
Statistica Sinica 30 (2020), 55-79
doi:https://doi.org/10.5705/ss.202017.0315

SPARSE BAYESIAN ADDITIVE NONPARAMETRIC

REGRESSION WITH APPLICATION TO HEALTH

EFFECTS OF PESTICIDES MIXTURES

Ran Wei, Brian J. Reich, Jane A. Hoppin and Subhashis Ghosal

North Carolina State University

Abstract: In many practical problems that simultaneously investigate the joint ef-

fect of covariates, we first need to identify the subset of significant covariates, and

then estimate their joint effect. An example is an epidemiological study that an-

alyzes the effects of exposure variables on a health response. In order to make

inferences on the covariate effects, we propose a Bayesian additive nonparamet-

ric regression model with a multivariate continuous shrinkage prior to address the

model uncertainty and to identify important covariates. Our general approach is

to decompose the response function into the sum of the nonlinear main effects and

the two-way interaction terms. Then we apply the computationally advantageous

Bayesian variable selection method to identify the important effects. The proposed

Bayesian method is a multivariate Dirichlet–Laplace prior that aggressively shrinks

many terms toward zero, thus mitigating the noise of including unimportant expo-

sures and isolating the effects of the important covariates. Our theoretical studies

demonstrate asymptotic prediction and variable selection consistency properties.

In addition, we use numerical simulations to evaluate the model performance in

terms of prediction and variable selection under practical scenarios. The method

is applied to a neurobehavioral data set from the Agricultural Health Study that

investigates the association between pesticide usage and neurobehavioral outcomes

in farmers. The proposed method shows improved accuracy in predicting the joint

effects on the neurobehavioral responses, while restricting the number of covariates

included in the model through variable selection.

Key words and phrases: Additive nonparametric regression, Bayesian variable selec-

tion, continuous shrinkage prior, environmental epidemiology, posterior consistency.

1. Introduction

Traditional epidemiological studies in toxicology analyze the correlation be-

tween chemical exposures and a single health endpoint. As data become more

complex, advanced statistical methods are needed to estimate the relationships

between mixtures of multiple chemicals and a suite of health endpoints to in-

crease the statistical power of models and to create a more realistic picture of
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health risks. As a motivating application, we analyze neurobehavioral (NB) data

collected as part of the Agricultural Health Study (AHS; http://aghealth.nih.

gov/). The data include measurements of 20 organophosphate pesticides and 12

NB health endpoints for each of 701 farmers from Iowa and North Carolina. In

previous works, Starks et al. (2012a,b) use a linear regression model to separately

examine the associations between an indicator for having experienced a pesticide

exposure event and each health endpoint of the NB tests . They conduct con-

ventional hypothesis testing, concluding that two of the nine NB endpoints have

a negative association with pesticide exposure.

Because pesticide exposure may have complex nonlinear associations with

health endpoints, nonparametric models are preferable, considering their robust-

ness to model assumptions. Previous works in the literature consider various

nonparametric regression models to delineate the relationships between the co-

variates and the response variables and to overcome the limitations of a linear

regression. Friedman (1991) develops a multivariate regression splines (MARS)

method that defines a nonparametric regression model using splines. Lin and

Zhang (2006) propose the component selection and smoothing operator (COSSO)

technique, which uses a penalized regression to select variables. Under a Bayesian

framework, Bobb et al. (2015) implement a Bayesian kernel machine regression

model that assumes nonparametric associations between mixtures and health

responses.

Whereas fully nonparametric models are robust to model assumptions, they

suffer from a lack of interpretability and are difficult to fit in high dimensions.

In order to reduce the complexity, an additive model can be assumed to de-

compose the joint effect function into the summation of the individual effects

and the interaction effects. For example, the smoothing spline ANOVA (SS-

ANOVA, Gu (2002)) method models nonlinear main effects and higher-order

interactions between predictors. Reich, Storlie and Bondell (2009) implement an

SS-ANOVA model with Gaussian process priors, and search for the best model

using stochastic search variable selection (SSVS, George and McCulloch (1993))

in MCMC sampling. As a more general nonparametric regression model, Scheipl,

Fahrmeir and Kneib (2012) propose a structured additive regression model for

nonlinear functions, with a spike-and-slab prior. Their method aims to select

relevant covariates and determine their effects under different scenarios, such as

Gaussian and nonGaussian models. One of the disadvantages of these methods

is their computational burden for large problems. Under a similar model set-

ting, Curtis, Banerjee and Ghosal (2014) use a multivariate Laplace prior on the

http://aghealth.nih.gov/
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basis coefficients in their additive nonparametric model, which relies on a large-

sample approximation for parameter sampling. In this study, we apply the same

technique of an additive regression model with a basis expansion as that of Cur-

tis, Banerjee and Ghosal (2014), but use a different Bayesian variable selection

method.

Variable selection techniques under Bayesian frameworks have been studied

extensively, especially for high-dimensional linear regression models. One com-

monly used method for variable selection is SSVS, which defines a two-component

mixture prior on linear coefficients. The first component is concentrated at zero,

which takes care of unimportant predictors, and the second is a diffuse normal

distribution, which models active signals. Here, we are interested in a Bayesian

method that can substantially alleviate the computational burden of the complex

nonparametric model. As a computationally efficient alternative to SSVS priors,

shrinkage priors are continuous distributions imposed on the model parameters.

Furthermore, they mimic the behavior of SSVS priors with a dominant peak near

zero and heavy tails. Various shrinkage priors have been proposed, including the

Horseshoe prior (Carvalho and Polson (2010)), normal-gamma prior (Griffin and

Philip (2010)), double Pareto prior (Armagan, Dunson and Lee (2013)), and

Dirichlet–Laplace (DL) prior (Bhattacharya et al. (2015)), and have been shown

to fall within the family of Gaussian global–local scale mixtures. Theoretically,

shrinkage priors obtain almost the same contraction rate as the point-mass prior

when recovering the model parameters and the true subset of covariates in both

low-dimensional (Armagan et al. (2013)) and high-dimensional (Song and Liang

(2016)) models.

In this study, we assume an additive nonparametric regression model for both

the main effect and the interaction effects between the covariates. We consider a

multivariate continuous shrinkage prior on the block of B-spline basis coefficients

for the variable selection. We make two major contributions to the literature.

