
Statistica Sinica 22 (2012), 69-94

doi:http://dx.doi.org/10.5705/ss.2010.085

PRESMOOTHING IN FUNCTIONAL

LINEAR REGRESSION

Frédéric Ferraty1, Wenceslao González-Manteiga2,
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Abstract: In this paper, we consider the functional linear model with scalar re-

sponse, and explanatory variable valued in a function space. In recent literature,

functional principal components analysis (FPCA) has been used to estimate the

model parameter. We propose to modify this approach by using presmoothing

techniques. For this new estimate, consistency is stated and efficiency by com-

parison with the standard FPCA estimator is studied. We have also analysed the

behaviour of our presmoothed estimator by means of a simulation study and data

applications.
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1. Introduction

Nowadays computational tools allow us to create and store very large data-
bases. In many cases, the dataset is made up of observations from a finite-
dimensional distribution, measured over a period of time or recorded at different
spatial locations. When the temporal or spatial grid is fine enough, the sample
can be considered as an observation of a random variable on a certain function
space (see examples in Ramsay and Silverman (2002, 2005) or Ferraty and Vieu
(2006)). Analysing this kind of data with standard multivariate methods and ig-
noring its functional feature may fail dramatically (curse of dimensionality, strong
collinearities, etc). In these cases, specific statistical techniques are required in
order to draw relevant underlying information.

With regard to regression models, classical multivariate methods have been
adapted to the functional context where the response Y and/or the explanatory
variable X are valued in a function space (see Ramsay and Silverman (2005)
for a parametric state of art, and Ferraty and Vieu (2006) for a nonparametric
one). Particularly, the functional linear model with scalar response has been the
subject of numerous studies in the recent literature, as it is here.
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From now on, let (H, 〈·, ·〉) be a real separable Hilbert space and let ‖ · ‖
denote the induced norm (‖x‖ = 〈x, x〉1/2, x ∈ H). We consider the functional
linear model

Y = m(X) + ε = 〈θ,X〉 + ε, (1.1)

where Y is a real random variable, m(·) = 〈θ, ·〉 is a linear regression operator
with θ ∈ H and ‖θ‖2 < ∞, X is a random zero-mean variable valued in H

satisfying that E(‖X‖2) < ∞, and ε is a real random variable such that E(ε) = 0,
V ar(ε) = σ2, and E(εX) = 0. When the variables X and Y are not centered, we
can take Ỹ = Y − E(Y ) and X̃ = X − E(X) and consider the regression model
Ỹ = 〈θ, X̃〉 + ε, which is equivalent to

Y = θ0 + 〈θ,X〉 + ε, (1.2)

with θ0 = E(Y ) − 〈θ,E(X)〉. Thus we focus on (1.1) with zero-mean variables,
without loss of generality.

Although we have fixed the broad framework of Hilbert spaces, functional
data are often valued in well-known common spaces. For example, the space
H = L2([0, 1]) is usually considered when the functional data are curves, that is,
when X = {X(t), t ∈ [0, 1]}. In this situation, the general regression model (1.1)
becomes

Y =
∫ 1

0
θ(t)X(t)dt + ε, (1.3)

when one takes the inner product 〈x, y〉 =
∫ 1
0 x(t)y(t)dt for all x, y ∈ L2[0, 1].

Many authors have proposed procedures for estimating θ, both in the general
model (1.1) and in the particular case given by (1.3). Common methods use
basis systems such as Fourier series, wavelets, or splines (see a general review
in Ramsay and Silverman (2005), and see Cardot, Ferraty, and Sarda (2003)
or Crambes, Kneip, and Sarda (2009) for the popular splines basis). Second
methodology is based on functional principal components analysis (FPCA), as
developed and analyzed by Cardot, Ferraty, and Sarda (1999) Cardot, Ferraty,
and Sarda (2003), Cai and Hall (2006), Hall and Hosseini-Nasab (2006), Hall
and Horowitz (2007), and Cardot, Mas, and Sarda (2007). The FPCA estimator
is revisited here in order to improve its behaviour in terms of conditional mean
square errors by introducing presmoothing techniques.

We decided on presmoothing methods in light of Faraldo-Roca and González-
Manteiga (1987) and Cristóbal-Cristóbal, Faraldo-Roca, and González-Manteiga
(1987). These authors proposed the application of the least-squares principle on
the pairs (Xi, m̂n(Xi)) instead of (Xi, Yi), where m̂n is a nonparametric kernel-
type estimate of the regression function m. This alteration to the minimization
problem produced efficient estimates that reduced the mean squared error of
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the classical least-squares estimates for the linear regression model, except in
the compact support case. Later, Janssen, Swanepoel, and Veraverbeke (2001)
showed that the inefficiency problem in the compact support case could be rec-
tified using boundary kernels. A similar procedure was developed by Akritas
(1996) to fit polynomial regression models to data with incomplete observations.
Since then, the presmoothing methodologies have been successfully applied in
such areas as model selection procedures (see Aerts, Hens, and Simonoff (2010),
who smoothed the response data prior to model selection by Akaike’s Informa-
tion Criterion), and censored/truncated survival data analysis (see Cao-Abad
et al. (2005), Jácome and Iglesias-Pérez (2008), and Jácome, Gijbels, and Cao
(2008), who replaced censoring indicator variables by values of a nonparametric
regression estimator).

In functional data analysis, presmoothing processes are usually included as
preliminary steps in such a way that the observations are replaced by their
smoothed approximations. For instance, Hitchcock, Casella, and Booth (2006)
examined the effect of this substitution on estimating the dissimilarities among
elements in the dataset. Another way to use presmoothing methods has been
considered by Zhang and Chen (2007) in dealing with the regression model
Yi(t) = Xt

iθ(t) + Vi(t) + εi(t), i = 1, . . . , n, where the covariate Xi is multi-
dimensional and time-independent, the process Vi represents the ith individual
variation, and Yi is the ith response process. These authors proposed an estimate
of θ based on a local polynomial kernel reconstruction of fi(t) = Xt

iθ(t) + Vi(t).
We are not interested in presmoothing as a preprocessing tool, but rather

as a way to build a new efficient FPCA-type estimator, that reduces the condi-
tional mean square errors of the standard FPCA one, along the lines of Faraldo-
Roca and González-Manteiga (1987) in the real case. The idea here is similar
to one that motivates multivariate ridge regression: circumvent the problem of
an ill-conditioned covariance operator by means of an artificial perturbation of
its eigenvalues. To see the usefulness of our approach, here is an example that
shows the instability of the FPCA estimator when the eigenvalues are close to
0; it will be analyzed in detail in the simulation study (see Section 4). Consider
the regression model (1.3) when the explanatory curves are

X(t) = a1

√
2 sin(πt) + a2

√
2 cos(πt) + a3

√
2 sin(2πt) + a4

√
2 cos(2πt)

with al ∼ U(−1/3l−1, 1/3l−1) for all l ∈ {1, . . . , 4}, the model parameter is
θ(t) = 2

