs) of the estimated Pareto Front for the MOP2
example for four procedures: Section 4.3 method adding only simulator runs (hollow
diamonds); Section 4.3 method adding only physical system observations (hollow circles);
use Mm LHDs of increasing size for extra simulator runs (filled diamonds); use Mm LHDs
of increasing size for extra physical system observations (filled circles).

ulator where the model outputs, measurement errors, and inputs are selected as

in Section 5.1. For k additional observations, k = 1, . . . , 10, the HIs are denoted

by hollow circles for the adaptive procedure that always adds one physical sys-

tem observation, and by hollow diamonds for the adaptive procedure that always

adds one simulator run. For k = 1, . . . , 10, each filled circle shows the HI of the

estimated PF for a fixed design that uses a 15× 3 maximin LHD to specify the

control and calibration inputs for the simulator runs, and a (10+k)×2 maximin

LHD to specify the control inputs for the physical experiment. For k = 1, . . . , 10,

each filled diamond shows the HI for a fixed design that uses a 10 × 2 maximin

LHD to specify the control inputs for the physical experiment and a (15 + k)× 3

maximin LHD to specify the control and calibration inputs for the simulator runs.

Figure 5 shows that both adaptive sequential procedures are greatly superior to

the fixed size designs.

An issue of current work is the determination of the fraction of observations

to be allocated to the initial physical and simulator designs. Intuitively, the

size of the initial designs should not be too small but, if too large a fraction of

a budgeted sample size is used, then it may only be possible to identify a few

points in the PS, resulting in only a few points around the PF. The optimal initial

design sizes may depend on the complexity/smoothness of the output surfaces.
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Another issue of current investigation is the extension of our proposed min-

imax fitness function (4.1) to dependent calibration models for the multiple out-

puts. When outputs are correlated, a multivariate calibration model could, intu-

itively, provide more accurate predictions than independent Bayesian calibration

models for each output. Currently available multivariate calibration models as-

sume there is no bias between the physical system and corresponding simulator

outputs. e.g., Paulo, Garćıa-Donato and Palomo (2012) construct a multivari-

ate calibration model using the linear model of coregionalization (Gelfand et al.

(2004)). Thus further work is needed.

Supplementary Materials

The supplementary material contains the proof of the bivariate distribution

of the calibrated predictor used in Section 4.3, a proof showing that when the

mean function µ(x) is known, the minimax fitness function (4.1) is zero at any x

that has been previously used in either experimental platform, and an example

showing that the global maximum of the expected improvement surface for the

MOP2 function of Section 5.1 is considerably larger than the corresponding values

for the 25 points in the initial design.
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