First, we address the model uncertainty in a nonparametric additive regression

setting by incorporating block variable selection on B-spline basis expansion co-

efficients. Therefore, the concentration of the posterior distributions of the block

of basis coefficients near zero is used to identify the significant main effects and

the interactions. Second, we expand the notion of the computationally efficient

DL prior introduced in Bhattacharya et al. (2015) to multidimensional vectors

in order to achieve a simultaneous shrinkage on the basis coefficient vector of

each main or interaction effect function. In our theoretical research, we expand

the current prediction consistency and variable selection consistency results for
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a shrinkage prior under a linear regression model to the proposed additive non-

parametric model. Here, the induced bias from the B-spline basis approximation

and the shrinkage on multidimensional vectors pose the major challenges. Fur-

thermore, we use NB data from the AHS to explore the health effects of multiple

pesticide measurements, and how the effects on each health endpoint differ from

those on the on overall NB system.

2. Model Description and Prior Specification

2.1. Main-effect-only model

We first describe the main-effect-only model, which assumes the regression

mean function is a summation of the main effect functions for each individual

covariate. Let the data be (Y,X), where Y is the response variable denoting the

health endpoint and Xn×p = (X1, . . . , Xp)
T is a p-vector of chemical exposure

measurements. Without loss of generality, we assume that all covariates are stan-

dardized to lie within the unit interval, (0, 1). For the nonparametric regression

model of Y on the covariates X, we assume that

Y = µ+ f(X1, . . . , Xp) + ε, (2.1)

where µ is the intercept and ε ∼ N(0, σ2) is the error term. Assuming that

the covariates in the data affect the response variable in an additive manner

through unknown functions, the joint effect is decomposed into the sum of the

individual main effect functions: f(X1, . . . , Xp) =
∑p

j=1 fj(Xj), where fj(Xj) is

the univariate nonparametric function of Xj .

If each main effect function of an individual covariate is sufficiently smooth,

it can be approximated using a B-spline basis expansion with a predetermined

number of basis functions, m. For the covariate matrix X, with all elements

scaled to the unit interval, each main effect function is approximated by fj(Xj) ≈∑m
r=1Br(Xj)βjr, where Br(·), for r = 1, . . . ,m, denote B-spline basis terms. This

approximation transforms the nonlinear effect of Xj into a linear combination of

its basis terms, with the m-vector basis coefficients βj = (βj1, . . . , βjm)T . The

regression model in (2.1) is written as

Y = µ+

p∑
j=1

m∑
r=1

Br(Xj)βjr + ε. (2.2)

For the regression model defined in (2.2), the effect quantity and model

uncertainty of each covariate Xj are addressed through the basis coefficients βj .

The m-vector coefficients βj are assigned multivariate normal priors with a zero
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mean and different variance factors across j = 1, . . . , p: βj
ind.∼ Nm(0, σ2λjIm).

The local variance factors λj determine the shrinkage on the m-vector basis

coefficients, such that the problem of selecting important main effects reduces to

the shrinkage of λj . Using the DL prior of Bhattacharya et al. (2015), λj follows

an exponential distribution with mean τφj . Here τ is the global factor that

determines the tail of the marginal distribution of λj and φj > 0, with
∑p

j=1 φj =

1, is the proportion of the variance allocated to covariate Xj . Furthermore, a

Dirichlet distribution on φ = (φ1, . . . , φp)
T and a gamma distribution on τ are

imposed. The hyper-parameter α in the Dirichlet distribution controls the level

of shrinkage, such that a smaller α yields a greater concentration around zero

and, thus, a sparser model. The uncertainty on each nonparametric main effect

function is addressed by implementing a multivariate DL prior on the B-spline

basis coefficients. The full Bayesian model on the model parameters is

βj |λj , σ2
ind.∼ Nm(0, σ2λjIm), j = 1, . . . , p, (2.3)

λj |φj , τ
ind.∼ Exp(φjτ), j = 1, . . . , p, (2.4)

φ ⊥ τ, φ = (φ1, . . . , φp)
T ∼ Dirichlet(α, . . . , α), τ ∼ Gamma(pα, 2). (2.5)

The proposed Bayesian hierarchical method for the additive nonparametric

model is a multivariate extension of the DL prior in linear regressions. As a

shrinkage prior on the B-spline basis coefficients, the proposed multivariate DL

method leads to a slightly different prior to the original univariate DL prior

of Bhattacharya et al. (2015). When m = 1 and σ2 = 1, our multivariate

DL prior is βj |λj ∼ N(0, λj) and λj |φj , τ ∼ Exp(φjτ). After integrating out

λj , the marginal prior distribution of βj , given (φj , τ), is a double exponential

distribution, denoted as DE(
√
φjτ/2). In the linear regression model, however,

the DL prior on the coefficient is βj |φj , τ ∼ DE(φjτ). Therefore, in this case, the

original DL prior places more mass near zero than does the proposed multivariate

extension with only one basis term. Despite the differences in quantities, our

proposed multivariate DL prior for a nonparametric regression is an extension

of the DL prior in a linear regression, both of which share similar shrinkage

properties.

2.2. Main and interaction effects model

If the effects of the covariates on the response are not only additive in the

main effects, but also have two-way interaction terms, the underlying joint func-

tion includes both the main effects and the interactions,
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Y = µ+

p∑
j=1

fj(Xj) +

p−1∑
k=1

p∑
l=k+1

fkl(Xk, Xl) + ε, (2.6)

where the second-order term fkl(Xk, Xl) represents the interaction effects on

the health endpoint between covariates Xk and Xl. Note that we consider only

two-way interactions in this model, because higher-order interactions are less

interpretable, and including them increases the computational complexity beyond

manageable limits.