√
2 cos(2πt), and ε ∼ N (0, σ2) with σ = 0.2

√
E(〈X, θ〉2). The calcula-

tion of the standard FPCA estimator involves the eigenelements of the second
moment operator of X (see (2.1) in Section 2) and, in this example, it can be
shown that only the first four eigenvalues are different from zero. To analyse
the effect of null eigenvalues, we simulated 200 samples of 100 observations and
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Figure 1. Mean of squared errors of prediction (left panel) and estimated
mean square error of estimation (right panel) for the standard FPCA esti-
mator (solid black line) and for the FPCA-type estimator with perturbed
eigenvalues (dashed gray line).

computed the mean of squared errors of prediction and the mean square error
of estimation (see (4.1) in Section 4) when kn ∈ {1, . . . , 8} eigenelements of the
second order operator are involved in the FPCA estimator. Figure 1 presents
the results (black solid line). We also calculated the errors when the eigenval-
ues were slightly perturbed, adding α = 10−5 to them (see grey dashed line in
Figure 1). It can be seen that the presence of null eigenvalues (kn > 4), which
hardly affects prediction error, considerably increases the estimation error of the
FPCA estimator. Moreover, it seems that perturbation of eigenvalues allows us
to keep small estimation errors, even when null eigenvalues are involved. We are
thus led to developing a FPCA-type estimator based on a presmoothing method
that avoids the inconvenience of ill-conditioning.

Some definitions and notations related to FPCA are given in Section 2,
and we have listed results already present in literature for the conditional mean
square errors of FPCA estimator, to facilitate comparison with our estimator. In
Section 3, we propose a new estimate based on FPCA and presmoothing ideas.
The section also contains theoretical results (consistency and mean square error
expressions) that allow us to compare it with the standard FPCA estimator.
Section 4 includes a simulation study to analyze the behaviour of our proposal
from a practical point of view, and Section 5 presents data applications. Some
conclusions are in Section 6, and an appendix compiles technical lemmas and the
proofs of our results. In particular, Lemma A.1 in Appendix gives us expressions
for the conditional errors of a wide class of estimators, including those discussed
here. The generality of this lemma has two advantages: it has Theorem 1 and
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Theorem 3 as almost direct corollaries, and it may be useful in further research
on functional linear regression.

2. Functional Linear Model and FPCA

From now on, we are going to consider the functional linear model given
by (1.1). Before presenting the presmoothing ideas that we have developed, we
recall briefly some recent results on FPCA-type estimates. In particular, The-
orem 1 is useful in comparing the theoretical performances of the new estimate
with the standard one.

To analyse the standard FPCA estimator proposed by Cardot, Ferraty, and
Sarda (1999), we need to define the second moment operator Γ, and the cross
second moment operator ∆. The former is a nuclear, self-adjoint, and positive
operator

Γ : H → H

x → Γx = E(〈X,x〉X),

with {(λj , vj)}∞j=1 as its eigenvalues and eigenfunctions, respectively (and with
λ1 ≥ λ2 ≥ . . .). The cross second moment operator is

∆ : H → R
x → ∆x = E(〈X,x〉Y ).

Given {(Xi, Yi)}n
i=1, a sample from (X,Y ), Γ and ∆ are estimated by their em-

pirical counterparts, Γnx = n−1
∑n

i=1 〈Xi, x〉Xi and ∆nx = n−1
∑n

i=1 〈Xi, x〉Yi.
We denote by {(λ̂j , v̂j)}∞j=1 the eigenvalues and eigenfunctions of Γn (with λ̂1 ≥
λ̂2 ≥ · · · ≥ λ̂n ≥ λ̂n+1 = 0 = · · · ).

To estimate the model parameter, Cardot, Ferraty, and Sarda (2003) studied
the optimization problem

min
β∈H

E[(Y − 〈β,X〉)2].

When Ker(Γ) = {x ∈ H/Γx = 0} = {0} and
∑∞

j=1 (∆vj/λj)2 < +∞, the model
parameter θ is the unique solution to this minimization problem, and it satisfies
∆x = 〈θ, Γx〉 for all x ∈ H. This fact allows us to express the model parameter
as

θ =
∞∑

j=1

∆vj

λj
vj .

There is no bounded inverse of Γ, so Cardot, Ferraty, and Sarda (1999) projected
the data on the subspace spanned by the first kn eigenfunctions of Γn, and
proposed the estimator

θ̂kn =
kn∑
j=1

∆nv̂j

λ̂j

v̂j , (2.1)
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where {kn}∞n=1 is a sequence of positive integers such that kn → +∞, kn ≤ n,
and λ̂kn > 0. Note that (2.1) is the truncated β ∈ H that satisfies

∆nx = 〈β,Γnx〉, ∀x ∈ Im(Γn), (2.2)

and that the estimator (2.1) converges almost surely (see Cardot, Ferraty, and
Sarda (1999)).

Remark 1. The estimator θ̂kn can be obtained by projecting the observations
onto a finite subspace of H, and the same arguments involved in Faraldo-Roca
and González-Manteiga (1987) allow one to reduce the conditional mean square
error of the standard least squares estimator. Consider {ej}∞j=1 an orthonormal
basis of H, and fix kn < n. For all x ∈ H, the corresponding boldfaced letter
x denotes the kn-vector given by x = (〈x, e1〉, . . . , 〈x, ekn〉)t. Following the steps
given by Cristóbal-Cristóbal, Faraldo-Roca, and González-Manteiga (1987), one
considers the generalized optimization problem

min
b

Eµn [(m̂kn(X) − Xtb)2], with b = (〈β, e1〉, . . . , 〈β, ekn〉)t,∀β ∈ H, (2.3)

where m̂kn(x) =
∑n

i=1 Yiδ(x,Xi)/
∑n

i=1 δ(x,Xi) is a nonparametric estimator
of the regression function mkn(x) = E(Y |X = x) (here δ(·, ·) is a measurable
function from Rkn×Rkn into R), and µn(x) =

∫ x
−∞ f̂n(t)dt is a weighting function,

with f̂n(x) = n−1
∑n

i=1 δ(x,Xi) a nonparametric estimator of the density f of
X. Solving (2.3) for the special case δ(u,w) = 1 (resp. 0) if u = w (resp.
u 6= w) leads to the kn-dimensional normal equation ∆n = Γnb where Γn =
n−1

∑n
i=1 XiXt

i and ∆n = n−1
∑n

i=1 XiYi. This amounts to kn equations ∆nel =∑kn
j=1 〈Γnel, ej〉〈β, ej〉, for all l ∈ {1, . . . , kn}. Taking el = v̂l, one gets 〈β, v̂l〉 =

(∆nv̂l)/λ̂l for all l ∈ {1, . . . , kn}, and the estimator (2.1) appears as the projection
of β onto the subspace of H spanned by v̂1, . . . , v̂kn (i.e. θ̂kn =

∑kn
j=1〈β, v̂j〉v̂j);

θ̂kn is the solution of (2.3) for a basic nonparametric estimator (i.e. m̂kn(Xi) =
Yi). A natural extension of θ̂kn consists of investigating solution of (2.3) for
a general nonparametric estimator, equivalent to presmoothing the responses
before estimating the functional parameter θ.

