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Abstract: When designing an experiment, it is important to choose a design that is

optimal under model uncertainty. The general minimum lower-order confounding

(GMC) criterion can be used to control aliasing among lower-order factorial effects.

A characterization of GMC via complementary sets was considered in Zhang and

Mukerjee (2009a); however, the problem of constructing GMC designs is only par-

tially solved. We provide a solution for two-level factorial designs with n factors

and N = 2n−m runs subject to a restriction on (n, N): 5N/16 + 1 ≤ n ≤ N − 1.

The construction is quite simple: every GMC design, up to isomorphism, consists of

the last n columns of the saturated 2(N−1)−(N−1−n+m) design with Yates order. In

addition, we prove that GMC designs differ from minimum aberration designs when

(n, N) satisfies either of the following conditions: (i) 5N/16 + 1 ≤ n ≤ N/2 − 4, or

(ii) n ≥ N/2, 4 ≤ n + 2r − N ≤ 2r−1 − 4 with r ≥ 4.

Key words and phrases: Aliased effect-number pattern, effect hierarchy principle,

fractional factorial design, minimum aberration, resolution, wordlength pattern,

Yates order.

1. Introduction

Regular two-level fractional factorial designs are common in practice. In
the past three decades, many statisticians have investigated optimality criteria
for selecting good designs; see Wu and Hamada (2000) and Mukerjee and Wu
(2006) for detailed reviews. Minimum aberration (MA) has become the most
popular criterion. Following the landmark paper of Fries and Hunter (1980),
many investigators have contributed theory and methodology concerning MA;
e.g., Franklin (1984), Chen and Wu (1991), Chen, Sun and Wu (1993), Chen and
Hedayat (1996), Tang and Wu (1996), Zhang and Shao (2001), Butler (2003),
Cheng and Tang (2005), Chen and Cheng (2006), and Xu and Cheng (2008).

Wu and Chen (1992) proposed the clear effects (CE) criterion, motivated by
their observation that MA can fail to produce a design maximizing the number
of clear two-factor interactions (2fis). A design is CE-optimal if it maximizes
the number of clear main effects and 2fis. Wu and Hamada (2000) and Li et al.
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(2006) discovered more examples of designs that are CE-optimal but not MA.
For additional developments on CE, see Chen and Hedayat (1998), Tang et al.
(2002), Wu and Wu (2002), Ai and Zhang (2004), Chen et al. (2006), Yang et al.
(2006), and Zhao and Zhang (2008).

Sun (1993) introduced the maximum estimation capacity (MEC) criterion.
A design is called MEC-optimal if it allows one to estimate the maximum number
of models involving all main effects and some 2fis. For details, see Cheng and
Mukerjee (1998) and Cheng, Steinberg, and Sun (1999).

Zhang et al. (2008) recently applied the effect hierarchy principle (Wu and
Hamada (2000)) to motivate a characterization of designs using the aliased effect-
number pattern (AENP). Based on the AENP, they proposed the general mini-
mum lower-order confounding (GMC) criterion. They proved that the MA, CE,
MEC, and GMC criteria can each be viewed as sequentially minimizing or max-
imizing the components of a corresponding vector function of the AENP. The
GMC criterion compares designs by treating the AENP as a set, thus providing
a unified approach applicable to the other criteria. GMC is flexible, accommo-
dating prior information about the relative importance of factors and so incor-
porating preferences for estimation of the most important lower-order effects.
This kind of prior information is often available in practice, so GMC designs are
widely applicable.

Several articles have extended the GMC theory and methodology, including
work on the construction of GMC designs by Zhang and Mukerjee (2009a,b). The
first of these two papers characterizes the GMC criterion via a complementary
set. This approach yields a powerful tool for GMC design construction when the
number of factors in the complementary design is at most 15 and factors have
prime or prime power levels. Much work remains, however, before the GMC
construction problem is fully solved.

The current paper considers only two-level factorial designs with n factors
and N = 2n−m runs. The primary contribution of the paper is the solution of the
GMC construction problem for pairs (n,N) satisfying 5N/16 + 1 ≤ n ≤ N − 1.
The construction is quite simple: up to isomorphism, every GMC design consists
simply of the last n columns of the saturated 2(N−1)−(N−1−n+m) design with the
Yates order. This simplicity makes the adoption of GMC designs convenient for
practitioners.

The paper is organized as follows. Section 2 reviews the MA and GMC crite-
ria, introduces notation, and presents our key Theorem 1. Section 3 develops our
solution of the GMC construction problem subject to the restriction on (n,N).
Section 4 shows that, for specified subsets of (n, N), the MA and GMC criteria
yield different designs. The Appendix contains an outline of the proof of Theo-
rem 1. Details of the proof are given in a supplement, available at the journal
website http://www.stat.sinica.edu.tw/statistica.

http://www.stat.sinica.edu.tw/statistica
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2. Definitions, Notation and a Key Theorem

Let D denote a 2n−m regular fractional factorial design with n factors,
N = 2n−m runs, and m independent defining words. Factors are numbered
1, 2, . . . , n, but are also referred to as letters. The product (juxtaposition) of
any subset of the n letters is called a word. The m independent defining words
generate an identical subgroup, called the defining contrast subgroup of D. Here
the operation for the defining contrast subgroup is multiplication with exponents
reduced modulo 2. The number of letters in a word is called its wordlength. Let
Ai(D) denote the number of words with length i in the defining contrast sub-
group of D. The vector A(D) = (A1(D), A2(D), . . . , An(D)) is called wordlength
pattern of D. The smallest r satisfying Ar > 0 is called the resolution of D. A
2n−m design with resolution r is denoted by 2n−m

r . A design is said to be MA if
it sequentially minimizes (A1, A2, . . . , An) among all possible regular designs for
given parameters n and m.

We now review some concepts from Zhang et al. (2008) concerning the GMC
criterion in the context of two-level regular designs. If an ith-order effect is
aliased with k jth-order effects simultaneously, we say that the severe degree of
the ith-order effect being aliased with jth-order effects is k. Let #

iC
(k)
j denote the

number of ith-order effects aliased with jth-order effects at degree k, and define
#
iCj = ( #

iC
(0)
j , #

iC
(1)
j , . . . , #

iC
(Kj)
j ),

where Kj =
(
n
j

)
. The sequence (or the set) of numbers

#C = ( #
1C1,

#
0C2,

#
1C2,

#
2C1,

#
2C2,

#
0C3,

#
1C3,

#
2C3,

#
3C1,

#
3C2,

#
3C3, . . .) (2.1)

is called an aliased effect-number pattern (AENP). In (2.1) as a sequence, the
general rule is that #

iCj is placed ahead of #
sCt if max(i, j) < max(s, t), or if

max(i, j) = max(s, t) and i < s, or if max(i, j) = max(s, t), i = s and j < t.
Zhang and Mukerjee (2009a) noted that some terms in (2.1) are uniquely

determined by the terms before them, for example, #
jC

(1)
1 =

∑
k≥1 k #

1C
(k)
j , and

so the sequence (2.1) can be simplified into the version
#C = ( #

1C2,
#
2C2,

#
1C3,

#
2C3,

#
3C2,

#
3C3, . . .). (2.2)

The GMC criterion based on (2.2) is defined as follows.

Definition 1. Let #Cl be the l-th component of #C, and #C(D1) and #C(D2)
be the AENPs of designs D1 and D2, respectively. Suppose that #Ct is the first
component such that #Ct(D1) and #Ct(D2) are different. If #Ct(D1) > #Ct(D2),
then D1 is said to have less general lower-order confounding than D2. A design
D is said to have general minimum lower-order confounding if no other design
has less general lower-order confounding than D, and such a design is called a
GMC design.
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It is not possible for one optimality criterion to be suitable for all theoretical
and practical situations. The GMC design is no exception. According to the
usual interpretation of the effect hierarchy principle for factorial effects, a good
design should maximize the number of main effects and 2fis that can be sepa-
rately estimated. When an experimenter has prior information about the relative
importance of the factors in an experiment, a ‘good’ design should reserve the
best estimates for the most important effects. According to Zhang et al. (2008),
the GMC design must have the maximum number of clear main effects and 2fis
if a CE-optimal design exists. If clear effects exist, then factors can be assigned
to the columns of the GMC design so that the most important effects are clear.
If clear effects are not available, then the GMC criterion can still be used to rank
designs, and factors can be assigned to the columns of the GMC design so that
the most important effects are least aliased.

Zhang et al. (2008) observed that MA designs sequentially minimize the
lower-order confounding averaging over the severe degrees. Obviously, the av-
erage estimability of all effects of the same order differs from their separate
estimability. It is known that, in some situations, the MA design may not have
the maximum number of clear main effects and 2fis (Wu and Hamada (2000)
and Li et al. (2006)). MA designs are thus more suitable when there is no prior
information about the relative importance of the factors.

To illustrate the above points, let us revisit Example 4 in Zhang et al. (2008)
in which the following two 29−4 designs are considered:

D1 : I = 1236 = 1247 = 1258 = 13459, D2 : I = 1236 = 1247 = 1348 = 23459.

D1 and D2 are of MA and GMC, respectively. Both have #
1C2 = (9, 0, . . . , 0),

but #
2C2(D1) = (8, 24, 0, 4, 0 . . . , 0) and #

2C2(D2) = (15, 0, 21, 0, . . . , 0). Therefore
both can clearly estimate all the main effects. As for the 2fis, the GMC design
D2 can clearly estimate all 15 2fis involving factor 5 or factor 9 while the MA
design D1 can only clearly estimate 8 2fis involving factor 9. Hence, when the
experimenter is interested in some or all 2fis involving factor 5 or factor 9, design
D2 is a better choice than D1. According to the usual interpretation of the effect
hierarchy principle, D2 is also a better choice (Wu and Hamada (2000)).

We now introduce notation needed for a key theorem used in our construction
of GMC designs. For a 2n−m design, write q = n − m and let 1, . . . , q stand
for q independent columns with 2q components of entries 1 or −1. Denote the
saturated design by Hq = {1, 2, 12, 3, 13, 23, 123, . . . , 12 · · · q}, which is generated
by the q independent columns and has the Yates order. Let Hr be the design
consisting of the first 2r − 1 columns of Hq that is generated by the first r

independent columns, 1, . . . , r. We then have

H1 = {1} and Hr = {Hr−1, r, rHr−1} for r = 2, . . . , q.
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Furthermore, let Sqr = Hq\Hr , i.e., the set of columns in Hq but not in Hr. Also
let Fqr = {q, qHr−1}, where qHr−1 = {qd : d ∈ Hr−1}, and let Tr = Frr. For
consistency, we take Fq1 = {q}, T1 = {1}, qH1−1 = {q}, and 1H1−1 = {1}. The
designs Fqr and Tr with r ≥ 3 are isomorphic saturated resolution IV designs with
r independent columns. Introducing both Fqr and Tr simplifies the presentation
in Sections 3 and 4.

Usually a 2n−m design D can be obtained by selecting a subset of n columns
from Hq such that D has q independent columns. For example, when q = 3, the
H3 design with the Yates order can be written as

H3 = {1, 2, 12, 3, 13, 23, 123},

where 1, 2, and 3 denote the three independent columns, and “12” denotes the
componentwise product of 1 and 2. The 24−1 design D = {1, 2, 3, 123} can be
considered as a subset of H3 consisting of the independent columns 1, 2, and 3
and their product 123. Since factor levels in an experiment are allocated to runs
based on the the columns of the 2n−m design, we do not distinguish between
factors and columns. In addition, we label the columns of Hq using the natural
products of the independent columns 1, . . . , q. For example, “125” stands for the
19-th column of Hq with q ≥ 5 (since 19 in the decimal system equals 10011 in
the binary system).

Throughout the paper, let S denote a design, a subset of Hq, with s factors
(columns). In later sections, in order to get the GMC design, we need to maximize
#
1C2(S) among all designs with s factors. Note that #

1C2(S) is maximized if S has
resolution at least IV, or S consists of s independent factors. Strictly speaking,
the resolution of S is not well-defined if S consists of s independent factors since
all the elements in the wordlength pattern of S are 0. However, for this type of
design, none of the main effects are aliased with other main effects or 2fis, which
is an essential property of a design of resolution IV or higher. For convenience
of presentation in later sections, we treat designs consisting of s independent
factors, including s ≤ 3, as designs of resolution at least IV.

For a given design S ⊂ Hq and a γ ∈ Hq, define

Bi(S, γ) = #{(d1, d2, . . . , di) : d1, d2, . . . , di ∈ S, d1d2 · · · di = γ},

where # denotes the cardinality of a set, d1, . . . , di are different columns in S,
and d1d2 · · · di is the ith order interaction of d1, d2, . . . , di. By this definition,
Bi(S, γ) is the number of ith order interactions in S aliased with γ. An equivalent
definition can be found in (2.5) of Zhang and Mukerjee (2009a). For example,
consider q = 3, S = {1, 2, 3, 12, 23}, i = 2, γ1 = 12 ∈ S, and γ2 = 123 ∈ Hq\S.
Among the 10 2fis in S, there is one 2fi (between 1 and 2) and two 2fis (between
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1 and 23, and between 3 and 12) that are aliased with γ1 and γ2, respectively.
Hence, B2(S, γ1) = 1 and B2(S, γ2) = 2.

It is also useful to take

ḡ(S) = #{γ : γ ∈ Hq\S,B2(S, γ) > 0}, (2.3)

the number of main effects in Hq\S aliased with at least one 2fi of S. Note that
the g(S) defined in Zhang and Mukerjee (2009a) is represented as ḡ(Hq\S) here.
Zhang and Mukerjee (2009a) observed that minimizing g(Hq\S) is an important
step in the search for a GMC design. The following theorem describes the struc-
ture of designs that minimize ḡ(S) and plays a key role in the construction of
GMC designs.

Theorem 1. Let S ⊂ Hq be a design with s factors (columns). Under isomor-
phism, we have

(a) if 2r−1 ≤ s ≤ 2r − 1 for some r ≤ q and ḡ(S) is minimized among all the
designs with s factors, then S has r independent factors and S ⊂ Hr;

(b) if 2r−2 + 1 ≤ s ≤ 2r−1 for some r ≤ q and ḡ(S) is minimized among all the
designs with s factors and resolution at least IV, then S has r independent
factors and S ⊂ Fqr (or Tr);

(c) if 2r−2 + 1 ≤ s ≤ 2r−1 for some r ≤ q, then S sequentially maximizes the
components of

{−ḡ(S), #
2C2(S)} (2.4)

among all the designs with s factors and resolution at least IV if and only if
S is any one of four isomorphic designs: that consisting of the first s columns
of Fqr; that consisting of the last s columns of Fqr; that consisting of the first
s columns of Tr; that consisting of the last s columns of Tr. Here Fqr and Tr

have the Yates order.

An outline of the proof for Theorem 1 is given in the Appendix. A full proof
of the theorem is available as a supplement at the journal website
http://www.stat.sinica.edu.tw/statistica.

In the sequel it is helpful to employ several abbreviations. The statement
“a design sequentially maximizes the components of the sequence” is shortened
to “a design maximizes the sequence”. And “ḡ(S) is minimized among all the
designs with s factors” is reduced to “ḡ(S) is minimized”. We also suppress
the phrase “up to isomorphism”, since all the isomorphic designs are viewed as
equivalent.

http://www.stat.sinica.edu.tw/statistica
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3. A Theory on Constructing GMC 2n−m Designs

In this section, let D be a 2n−m regular fractional factorial design. It is
convenient to develop the theory separately for two subsets of pairs (n,N): first
5N/16 + 1 ≤ n < N/2, then n ≥ N/2.