Using the B-spline basis expansion in Section 2.1 to represent each individual

main effect function, we incorporate the outer product of the B-spline basis terms

for the interaction effect functions:

fkl(Xk, Xl) ≈
m∗∑
s=1

m∗∑
t=1

B∗s (Xk)B
∗
t (Xl)βklst. (2.7)

In order to ensure this approximation is valid, we assume the two-way interaction

functions have the same smoothness along both coordinate axes. We use m∗

terms for the interaction effects, as opposed to m terms for the main effects; thus

the basis functions B∗s (X) may also differ from the main effect basis functions

Bs(X). We propose a similar multivariate DL prior on the basis coefficients for

the interaction effect function. Then, normal priors are placed on the coefficients

βklst
ind.∼ N(0, σ2λkl), for s, t = 1, . . . ,m∗. The DL prior is imposed on the local

variance factors λkl:

βkl|λkl, σ2
ind.∼ Nm∗×m∗(0, σ2λklIm∗×m∗), l > k, k = 1, . . . , p− 1, (2.8)

λkl|φ∗kl, τ∗
ind.∼ Exp(φ∗klτ

∗), l > k, k = 1, . . . , p− 1, (2.9)

φ∗ = (φ12, . . . , φ1p, . . . , φp−1,p)
T ∼ Dirichlet(α, . . . , α), (2.10)

τ∗ ∼ Gamma

(
p(p− 1)

2
α, 2

)
, (2.11)

where we assume the same sparsity level α for both the main effects and the

interactions.

2.3. Identifiability constraints

We propose identifiability constraints on the functions fj and fkl in the

additive model (2.6) such that all model parameters can be determined uniquely

from the distribution of observations (X,Y ). For example, adding a constant to

fj and subtracting the same constant from fj′ for j 6= j′ gives the same mean

regression function, but different individual main effect functions. This lack of
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identifiability does not translate into different qualitative relations between the

predictors and the response variable, but the constraints are imposed for easier

interpretation and presentation, especially in the theoretical analysis. We choose

to restrict the main effect and interaction functions to integrate to zero such

that the shrinkage prior encourages shrinkage toward zero, as is customary in

the variable selection literature. For the main effect functions, we assume that∫ 1
0 fj(xj)dxj = 0, for j = 1, . . . , p. For the interactions, we assume that the

bivariate functions integrate to zero in both directions,
∫ 1
0 fkl(xk, xl)dxk = 0 for

all xl, and
∫ 1
0 fkl(xk, xl)dxl = 0 for all xk, such that the main effect functions are

not in the linear span of the interaction functions.

The restrictions on the main effect functions can be written as follows:∫ 1

0
fj(x)dx =

∫ 1

0

[
m∑
r=1

βjrBr(x)

]
dx =

m∑
r=1

βjr

[∫ 1

0
Br(x)dx

]
def
=

m∑
r=1

βjrDr = 0,

(2.12)

where Dr
def
=
∫ 1
0 Br(x)dx. Therefore, the integral restriction is equivalent to a

linear restriction on the basis coefficient βj ,
∑m

r=1 βjrDr = 0. For the B-spline

basis,

Dr =


r/[d(m− d+ 1)], r = 1, . . . , (d− 1),

1/(m− d+ 1), r = d, . . . , (m− d+ 1),

(m− r + 1)/[d(m− d+ 1)], r = (m− d+ 2), . . . ,m,

where m is the number of B-spline basis functions and d is the degree of the

B-spline basis.

The restrictions on each bivariate function of interactions are also treated as

linear constraints on the coefficients for the B-spline expansion in (2.7):∫ 1

0
fkl(xk, xl)dxk

def
=

m∗∑
t=1

B∗t (xl)

[ m∗∑
s=1

D∗sβklst

]
= 0, (2.13)

∫ 1

0
fkl(xk, xl)dxl

def
=

m∗∑
s=1

B∗s (xk)

[ m∗∑
t=1

D∗t βklst

]
= 0, (2.14)

where we assume D∗s
def
=
∫ 1
0 B

∗
s (x)dx, for s = 1, . . . ,m∗. The restrictions in (2.13)

and (2.14) hold for all xk and xl if an only if

m∗∑
s=1

D∗sβklst =0, for all t = 1, . . . ,m∗;
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m∗∑
t=1

D∗t βklst =0, for all s = 1, . . . ,m∗.

These restrictions on the interaction functions fkl(xk, xl) are composed of 2m∗

linear combinations of βkl, for k < l and k = 1, . . . , p− 1.

2.4. Thresholding

Owing to the properties of continuous shrinkage priors, the factors fj(·) will

never equal zero. Thus, a post-processing procedure is needed to determine

the zero and nonzero effects. We implement a thresholding technique where we

choose a subset of predictors such that the corresponding deterioration in predic-

tion accuracy in terms of the “variation-explained” can be tolerated (Hahn and

Carvalho (2015)). Given the posterior samples of coefficients βj , the posterior

samples of the “variation-explained” values are calculated as follows:

V(k) =
‖
∑p

j=1B(Xj)βj‖2

‖
∑p

j=1B(Xj)βj‖2 + nσ2 + ‖
∑p

j=1B(Xj)βj −
∑p

j=1B(Xj)β
(k)
j ‖2

,

(2.15)

where β
(k)
j = 0 if ‖βj/σ‖ is among the k smallest terms, and β

(k)
j = βj other-

wise. Specifically, V(k) represents the percentage of information explained by the

reduced model that includes only those covariates with the k biggest ‖βj/σ‖,
for k = 1, . . . , p. Given the posterior samples of V(k), the level of sparsity k is

determined by choosing the smallest k such that the (1 − α0) × 100% credible

interval of V(k) includes the posterior mean of the full model V(p).

3. Posterior Computation

We now describe the computational algorithm for the main-effect-only model.

The regression model with both main and interaction effects in the mean func-

tion is very similar. We sample the parameters using a combination of Gibbs

sampling and direct sampling. The sampler cycles through (i) β|λ, φ, τ, Y,X,

(ii) λ|β, φ, τ, Y,X and (iii) φ, τ |λ,β, Y,X. Step (iii) follows direct sampling of

(iiia) τ |φ, λ and (iiib)φ|λ.

(i) Given λj , Y , and Xj , the conditional posterior distribution of βj is the

m-dimensional multivariate normal, with mean µβj
and variance matrix Σβj

,

where

µβj
=

(
B(Xj)

TB(Xj) +
Im
λj

)−1
B(Xj)

T

Y − p∑
l=1,l 6=j

B(Xl)βl

 , (3.1)
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Σβj
=

(
B(Xj)

TB(Xj) +
Im
λj

)−1
· σ2. (3.2)

For the restrictions on the basis coefficients in (2.12), we sample βj
∣∣∑m

r=1 βjrDr =

0 from the conditional multivariate normal Nm(µ∗βj
,Σ∗βj

), where

µ∗βj
=µβj

−Σβj
D(DTΣβj

D)−1DTµβj
, (3.3)

Σ∗βj
=Σβj

−Σβj
D(DTΣβj

D)−1DTΣβj
, (3.4)

and D = (D1, . . . , Dm)T .

(ii) Given φj , τ , and βj , the variance component λj is sampled from the

generalized inverse Gaussian distribution GiG(1− (m/2), 2/(φjτ), βTj βj/σ
2).

(iiia) Given φ1, . . . , φp and λ1, . . . , λp, the global parameter τ in the DL

prior is sampled from the generalized inverse Gaussian distribution GiG(p(α −
1), 1, 2

∑p
j=1 λj/φj).

(iiib) Now, given λ1, . . . , λp, we first sample Tj , for j = 1, . . . , p, indepen-

dently from the generalized inverse Gaussian distribution GiG(α − 1, 1, 2λj),

and then let φj = Tj/
∑p

l=1 Tl.

4. Asymptotic Properties

Next, we study the asymptotic properties of the additive nonparametric

regression model for the individual main effects with the multivariate DL prior.

Because the predictors are considered deterministic in our setting, the extension

to include interactions is similar, except that the full model has a greater number

of terms.

Notation. For a fixed n × pn covariate matrix X = (X, . . . ,Xpn), we consider

the additive nonparametric model Y =
∑pn

j=1 fj(Xj) + σε, where each addi-

tive function is approximated by an mn-dimensional B-spline basis expansion:

fj(Xj) = B(Xj)βj + σδ, and δ denotes the bias induced from the basis expan-

sion approximation. Therefore, the true additive regression model is

Y =

pn∑
j=1

B(Xj)βj + σδ + σε
def
= B(X)β + σδ + σε,

where B(X) = [B(X1), . . . , B(Xpn)] is a matrix of the values of the B-spline

basis functions, β = (βT1 , . . . ,β
T
pn)T is a pnmn-vector, with each mn-dimensional

component corresponding to a covariate Xj , and ε is an n-dimensional standard

normal vector. We study a Bayesian approach with a continuous shrinkage prior

for the mn-dimensional vectors β1, . . . ,βpn . After integrating out the parameters
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φj , the hierarchical Bayesian model in Section 2.1 is represented by, for j =

1, . . . , pn,

βj |λj , σ2
ind.∼ Nm(0, λjσ

2Im), (4.1)

λj |ψj
ind.∼ Exp(ψj), ψj ∼ Gamma(α, 2). (4.2)

We let f∗j (·) be the true function for covariate Xj , β
∗ and σ∗ be the true values of

the parameters, and ξ∗ ⊂ {1, . . . , pn} be the indices of the covariates with nonzero

effects such that f∗j (Xj) 6= 0 for j ∈ ξ∗. The true sparsity level is s = |ξ∗|.

Assumptions.. We first state some regularity conditions on the eigen structure

of the B-spline basis expansion matrix B(X) with respect to a sequence {εn},
which is defined later. These assumptions are similar to those in Song and Liang

(2016), who present the asymptotic properties of the shrinkage priors in linear

regression models. The difference between the assumptions lies in the fact that

we are dealing with a design matrix of the basis expansions. In addition, the

additive nonparametric functions are estimated using a B-spline basis expansion,

such that an estimation bias is introduced. Let a ≺ b mean that lim a/b = 0, and

let a � b mean that “lim a/b” is bounded by constants.

• A1(1): The number of parameters in the linear expansion satisfies mnpn ≥
n.

• A1(2): All main effect functions of the additive model are κ-times continu-

ously differentiable.

• A1(3): The rank of B(X) is n and B(X)TB(X) has n positive eigenvalues,

denoted as nd1/mn, . . . , ndn/mn, where d1, . . . , dn are bounded away from

zero.

• A2(1): The sequence {εn} is assumed to satisfy smn log pn ≺ nε2n and εn �
m−κn .

• A2(2): minj∈ξ∗{(‖β∗j /σ∗‖)/
√
mn} � εn and maxj{(‖β∗j /σ∗‖)/

√
mn} ≤ γ3E,

for fixed γ3 ∈ (0, 1), and E is nondecreasing with n.

• A3: There exist an integer p̄, which depends on n and pn, and two constants

d and d′0, such that p̄mn log pn � nε2n and nd0/mn ≥ dmax

(
B̃(X)T B̃(X)

)
≥

dmin

(
B̃(X)T B̃(X)

)
≥ nd′0/mn, for any q ≤ p̄ and any sub-matrix B̃(X)

consisting of qmn columns of B(X).

The assumption of high dimensionality in A1(1) is mainly used for the concise
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representation of certain bounds. Using a lower dimensionality of the parameter

space, the same asymptotic properties can be obtained, but the following assump-

tions and proofs need to be treated slightly differently. To save space and avoid

monotonicity of the arguments, it is customary to forgo separate arguments for

the lower-dimensional case. In A1(2), κ defines the minimum smoothness for all

additive functions, such that the bias induced by themn-dimensional basis expan-

sion is δ � m−κn . Assumption A1(3) is an extension of the linear regression model

in Song and Liang (2016), where we replace the covariate matrix X with the B-

spline basis design matrix B(X). From Lemma A.9 in Yoo and Ghosal (2016),

we combine the B-spline property with the linear regression model assumption to

specify A1(3). Assumption in A2(1) restricts εn to max(
√
smn log pn/n,m

−κ
n ).

Because the nonparametric regression function assumes there are no model

parameters, we mainly want to demonstrate the prediction consistency of the

joint effects. Therefore, the following theorem proves that when the B-spline

basis expansion is implemented, the prediction performance of B(X)β is asymp-

totically concentrated around the additive mean function under the truth.

Theorem 1. For the regression model Y =
∑mn

j=1 fj(Xj) + σε = B(X)β + σδ +

σε, the basis expansion bias satisfies ‖δ‖ .
√
nm−κn , where κ is the degree of

smoothness. Let A1, A2, and A3 hold for the design matrix B(X), and let the

basis coefficients βj for covariate Xj follow the prior density πα(·) defined in

(4.1) and (4.2), with α � p−(1+ν)n for ν > 0. Then,

P∗

π(∥∥∥∥∥B(X)β −
pn∑
j=1

f∗j (Xj)

∥∥∥∥∥ ≥ c0√nεn
∣∣∣∣∣X,Y

)
≥ e−c1nε2n

 ≤ e−c2nε2n , (4.3)

for some constants c0, c1, and c2.