The next theorem gives the conditional mean square error of prediction for
a new response Yn+1 = 〈Xn+1, θ〉 + εn+1, and the conditional mean square error
of estimation. For any n ∈ N∗, set X n = {X1, . . . , Xn} and let EXn(·) be the
expectation conditionally on X n. Furthermore, let

R̂kn =
∑
j>kn

〈θ, v̂j〉v̂j . (2.4)
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Theorem 1.

EXn+1(Yn+1 − 〈Xn+1, θ̂kn〉)2 = σ2 +
σ2

n

kn∑
j=1

〈Xn+1, v̂j〉2

λ̂j

+ 〈Xn+1, R̂kn〉2,

EXn(‖θ − θ̂kn‖2) =
σ2

n

kn∑
j=1

1
λ̂j

+ ‖R̂kn‖2.

Remark 2. The theorem comes from a direct application of Lemma A.1 (see the
Appendix), which allows us to obtain the conditional errors for a general type
of estimate simply, and to compare their behaviours from a theoretical point of
view. The conditional estimation error of θ̂kn given in Theorem 1 has already
been studied in literature. In fact, Theorem 5 in Hall and Hosseini-Nasab (2006)
gives conditions in order to find that

E(‖θ − θ̂kn‖2) ∼ σ2

n

kn∑
j=1

1
λ j

+ ‖Rkn‖2,

where Rkn =
∑

j>kn
〈θ, vj〉vj , and Wn ∼ Zn means that the ratio of Wn and Zn

converges to 1 when n → +∞.

3. Presmoothing via Covariance Structure

In this section, we are going to perturb the normal equation (2.2), and look
for a function β in H such that

∆nx = 〈β, (Γn + αnI)x〉, ∀x ∈ H, (3.1)

where αn is a positive real sequence satisfying αn → 0 when n → ∞, and I is
the identity operator in H. From (3.1), we derive the next estimator for θ,

θ̂αn
kn

=
kn∑
j=1

∆nv̂j

λ̂j + αn

v̂j . (3.2)

Note that both (3.1) and (3.2) can be seen as functional versions of the normal
equation, and the derived estimator for the ordinary multivariate ridge regression
with penalization term is αn times the usual norm of the model parameter.

Remark 3. In order to build θ̂αn
kn

, we can solve the optimization problem (2.3)
using δ(u,w) = h−kn

n K∗(h−1
n (u − w)), where K∗(x) =

∏kn
j=1 K(xj) for all x =

(x1, . . . , xkn)t ∈ Rkn , with K : R → R a symmetric positive kernel such that∫
K(z)dz = 1,

∫
zK(z)dz = 0 and

∫
z2K(z)dz = c(K) < ∞, and hn a strictly
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positive sequence of bandwidths. In this situation, the associated normal equa-
tion is

∆n = (Γn + h2
nc(K)Ikn)b, with Ikn the kn × kn-identity matrix.

This equation can be expressed as ∆nel =
∑kn

j=1 〈Γnel, ej〉〈β, ej〉+h2
nc(K)〈β, el〉,

for all l ∈ {1, . . . , kn}. Selecting el = v̂l, we have ∆nv̂l = (λ̂l + h2
nc(K))〈β, v̂l〉,

and (3.2) can be derived with αn = h2
nc(K).

3.1. Consistency

In order to state convergence results, we need some notation. Let H ′ be the
dual space of H and ‖ · ‖H′ be the associated norm ‖T‖H′ = (

∑∞
k=1 (Tek)2)1/2

for all T ∈ H ′, where {ek}∞k=1 is an orthonormal basis in H. Let ‖T‖∞ =
sup‖x‖=1 ‖Tx‖ for all T ∈ H, where H is the space of Hilbert-Schmidt operators
defined on H. The following assumptions are required.

(H.1) λ1 > λ2 > . . . > 0, and λ̂1 > λ̂2 > . . . > λ̂kn > 0 a.s..
(H.2) ‖X‖ ≤ c1 a.s..
(H.3) ∃c2 > 0,∀l ≥ 1, E(|ε|l) < l!c2 < +∞.
(H.4) nλ4

kn
/ log n → +∞ and nλ2

kn
/((

∑kn
j=1 aj)2 log n) → +∞, where

aj =


2
√

2
(λ1−λ2) if j = 1,

2
√

2
min(λj−1−λj ,λj−λj+1) if j 6= 1.

(H.5) λ2
kn

/αn → ∞.

Theorem 2. Under (H.1)−(H.5), ‖m̂αn
kn

−m‖H′ → 0 a.s., where m̂αn
kn

= 〈θ̂αn
kn

, ·〉
and m = 〈θ, ·〉.

Remark 4. Cardot, Ferraty, and Sarda (1999) obtained consistency for the stan-
dard FPCA estimator θ̂kn using (H.1), (H.2), (H.3′) |ε| ≤ c2 a.s., and (H.4). We
have replaced the assumption (H.3′) by (H.3) in order to consider non-bounded
errors as gaussian. This modification can also be done in Cardot, Ferraty, and
Sarda (1999), extending their results to a larger class of errors.

Remark 5. If kn = o(log n), (H.4) is satisfied when λj = c1c
j
2 or λj = c1j

−c3 ,
with c1 > 0, 0 < c2 < 1, and c3 > 1.

3.2. Conditional errors

To obtain the conditional errors of prediction and estimation, we need the
assumptions
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(H.6) λ̂kn/αn → ∞ a.s.,

(H.7) nαn → 0.

Theorem 3. Under (H.6), we have

EXn+1(Yn+1 − 〈Xn+1, θ̂
αn
kn

〉)2 − EXn+1(Yn+1 − 〈Xn+1, θ̂kn〉)2

= (−2αn
σ2

n

kn∑
j=1

〈Xn+1, v̂j〉2

λ̂2
j

+ 2αn〈Xn+1, R̂kn〉〈Xn+1, T̂kn〉 + α2
n〈Xn+1, T̂kn〉2)

×(1 + oa.s(1)), (3.3)

EXn(‖θ − θ̂αn
kn

‖2) − EXn(‖θ − θ̂kn‖2)

= (−2αn
σ2

n

kn∑
j=1

1

λ̂2
j

+ α2
n‖T̂kn‖2)(1 + oa.s(1)), (3.4)

where T̂kn =
∑kn

j=1 λ̂−1
j 〈θ, v̂j〉v̂j, and R̂kn is defined at (2.4).