3.1. GMC 2n−m designs with 5N/16 + 1 ≤ n ≤ N/2

Theorem 1 in Zhang et al. (2008) has shown that a GMC design has max-
imum resolution. Since for 5N/16 + 1 ≤ n ≤ N/2, the maximum resolution of
2n−m designs is IV, the resolution of GMC designs here is also IV. Moreover, by
the results of Bruen, Haddad and Wehlau (1998) and Butler (2007), any 2n−m

IV

design D with 5N/16 + 1 ≤ n ≤ N/2 must be taken from Fqq, i.e., D ⊂ Fqq. In
this case the number of factors in Fqq\D, which is N/2 − n, is less than that of
D, which is n.

To study the construction of GMC designs, let us first investigate the rela-
tionships between the AENP of D and that of Fqq\D. We have the following
result.

Lemma 1. Let D ⊂ Fqq be a 2n−m design with q ≥ 4 and n > N/4. Then

(a) B2(D, γ) =

{
0, if γ ∈ Fqq,

B2(Fqq\D, γ) + n − N
4 , if γ ∈ Hq−1,

(b) #
1C

(k)
2 (D) =

{
n, if k = 0,

0, if k ≥ 1,

(c) #
2C

(k)
2 (D) =


0, if k < n − N

4 − 1,

−(k + 1)ḡ(Fqq\D) + (k + 1)(N
2 − 1), if k = n − N

4 − 1,

k+1
k+1−(n−N/4)

#
2C

(k−n+N/4)
2 (Fqq\D), if k ≥ n − N

4 .

Proof. Recall that B2(D, γ) is the number of 2fis in D aliased with γ. From
the structure of Fqq, any γ ∈ Fqq is not aliased with the 2fis in Fqq. The first
equality of (a) and two equalities of (b) follow.

For the second equality of (a), first note that for any γ ∈ Hq−1 there are N/4
pairs of factors in Fqq such that the interaction formed by each pair is aliased with
γ. These N/4 pairs can be partitioned into three groups: B2(D, γ) with both
factors from D, B2(Fqq\D, γ) with both factors from Fqq\D, and n − 2B2(D, γ)
with one factor from D and the other from Fqq\D. Therefore

B2(D, γ) + B2(Fqq\D, γ) + n − 2B2(D, γ) =
N

4
,

which implies the second equality of (a).
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For (c), note that part (a) and the definition of #
2C

(k)
2 (D) together imply

#
2C

(k)
2 (D) = (k + 1)#{γ : γ ∈ Hq, B2(D, γ) = k + 1}

= (k + 1)#{γ : γ ∈ Hq−1, B2(Fqq\D, γ) = k + 1 − (n − N

4
)}.

The first and third equalities in (c) follow directly from this and the definition
of #

2C
(k)
2 (Fqq\D). To get the second equality, use part (a), k = n−N/4− 1, and

#{Hq−1} = N/2 − 1 to obtain

#
2C

(k)
2 (D) = (k + 1)#{γ : γ ∈ Hq−1, B2(Fqq\D, γ) = 0}

= (k + 1)(
N

2
− 1) − (k + 1)#{γ : γ ∈ Hq−1, B2(Fqq\D, γ) > 0}

= (k + 1)(
N

2
− 1) − (k + 1)#{γ : γ ∈ Hq\(Fqq\D), B2(Fqq\D, γ) > 0}

= (k + 1)(
N

2
− 1) − (k + 1)ḡ(Fqq\D).

Lemma 1 implies that maximizing the first two terms {#
1C2(D), #

2C2(D)}
of the sequence (2.2) is equivalent to maximizing the sequence {−ḡ(Fqq\D),
#
2 C2(Fqq\D)}. We therefore have the following result.

Lemma 2. Suppose (n,N) satisfies 5N/16 + 1 ≤ n ≤ N/2. Consider the family
of 2n−m designs D with D ⊂ Fqq. If there is a unique design in this family that
maximizes

{−ḡ(Fqq\D), #
2 C2(Fqq\D)} (3.1)

then this design has GMC.

Combining Lemma 2 and Part (c) of Theorem 1, we have the following result.

Theorem 2. Suppose the columns in Hq and Fqq are written in the Yates order.
For 5N/16 + 1 ≤ n ≤ N/2, the GMC 2n−m design is the design that consists of
the last n columns in Hq or Fqq.

Proof. Suppose 2r−2 + 1 ≤ N/2− n ≤ 2r−1 for some r. By applying part (c) of
Theorem 1 with S = Fqq\D and s = N/2− n, we observe that the design Fqq\D
consisting of the first N/2 − n columns of Fqr uniquely maximizes the sequence
(3.1). When Hq and Fqq are written in the Yates order, the first N/2−n columns
of Fqr are also the first N/2− n columns of Fqq. Consequently, the GMC design
D consists of the last n columns of Fqq, which are the same as the last n columns
of Hq.

The following example illustrates how Theorem 2 can be used to construct
a GMC design.
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Example 1. Suppose that we require a GMC design with N = 32 runs and n

factors where 11=5/16N + 1 ≤ n ≤ N/2 = 16. The design F55 with the Yates
order can be written as

F55 = {5, 5H4}
= {5, 15, 25, 125, 35, 135, 235, 1235, 45, 145, 245, 1245, 345, 1345, 2345, 12345},

where the columns of F55 correspond to the last 16 columns of H5.
According to Theorem 2, to get a 2n−m design with n−m = 5, we only need

to take the last n columns (or delete the first 16 − n columns) from F55. For
example, by taking the last 13 columns of F55 we obtain the GMC 213−8 design:

D3 = F55 \ {5, 15, 25}
= {125, 35, 135, 235, 1235, 45, 145, 245, 1245, 345, 1345, 2345, 12345},

where these 13 columns are assigned to the main effects of the 13 factors, and the
32 rows are the factor combinations in the design. By taking the last 12 columns
of F55, we get the GMC 212−7 design:

D4 = F55 \ {5, 15, 25, 125}
= {35, 135, 235, 1235, 45, 145, 245, 1245, 345, 1345, 2345, 12345}.

Similarly, these 12 columns are assigned to the main effects of the 12 factors, and
the 32 rows are the factor combinations in the design.

3.2. GMC 2n−m designs with n ≥ N/2

In this subsection, we still use D to denote the regular 2n−m fractional fac-
torial design and q = n − m. Recall that Sqr = Hq\Hr. Zhang and Mukerjee
(2009a) showed that, if n ≥ N/2 and D has GMC, then ḡ(Hq\D) is minimized.
According to Part (a) of Theorem 1, if the number of columns N−1−n in Hq\D,
satisfies 2r−1 ≤ N − 1 − n ≤ 2r − 1 for some r, then Hq\D has r independent
factors. Therefore Hq\D ⊂ Hr and Sqr ⊂ D.

If N − 1 − n = 2r − 1, which equals the number of columns in Hr, then
Hq\D = Hr and D = Sqr has GMC.

If 2r−1 ≤ N − 1−n < 2r − 1, then it is convenient to use D\Sqr to construct
GMC designs because the number of columns in D\Sqr is much smaller than
that in D. For example, consider the construction of a GMC 210−6 design. Here
n = 10, m = 6, q = n−m = 4, N = 2q = 16, and r = 3 since 23−1 ≤ N −1−n =
5 ≤ 23 − 1. The GMC 210−6 design D can be partitioned as D = S43 ∪ (D\S43)
where S43 = H4\H3 has (16 − 1) − (8 − 1) = 8 columns and D\S43 has just 2
columns. By choosing two columns from H3 according to rules developed later
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in Lemma 5, we can construct the GMC 210−6 design. We will also show that, if
D\S43 = {23, 123}, then the resulting design

D = S43 ∪ {23, 123} = {23, 123, 4, 14, 24, 124, 34, 134, 234, 1234}

has GMC.
Next, we study a connection between B2(D, γ) and B2(D\Sqr, γ) that sheds

light on the relationship between the AENPs of D and D\Sqr.

Lemma 3. Suppose D is a 2n−m design with Sqr ⊂ D.

(a) If γ ∈ Sqr, then B2(D, γ) = n − N/2.

(b) If γ ∈ Hr, then B2(D, γ) = B2(D\Sqr, γ) + N/2 − 2r−1.

Proof. Again note that B2(D, γ) is the number of 2fis in D aliased with γ.
(a) For any γ = d1d2 ∈ Sqr, there are two possibilities: either both d1 and

d2 are in Sqr, or d1 and d2 are respectively in D\Sqr and Sqr. Therefore

B2(D, γ) = #{(d1, d2) : γ = d1d2, d1 ∈ D\Sqr, d2 ∈ Sqr}
+#{(d1, d2) : γ = d1d2, d1 ∈ Sqr, d2 ∈ Sqr}.

For any d1 ∈ D\Sqr we can uniquely determine d2 = d1γ in Sqr, so

#{(d1, d2) : γ = d1d2, d1 ∈ D\Sqr, d2 ∈ Sqr} = n − (N − 2r).

For any γ ∈ Sqr, there are N/2 − 1 pairs of factors in Hq whose interaction is
aliased with γ. Among these pairs, there are 2r − 1 with one factor from Hr and
another one from Sqr; for the remaining N/2 − 2r pairs, both factors are from
Sqr. Part (a) follows from

#{(d1, d2) : γ = d1d2, d1 ∈ Sqr, d2 ∈ Sqr} =
N

2
− 2r,

B2(D, γ) = n − (N − 2r) +
N

2
− 2r = n − N

2
.

(b) For any γ = d1d2 ∈ Hr, there are two possibilities: both d1 and d2 are
in D\Sqr or both are in Sqr. Now we have

B2(D, γ) = #{(d1, d2) : γ = d1d2, d1 ∈ D\Sqr, d2 ∈ D\Sqr}
+#{(d1, d2) : γ = d1d2, d1 ∈ Sqr, d2 ∈ Sqr}

= B2(D\Sqr, γ) + #{(d1, d2) : γ = d1d2, d1 ∈ Sqr, d2 ∈ Sqr},

where the second equality is from the definition of B2(D\Sqr, γ). For any γ ∈ Hr,
there are N/2−1 pairs of factors in Hq whose interaction is aliased with γ. Among
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these pairs, (2r −2)/2 = 2r−1−1 are from Hr and N/2−2r−1 are from Sqr. Part
(b) follows from

#{(d1, d2) : γ = d1d2, d1 ∈ Sqr, d2 ∈ Sqr} =
N

2
− 2r−1,

B2(D, γ) = B2(D\Sqr, γ) +
N

2
− 2r−1.

Zhang and Mukerjee (2009a) studied the connection between B2(D, γ) and
B2(Hq\D, γ) in their Theorem 1, and applied this connection to investigate the
relationship between the AENPs of D and Hq\D. Lemma 3 describes the connec-
tion between B2(D, γ) and B2(D\Sqr, γ). The relationship between the leading
terms of AENPs of D and D\Sqr can be obtained via Lemma 3 and the following.

Lemma 4. Suppose D = {Sqr, D\Sqr}.

(a) #
1C

(k)
2 (D) =

{
constant, if k< N

2 −2r−1,

#
1C

(k−N/2+2r−1)
2 (D\Sqr) + constant, if k≥ N

2 −2r−1,

(b) #
2C

(k)
2 (D) =



constant, if k< N
2 −2r−1−1,

−(k + 1)ḡ(D\Sqr) + (k + 1) #
1C

(0)
2 (D\Sqr)

+constant, if k= N
2 −2r−1−1,

k+1
k−N/2+2r−1+1

#
2 C

(k−N/2+2r−1)
2 (D\Sqr)

+constant, if k≥ N
2 −2r−1,

where the constants are non-negative values depending only on n, k, and N .

Proof. (a) From the definition of #
1C

(k)
2 (D), we have

#
1C

(k)
2 (D) = #{γ : γ ∈ Sqr, B2(D, γ) = k} + #{γ : γ ∈ D\Sqr, B2(D, γ) = k}.

Part (a) follows from an application of Lemma 3:

#
1C

(k)
2 (D) = I(n − N

2
= k) × (N − 2r)

+#{γ : γ ∈ D\Sqr, B2(D\Sqr, γ) +
N

2
− 2r−1 = k},

where I(·) is the indicator function.
(b) By the definition of #

2C
(k)
2 (D), we have

#
2C

(k)
2 (D) = (k + 1)#{γ : γ ∈ Sqr, B2(D, γ) = k + 1}

+(k + 1)#{γ : γ ∈ Hr, B2(D, γ) = k + 1}.
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Applying Lemma 3, this reduces to

#
2C

(k)
2 (D) = I(n − N

2
= k + 1)×(k + 1)(N − 2r)

+(k + 1)#{γ : γ ∈ Hr, B2(D\Sqr, γ) = k + 1 − N

2
+ 2r−1}.

The first and third expressions of (b) follow directly from this and the definition
of #

2C
(k)
2 (D\Sqr).

To derive the second expression of (b), put k = N/2 − 2r−1 − 1. We have

#
2C

(k)
2 (D) = (k + 1)#{γ : γ ∈ Hr, B2(D\Sqr, γ) = 0}+constant

= (k + 1)#{γ : γ ∈ D\Sqr, B2(D\Sqr, γ) = 0}
+(k + 1)#{γ : γ ∈ Hq\D,B2(D\Sqr, γ) = 0}+constant.

From the definition of #
1C

(k)
2 (D\Sqr) and ḡ(·) in (2.3), we obtain

#{γ : γ ∈ D\Sqr, B2(D\Sqr, γ) = 0} = #
1C

(0)
2 (D\Sqr)

and

#{γ : γ ∈ Hq\D,B2(D\Sqr, γ) = 0}
= (N − 1 − n) − #{γ : γ ∈ Hq\D,B2(D\Sqr, γ) > 0}
= (N − 1 − n) − #{γ : γ ∈ Sqr ∪ (Hq\D), B2(D\Sqr, γ) > 0}
= (N − 1 − n) − #{γ : γ ∈ Hq\(D\Sqr), B2(D\Sqr, γ) > 0}
= (N − 1 − n) − ḡ(D\Sqr).

The second equality above follows from the structure of Sqr and D\Sqr. A re-
arrangement of terms yields the desired result.

The following lemma can be used to construct GMC designs when the num-
ber of factors in D\Sqr is small.

Lemma 5. Suppose (n,N) satisfies 2r−1 ≤ N−1−n ≤ 2r−1 for some r ≤ q−1.
Consider the family of 2n−m designs D with Sqr ⊂ D. If there is a unique design
in this family that maximizes

{#
1C2(D\Sqr), −ḡ(D\Sqr),

#
2C2(D\Sqr)}, (3.2)

then it has GMC.

Proof. The result follows directly from Lemma 4.

If 2r−1 ≤ N −1−n ≤ 2r −1, then there are r independent factors in Hr and
n+2r−N (< 2r−1) factors in D\Sqr. We can thus find a design with resolution at
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least IV, and with n+2r −N factors in Hr. Note that #
1C2(D\Sqr) is maximized

if D\Sqr has resolution at least IV. The two terms following #
1C2(D\Sqr) in the

AENP are −ḡ(D\Sqr) and #
2C2(D\Sqr). Applying Part (c) of Theorem 1, we

obtain a result similar to Theorem 2.

Theorem 3. Suppose the columns in Hq are written in the Yates order. For
n ≥ N/2, the GMC 2n−m design is the design that consists of the last n columns
in Hq.

Proof. Suppose 2r−1 ≤ N −1−n ≤ 2r −1 for some r ≤ q−1, and Sqr ⊂ D. Let
fr = n+2r−N , the number of columns in D\Sqr. We then have 0 ≤ fr ≤ 2r−1−1.

If fr = 0 or 1, then D = Sqr or Sqr ∪ {12 · · · r}, and the result is obvious.
Next suppose 2l−2 + 1 ≤ fr ≤ 2l−1 for some 2 ≤ l ≤ r. Let S = D\Sqr, s = fr

and apply Part (c) of Theorem 1. If D\Sqr consists of the first fr columns of Tl,
then D\Sqr uniquely maximizes the sequence (3.2). Here Tl is defined in Section
2. When Hq is written in the Yates order, the design consisting of the first fr

columns of Tl is isomorphic to the one consisting of the first fr columns of Tr.
Part (c) of Theorem 1 shows that the design consisting of the first fr columns of
Tr is isomorphic to the one consisting of the last fr columns of Tr. Therefore, if
D\Sqr consists of the last fr columns of Tr, then D\Sqr uniquely maximizes the
sequence (3.2) under isomorphism. Combining the last fr columns of Tr with
Sqr, we can conclude that the design consisting of the last n columns of Hq has
GMC.

Here is an example that illustrates the construction method in Theorem 3.

Example 2. Suppose we want a GMC design with 32 runs and more than 16
factors, i.e., N = 32 and n > 16. The design H5 with the Yates order can be
written as

H5 = {1, 2, 12, 3, 13, 23, 123, 4, 14, 24, 124, 34, 134, 234, 1234} ∪ F55.

Here, F55 is given in Example 1.
According to Theorem 3, if we take the last n columns or delete the first

31 − n columns from H5, then we get the GMC 2n−m design. For example,
taking the last 20 columns or deleting the first 11 columns from H5, we get the
GMC 220−15 design

D5 = {34,134,234,1234,5,15,25,125,35,135,235,1235,45,145,245,1245,345,1345,

2345,12345}.

These 20 columns are assigned to the main effects of the 20 factors, and the 32
rows are the factor combinations in the design.
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4. When Do the MA and GMC Designs Differ?

Since the MA and GMC criteria differ, it is natural to ask: under what
circumstances do the criteria yield different designs? The two theorems presented
below provide a partial answer.

Theorem 4. Consider 2n−m
IV designs D ⊂ Fqq with 5N/16 + 1 ≤ n ≤ N/2. If

n ≤ N/2 − 4 and a design has MA, then it is not possible to maximize #
2C2(D),

so the MA design cannot have GMC.

Proof. When 5N/16 + 1 ≤ n ≤ N/2, Butler (2003) proved that if D is an MA
design, then D ⊂ Fqq and Fqq\D has MA among the designs in Fqq. So the
number of independent factors in Fqq\D is min(N/2 − n, q).

According to Part (c) of Lemma 1, if a design D ⊂ Fqq and #
2C2(D) is

maximized, then ḡ(Fqq\D) is minimized. Due to the structure of Fqq, the design
Fqq\D has resolution at least IV. Utilizing Part (b) of Theorem 1, we find that
the maximum number of independent factors in Fqq\D is at most blog2(N/2 −
n− 1)c+ 2, where bxc is the integer part of x. When 5N/16 + 1 ≤ n ≤ N/2, we
have

blog2(
N

2
− n − 1)c + 2 ≤ blog2(

N

2
− 5N

16
− 2)c + 2=blog2(

3N

16
− 2)c + 2 < q.

However, for n ≤ N/2 − 4, blog2(N/2 − n − 1)c + 2 < N/2 − n. Therefore if
the MA 2n−m design D with n ≤ N/2 − 4 maximizes #

2C2, then the number
of independent factors in the Fqq\D must be less than min(N/2 − n, q). This
contradiction establishes the conclusion in Theorem 4.

The next example is used to illustrate the result in Theorem 4.

Example 3. Consider the case when N = 32 and n = 12 ≤ 32/2− 4. According
to Butler (2003), the MA 212−7 design is isomorphic to

D6 = {125, 135, 235, 1235, 45, 145, 245, 1245, 345, 1345, 2345, 12345}
= F55\{5, 15, 25, 35}.

Note that the design D6 is obtained by deleting the four columns {5, 15, 25, 35}
from F55 and the deleted four columns are independent. From Example 1, D4 =
F55\{5, 15, 25, 125} is the GMC 212−7 design up to isomorphism. However, the
deleted four columns {5, 15, 25, 125} are not independent. Thus the MA design
D6 is different from D4 and does not have GMC.

The following is a second result identifying conditions where MA and GMC
differ, but now with n ≥ N/2.
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Theorem 5. Suppose 2r−1 ≤ N − 1 − n ≤ 2r − 1 for some r and n ≥ N/2. If
4 ≤ n+2r −N ≤ 2r−1 −4 with 4 ≤ r ≤ q−1, then the families of MA and GMC
designs are mutually exclusive.

Proof. Using Lemma 4 of Chen and Hedayat (1996), Butler (2003) proved that,
if n ≥ N/2 and D is an MA design, then Fqq ⊂ D and D\Fqq has MA among the
designs in Hq−1. By repeatedly applying this result and Lemma 4 of Chen and
Hedayat (1996), we can prove the following stronger result: if D has MA, then
Sqr ⊂ D and D\Sqr has MA among the designs in Hr, and hence the number of
independent factors in D\Sqr is min(n + 2r − N, r).

According to Lemma 5 and the discussion before Theorem 3, if D has GMC,
then Sqr ⊂ D, D\Sqr has resolution at least IV, and ḡ(D\Sqr) is minimized. By
Part (b) of Theorem 1, the number of independent factors in D\Sqr is at most
blog2(n + 2r − N − 1)c + 2. However, for 4 ≤ n + 2r − N ≤ 2r−2 with r ≥ 4, we
can easily check that

blog2(n + 2r − N − 1)c + 2 < min(n + 2r − N, r),

which means that, in this region every GMC design differs from an MA design.
When 2r−2 + 1 ≤ n + 2r − N ≤ 2r−1 − 4 with r ≥ 5, from Part (b) of Theorem
1 there are r independent factors in D\Sqr and D\Sqr ⊂ Tr. By Lemma 1 (a)
with q replaced by r, and assuming 2r−2 + 1 ≤ n + 2r − N ≤ 2r−1 − 4, for any
γ ∈ Hr−1 we have

B2(D\Sqr, γ) = B2(Tr\(D\Sqr), γ) + n + 2r − N − 2r−2 ≥ 1,

and therefore ḡ(D\Sqr) = 2r−1 − 1, which is a constant. So if D has GMC, then
D\Sqr ⊂ Tr and #

2C2(D\Sqr) is maximized. If D is also an MA design, then
D\Sqr also has MA. However, as in the proof of Theorem 4, we can show that
D\Sqr does not have MA among all the designs taken from Hr. Consequently, if
D has GMC then it cannot have MA. This completes the proof.

Zhang and Mukerjee (2009a) found that, for N − 1 − n = 11, the GMC and
MA designs are different. This result is a special case of Theorem 5 with r = 4.
The following example provides an application of Theorem 5.

Example 4. Suppose N = 32 and n = 20. According to Butler (2003), the MA
220−15 design is isomorphic to

D7 = {124, 134, 234, 1234} ∪ F55.

Note that the four columns {124, 134, 234, 1234} joined into the design D7 are
independent. Now, for the GMC 220−15 design D5 in Example 2, the four columns
{34, 134, 234, 1234} joined into D5 with the same F55 are not independent. As a
result, among regular 220−15 designs, the GMC and MA designs are different.
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Appendix: Outline of the Proof for Theorem 1.

For Part (a).
When r = q, Part (a) can be validated directly. We only need to consider the

case r ≤ q − 1. The main idea of the proof is as follows. Suppose that S1 ⊂ Hq

is a design with s factors, where 2r−1 ≤ s ≤ 2r − 1 for some r ≤ q − 1. If S1 has
h + 1 (r ≤ h ≤ q − 1) independent factors, then we can find a design S∗

1 with h

independent factors such that ḡ(S∗
1) < ḡ(S1). The proof consists of three steps.

Let a denote the factor q. Under isomorphism, we assume a ∈ S1 and S1

can be represented as

S1 = Q ∪ {a, ab1, ab2, . . . , abl},

where Q ⊂ Hh and has h independent factors, and {b1, . . . , bl} ⊂ Hh. Without
loss of generality, we assume that {b1, . . . , bt} ⊂ Q and {bt+1, . . . , bl} ⊂ Hh\Q,
and let

S2 = Q ∪ {a, ab1, . . . , abt} ∪ {bt+1, . . . , bl}.

In Step 1, we prove that ḡ(S2) ≤ ḡ(S1). The details are in Lemma 6 of the
supplement.

Next, we join Q and {bt+1, . . . , bl} together and still denote it by Q. Then
S2 has the form

S2 = Q ∪ {a, ab1, . . . , abt},

where Q ⊂ Hh and has h independent factors, and {b1, . . . , bt} ⊂ Q. When
2r−1 ≤ s ≤ 2r − 1, the number of factors in Q is smaller than 2r − 1. Therefore
there are at least two factors c1 and c2 in Q such that c = c1c2 /∈ Q. Under
isomorphism, we assume that there is some t0 such that

{c, cb1, cb2, . . . , cbt0} ⊂ Hh\Q and {cbt0+1, . . . , cbt} ⊂ Q.

Let
S3 = Q ∪ {c, cb1, cb2, . . . , cbt0} ∪ {abt0+1, . . . , abt}.
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In Step 2, we show that ḡ(S3) ≤ ḡ(S2), especially, ḡ(S3) < ḡ(S2) if t0 = t. The
details are in Lemma 7 of the supplement.

In Step 3, we repeat the same process from S2 to S3 until t0 = t, i.e., S3 ⊂ Hh.
Then S3 has h independent factors and ḡ(S3) < ḡ(S2) ≤ ḡ(S1). Thus, Part (a)
is proved.

For Part (b).
The idea of the proof for the first half of Part (b) is similar to that for Part

(a). Suppose that S is a design with resolution at least IV that has s factors, and
2r−2 + 1 ≤ s ≤ 2r−1 for some r ≤ q. If S has h + 1 (r ≤ h ≤ q − 1) independent
factors, then we can construct a resolution IV design S∗ with s factors and h

independent factors such that ḡ(S∗) < ḡ(S). The details are in Lemma 8 of the
supplement.

For the proof of the second half of Part(b), by Butler (2003), it suffices to
show that Ai(S) = 0 for all odd numbered i’s. Under the assumptions in Part
(b), if Ai(S) 6= 0 for some odd number i, then A5(S) > 0, for details see Lemma
9 of the supplement. With this result, we could find a design S∗ ⊂ Fqr such that
ḡ(S∗) < ḡ(S), which is a contradiction to the assumption that ḡ(S) is minimized.
Then Part (b) follows.

For Part (c).
First, we show that the four designs consisting of the first or last s columns

of Fqr or Tr are isomorphic by observing the structure of Fqr or Tr. Next, it
suffices to show that the design S consisting of the first s columns of Fqr is the
unique one which maximizes (2.4). Mathematical induction is used to prove this
result.
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