Theorem 1 shows the posterior concentration rate
√
nεn for the predictions at

the observation points. Therefore, given the matrix X of covariates, the predictor

B(X)β obtained from the regression model concentrates around the true mean

function
∑pn

j=1 f
∗
j (Xj), with a concentration rate close to

√
nmax{

√
smn log pn/n,

m−κn }. The proof of the theorem is provided in the Supplementary Material.

Theorem 2. Define the sub-model ξ(an) = {j : ‖βj/σ‖ > an} corresponding to

a threshold an, where nanpn ≺ log pn. Assume that the conditions of Theorem 1

hold and minj∈ξ∗ ‖β∗j ‖/
√
mn � εn. Then,

P∗
(
π(ξ(an) = ξ∗|X,Y ) > 1− p−µ′′

)
> 1− p−µ′n , (4.4)

for some positive constants µ′ and µ′′.
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Theorem 2 shows the posterior variable selection consistency, given that

an ≺ log pn/npn and the prior density is moderately flat at the nonzero basis

coefficients β∗j /σ
∗. The proof of the theorem is given in the Supplementary

Material.

5. Simulation Study

We first consider the additive nonparametric regression model that includes

individual main effects only as in Section 2.1,. Then we expand the regression

model to include two-way interaction effects, as in Section 2.2.

5.1. Simulation description

For the simulated data, the number of covariates is p = 50 and the sam-

ple size is fixed at either n = 200 or n = 500. For the matrix X of the

covariate values, we first sample X∗j for j = 1, . . . , p, from a Gaussian distri-

bution, with E(X∗j ) = 0, Var(X∗j ) = 1, and Cov(X∗j , X
∗
k) = 0 for the mutu-

ally independent case or Cov(X∗j , X
∗
k) = 0.5|j−k| for the autoregressive case.

Next, the simulated random vectors are rescaled onto the unit interval by Xj =

(X∗j −min(X∗j ))/(max(X∗j )−min(X∗j )). Given X, the response Y is generated

from normal distribution with mean f(X)
def
= f1(X1) + f2(X2) + f3(X3) + f4(X4)

and variance σ2 = 1.5, where

f1(x) = exp(1.1x3)− 2, f2(x) = 2x− 1,

f3(x) = sin(4πx), f4(x) = log{(e2 − 1)x+ 1} − 1.

The remaining p− 4 predictors have no effect on the response.

Under each scenario of different sample sizes (n = 200 or n = 500) and

dependence structures (independent or autoregressive), we simulate 100 data

sets. For each method implemented, we compare the prediction accuracy and

variable selection performance. Specifically, the prediction accuracy is evaluated

by the mean squared error (MSE) on the test data, as follows:

MSE =
1

500

500∑
i=1

[
f(x′i1, . . . , x

′
ip)− f̂(x′i1, . . . , x

′
ip)
]2
, (5.1)

where f(·) is the true mean function, f̂ is the estimated mean function, and

X ′i = (x′i1, . . . , x
′
ip)

T is a new data point randomly sampled from the proposed

covariate distribution, for i = 1, . . . , 500. Note that X ′i is not used for model

fitting, but is used to evaluate the prediction performance. Therefore, we can

compare the prediction performance of each method on future observations.
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Figure 1. (a) Box-plot of the posterior distribution of the L2-norm ‖βj/σ‖ for a single
simulated data set; (b) Variation-explained plot at different model sizes for a single data
set (the horizontal line is the full model “variation-explained” measurement). Note that
only the first 20 model sizes are shown in the figure.

We also record the variable selection performance in terms of correctly iden-

tifying the four significant covariates. We evaluate these results by examining

the percentage of unimportant variables selected (False Positive) and the percent-

age of important variables excluded (False Negative), averaged over all simulated

data sets under each scenario. We further include the proportion of the simulated

data sets in which the true model is selected (Truth). In order to identify the

sub-model of nonzero covariates, we follow the proposed thresholding method

of “variation-explained.” Figure 1(a) shows a box-plot of posterior samples of

‖βj‖, for j = 1, . . . , p. Figure 1(b) shows the posterior median of V(k), with

80% intervals at different model sizes, k = 1, . . . , 20. The shrinkage level for the

variable selection is determined by the smallest k such that the 80% interval of

V(k) includes the posterior mean of the full model V(50) (horizontal line in Figure

1(b)). Note that we only include model sizes less than 20, because model sizes
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Table 1. Summary of the main-effect-only simulation study. Methods are compared
in terms of their mean squared error (“MSE”), False Positive (“FP”), False Negative
(“FN”), and True model (“True”), with their standard errors (“SE”) under independent
and autoregressive covariance shown in parentheses. All values except the MSE are given
in percentages (%).

n = 200 MSE (SE) FP (SE) FN (SE) True (SE)
Independent DL(Oracle) 1.85(0.13) 0.00(0.00) 0.00(0.00) 100(0)

DL(VarExp) 1.85(0.13) 0.88(0.22) 0.00(0.00) 86(3)
ABayes - 0.00(0.00) 15.25(1.91) 56(5)
BSS-ANOVA 2.86(0.20) 4.88(0.58) 0.00(0.00) 47(5)
COSSO 2.90(0.18) 2.94(0.54) 7.50(1.26) 46(5)
MARS 2.31(0.17) 1.50(0.28) 1.00(0.49) 73(4)

AR(1) DL(Oracle) 2.36(0.11) 4.81(0.44) 19.25(1.77) 39(5)
DL(VarExp) 2.36(0.11) 2.50(0.38) 23.50(1.94) 25(4)
ABayes - 0.00(0.00) 40.25(1.77) 5(2)
BSS-ANOVA 3.51(0.15) 3.69(0.47) 20.21(1.65) 17(4)
COSSO 3.83(0.19) 4.87(0.87) 26.50(1.94) 10(3)
MARS 3.90(0.14) 0.62(0.21) 38.00(1.90) 8(3)

n = 500 MSE (SE) FP (SE) FN (SE) True (SE)
Independent DL(Oracle) 1.52(0.09) 0.00(0.00) 0.00(0.00) 100(0)

DL(VarExp) 1.52(0.09) 0.25(0.12) 0.00(0.00) 96(2)
ABayes - 0.00(0.00) 0.00(0.00) 100(0)
BSS-ANOVA 2.17(0.10) 2.06(0.39) 0.00(0.00) 74(3)
COSSO 2.12(0.11) 2.81(0.51) 0.25(0.25) 70(5)
MARS 1.95(0.08) 0.44(0.18) 0.00(0.00) 94(2)

AR(1) DL(Oracle) 2.06(0.14) 1.94(0.30) 7.75(1.21) 70(5)
DL(VarExp) 2.06(0.14) 0.12(0.09) 13.25(1.40) 59(5)
ABayes - 0.00(0.00) 10.25(1.38) 60(5)
BSS-ANOVA 2.89(0.13) 1.94(0.22) 2.00(0.68) 51(5)
COSSO 3.01(0.10) 3.62(0.49) 7.75(1.21) 36(5)
MARS 2.93(0.11) 0.75(0.22) 8.00(1.37) 55(5)

larger than that do not affect the value of “variation-explained.”

In order to demonstrate the advantages of our proposed method over other

methods with similar model assumptions, we first fit the additive nonparametric

model with a multivariate DL prior (DL method) for each data set. Then we

compare our method with the following four competing methods, assuming ad-

ditive nonparametric functions: the approximate Bayesian method (“ABayes”)

of Curtis, Banerjee and Ghosal (2014); the Bayesian smoothing splines ANOVA

(“BSS-ANOVA”) of Reich, Storlie and Bondell (2009); the component selection

and smoothing operator (“COSSO”) of Lin and Zhang (2006), and the multivari-

ate adaptive regression splines model (“MARS”) of Friedman (1991). We also
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implement the “Oracle” selection in the DL method, which identifies the four co-

variates with the largest posterior medians of ‖βj/σ‖. Given correct information

on the number of significant covariates, this method demonstrates the ability

of the general DL method to rank the important covariates and formally select

those that are significant. For MARS, we use the function polymars(·) in the

R package polspline. For the DL and BSS-ANOVA methods, where MCMC

sampling is implemented, 15,000 samples are drawn in total, with 5,000 burn-in

steps.

5.2. Simulation results: Main-effect-only model

Table 1 summarizes the simulation results for the additive regression model

with individual main-effect functions. In terms of prediction performance, our

proposed DL method outperforms the competing methods, even though the

methods all make similar assumptions about the regression model. The DL

method achieves the smallest MSE under all scenarios, and MARS has good pre-

diction accuracy under the independent case. The other methods perform simi-

larly, with the BSS-ANOVA being slightly better than the COSSO. The ABayes

method does not provide predictions so there are no results for this method.

As expected, the DL Oracle method performs best under all scenarios in

terms of variable selection. The DL method with a data-driven threshold, DL

(VarExp), performs slightly worse than DL(Oracle), but still outperforms the

other methods. In conclusion, the thresholding policy defined in (2.15) adds un-

certainty in determining the number of important covariates. Thus when the

number is fixed, as in the Oracle method, the proposed method correctly ranks

the covariates through shrinkage and achieves better variable selection accuracy.

For the other methods, ABayes is too conservative when choosing a subset of

covariates, with a false positive equal to zero under every scenario and, thus, a

large proportion of false negatives. In the dependent case, ABayes has perfect

selection for the larger sample size, but the true model proportions drop consid-

erably when the sample size decreases. BSS-ANOVA and COSSO have similar

variable selection performance. Their performance for independent data is worse

than that of their competitors, and the computation time for BSS-ANOVA is

more than three times that of the DL method. MARS, on the other hand, per-

forms poorly for correlated data, as in the AR(1) case. Overall, the DL method

outperforms the competitors, especially in the more difficult setting of a small

sample size and correlated predictors.
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5.3. Model with main and interaction effects

We also conduct simulations for the additive models with both main effects

and interactions. Because adding interactions increases the dimensionality sig-

nificantly, we reduce the number of covariates to p = 10 and only investigate the

independent case. Therefore, there are 10 main effects and 45 interaction effects.

The response variable Y is simulated as:

Y = f1(X1) + f2(X3) + f3(X1X3) + ε,

where ε is a random number generated from a standard normal distribution, and

the functions f1, f2, and f3 are defined in Section 5.1. As in the simulation for

the main-effect-only model, we let the sample size be n = 200 or n = 500.

To fit the nonparametric regression model in (2.6), we approximate the main-

effect function fj(Xj) using B-spline basis functions of order m = 10 and the

two-way interaction functions fkl(Xk, Xl), with the outer product of basis terms

of order m∗ = 5. We implement the DL method as described in Section 2.2 and

select the important main and interaction effects using the “variation-explained”

criterion, similarly to the main-effect-only model. The DL method is compared

with the ABayes, BSS-ANOVA, COSSO, and MARS methods in terms of both

prediction performance and variable selection. The accuracy of the model predic-

tion is evaluated by computing the MSE for a newly generated covariate matrix.

The variable selection performance is determined by False Negative, False Pos-

itive, and the percentages of correctly identifying the main effects, interactions,

and complete model. In ABayes and COSSO, where interactions are not consid-

ered, the interaction terms are represented as the product of two covariates; that

is, we define 45 new covariates Xl ·Xk and then use the main-effects model with

55 additive predictors. Therefore, providing extra information on the correct

format of the interaction effects actually favors these methods. The simulation

results are summarized in Table 2.

From Table 2, the simulation results show that our proposed method im-

proves the prediction on the newly generated data set compared with the other

nonparametric methods. In particular, by correctly addressing the joint effect by

decomposing main-effect functions and interaction-effect functions, our method

improves the prediction accuracy by more than 50% in terms of the MSE. Fur-

thermore, the inclusion of a shrinkage prior on the basis expansion coefficients

addresses the model uncertainty and improves the performance in identifying

the correct sub-model. The n = 200 scenario is challenging for all methods, es-

pecially when selecting the correct model that includes both nonzero main and
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Table 2. Summary of the simulation study with main and interaction effects. These
methods are compared in terms of mean squared errors (“MSE”), False Positive (“FP”),
False Negative (“FN”), and the correct selection of the main effects, interactions, and
complete model, with their standard errors (“SE”) in parentheses. All values except the
MSE are given in percentages (%).

Correct selection (SE)
n = 200 MSE (SE) FP (SE) FN (SE) Main Interaction Model
DL(Oracle) 1.21(0.08) 7.17(0.39) 28.67(1.57) 19(4) 38(5) 19(4)
DL(VarExp) 1.21(0.08) 0.08(0.08) 41.33(1.84) 46(5) 38(5) 15(4)
ABayes - 0.17(0.12) 49.00(1.86) 3(2) 97(2) 2(1)
BSS-ANOVA 2.33(0.12) 0.17(0.12) 37.67(1.81) 53(5) 30(5) 9(3)
COSSO 2.71(0.13) 8.58(0.67) 41.67(2.70) 66(5) 11(3) 10(3)
MARS 2.39(0.16) 0.25(0.14) 38.33(1.29) 81(4) 1(1) 1(1)

Correct selection (SE)
n = 500 MSE (SE) FP (SE) FN (SE) Main Interaction Model
DL(Oracle) 1.19(0.09) 0.58(0.21) 2.33(0.85) 93(3) 93(3) 93(3)
DL(VarExp) 1.19(0.09) 0.00(0.00) 2.33(0.85) 93(3) 100(0) 93(3)
ABayes - 0.42(0.18) 16.67(1.87) 53(5) 95(2) 50(5)
BSS-ANOVA 2.08(0.11) 0.08(0.08) 2.33(0.85) 92(3) 90(1) 80(4)
COSSO 2.51(0.12) 3.08(0.51) 7.00(1.73) 94(2) 68(5) 68(5)
MARS 2.30(0.15) 0.17(0.12) 20.67(1.63) 98(1) 38(5) 37(5)

interaction effects. The DL method has the highest true model proportion among

the methods. When n = 500, the DL method successfully selects the true in-

teraction effects for all data sets. The competing methods perform worse than

the DL method. Even the ABayes and COSSO, where the true format of the

interaction term is specified, cannot outperform the DL method under the two

scenarios. The second-best method is the BSS-ANOVA, but this requires five

times the computing time of the DL method.

6. Analysis of the AHS NB Data Set

6.1. Description of the NB data

We demonstrate our method using data from an NB sub-study of the Agri-

cultural Health Study (AHS; http://aghealth.nih.gov/). The goal of the

study (data version number: AHS44436) is to examine the association between

pesticide exposure and the NB function of the central nervous system (CNS).

From 2006 to 2008, n = 701 male farmers from Iowa or North Carolina took NB

tests. There are 12 response variables, including N = 8 CNS tests that assess

memory, motor speed, sustained attention, verbal learning and visual scanning,

http://aghealth.nih.gov/
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and processing. For this implementation, we analyze these eight continuous CNS

response variables. Starks et al. (2012a,b) conclude that participants with one

or more pesticide exposures are more likely to have adverse CNS outcomes, but

they do not investigate the individual pesticide effects on the overall NB system.

In this application, the exposure variables are the lifetime-specific pesticide use

information for p = 20 pesticides from the AHS questionnaires and interviews.

Each exposure covariate is quantified as the number of days of applying a cer-

tain pesticide over the participant’s lifetime. We also include q = 6 confounding

variables Z for age (years), testing site (1 if North Carolina, 0 if Iowa), farm size

(acres), smoking status (packs per year), drinking status (drinks per year), and

highest level of education (years).

The B-spline basis expansion requires Xij ∈ (0, 1). Therefore, we apply a

rank transformation. For example, Xij = xmeans that subject i applied pesticide

j more days than 100x% of the study participants. This transformation makes

the covariates uniformly distributed over the unit interval, while still allowing

for a wide range of regression relationships between the covariates X and the

response Y via the additive nonparametric function. All response measurements

are standardized to have mean zero and variance one, and some response variables

(continuous performance test, digit symbol latency, sequence A and sequence B

latencies) are multiplied by −1, as appropriate, so that higher values indicate

better performance.

6.2. Multivariate extension

Because the data include multiple response variables, we extend the model

to account for multiple health responses rather than analyzing the N = 8 NB

responses individually. This multivariate analysis is preferred because we are

more interested in the pesticide effects on overall NB performance than in the

individual tests. Furthermore, borrowing strength across response measurements

should improve the statistical power of identifying important exposures and es-

timating their exposure-response curves. The main structure of the multivariate

extension is still consistent with the model proposed in Section 2.

For the CNS response variables, we model the confounding variable age (Z1)

as having a nonparametric effect on the health response, but model the other

confounding variables (Z2, . . . , Zq) as linear effects. The additive nonparamet-

ric model for the response variable Yb, for b = 1, . . . , N , on confounder Z and

pesticide exposure X is
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Yb = µ+ g1,b(Z1) +

q∑
l=2

Zlγl,b + fb(X1, . . . , Xp) + εb, (6.1)

where µ is the intercept term and εb is normally distributed with mean zero and

variance σ2. For the nonparametric function of age, we use the B-spline basis

expansion g1,b(Z1) ≈
∑m

r=1 γ1r,bBr(Z1). The joint-effect function on the bth

health response, fb(X1, . . . , Xp), is decomposed into main-effect and interaction-

effect functions and approximated using basis expansions, as in (2.6) and (2.7).

To build the connection between CNS health responses, we specify the

Bayesian hierarchical model so that the coefficients for each response variable

share a common prior distribution, with a global mean across b = 1, . . . , N .

Therefore, for each covariate index j, βbj
ind.∼ Nm(µj , λjσ

2Im), where the normal

mean µj is treated as the basis coefficient for the nonparametric effect of covari-

ate Xj on the overall NB system (overall effect curve). The same multivariate

extension is applied to the interaction-effect functions, such that µkl determines

the joint effect of Xl and Xk on the overall NB functions. In the confounding

effects, a similar method is implemented. We assume γb1 ∼ Nm(ν1, σ
2Im) and

γbl
ind.∼ N(νl, σ

2) for l = 2, . . . , q. The model uncertainty is then addressed using a

Bayesian hierarchical model with a DL prior on both the response-specific curves

and the overall effect curves. However, we do not use shrinkage priors for the

mean confounder coefficients ν1r and νl in order to conservatively account for

their effects in our study. The following prior distribution structure is assumed

for the model parameters in the pesticide main effects. A similar structure can

be used for the parameters in the interaction-effect functions:

βbj |µj , λj , σ2
ind.∼ Nm(µj , λjσ

2Im), µj |ωj
ind.∼ Nm(0, ωjIm),

λj |φ′j , τ ′
ind.∼ Exp(φ′jτ

′), φ′ ∼ Dirichlet(α, . . . , α), τ ′ ∼ Gamma(pα, 2),

ωj |φj , τ
ind.∼ Exp(φjτ), φ ∼ Dirichlet(α, . . . , α), τ ∼ Gamma(pα, 2),

σ2 ∼ InvGamma(0.01, 0.01), ν1r, νl
i.i.d.∼ N(0, 102).

This hierarchical model centers all N exposure-response curves around the overall

effect curve by shrinking the response-specific coefficient βbjr to µjr. Thus each

response-specific curve f bj (Xj) shrinks toward the average curve for the overall

effects of the exposures: f̄j(Xj) ≈
∑m

r=1 µjrBr(Xj). A small λj shrinks all N

curves toward f̄j(Xj); a large λj allows for variations among the response-specific

curves f bj (Xj), for j = 1, . . . , N . For the overall effects curve, which reflects the

average main effect across health responses, a small ωj shrinks the average main-
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effect function for exposure Xj toward zero. Thus, the jth pesticide does not

influence the overall NB system significantly. However, a large ωj allows for a

significant association between Xj and the NB system through the nonparametric

function f̄j(Xj). If one pesticide is not associated with any of the response

variables, such that the overall effects are negligible, both λj and ωj are small

and all curves shrink toward zero.

6.3. NB data analysis

We use fivefold cross validation to select the number of basis functions

(we consider m1 ∈ {5, 10, 15, 20}) and the Dirichlet parameter (we consider

α ∈ {0.1, 0.3, 0.5, 0.7, 0.9}). The best prediction performance is achieved (MSE

= 0.908) with m1 = 10 and α = 0.5. We also find that this nonparametric ad-

ditive model outperforms the linear regression model using least squares (MSE

= 1.023), generalized additive model using the restricted maximum likelihood

method (MSE = 0.993), MARS (MSE = 0.973), and COSSO (MSE = 0.965)

when the responses are analyzed separately.

Figure 2(a) shows the posterior samples for the L2-norm of the mean curve

coefficients, ‖µj/σ‖. Using the variation-explained measurements in Figure 2(b),

the size of the final model is chosen as the smallest model for which the 80%

credible interval includes the median variation-explained value of the full size

model. Three pesticides are selected: Parathion, Benomyl, and Chlorpyrifos. In

the additive nonparametric regression model that includes both main effects and

interactions, the thresholding method selects three main effects of pesticides,

and excludes the interaction effects. Therefore, we only show the results for

the coefficients of the individual main effects, because the interaction effects are

negligible.

Figure 3 plots the average exposure-response functions f̄j(Xj) for each pes-

ticide main effect. Each individual curve is a function of the cumulative number

of pesticide applications (i.e., the original measurement before the rank transfor-

mation). The mean curves plateau for large exposures because these exposures

are rare in the sampled subjects. Among the selected pesticides, Parathion and

Chlorpyrifos show a decreasing pattern in the mean curves, implying that these

pesticides have negative overall effects on central nervous systems. The mean

curve for Benomyl shows a positive effect, but that might be because of the

collinearity with other pesticides.

The variance of the curves across pesticide exposure j, λj , and the variance

of the average curve for pesticide j, ωj , illustrate the overall importance of each
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Figure 2. (a) Box-plot for the L2-norm of the mean curve basis coefficients ‖µj/σ‖; (b)
Variation-explained plot at different model sizes (the horizontal line is the full model
“variation-explained” measurement).

pesticide on health response. The posterior samples of all λj are concentrated

near zero, indicating that there is no significant difference between the response-

specific main-effect functions for each CNS measurement. Therefore, the average

exposure-response curves f̄j(X) are sufficient to delineate the associations be-

tween pesticides and the overall NB test results. For the posterior samples of

ωj , we present the box-plot in Figure 4. The values of the variance ωj indicate

the average effects of each pesticide on the overall CNS responses and, thus, de-

termine the covariates to be included in the model using the variable selection
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Figure 3. Average (over Central Nervous System tests) exposure-response curves f̄j(X)
for each pesticide in the Agricultural Health Study. The x-axis is the cumulative number
of pesticide applications. The solid lines are the posterior means and the dashed lines
are point-wise 95% credible intervals. The first three plots in are the pesticide covariates
selected by the DL model.

Figure 4. Posterior distribution of the normal variance ωj for the average coefficients
across CNS responses.

technique described in Section 2.1.

In conclusion, we detect significant associations between three pesticide chem-
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icals and CNS overall functions using the nonparametric model with a multivari-

ate DL prior. In contrast, the other parametric or nonparametric methods can-

not find associations from the data. Compared with the simple linear regression

analysis results of Starks et al. (2012a), our proposed method chooses a sparse

model and demonstrates nonlinear effects on the overall performance of CNSs.

By integrating the CNS response variables, we may have greater utility for those

outcome measurements, because an individual NB test may fail to capture the

overall impact.

7. Summary

We propose a nonparametric regression model with an additivity assump-

tion on the main-effect and interaction-effect functions, motivated by a study

of multiple pesticide exposures. The additive nonparametric functions in the

decomposed model are approximated by a B-spline basis expansion with a mul-

tivariate extension of the shrinkage prior on individual functions. Furthermore,

we show the posterior consistency of the model prediction and variable selection

for the additive nonparametric regression model. We apply the model to NB

data from the AHS, showing that the proposed method achieves good prediction

accuracy and identifies the subset of pesticide exposures that contribute most to

the NB function.

A limitation of this study is that the proposed method deals with continuous

response measurements only. Because there are binary or count NB responses

in the data sets, it would be useful to extend the additive nonparametric regres-

sion model to include categorical response variables. Brezger and Lang (2006)

propose a generalized structured additive regression for nonlinear effects of con-

tinuous covariates. Their MCMC simulation methods can be combined with the

multivariate shrinkage priors on the B-spline basis coefficients and, therefore,

implemented as a nonGaussian extension of our proposed model. Extensions to

address multiple time or spatial measurements are also desirable.

Supplementary Material

The proofs of the theorems are provided in the Supplementary Material.
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