Corollary 1. Under (H.6) and (H.7),

EXn+1(Yn+1 − 〈Xn+1, θ̂
αn
kn

〉)2 − EXn+1(Yn+1 − 〈Xn+1, θ̂kn〉)2

= (−2αn
σ2

n

kn∑
j=1

〈Xn+1, v̂j〉2

λ̂2
j

+ 2αn〈Xn+1, R̂kn〉〈Xn+1, T̂kn〉)(1 + oa.s(1)),

EXn(‖θ − θ̂αn
kn

‖2) − EXn(‖θ − θ̂kn‖2) = (−2αn
σ2

n

kn∑
j=1

1
λ̂2

j

)(1 + oa.s(1)).

Remark 6. Corollary 1 shows that the bias term R̂kn plays a fundamental role
in the conditional mean square error for prediction. In fact, our presmoothed
estimator gives better or worse results than the standard FPCA estimator θ̂kn

depending on the order of 〈Xn+1, R̂kn〉. Thus if 〈Xn+1, R̂kn〉(αn〈Xn+1, T̂kn〉)−1 =
oa.s.(1), then (3.3) becomes

EXn+1(Yn+1 − 〈Xn+1, θ̂
αn
kn

〉)2 − EXn+1(Yn+1 − 〈Xn+1, θ̂kn〉)2

= (−2αn
σ2

n

kn∑
j=1

〈Xn+1, v̂j〉2

λ̂2
j

+ α2
n〈Xn+1, T̂kn〉2)(1 + oa.s(1)).

With f(αn) = −2αn
σ2

n

∑kn
j=1 λ̂−2

j 〈Xn+1, v̂j〉2 + α2
n〈Xn+1, T̂kn〉2, take αopt,1

n =
arg minα f(α). It can be shown that αopt,1

n = (σ2/n)
∑kn

j=1 λ̂−2
j 〈Xn+1, v̂j〉2〈Xn+1,
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T̂kn〉−2 and, in this case,

EXn+1((Yn+1 − 〈Xn+1, θ̂
αopt,1

n
kn

〉)2) − EXn+1((Yn+1 − 〈Xn+1, θ̂kn〉)2)

= (−σ4

n2
(

kn∑
j=1

〈Xn+1, v̂j〉2

λ̂2
j

)2〈Xn+1, T̂kn〉−2)(1 + oa.s(1)).

Hence, there is a decrease in the prediction error using θ̂αopt,1
n

kn
, and this reduction

is more important when σ2 is large and/or sample size n is small.

Remark 7. Under the assumptions of Corollary 1, we have that θ̂αn
kn

improves
against θ̂kn in terms of the conditional mean square error for estimation, when
above all, σ2 is large and/or n is small. Moreover, we can look for the value
of αn that minimizes g(αn) = −2αn

σ2

n

∑kn
j=1 λ̂−2

j + α2
n‖T̂kn‖2 in (3.4). This is

αopt,2
n = σ2n−1(

∑kn
j=1 λ̂−2

j )‖T̂kn‖−2, for which we get

EXn(‖θ − θ̂αopt,2
n

kn
‖2) − EXn(‖θ − θ̂kn‖2) = (−σ4

n2
(

kn∑
j=1

λ̂−2
j )2‖T̂kn‖−2)(1 + oa.s(1)).

Previous remarks ensure second order efficiency, that is, θ̂αn
kn

performs better
than the standard FPCA estimator in small samples, and the same as θ̂kn in large
ones. Second order efficiency has already been achieved for linear regression esti-
mators based on presmoothing in the real case (see Faraldo-Roca and González-
Manteiga (1987) and Janssen, Swanepoel, and Veraverbeke (2001)). Presmooth-
ing techniques have also allowed this kind of gain in efficiency in other contexts
(see the presmoothed Nelson-Aalen estimator versus the classical Nelson-Aalen
estimator in Cao-Abad et al. (2005)).

4. Simulation Study

This section is devoted to the presentation of two simulation studies for the
regression model (1.3). The first case is characterized by the existence of null
eigenvalues: λj > 0 if j ∈ {1, . . . , 4}, and λj = 0 otherwise (it corresponds to the
motivation example introduced in Section 1). In the second case, the eigenvalues
of Γ decrease quickly, but all of them are different from zero.

In both studies, we simulated 1,000 samples, each containing 2n observa-
tions drawn from the model (1.3) with ε ∼ N (0, σ2) and signal-to-noise ratio
r = σ/

√
E(〈X, θ〉2). We fixed different values for the signal-to-noise ratio r

(r = 0.02, 0.2, 0.5, 1, 2), for the sample size n (n = 25, 50, 100, 200), and for dif-
ferent percentages of outliers (out = 0%, 10%, 20%), constructed by changing the
original model error by ε∗ ∼ N (7, σ2).
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For each case, we calculated the standard estimator θ̂kn (see (2.1)) and the
presmoothed estimator θ̂αn

kn
(see (3.2)). We also computed the penalized B-spline

estimator

θ̂PS =
q+k∑
j=1

β̂jBk,j ,

where {Bk,j , j = 1, . . . , k+q} is the normalized B-splines basis of the space Sqk of
splines with degree q and k−1 equispaced interior knots, and β̂ is the solution of
minβ∈Rq+k (1/n)

∑n
i=1(Yi −

∑q+k
j=1 〈βjBk,j , Xi〉)2 + ρ‖B(m)′

k β‖2 (see Cardot, Fer-
raty, and Sarda (2003)). We fixed k = 20, q = 4 and m = 2.

To compare the behaviour of these estimators, we used the risk funtions

R(Y ) =
1
n

2n∑
i=n+1

(Yi − Ŷi)2, and R(θ) =
∫

(θ(t) − θ̂(t))2dt, (4.1)

the mean of squared errors of prediction and the mean square error of esti-
mation of θ, respectively. To calculate the first, for each simulated sample,
we built each estimator θ̂ using {(Xi, Yi)}n

i=1 as a learning sample. The test
sample {(Xi, Yi)}2n

i=n+1 then produced the prediction Ŷi = 〈θ̂, Xi〉 for each i ∈
{n + 1, . . . , 2n}, and the corresponding value of R(Y ).

We used GCV for the choice of kn and αn, and calculated the “optimal”
estimators, for the kn and αn chosen, to minimize R(Y ) and R(θ). For the
penalized B-spline estimator, GCV was used to select ρ.

To present the results in a clear way, we show just the median of R(Y ) and
R(θ) when

• r varies with n = 100 and out = 10%,

• n varies with r = 0.2 and out = 10%, and

• out varies with n = 100 and r = 0.2.

Remark 8. Since curves are not recorded continuously, X and θ were discretized
on p = 500 equispaced design points (t1, . . . , t500) so that integrals involved had to
be approximated. We used quadrature weights of p−1, though more complex in-
tegral approximations are available. As a result, the eigenelements of Γn were ap-
proximated by those of the p×p-matrix Γn = (γl1,l2)l1=1,...,p;l2=1,...,p with γl1,l2 =
(np)−1

∑n
i=1 Xi(tl1)Xi(tl2), and ∆n was approximated by the p-vector ∆n =

(δl)l=1,...,p where δl = (np)−1
∑n

i=1 Xi(tl)Yi. The risk functions (4.1) also depend
on integral caculations and we took R(Y )≈n−1

∑n
i=1 (Yi − p−1

∑p
l=1θ(tl)Xi(tl))2

and R(θ) ≈ p−1
∑p

l=1 (θ(tl) − θ̂(tl))2.
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4.1. Case A

For the curves

X(t) = a1

√
2 sin(πt) + a2

√
2 cos(πt) + a3

√
2 sin(2πt) + a4

√
2 cos(2πt)

with al ∼ U(−1/3l−1, 1/3l−1) for all l ∈ {1, . . . , 4}, and θ(t) = 2
√

2 cos(2πt), the
eigenvalues of Γ are λj = V ar(aj) = 1/32j−1 for j ∈ {1, . . . , 4}, and λj = 0
for j > 4. Moreover, the model parameter is twice the fourth eigenfunction of
the second moment operator. This is then a favourable case for the FPCA-type
estimators if we select an adequate kn.

The medians of the risk functions for the different cases are compiled in
Table 1, Table 2, and Table 3. From them, one can see that both the FPCA-type
estimators give better estimations for θ than the penalized B-spline estimator, as
was expected given the connection between the model parameter and the fourth
functional principal component. As for R(Y ), the three estimators have values
of the same order.

If the GCV method is compared with the optimal selections, it can be seen
that errors when the GCV choice is used are similar to the optR(Y ) ones in terms
of prediction error, and generally higher than optR(θ) errors when the estimation
error is concerned. This is reasonable since GCV techniques minimize criteria
strongly linked with prediction error.

Centering on the two FPCA-type estimators, the results show that θ̂αn
kn

ob-
tains smaller errors than θ̂kn in most cases. Nevertheless, we must remark that
the improvement is almost negligible for R(Y ), whereas it can be very significant
for R(θ) when the signal-to-noise ratio is high (see Table 1), when the sample
size is small (see Table 2), or when there is an important presence of outliers (see
Table 3). These results coincide with the theoretical conclusions in Remark 7.

4.2. Case B

We simulated the model (1.3) with X a Brownian motion, and

θ(t) = log(15t2 + 10) + cos(4πt), ∀t ∈ [0, 1].

It is well-known that the eigenelements of the second moment operator of a
Brownian motion are

λj =
1

(j − 0.5)2π2
, vj(t) =

√
2 sin ((j − 0.5)πt), ∀t ∈ [0, 1], j = 1, 2, . . . ,

with all eigenvalues of Γ strictly positive.
From Tables 4, 5, and 6, we see that θ̂αn

kn
gives better estimates for θ than

θ̂kn , according with the theoretical results. Again, simulations confirm the effect
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Table 1. Case A: Fixed sample size n = 100 and percentage of outliers
out = 10%. Bold entries highlight the smallest errors for each selection
method.

error r
GCV optR(Y ) optR(θ)

θ̂PS θ̂kn
θ̂αn

kn
θ̂kn

θ̂αn

kn
θ̂kn

θ̂αn

kn

R(Y )

0.02 4.98 4.99 4.96 4.94 4.88 4.96 4.92
0.2 4.99 5.01 4.97 4.96 4.89 4.98 4.93
0.5 5.05 5.07 5.05 5.02 4.95 5.03 5.00
1 5.27 5.28 5.25 5.22 5.14 5.24 5.19
2 6.01 6.03 5.99 5.96 5.84 5.98 5.92

R(θ)

0.02 6.84 4.42 3.64 5.50 3.65 4.03 3.31
0.2 6.76 4.57 3.65 5.38 3.69 4.02 3.32
0.5 6.75 4.54 3.67 5.57 3.66 4.04 3.31
1 6.84 4.60 3.65 5.55 3.70 4.05 3.32
2 7.25 4.69 3.72 6.11 3.72 4.14 3.32

Table 2. Case A: Fixed ratio r = 0.2 and percentage of outliers out = 10%.
Bold entries highlight the smallest errors for each selection method.

error n
GCV optR(Y ) optR(θ)

θ̂PS θ̂kn
θ̂αn

kn
θ̂kn

θ̂αn

kn
θ̂kn

θ̂αn

kn

R(Y )

25 4.26 4.27 4.09 4.10 3.87 4.18 3.97
50 5.08 5.09 4.99 4.99 4.86 5.03 4.94

100 4.99 5.01 4.97 4.96 4.89 4.98 4.93
200 4.95 4.95 4.94 4.93 4.90 4.94 4.93

R(θ)

25 13.24 8.50 3.86 12.05 3.90 6.30 3.37
50 9.52 6.02 3.82 8.70 3.83 4.78 3.35

100 6.76 4.57 3.65 5.38 3.69 4.02 3.32
200 5.75 3.89 3.48 4.35 3.53 3.63 3.29

Table 3. Case A: Fixed sample size n = 100 and ratio r = 0.2. Bold entries
highlight the smallest errors for each selection method.

error out
GCV optR(Y ) optR(θ)

θ̂PS θ̂kn
θ̂αn

kn
θ̂kn

θ̂αn

kn
θ̂kn

θ̂αn

kn

R(Y )
0% 0.01 0.01 0.01 0.01 0.01 0.01 0.01
10% 4.99 5.01 4.97 4.96 4.89 4.98 4.93
20% 9.97 9.99 9.92 9.90 9.78 9.94 9.85

R(θ)
0% 0.39 0.24 0.28 0.99 0.25 0.24 0.10
10% 6.76 4.57 3.65 5.38 3.69 4.02 3.32
20% 8.49 5.46 3.82 7.58 3.79 4.61 3.35

of the sample size and noise on the expected reduction for estimation of θ (see
Remark 7): more improvement when n is small (see Table 5) when the “noise
level” is large (see Tables 4 and 6). As happens in Case A, θ̂kn and θ̂αn

kn
give
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Table 4. Case B: Fixed sample size n = 100 and percentage of outliers
out = 10%. Bold entries highlight the smallest errors for each selection
method.

error r
GCV optR(Y ) optR(θ)

θ̂PS θ̂kn
θ̂αn

kn
θ̂kn

θ̂αn

kn
θ̂kn

θ̂αn

kn

R(Y )

0.02 5.00 5.01 4.99 4.93 4.88 4.97 4.94
0.2 5.13 5.16 5.13 5.04 4.99 5.09 5.07
0.5 5.70 5.71 5.68 5.59 5.52 5.64 5.61
1 7.66 7.70 7.65 7.52 7.42 7.59 7.53
2 15.43 15.45 15.32 15.00 14.81 15.17 15.06

R(θ)

0.02 2.42 2.40 2.31 3.11 2.06 1.84 1.33
0.2 2.45 2.55 2.37 3.15 2.17 1.83 1.34
0.5 2.75 2.67 2.37 3.34 2.12 1.92 1.33
1 3.53 3.40 2.67 4.29 2.36 2.15 1.44
2 6.27 5.55 3.32 7.20 3.15 3.18 1.54

Table 5. Case B: Fixed ratio r = 0.2 and percentage of outliers out = 10%.
Bold entries highlight the smallest errors for each selection method.

error n
GCV optR(Y ) optR(θ)

θ̂PS θ̂kn
θ̂αn

kn
θ̂kn

θ̂αn

kn
θ̂kn

θ̂αn

kn

R(Y )

25 4.50 4.48 4.38 4.15 3.95 4.29 4.14
50 5.24 5.28 5.23 5.08 4.96 5.14 5.09
100 5.13 5.16 5.13 5.04 4.99 5.09 5.07
200 5.07 5.08 5.07 5.03 5.00 5.05 5.04

R(θ)

25 9.56 8.07 4.64 9.09 3.49 3.49 1.67
50 4.96 4.39 3.23 4.88 2.64 2.60 1.51
100 2.45 2.55 2.37 3.15 2.17 1.83 1.34
200 1.49 1.83 1.84 2.05 1.68 1.49 1.23

similar results in terms of R(Y ).
Comparing our presmoothed estimator with θ̂PS , behaviour is similar as far

as prediction error is concerned, while θ̂αn
kn

gives smaller estimation errors than
the penalized B-spline estimator when n is small or the noise is large.

These simulations suggest that the presmoothing estimate improves the stan-
dard FPCA linear estimate, and especially when the sample size is small. The
choice of the parameters of the presmoothed estimate is of course a key point.
A general practical guideline is to choose these parameters by cross-validation
techniques. Even if the results above might point to a new way for selecting these
parameters that could give even more improvement (see results for the “optimal”
choice with respect R(θ)), CV gives good data-driven results.
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Table 6. Case B: Fixed sample size n = 100 and ratio r = 0.2. Bold entries
highlight the smallest errors for each selection method.

error out
GCV optR(Y ) optR(θ)

θ̂PS θ̂kn
θ̂αn

kn
θ̂kn

θ̂αn

kn
θ̂kn

θ̂αn

kn

R(Y )
0% 0.11 0.11 0.11 0.11 0.10 0.11 0.11
10% 5.13 5.16 5.13 5.04 4.99 5.09 5.07
20% 10.16 10.19 10.13 10.00 9.86 10.06 9.99

R(θ)
0% 0.56 1.21 1.14 1.14 1.05 0.87 0.66
10% 2.45 2.55 2.37 3.15 2.17 1.83 1.34
20% 4.62 3.83 3.02 4.65 2.55 2.47 1.46

5. Data Applications

In order to demonstrate the improved performance of our methodology with
respect to the FPCA estimator in applications, we chose three functional datasets
with different sized n: Canadian weather data (n = 35), spectrometric data
(n = 215), and atmospheric pollution data (n =1,000).

Since the variables involved are not centered, we used the regression model
(1.2), and proceeded through the following steps.

Step 1. Calculate the sample mean of curves (X̄) and scalar responses (Ȳ ).

Step 2. Split the sample into a learning sample {(Xi, Yi)}i∈ILS
, and a testing

sample {(Xi, Yi)}i∈ITS
.

Step 3. Use the centered learning sample {(Xi − X̄, Yi − Ȳ )}i∈ILS
to build θ̂

(θ̂PS , θ̂kn or θ̂αn
kn

), and estimate the intercept term by θ̂0 = Ȳ − 〈θ̂, X̄〉.

Step 4. Compute the predicted responses for the testing sample, Ŷi = θ̂0 +
〈θ̂, Xi〉, ∀i ∈ ITS .

Step 5. Obtain R(Y ) = (1/#ITS)
∑

i∈ITS
(Yi − Ŷi)2, with #ITS the testing

sample size.

To avoid the effect of sample selection, this procedure was iterated 200 times,
and the mean, the median, and the standard deviation of R(Y ) over replications
were calculated.

We followed the general guidelines of the simulations study to build the
different estimates of θ. In particular, the involved parameters were selected by
cross-validation.

5.1. Canadian weather data

The Canadian weather data is available in the R package fda. This dataset
contains daily temperature and precipitation at 35 different locations in Canada
averaged over 1960 to 1994. Here Y is the logarithm of total annual precipitation
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Table 7. Canadian weather data: mean, median, and standard deviation of
R(Y ).

error θ̂PS θ̂kn
θ̂αn

kn

mean(R(Y )) 0.037 0.03566 0.03293
median(R(Y )) 0.036 0.03466 0.03230

sd(R(Y )) 0.018 0.01579 0.01436

Table 8. Spectrometric data: mean, median, and standard deviation of
R(Y ).

error θ̂PS θ̂kn
θ̂αn

kn

mean(R(Y )) 6.656 6.926 6.604
median(R(Y )) 6.313 6.524 6.088

sd(R(Y )) 1.935 2.153 1.939

at each weather station, and X is the daily temperature curve (see Ramsay and
Silverman (2005, Chap. 15) for a Fourier basis approach to this case). The
original sample was split into two subsamples: a learning sample (25 stations)
and a testing one (10 stations). Table 7 shows the mean, median, and standard
deviation of R(Y ). Bold entries highlight the smallest values for the mean of
squared error of prediction; these were generated by θ̂αn

kn
.

5.2. Spectrometric data

The data contain 215 spectrometric curves obtained from pieces of finely
chopped meat, and a scalar value corresponding to the fat content of each of
them (this dataset is available at http://www.math.univ-toulouse.fr/staph/
npfda). In the chemometric community, it is well-known that derivatives of NIR
spectra are more informative than the original ones. Therefore, in our regression
model, Xi is the second derivative of the spectrometric curve for each meat piece,
and Yi is its fat content (Ferraty and Vieu (2006) also chose the second derivatives
in order to get better predictive results in the functional nonparametric regression
context). We split the sample 200 times into a learning sample composed of 160
pieces and a test sample composed of 55 pieces. Table 8 contains the results for
this example (bold entries correspond to the smallest errors).

5.3. Atmospheric pollution data

The data here correspond to hourly averaged NOx concentrations measured
in the neighbourhood of a power station of ENDESA, located in As Pontes in the
Northwest of Spain, from 2007 to 2009. During unfavorable meteorological con-
ditions, NOx levels can rise quickly and cause an air-quality episode. The aim is
to forecast NOx with half an hour horizon to allow the power plant staff to pre-
clude NOx concentrations reaching the limits fixed by the current environmental

http://www.math.univ-toulouse.fr/staph/npfda
http://www.math.univ-toulouse.fr/staph/npfda
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Table 9. Atmospheric pollution data: mean, median, and standard deviation
of R(Y ).

error θ̂PS θ̂kn
θ̂αn

kn

mean(R(Y )) 2.865 3.238 3.207
median(R(Y )) 2.780 3.074 3.062

sd(R(Y )) 0.966 0.866 0.833

legislation (a functional kernel and linear autoregressive approach to this prob-
lem with SO2 levels is in Fernández de Castro, Guillas and González-Manteiga
(2005)).

Here we have a time series Z(t) that contains the hourly averaged NOx

concentrations: for each minute t, Z(t) is the average of the NOx measurements
recorded over the last hour. Each observation (Xi, Yi) is built as follows. The
curve Xi consists of a 4-hour period of the time series Z, and the response Yi is
the value of the time series half an hour ahead, that is, Xi(t) = Z(240×(i−1)+t)
with t ∈ {1, . . . , 240}, and Yi = Z(240 × i + 30). As in the previous examples,
we have considered 200 different pairs of learning/testing samples composed of
750 and 250 observations, respectively, and the results are compiled in Table 9,
where the smallest errors are in boldface.

Remark 9. In Subsection 3.2, the second order efficiency of our estimator θ̂α
kn

was stated. We also indicated the existence of an inverse relation between the
improvement of θ̂α

kn
with respect to θ̂kn , and the sample size n. This fact is

reflected in the real data applications: the gain of our estimator decreases from
small to large sample size (see Table 7, Table 8 and Table 9).

6. Comments

We have proposed a new FPCA-estimator for the linear model parameter θ.
Our methodology can be seen as an extension of the ordinary multivariate ridge
regression estimator to general Hilbert spaces: we slightly perturbate the eigen-
values of the second moment operator in order to avoid ill-conditioned problems.

We have shown that our estimator conserves the consistency properties of the
standard FPCA estimator (see Theorem 2), and we have obtained expressions for
conditional mean square errors for prediction and estimation (see Theorem 3).
The proof of Theorem 3 is derived from a general result (see Lemma A.1, Ap-
pendix), that seems certain to be of use in further research on functional linear
regression. Remark 6 highlights the effect of the bias term in the conditional
error of prediction: we can only obtain clear efficiency when the bias is negligi-
ble. As far as the conditional error of estimation is concerned, we are able to
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get improvement over the FPCA estimate, especially if the model noise is large
and/or the sample size is small.

We have tested the effectiveness of the presmoothed estimator relative to
the standard FPCA estimator and the penalized B-spline estimator by means
of simulation studies and data applications. In terms of conditional error of
estimation, our proposal gives better results than the FPCA estimator, and it
is a serious rival to the spline estimator when the sample size is small or the
noise level is large. Second order efficiency only generates a clear improvement
for small sample sizes, whereas for n large enough, our estimator and the FPCA
estimator have similar behaviour.
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Appendix

We present the proofs of the main results in the paper. We also give a
general result (Lemma A.1) that covers the standard FPCA estimator and the
presmoothed FPCA estimator discussed in this paper (and useful for other pur-
poses in the functional linear regression context), and some auxiliary lemmas.

A.1. Proof of Theorem 1

Theorem 1 is easily shown using Lemma A.1 with γj = λ̂−1
j and wj = v̂j . In

this case, R
(γ,ω)
kn

= θ −
∑kn

j=1 λ̂−1
j 〈Γnv̂j , θ〉v̂j = R̂kn where R̂kn is defined at (2.4).

Then, for the conditional error of prediction,

EXn+1(Yn+1 − 〈Xn+1, θ̂kn〉)2 = σ2

+
σ2

n

kn∑
j1=1

kn∑
j2=1

〈Γnv̂j1 , v̂j2〉
λ̂j1 λ̂j2

〈Xn+1, v̂j1〉〈Xn+1, v̂j2〉 + 〈Xn+1, R̂kn〉2

= σ2 +
σ2

n

kn∑
j=1

〈Xn+1, v̂j〉2

λ̂j

+ 〈Xn+1, R̂kn〉2,
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and for the conditional error of estimation,

EXn(‖θ − θ̂kn‖2) =
σ2

n

kn∑
j1=1

kn∑
j2=1

〈Γnv̂j1 , v̂j2〉
λ̂j1 λ̂j2

〈v̂j1 , v̂j2〉 + ‖R̂kn‖2

=
σ2

n

kn∑
j=1

1
λ̂j

+ ‖R̂kn‖2.

A.2. Proof of Theorem 2

This proof is similar to that of Theorem 3.2 in Cardot, Ferraty, and Sarda
(1999). First, take mkn = ∆Πkn(ΠknΓΠkn)−1, where Πkn is the orthogonal
projection onto the space spanned by the first kn eigenfunctions of Γ. It is clear
that

‖m − m̂αn
kn

‖H′ ≤ ‖m − mkn‖H′ + ‖mkn − m̂αn
kn

‖H′ .

Cardot, Ferraty, and Sarda (1999) showed that ‖m − mkn‖H′ → 0, so we just
need to show that ‖mkn − m̂αn

kn
‖H′ → 0.

Let En = {λkn/2 < λ̂kn < 3λkn/2}. In En, Lemma A.2 ensures that

‖mkn − m̂αn
kn

‖H′ ≤ δn‖∆‖H′‖Γ − Γn‖∞ + 2
‖∆ − ∆n‖H′

λkn

+ 2αn
‖∆‖H′

λ2
kn

,

with δn = 2/λ2
kn

+ 6
∑kn

j=1 aj/λkn . Therefore

P (‖mkn − m̂αn
kn

‖H′ > η)

≤ P
(
‖Γ − Γn‖∞ >

η

(3δn‖∆‖H′)

)
+P

(
‖∆ − ∆n‖H′ >

λknη

6

)
+ 1{αn>ηλ2

kn
/(6‖∆‖H′ )} + P (Ēn). (A.1)

It can be shown that

P (Ēn) ≤ P (‖Γ − Γn‖∞ > λkn/2) ≤ 2 exp (−Cnλ2
kn

), (A.2)

where C is a positive constant independent of n, and the last inequality is derived
from Lemma 5.3 in Cardot, Ferraty, and Sarda (1999) Furthermore,

P
(
‖Γ − Γn‖∞ >

η

3δn‖∆‖H′

)
≤ 2 exp

(
− Aηn

δ2
n

)
, (A.3)

P
(
‖∆ − ∆n‖H′ >

λknη

6

)
≤ 2 exp (−Bηnλ2

kn
), (A.4)
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where Aη and Bη are positive constants independent of n. These two inequal-
ities are obtained using Lemma 5.3 in Cardot, Ferraty, and Sarda (1999), and
Lemma A.3. Using (A.2), (A.3), and (A.4) in (A.1), we get

P (‖mkn − m̂αn
kn

‖H′ > η)

≤ 2 exp
(
− Aηn

δ2
n

)
+ 2 exp (−Bηnλ2

kn
) + 1{αn>ηλ2

kn
/(6‖∆‖H′ )} + 2 exp (−Cnλ2

kn
).

Cardot, Ferraty, and Sarda (1999) showed exp (−Aηn/δ2
n), exp (−Bηnλ2

kn
), and

exp (−Cnλ2
kn

) are general terms of convergent series under hypotheses (H.4). On
the other hand, under (H.5), there is an n0 such that αn < ηλ2

kn
/(6‖∆‖H′) for

all n > n0. Therefore
∑

n∈N∗ P (‖mkn − m̂αn
kn

‖H′ > η) < ∞, and Borel-Cantelli
Lemma give us ‖mkn − m̂αn

kn
‖H′ → 0 a.s..

A.3. Proof of Theorem 3

Consider Lemma A.1, with γj = (λ̂j + αn)−1 and wj = v̂j . Then

R
(γ,ω)
kn

= θ −
kn∑
j=1

λ̂j

λ̂j + αn

〈v̂j , θ〉v̂j = R̂kn +
kn∑
j=1

αn

λ̂j + αn

〈v̂j , θ〉v̂j ,

with R̂kn defined at (2.4). We then obtain for the conditional error of prediction,

EXn+1(Yn+1 − 〈Xn+1, θ̂
αn
kn

〉)2 = σ2 +
σ2

n

kn∑
j=1

λ̂j

(λ̂j + αn)2
〈Xn+1, v̂j〉2

+〈Xn+1, R̂kn +
kn∑
j=1

αn

λ̂j + αn

〈v̂j , θ〉v̂j〉2. (A.5)

Some calculations and (H.6) allow us to obtain

λ̂j

(λ̂j + αn)2
=

1
λ̂j

− 2
αn

λ̂2
j

+
α2

n

λ̂j(λ̂j + αn)2

(
3 + 2

αn

λ̂j

)

=
1

λ̂j

− 2
αn

λ̂2
j

(1 + oa.s(1)), (A.6)

αn

λ̂j + αn

=
αn

λ̂j

(1 − αn(λ̂j + αn)−1) =
αn

λ̂j

(1 + oa.s(1)). (A.7)

Using (A.6) and (A.7) in (A.5), we get

EXn+1((Yn+1 − 〈Xn+1, θ̂
αn
kn

〉)2)

= σ2 +
σ2

n

kn∑
j=1

〈Xn+1, v̂j〉2

λ̂j

− 2αn
σ2

n

kn∑
j=1

〈Xn+1, v̂j〉2

λ̂2
j

(1+oa.s(1))+〈Xn+1, R̂kn〉2

+2αn〈Xn+1, R̂kn〉〈Xn+1, T̂kn〉(1 + oa.s(1)) + α2
n〈Xn+1, T̂kn〉2(1 + oa.s(1)),
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where T̂kn =
∑kn

j=1 λ̂−1
j 〈θ, v̂j〉v̂j . Comparing this expression with the conditional

error of prediction for θ̂kn given in Theorem 1, we get

EXn+1((Yn+1 − 〈Xn+1, θ̂
αn
kn

〉)2) − EXn+1((Yn+1 − 〈Xn+1, θ̂kn〉)2)

= −2αn
σ2

n

kn∑
j=1

〈Xn+1, v̂j〉2

λ̂2
j

(1 + oa.s(1))

+2αn〈Xn+1, R̂kn〉〈Xn+1, T̂kn〉(1 + oa.s(1)) + α2
n〈Xn+1, T̂kn〉2(1 + oa.s(1)).

On the other hand, for the conditional error of estimation Lemma A.1 implies

EXn(‖θ− θ̂αn
kn

‖2) =
σ2

n

kn∑
j=1

λ̂j

(λ̂j + αn)2
+‖R̂kn‖2+

∥∥∥ kn∑
j=1

αn

λ̂j+αn

〈v̂j , θ〉v̂j

∥∥∥2
. (A.8)

Using (A.6) and (A.7) in (A.8), we have

EXn(‖θ − θ̂αn
kn

‖2) =
σ2

n

kn∑
j=1

1
λ̂j

− 2αn
σ2

n

kn∑
j=1

1
λ̂2

j

(1 + oa.s(1)) + ‖R̂kn‖2

+α2
n‖T̂kn‖2(1 + oa.s(1)),

with T̂kn defined as before. Bearing in mind Theorem 1,

EXn(‖θ − θ̂αn
kn

‖2) − EXn(‖θ − θ̂kn‖2)

= −2αn
σ2

n

kn∑
j=1

1

λ̂2
j

(1 + oa.s(1)) + α2
n‖T̂kn‖2(1 + oa.s(1)).

A.4. Proof of Corollary 1

Note that

〈Xn+1, T̂kn〉2 = (
kn∑
j=1

〈θ, v̂j〉
λ̂j

〈Xn+1, v̂j〉)2 ≤ (
kn∑
j=1

〈θ, v̂j〉2)(
kn∑
j=1

〈Xn+1, v̂j〉2

λ̂2
j

)

≤ ‖θ‖2
kn∑
j=1

〈Xn+1, v̂j〉2

λ̂2
j

,

and so αn〈Xn+1, T̂kn〉2(n−1
∑kn

j=1 λ̂−2
j 〈Xn+1, v̂j〉2)−1 ≤ nαn‖θ‖2. Hence, using

Theorem 3 and (H.7), we have

EXn+1(Yn+1 − 〈Xn+1, θ̂
αn
kn

〉)2 − EXn+1(Yn+1 − 〈Xn+1, θ̂kn〉)2

= −2αn
σ2

n

kn∑
j=1

〈Xn+1, v̂j〉2

λ̂2
j

(1+oa.s(1))+2αn〈Xn+1, R̂kn〉〈Xn+1, T̂kn〉(1+oa.s(1)).
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Furthermore, ‖T̂kn‖2 =
∑kn

j=1λ̂
−2
j 〈θ, v̂j〉2 ≤ ‖θ‖2

∑kn
j=1 λ̂−2

j . Then αn‖T̂kn‖2((1/n)∑kn
j=1 λ̂−2

j ) ≤ nαn‖θ‖2. Applying this inequality and (H.7) to Theorem 3, we get

EXn(‖θ − θ̂αn
kn

‖2) − EXn(‖θ − θ̂kn‖2) = −2αn
σ2

n

kn∑
j=1

1
λ̂2

j

(1 + oa.s(1)).

A.5. Technical lemmas

Lemma A.1. For the regression model (1.1), if

θ̂ =
kn∑
j=1

γj∆nwjwj ,

where {(γj , wj)}j ⊂ R × H only depend on X n = {X1, . . . , Xn}, then

EXn+1((Yn+1 − 〈Xn+1, θ̂〉)2)

= σ2 +
σ2

n

kn∑
j1=1

kn∑
j2=1

γj1γj2〈Γnwj1 , wj2〉〈Xn+1, wj1〉〈Xn+1, wj2〉 + 〈Xn+1, R
(γ,ω)
kn

〉2,

EXn(‖θ − θ̂‖2) =
σ2

n

kn∑
j1=1

kn∑
j2=1

γj1γj2〈Γnwj1 , wj2〉〈wj1 , wj2〉 + ