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Abstract: In capture–recapture experiments, covariates collected on individuals,

such as body weight and length, are often measured imprecisely or are missing at

random. Furthermore, the number of recorded covariate measurements collected

on each observed individual is usually equal to or less than the individual’s capture

frequency. Correcting for multiple error-prone covariates is seldom seen in capture–

recapture models and even fewer researchers have considered cases where individ-

ual’s have no measurements at all. In this paper, we develop an unbiased estimating

equation using the conditional score within the capture–recapture framework. We

then extend this approach to simultaneously account for both measurement error

and missing data using two well-known missing data methods: (1) inverse proba-

bility weighting; and (2) multiple imputation. These new methods are shown to

yield consistent and asymptotically normal estimators, and the two approaches are

shown to be asymptotically equivalent. We evaluated these methods on simulated

and real capture–recapture data. Our results show improvements in both precision

and efficiency when using the proposed methods.
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probability weighting, missing at random, multiple imputation, population size
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1. Introduction

Over the last several decades there has been growing development in en-

hancing population size estimation in capture–recapture studies through the use

of covariates (McCrea and Morgan (2014)). For closed population models, co-

variates are often used to model capture probabilities in the form of a logistic

regression (Huggins (1989); Alho (1990)). These models are commonly referred

to as “observed heterogeneity” models since the heterogeneity is modelled via

covariates. For models concerning unobserved heterogeneity, see Pledger (2005)
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and Farcomeni (2016). These models not only help explain variation and het-

erogeneity in capture probabilities but also reduce bias in the estimation of the

population size (Pollock (2002); Hwang and Huggins (2005)). We consider ob-

served heterogeneity models in this study. Ideally, the number of recorded co-

variate measurements is equal to the individual’s capture frequency, although in

practice some covariate measurements are not recorded on each capture occasion.

Furthermore, covariates collected on individuals may be imprecisely measured.

For example, in Section 5.2 we analyse recapture–recapture data collected on

Eastern barred bandicoots in which we encounter both imprecise measurements

and missing values for observed body weight. As in the general regression con-

text, it is well-known that measurement errors and missing data may yield biased

estimation for the regression parameters (Rubin (1987); Little (1992); Carroll et

al. (2006)). The same issues may occur when estimating population sizes in

capture-recapture models, which is the main focus of this study.

Correcting for measurement error in covariates has been well-established in

closed populations capture–recapture studies over the last two decades. When

the measurement error variance is constant across individual subjects, a variety

of measurement error methods have been developed to address this problem, in-

cluding: simulation–extrapolation (Gould, Stefanski and Pollock (1999); Stoklosa

et al. (2011)), regression calibration (Hwang and Huang (2003)), and conditional

score (Hwang, Huang and Wang (2007)). However, the measurement error vari-

ance of an observed covariate often depends on the capture frequency which is

the response variable for modelling capture probabilities. This is referred to as a

differentiable measurement error problem that has no general functional method,

see Carroll et al. (2006). To overcome this difficulty, Huggins and Hwang (2010)

used an approximated estimating equation approach via maximizing a partial

likelihood, Xu and Ma (2014) proposed a semiparametric efficient score method,

and Xi et al. (2009) developed a parametric likelihood approach that required

making a parametric distributional assumption on the true underlying covariate.

Accounting for missing values in the observed covariates in closed capture–

recapture studies is more challenging to develop because a “missing observa-

tion” is confounded with the fact that the individual was simply not observed

on an occasion. However, several likelihood based methods have been developed.

Wang (2005) considered a semi-parametric approach for continuous time capture–

recapture models and Zwane and van der Heijden (2007) used capture–recapture

log-linear models with missing categorical covariates. The methods of Xi et al.

(2009) also accounted for missing data in covariates but they require a normality
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assumption on the true underlying covariate. More recently, Lee, Hwang and

Jean (2016) showed that a näıve complete data analysis underestimates the pop-

ulation size in most common situations. To correct for this bias, Lee, Hwang and

Jean (2016) proposed several methods that make no distributional assumptions

on the missing covariates. Their techniques made use of regression calibration,

inverse probability weighting or multiple imputation to handle missing at random

data in the covariates.

With the exception of Xi et al. (2009), very few attempts have been made

to account for both missing values and imprecise measurements of covariates. In

this study, we develop several methods to address these issues. First, we examine

the measurement error case, allowing for the number of recorded covariate mea-

surements to be equal to or related to the individual’s capture frequency. Our

framework is built around the conditional score method (Carroll et al. (2006);

Huang, Hwang and Chen (2011)) to develop an unbiased estimating equation.

We then extend this approach to simultaneously account for both measurement

error and missing data in covariates. Our proposed methods incorporate the

aforementioned estimating equation and two typical missing data techniques: (1)

inverse probability weighting; and (2) multiple imputation.

In Section 2 we give notation, review the näıve method and discuss the

conditional score approach under the measurement error framework. We then

discuss the missing data framework and present several existing methods along

with proposed methods in Section 3. Simulations and examples are given in

Sections 4 and 5, respectively, followed by a discussion in Section 6. Technical

results are given in a Web Appendix.

2. Notation and the Measurement Error Framework

Consider a closed population of N individuals, labelled i = 1, . . . , N , where

a capture–recapture experiment has been conducted over capture occasions j =

1, . . . , τ . Let Yij = 1 if the ith individual is caught on the jth occasion and Yij = 0

otherwise. Let Yi =
∑τ

j=1 Yij be the capture frequency for the ith individual

and D be the number of uniquely capture individuals. Assume that Yi > 0

for i = 1, . . . , D, and let Ci denote the event of Yi > 0 for the ith individual.

For now, suppose that Xi is an observed continuous covariate (such as body

weight or head-to-tail length) measured with no error or missing values. Fur-

ther, let Zi denote a covariate vector (which often consists of constant val-

ues – e.g., an intercept term and gender records) that is always correctly ob-
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served. These covariates are assumed to be constant across capture occasions

in a closed population capture–recapture model. We consider heterogeneity

type models where capture probabilities depend on an individual’s covariate.

Let H(u) = {1 + exp(−u)}−1 be the logistic function such that capture proba-

bilities are written as P (Yij = 1|Xi, Zi) = H(βXi + γTZi) where β and γ are

the unknown parameters associated with Xi and Zi, respectively. For simplicity,

we write θ = (β, γT)T and Pi(θ) = H(βXi + γTZi). We assume here that Xi is

a univariate variable but note that this structure can be easily extended to the

multiple covariate case.

Suppose the covariate Xi has been measured mi times where mi ranges

from 0 to Yi. In capture–recapture experiments, it is common for mi = Yi since

covariates can only be measured on each capture event. However, for various

reasons, it is also plausible that no measurements have been collected on any

capture event even if the individual has been observed. An extreme case is mi = 0

(but Yi > 0) which is equivalent to Xi being a missing value. In this section we

assume that mi > 0 for i = 1, . . . , D, although we revisit and address the missing

data problem in Section 3.

Let Wik denote the kth observed error-contaminated measurements for Xi.

When mi > 0, we assume the classical measurement error structure (Carroll et

al. (2006)) Wik = Xi+εik for k = 1, 2, . . . ,mi where εik denotes the measurement

error, with εik ∼ N (0, σ2
u) independent of all other variables in the model. For a

positivemi, we denoteW i as the average ofWik for k = 1, . . . ,mi. In practice,W i

is viewed as a surrogate for Xi. Since σ2
u is usually unknown in practice, we

can obtain as estimate of it using a pooled sample variance estimator: σ̂2
u =∑

i:mi>1

∑mi

j=1(Wij −W i)
2/{
∑

i:mi>1(mi − 1)}.

2.1. The näıve method

If measurement error is present in covariates but unaccounted for, the näıve

method solves the estimating equation

Un(θ) =

D∑
i=1

Ψi(θ) = 0, (2.1)

where Ψi(θ) =
(
W i, Z

T
i

)T{Yi−τH(βW i+γTZi
)
/P ∗i (θ)

}
with P ∗i (θ) = 1−

{
1−

H
(
βW i+γTZi

)}τ
. Given σ2

u = 0, we have P ∗i (θ) = P (Ci|Xi, Zi) and (2.1) is the

score function of the distribution Yi conditional on Ci. Let θ̂n denote the solution

of (2.1). A Horvitz–Thompson type estimator N̂n =
∑D

i=1 1/P ∗i
(
θ̂n
)

is used to

estimate the population size. This analysis is referred to as the Huggins–Alho
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approach for closed populations when there are no measurement errors. Both θ̂n
and N̂n are biased if covariates are contaminated with measurement errors, and

we demonstrate this in our simulations.

2.2. Conditional score estimation

In the context of measurement error analysis, a functional method treats the

unknown Xi as parameters for all i. Under this setting, the number of model pa-

rameters significantly increases as the sample size grows. To accommodate for the

large number of parameters, Stefanski and Carroll (1987) developed conditional

score estimation where a novel surrogate for Xi is used rather than W i.

First, we take ∆ij = Yiβσ2
u+Wij , for j = 1, . . . ,mi, and let ∆̄i = Yiβσ2

u/mi+

W i. For now, suppose that each mi is a non-random constant or independent

of (Yi, Xi, Zi), for example, mi = 1 for all i ≤ D. Following Stefanski and Carroll

(1987), we treat each ∆̄i as observed variables. Huang, Hwang and Chen (2011)

showed that for each i ≤ D and k = 1, . . . , τ we have

P (Yi = k|Xi, ∆̄i, Zi, Ci) ∝
(
τ

k

)
exp

(
k
(
β∆̄i + γTZi

)
− 1

2mi
k2β2σ2

u

)
. (2.2)

Importantly, the right-hand side of (2.2) does not involve Xi, so that the

distribution is identical to P (Yi = k|∆̄i, Zi, Ci) which allows us to calculate the

conditional expectation E(Yi|∆̄i, Zi, Ci). In other words, ∆̄i is considered as a

surrogate for Xi.

Estimates of θ can be obtained by solving the estimating equation

D∑
i=1

(
∆̄i, Z

T
i

)T {Yi − E(Yi|∆̄i, Zi, Ci)
}

= 0. (2.3)

This approach is referred as the näıve conditional score (NCS) estimation

(Huang, Hwang and Chen (2011)), since each mi is, in general, related to Yi. To

clarify its inappropriateness, consider mi = Yi so that ∆̄i = βσ2
u + W i. This is

just a translation of W i and cannot serve as a valid surrogate for Xi. Particularly,

the usual “surrogate assumption” (Carroll et al. (2006)) does not hold, since the

response variable Yi and the surrogate variable W i are not independent given the

condition of Xi. As a result, the NCS method generally yields biased estimates

as each mi is related to the individual’s capture frequency.

To account for variation in measurement error with the capture frequency,

we can use ∆i1 in place of ∆̄i at (2.3). This is called the CS1 method. As

shown in Hwang, Huang and Wang (2007), the CS1 method is consistent for es-

timating θ. Nevertheless, CS1 uses only one covariate value Wi1 and ignores the
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subsequent measurements, hence some efficiency is lost. To improve this, Huang,

Hwang and Chen (2011) proposed an error augmentation CS method that is

equivalent to a Rao–Blackwellized estimating function for CS1. Although this

method works well, the Rao–Blackwellized procedure requires Monte-Carlo simu-

lation. Furthermore, Huang, Hwang and Chen (2011) did not consider population

size estimation.

We propose an alternative estimating function that fully utilizes all measure-

ments of Wij and does not require generating pseudo random variables. Consider

the estimating equation

Uc(θ) =

D∑
i=1

Φi(θ) = 0, (2.4)

where Φi(θ) = (1/mi)
∑mi

j=1 Φij(θ) with Φij(θ)=(∆ij , Z
T
i )T{Yi−E(Yi|∆ij , Zi, Ci)}.

It is straightforward to show that Φi(θ) is zero unbiased by applying the double

expectation law

E{Φi(θ)}=E[E{Φi(θ)|mi, Zi, Ci,∆i1, . . . ,∆imi
}]=E[E{Φi1(θ)|∆i1, Zi, Ci}]=0.

As a result, the solution to (2.4), denoted by θ̂c, is a consistent estimator for θ.

Remark 1. Xu and Ma (2014) considered a modified CS1 method that similarly

aims to use all information contained in the observed measurements. As shown

in simulations conducted in Xu and Ma (2014), this approach does not improve

performance, while our CS method outperformed CS1 in almost all of our sim-

ulations. The estimating function of the CS method used in Xu and Ma (2014)

differs slightly from our approach.

In Theorem 1 we establish large sample properties for θ̂c. Let a⊗2 = aaT for

a vector a and let A−T be the transpose for A−1. Let Mc(θ) = E
{

I(Ci)Φi(θ)⊗2
}

,

and Gc(θ) = E [−I(Ci){∂Φi(θ)/∂θ}]. Generally, when investigating large sample

properties for capture–recapture models, the capture occasion τ is considered

fixed. Here we also assume fixed τ , but the variability of estimators increases if τ

is decreased.

Theorem 1. Under regularity conditions A1–A3 (see Web Appendix S1), θ̂c is a

consistent estimator as N →∞. Moreover,
√
N
(
θ̂c−θ

)
converges in distribution

to N (0,Σc) where Σc = G−1
c (θ)Mc(θ)G−Tc (θ).

To estimate the variance of θ̂c, we use the sandwich estimator

V̂ar(θ̂c) =

{
D∑
i=1

∂

∂θ
Φi(θ)

}−1{ D∑
i=1

Φi(θ)ΦT
i (θ)

}{
D∑
i=1

∂

∂θ
Φi(θ)

}−T
,
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where θ is evaluated at θ̂c. In a simulation study, not reported here, the proposed

CS method was shown to perform equally well compared to the error augmenta-

tion CS method of Huang, Hwang and Chen (2011).

To estimate the population size, ∆ij serves as a surrogate for Xi so that a

Horvitz–Thompson type estimator can be constructed based on the conditional

distribution of Yi given (∆ij , Zi). It follows that P (Ci|∆ij , Zi)=C(∆ij , Zi)/{1 +

C(∆ij , Zi)} where C(∆ij , Zi)=
∑τ

k=1

(
τ
k

)
exp

(
k
(
β∆ij+γ

TZi
)
−k2β2σ2

u/2
)
. For j =

1, . . . ,mi, we propose the population size estimator

N̂c =

D∑
i=1

1

P ∗i∆(θ̂c)
, (2.5)

where

P ∗i∆(θ)−1 =
1

mi

mi∑
j=1

1

P (Ci|∆ij , Zi)
= 1 +

1

mi

mi∑
j=1

1

C(∆ij , Zi)
.

Let N̂c(θ) =
∑N

i=1 I(Ci)/P ∗i∆(θ), and write N̂c = N̂c(θ) +
{
N̂c

(
θ̂c
)
− N̂c(θ)

}
.

Then, we have Var
{
N̂c(θ)

}
≈
∑D

i=1

{
1− P ∗i∆(θ)

}
/
{
P ∗i∆(θ)2

}
. A further calcu-

lation shows that the covariance of N̂c(θ̂c) − N̂c(θ) and N̂c(θ) is negligible, so

only the remaining variance terms are required for calculation. Consequently, we

estimate the asymptotic variance of N̂c by

V̂ar(N̂c) =

D∑
i=1

1− P ∗i∆(θ)

P ∗i∆(θ)2
+

(
∂N̂c

∂θ

)T

V̂ar(θ̂c)

(
∂N̂c

∂θ

)
,

where θ is evaluated at θ̂c. Let Hc(θ) = E

{
∂

∂θ

I(Ci)
P̄ ∗i∆(θ)

}
.

Theorem 2. Under regularity conditions A1–A3 (see Web Appendix S1), N̂c/N

converges to one in probability as N → ∞. Moreover, the limiting distribu-

tion of N−1/2
(
N̂c−N) is N (0,νc) where νc is the variance of I(Ci)/P̄ ∗i∆(θ)+

Hc(θ)G−1
c (θ)I(Ci)Φi(θ).

3. Missing Data Framework

In addition to imprecise measurements with error, suppose that some of

these covariates are now missing. Let δi = 1 be the indicator that covariate W i

is observed and 0 if it is missing. Under these settings, a näıve complete case

method ignores the data for individuals with δi = 0 and solves the estimating

equation
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Uncc(θ, π̂) =

D∑
i=1

δiΨi(θ) = 0, (3.1)

where Ψi() is the function at (2.1). The solution to (3.1) is denoted as θ̂ncc which

we refer to as the näıve complete case estimator for θ. The corresponding näıve

complete case population size estimator is N̂ncc =
(
D/Dδ

)∑D
i=1 δi/P

∗
i

(
θ̂ncc

)
,

where Dδ =
∑D

i=1 δi is the number of captured individuals without missing co-

variates. Lee, Hwang and Jean (2016) showed that N̂ncc generally underesti-

mates N when σ2
u = 0. The bias is even worse when the measurement error is

present.

Assume that covariates are missing at random, such that P (δi=1|Yi, Xi, Zi)

=π(Yi, Zi). We take πi = π(Yi, Zi), as the selection probability for δi. In practice,

selection probabilities πi can be estimated nonparametrically or parametrically.

When Zi is categorical, we can use the empirical probability π̂i, which is the

percentage of δ` = 1 with (Y`, Z`) = (Yi, Zi) for all ` ≤ D. When Zi contains

continuous variables, πi can be estimated by kernel smoothing. If Zi is of high di-

mension, it is more suitable to seek a binary regression model with the response δi
and covariates Yi and Zi (Seaman and White (2013)).

3.1. Näıve inverse probability weighting estimation

The näıve inverse probability weighting (IPW) approach accounts for missing

covariate values but ignores measurement error. These models were developed

in Lee, Hwang and Jean (2016). The estimating equation is

Unw(θ, π̂) =

D∑
i=1

δi
π̂i

Ψi(θ) = 0, (3.2)

where π̂ denotes the set collection of π̂i. The solution to (3.2) is denoted by θ̂nw,

which is a näıve IPW estimator for θ since it does not account for the ef-

fects of measurement error. The näıve IPW estimator for the population size

is N̂nw =
∑D

i=1 δi/
{
π̂iP

∗
i

(
θ̂nw

)}
. If the measurement error variance σ2

u = 0, θ̂nw
and N̂nw are consistent and asymptotically normal, see Lee, Hwang and Jean

(2016). These asymptotic properties are not valid if σ2
u > 0.

3.2. Inverse probability weighting with conditional score estimation

When measurement error is present in the covariates, the estimating func-

tion
∑D

i=1 δiΨi(θ) /πi is not zero unbiased, and θ̂nw and N̂nw do not preserve

consistency. We use the conditional score estimating function Φi(θ) in (2.4) to
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substitute for Ψi(θ) in (3.2), and call this method the inverse probability weight-

ing conditional score (IPWCS) as it accounts for measurement error and missing

covariates. Accordingly, it solves the estimating equation

Uwc(θ, π̂) =

D∑
i=1

δi
π̂i

Φi(θ) = 0, (3.3)

where Φi(θ) is given in (2.4). Using the double expectation law, we find

E

{
δi
πi

Φi(θ)

}
= E

[
E

{
δiΦi(θ)

πi

∣∣∣∣mi,Yi, Zi,∆i1, . . . ,∆imi

}]
= E{Φi(θ)},

so the estimating function in (3.3) is zero unbiased if π̂i is substituted by πi. To

estimate the population size we use

N̂wc =

D∑
i=1

δi
π̂i

1

P ∗i∆
(
θ̂wc
) ,

where θ̂wc is the solution of (3.3) and P ∗i∆(θ) is given in (2.5).

Let Φ∗i (θ) = E{Φi(θ)|Yi, Zi}, g∗i (θ) =
δi
πi

Φi(θ)− (δi−πi)/πiΦ∗i (θ), and Mwc

(θ,π) = E
{

I(Ci)g∗i (θ)⊗2
}

.

Theorem 3. Under the regularity conditions A1–A2 and B1–B3, θ̂wc is a con-

sistent estimator as N →∞. Moreover,
√
N
(
θ̂wc − θ

)
converges in distribution

to N (0,Σwc), where Σwc = G−1
c (θ)Mwc(θ,π)G−Tc (θ).

Theorem 4. Under the regularity conditions A1–A2 and B1–B3, N̂wc/N con-

verges to one in probability as N →∞. If κ∗i (θ) is the expectation of I(Ci)/P
∗
i∆(θ)

conditional on (Yi, Zi), the limiting distribution of N−1/2
(
N̂wc−N

)
is N (0,νwc),

where νwc is the variance of

I(Ci)
{
δi
πi

1

P
∗
i∆(θ)

+Hc(θ)G−1
c (θ)g∗i (θ)− δi − πi

πi
κ∗i (θ)

}
.

Let Φ̃i(θ) be the average of Φ`(θ) with (Y`, Z`) = (Yi, Zi) for all ` ≤ D, and

g̃i(θ,π) =
δi
πi

Φi(θ)− δi − πi
πi

Φ̃i(θ),

for i = 1, . . . , D. Further, let Gwc(θ,π) = −∂Uwc(θ,π)/∂θ and Mwc(θ,π) =∑D
i=1 g̃i(θ,π)g̃i

(
θ,π

)T
. According to Theorem 3, the variance estimator for θ̂wc

is

V̂ar(θ̂wc) = Ĝwc(θ,π)−1M̂wc(θ,π)Ĝwc(θ,π)−T,

where θ and π are evaluated at θ̂wc and π̂, respectively. Moreover, to estimate
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the variance of N̂wc, let

κ̂∗i (θ) =

∑D
`=1 δ`I(Y` = Yi, Z` = Zi)/{π`P ∗`∆(θ)}∑D

k=1 δkI(Yk = Yi, Zk = Zi)/πk

and Â(θ,π) =
{
∂N̂wc(θ,π)/∂θ

}T
Gwc(θ,π)−T. A variance estimator of N̂wc is

D∑
i=1

[
δi
πi

{
1

P ∗i∆(θ)
− Â(θ,π)Φi(θ)

}
− δi − πi

πi

{
κ̂∗(θ) + Â(θ,π)Φ̃i(θ)

}]2

−N̂wc,

where again θ and π are evaluated at θ̂wc and π̂, respectively.

3.3. Multiple imputation with conditional score estimation

We develop another approach to handling measurement error and missing

data via multiple imputation (Rubin (1987)). When Zi is a categorical variable,

we consider the empirical distributions

F̂m(m|Yi, Zi) =

D∑
`=1

δ`I(Y` = Yi, Z` = Zi)∑D
k=1 δkI(Yk = Yi, Zk = Zi)

I(m` ≤ m),

F̂w(w|Yi, Zi) =

D∑
`=1

m∑̀
j=1

δ`I(Y` = Yi, Z` = Zi)∑D
k=1mkδkI(Yk = Yi, Zk = Zi)

I(W`j ≤ w).

When covariate values W i are missing, we impute mi and Wij by generating

random observations from the empirical distributions F̂m and F̂w. This impu-

tation procedure is then replicated a fixed number of times, M . The imputed

values are used to construct an estimating equation and a population size esti-

mator similar to (2.4) and N̂c, respectively. We summarize the fitting procedure

in the algorithm below.

If Zi consists of continuous variables, we can estimate the conditional dis-

tributions F̂m(m|Yi, Zi) and F̂w(w|Yi, Zi) by using kernel smoothing techniques.

Alternatively, a parametric distribution assumption (Wang and Robins (1998))

can be considered, especially when Zi consists of many variables.

We propose the variance estimators of θ̂mc and N̂mc. Let ğvi(θ) = δiΦi(θ) +

(1 − δi)Φ
†
i,v(θ), ğv·(θ) =

∑D
i=1 ğvi(θ), so Umc(θ) =

∑M
v=1 ğv·(θ)/M . We esti-

mate Var(θ̂mc) using

V̂ar(θ̂mc) = Gmc(θ)−1

{
1

M

M∑
v=1

D∑
i=1

ğvi(θ)ğvi(θ)T

+

(
1 +

1

M

) ∑M
v=1 ğv·(θ)ğv·(θ)T

M − 1

}
Gmc(θ)−T,
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where θ is evaluated at θ̂mc, and Gmc(θ) is the gradient of Umc(θ).

Algorithm: Multiple imputation with conditional score (MICS) estimation

{Step 1 (Data imputation):} First, generate mi,v from the empirical distribu-

tion F̂m(m|Yi, Zi) and W †ij,v from F̂w(w|Yi, Zi) for v = 1, . . . ,M and j = 1, . . . ,mi,v.

For each missing value of δi = 0 and i ≤ D, let Φ̃†i (θ) = (1/M)
∑M

v=1 Φ†i,v(θ), where

Φ†i,v(θ) =
1

mi,v

mi,v∑
j=1

(∆†ij,v, Z
T
i )T

{
Yi − E(Yi|∆†ij,v, Zi, Ci)

}
and ∆†ij,v = βσ2

uYi +W †ij,v.

{Step 2:} Solve the estimating equation

Umc(θ) =

D∑
i=1

{
δiΦi(θ) + (1− δi)Φ̃†i (θ)

}
= 0

to find θ̂mc.

{Step 3:} For each missing value of δi = 0 and i ≤ D, let P̃ †i∆(θ) be the harmonic

average of P (Ci|∆†ij,v, Zi) for all j = 1, . . . ,Yi and v = 1, . . . ,M . The MICS population
size estimator is

N̂mc =

D∑
i=1

{
δi

1

P ∗i∆(θ̂mc)
+ (1− δi)

1

P̃ †i∆(θ̂mc)

}
.

For the variance of N̂mc, take

N̂v(θ) =

D∑
i=1

{
δi

1

P ∗i∆(θ)
+ (1− δi)

1

P̃ †vi(θ)

}
,

where P̃ †vi(θ) is the harmonic average of P (Ci|∆†ij,v, Zi) for j = 1, . . . ,Yi. A

variance estimator for N̂mc is given by

V̂ar(N̂mc) =

D∑
i=1

δi{1− P ∗i∆(θ)}
P ∗i∆(θ)2

+

M∑
v=1

(1− δi)
{

1− P̃ †vi(θ)
}

MP̃ †vi(θ)2


+

(
1 +

1

M

) ∑M
v=1

(
N̂v − N̂mc

)2
M − 1

+

(
∂N̂mc

∂θ

)T

V̂ar(θ̂mc)

(
∂N̂mc

∂θ

)
,

where θ is evaluated at θ̂mc. Finally, we show that MICS and IPWCS are asymp-

totically equivalent.
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Theorem 5. Under regularity conditions A1–A2 and B1–B3,
√
N
(
θ̂wc − θ̂mc

)
converges to 0 in probability as both N and M increase without bound. Simi-

larly, N−1/2
(
N̂wc − N̂mc

)
converges to 0 in probability as N,M −→∞.

4. Simulations

4.1. Simulation study 1: measurement error data

Our first simulation study examined the case when covariates are only sub-

ject to measurement error. We set the number of capture occasions to τ = 5, 7, 10

and 14 and considered a moderate-sized data set, where we fixed the true pop-

ulation size as N = 200, and a large-sized data set with N = 1,000. We gen-

erated one covariate Xi according to (a) the standard normal, and (b) a uni-

form distribution with support (−
√

3,
√

3), also with mean 0 and variance 1.

An error-free binary covariate Zi was drawn from a Bernoulli (Bern) distribu-

tion with probability set to 0.4. Thus, the probability of being captured was set

to Pij = H(α+βXi+γZi) with (α, β, γ) = (−1, 1,−1) for j = 1, . . . , τ . The num-

ber of recorded covariate measurements was obtained as mi =
∑τ

j=1 Yij for each i.

Observed surrogates Wij , j = 1, . . . ,mi, measured only at Yis = 1 for s = 1, . . . , τ

for each i and j, were generated as Wij = Xi + εij , where εij ∼ N (0, σ2
u). The

measurement error variance σ2
u was set at 0.25 and 0.5. In each simulation study

we generated 200 data sets.

We fit the näıve conditional likelihood model of Section 2.1, a refined regres-

sion calibration (RRC) approach (see Web Appendix S2), a näıve conditional

score (NCS) model, the conditional score 1 (CS1) model, and the proposed con-

ditional score approach (CS-new) of Section 2.2. The RRC approach is a simple

approximation method proposed by Hwang and Huang (2003) under the restric-

tion that mi = 1. In Web Appendix S2, we modify the RRC approach to allow

for the general case of mi > 1. For each estimating equation, we used the

Newton–Raphson method (via the nleqslv R-package) for obtaining solutions.

We only present the results for τ = 5. In Web Tables 1–4, we report the

sample average, root mean squared error (RMSE) and 95% coverage probability

(CP) for θ̂ and N̂ . To examine the performance of the variance estimators, we re-

port the mean of the standard error (SE) estimates using the respective method’s

standard error estimator and compared this with the standard deviations (SD)

of β̂ and N̂ . We also report sample averages for D and Y =
∑D

i=1 Yi/D. For

each method and the two distributions (a)–(b), we plot boxplots in Figure 1 for
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Figure 1. Simulation study 1. Comparative boxplots for N̂ with two measurement
error variances for two scenarios (i.e., different distributions for the true covariate). The
left-hand side column gives the results for σ2

u = 0.25 and the right-hand side column
for σ2

u = 0.5. The top row is scenario (a) and bottom row is scenario (b). In this
simulation study we used a large sized data set with N = 1,000 and τ = 5.

population size estimates
(
N̂
)

for N = 1,000 and τ = 5 only. All other plots(
including those for β̂

)
are given in Web Appendix S4. For each boxplot we

truncated several estimates as these were too large, and had skewed/distorted

the plot. Although this rarely occurred, we removed the estimates above the

third quartile plus 2.5 times inter-quartile range. The truncation percentages are

shown above each comparative boxplot.

As seen in the figures and Web Tables 1–4, the näıve approach showed strong

attenuation effects when estimating β, that subsequently resulted in underesti-

mating N . Although the RMSE here was smallest, particularly for N = 200, its

CPs were too small at the nominal 95% level. Furthermore, it performed worse

as σ2
u increased. RRC performed well for the moderate-sized data sets with the

normally distributed covariates, but it resulted in biased estimates and lower cov-

erage for the uniform data. The poorer performance for RCC in the later case

was expected as it is not a consistent method; in particular, its performance was

sensitive to the normality assumption on X. The NCS method tended to “over

adjust” the bias, and so that both β and N were overestimated. The resulting

positive bias for N was at times severe (e.g., see Web Tables 1–4).

Both CS1 and CS-new performed as expected for the regression parameters
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(Web Tables 1–4), outperforming all other methods regardless of the distribution

of the true covariate and degree of measurement error. For the population size

estimates, CS1 only marginally improved when σ2
u = 0.25 resulting in some

positive bias. On the other hand, CS-new was almost unbiased for all considered

cases and the length of the boxplots were generally shorter in length for each

setting. It had smaller SDs and so its efficiency was better. In almost all cases,

the standard error estimates for the proposed CS-new method were similar to

the sample SD, see Web Tables 1–4. The relative performance for our proposed

estimators was similar for large τ ; we also observed that as more individuals

entered the study, the results for CS1 and CS-new, both consistent, had greatly

improved. In addition, all population size estimators approached the true N and

their differences (in terms of bias and RMSE) were minor when τ was increased.

In reference to other studies that have considered similar problems, we com-

pared our results with the generalized method of moments (GMM1) and the

semiparametric efficient score (Semi-Nor) approaches from Xu and Ma (2014),

see Remark 1. To compare model performances, the same simulation set-up was

used as in Tables 1 and 2 of Xu and Ma (2014). Here, σu = 0.6, N = 500

with γ = 0 (no covariate Zi) and the Xi were standard normal. We consid-

ered τ = 5, (α, β) = (0.2, 1) and τ = 3, (α, β) = (−1, 1). We generated 1,000

data sets to be consistent with the results of Xu and Ma (2014).

In Web Tables 5 and 6 we report means of the estimates and SE, SD, MSE

and 95% CP for parameters and N . The results of GMM1 and the Semi-Nor

methods were taken directly from Table 1 of Xu and Ma (2014). We calculated

the MSE of each parameter to be MSE = bias2 + SD2; the “mse” values of Xu

and Ma (2014) are incorrect. We also report a relative efficiency measure to

compare the performance of Semi-Nor with all other methods in the study: RE

= (MSE of Semi-Nor)/(MSE of model) for each setting. The relative efficiency

of CS-new was over 90% for all parameters, in particular, the proposed CS-new

yielded similar MSEs for N̂ compared to the Semi-Nor method. In Web Tables 5

and 6 the generalized method of moments approach showed little advantage over

CS1 and CS-new, hence is not recommended.

4.2. Simulation study 2: measurement error with missing data

We extended this simulation by including missing data in the covariates. We

considered the same settings as in Section 4.1, but now set σ2
u = 0.1, σ2

u = 0.25

and σ2
u = 0.5. We generated missing covariate values for different missing data

cases. For each i, we used (1) mi ∼
∑τ

j=1 Bern(Yij , P ) for P = 0.8, (2) mi ∼
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Figure 2. Simulation study 2. Comparative boxplots for N̂ with three measurement
error variances (by columns) for three missing data cases (by rows). In this simulation
study we used a large sized data set with N = 1,000 and τ = 5 for scenario (a).

∑τ
j=1 Bern(Yij , P (Zi)) for P (Zi) = H(1+Zi), and (3) mi = Yi ·Bern(1, P (Zi,Yi))

for P (Zi,Yi) = H(−0.5 + 0.7Yi + 0.7Zi). Cases (1) and (2) are situations

where mi > 0 and are not equal to Yi, while case (3) yielded either mi = Yi
or 0.

We fit and compared all models presented in Section 3. For MICS we

used M = 10 replications (Lee, Hwang and Jean (2016)) for each simulation

study. For N = 1,000 with τ = 5, we give comparative boxplots (see Figures

2–3) for N̂ for each method with missing data cases (1)–(3), measurement error

variances and the two settings (a)–(b). All other plots, including those for β̂,

for τ = 5 are given in Web Appendix S4.

Here the näıve complete case approach resulted in biased estimates due to

the effects of missing data when the measurement error variance was σ2
u = 0.10.

When σ2
u was increased, this bias further increased under the same settings,

thus the performance for β and N worsened due to the additional effects of

measurement error. When comparing results with Figure 1 (given the same σ2
u

and scenario), both the näıve and CS underestimated N due to the additional

effects of missing data. Similar phenomena were observed for estimating β (Web

Figures 3–6). The näıve IPW approach performed well but only for the case where

the measurement error was small, see the left columns of Figures 2 and 3, this

is because the effect was mainly due to the missing mechanism. As expected,
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Figure 3. Simulation study 2. Comparative boxplots for N̂ with three measurement
error variances (by columns) for three missing data cases (by rows). In this simulation
study we used a large sized data set with N = 1,000 and τ = 5 for scenario (b).

the näıve IPW performed poorly when the measurement error variance could

not be ignored, see middle and right columns of Figures 2–3. Both IPWCS and

MICS outperformed all models in terms of bias and coverage. When compared to

each other, they gave similar results that improved as the sample size increased,

resulting in less bias and better coverage. This suggests that these methods are

asymptotically equivalent, see Figures 2–3 and Web Figures 3–6. The standard

error estimates for IPWCS and MICS were comparable to the sample standard

deviation of the estimates.

Finally, we compared our results with the parametric maximum likelihood

method given in Xi et al. (2009). To compare model performances we followed

the same set-up as given in Section 3 of Xi et al. (2009), and used results from

their Table 1. Here, σ2
u = 0.5 and 1, N = 200, τ = 5 with true parameter values

set to (α, β) = (−1, 0.5) and (−0.5, 1) for no missing data, Pmeas = 1, and some

missing data, Pmeas = 0.9. Covariates Xi were standard normal and we gener-

ated 1,000 data sets for each scenario. We used the same measures as in Section

4.1 and reported the results in Web Tables 7 and 8 for each case, respectively.

Here RE = (MSE of Xi et al. (2009))/(MSE of model). The proposed IPWCS

and MICS were comparable with the maximum likelihood method. In particular,

IPWCS and MICS gave appreciable results when σ2
u = 0.5.



CR MODELS WITH MEASUREMENT ERROR AND MISSING DATA 605

5. Examples

We give two data examples where measurement error and missing values are

prevalent in the observed covariates. In the first example we only considered

the measurement error problem, there were no missing covariates, and in the

second we simultaneously accounted for measurement error and missing values

in covariates.

5.1. Example 1: Harvest mouse data

We use capture–recapture data collected on the Harvest mouse in Taiwan.

These data have been analysed in Huang, Hwang and Chen (2011) and Stoklosa

et al. (2011). Captures of mice were collected across 14 sampling occasions where,

upon capture, additional measurements, such as body weight, gender, head-to-

tail length, etc. were collected on individuals. These data consist of D = 142

uniquely captured individuals across τ = 14 capture occasions.

Previous studies that have used similar data have identified body weight

measured in grams (g) as a potential covariate to model heterogeneity in cap-

ture probabilities, thus the body weight measurements were subject to uncer-

tainty. We used this covariate to model capture probability and correct for

measurement error using the methods given in Section 2. The average number

of times the body weight covariate was observed across the capture occasions

was m = 2.18. The average body weight was W = 8.24g with a sample variance

of S2
W = 4.58g2. The measurement error variance for the body weight covariate

was estimated to be σ2
u = 0.64g2, which gives an estimate of the reliability per-

centage as (1− 0.64/4.58)× 100 = 86.1% with respect to a single measurement.

We initially considered gender in the analysis but found no statistical significance

and therefore decided to exclude it.

As in Section 4.1, we fit the näıve conditional likelihood, RRC, NCS, CS1

(the first observed measurement was used) and the proposed CS method. In

Table 1 we give coefficient and population size estimates (standard errors are in

parentheses) for each method. The näıve and NCS gave similar estimates for

the intercept and slope parameters, although the population size estimate for

NCS was slightly smaller. CS1, RRC and the proposed CS had very similar

estimates for the slope that were quite different from those of the näıve method,

but all three gave larger standard errors. RRC and the proposed CS gave similar

population size estimates but the standard error for RRC was unrealistically

large – this was unusual since we did not obtain such large standard errors in the

simulation study. Finally, the population size for the proposed CS method was
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Table 1. Coefficient and population size estimates for each method fitted to the harvest
mouse capture–recapture data. We fit the näıve conditional likelihood model of Section
2.1, the NCS model, the CS1 model, an RRC approach (see Web Appendix S3), and
CS-new.

Method β0 (Intercept) β1 (Body weight) N (Population size)
näıve −4.08 (0.37) 0.27 (0.04) 175.98 (10.61)
NCS −4.05 (0.36) 0.27 (0.04) 173.62 (9.23)
CS1 −4.37 (0.44) 0.30 (0.05) 180.17 (11.49)
RRC −4.26 (0.40) 0.29 (0.04) 178.18 (49.31)
CS-new −4.48 (0.40) 0.31 (0.05) 179.90 (11.75)

similar to CS1, as observed in the first simulation study.

5.2. Example 2: eastern barred bandicoots data

Next, we analysed capture–recapture data collected on the Eastern barred

bandicoots Perameles gunnii in Hamilton, South eastern Victoria, Australia. In

the experiment, D = 77 uniquely tagged bandicoots were trapped across τ = 5

sampling occasions in November, 2012. We considered two covariates collected

during trapping: gender, which was correctly identified each time an individual

was seen; and body weight, which was missing on some occasions upon capture

and consisted of imprecise measurements. There were 50 unique females and 27

males captured in this study period. The covariates of gender and body weight

were used to model capture probabilities.

The observed average body weight was W = 0.67kg with a sample variance

of 0.019kg2. The average number of times the body weight covariate was ob-

served across the capture occasions was m = 1.39, and the average number of

times an individual was captured across the capture occasions was Y = 2.13.

The measurement error variance for the body weight covariate was estimated to

be σ2
u = 0.01kg2, giving a low reliability percentage estimate of 45.2%. There

were 14 individuals without a record of body weight, hence the missing data rate

was 18.2%.

We fit the näıve complete case method, näıve IPW, CS, IPWCS and MICS

(using M = 200 replications). In Table 2 we give the coefficient and popula-

tion size estimates (standard errors are in parentheses) for each method fit to

the data. The näıve complete case method yielded a population size estimate

around 84. The näıve IPW and CS methods gave similar population size es-

timates around 90, although their regression parameters estimates were quite

different. The näıve IPW method gave large standard errors for both regression
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Table 2. Coefficient and population size estimates for each method (discussed in Section
5.2) fitted to the bandicoot capture–recapture data. We fit the näıve complete case
method, the näıve IPW model using the surrogate W i, the CS approach (2.4)–(2.5) with
complete case only, the IPWCS model and MICS.

Method β0 (Intercept) β1 (Body weight) γ0 (Gender) N (Population size)
näıve −2.38 (0.62) 2.95 (0.90) 0.58 (0.26) 83.9 (4.07)
IPW −2.98 (7.00) 3.49 (10.0) 0.60 (0.37) 89.8 (19.2)
CS −5.06 (2.23) 7.06 (3.39) 0.37 (0.37) 88.9 (11.0)
IPWCS −7.67 (3.76) 10.6 (5.71) 0.32 (0.48) 117 (51.9)
MICS −7.69 (4.41) 10.7 (6.68) 0.28 (0.54) 110 (59.3)

parameters and population size.

IPWCS and MICS gave similar estimates that were distinctively different

from those found by the other methods. These differences suggest that both

measurement error and missingness are present in the body weight covariate. If

both of these are ignored then conclusions can be misleading. For both methods,

the estimated population sizes were around 110–117 with a high standard error

estimated near 55. To confirm these high standard errors, we conducted a non-

parametric bootstrap (with 100 bootstrap replications) to estimate them. We

found that the bootstrap standard errors estimates yielded similar results. We

caution that these large standard errors may have occurred due to the poor

reliability of measurements.

6. Discussion

Through several simulation studies we showed that the proposed methods

outperformed the näıve approach, and results were comparable (if not better)

with other established methods.

Generally, IPWCS and MICS give the same results, but each method has

its own advantages, briefly discussed here. The MICS approach can be easily

generalized to impute values that are partial missing – e.g., if X is a bivari-

ate vector that is partially missing. In such cases, MICS is more efficient than

IPWCS. IPWCS is computationally faster than the MICS approach, and in sim-

pler cases would be recommended in practice. For the MICS approach, instead

of imputing mi and Wij , we can also impute the estimating function Φi(θ). In

Web Appendix S2, we provide an alternative algorithm that gives asymptotically

equivalent results.

A general problem with the IPW method is that small π̂i may result in large
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inflated estimates (Seaman and White (2013)). In simulations and examples we

did not encounter these issues. We suspect that if the number of categories for Z

is large, then this problem may be unavoidable, and some further adjustments

would be necessary such as weight truncation and semi-parametric modelling with

logistic regression, see Section 5.3 in Seaman and White (2013). In addition, we

could consider an approach given in Stoklosa and Huggins (2012), where lower-

bound methods were implemented on estimated capture probabilities to enhance

robustness.

Our methods differ from those given by Xi et al. (2009). Their approach re-

quires making distributional assumptions on the true underlying covariate, that

we relaxed while maintaining good estimator performance. Still, we also required

the assumption that the measurement error is normally distributed. To relax this

assumption, we could consider a corrected score approach (Carroll et al. (2006)),

but this is still not possible under the conditional likelihood framework (Huggins

(1989)) – neither the logistic function H(·) nor the probability P ∗i (θ) is analyt-

ically tractable. An alternative approach uses an approximated correct score,

or other models given in Stoklosa et al. (2011), to help solve this problem. An

extension for the proposed study could consider more general capture–recapture

models where both capture and recapture probabilities are related to temporal

and behavioral effects (Huggins (1989)). Incorporating “unobserved heterogene-

ity” models (Pledger (2005); Farcomeni (2016)) into the measurement error and

missing data model framework could be a very challenging problem. These ex-

tensions will be explored elsewhere.

Supplementary Materials

Web Appendices S1 contains proofs of Theorems 1–5, Web Appendices S2

contains a refined regression calibration method, Web Appendices S3 contains an

alternative MICS algorithm, and Web Appendices S4 contains Web Figures 1–6

and Web Tables 1–8 consisting of results for simulation studies 1 and 2.
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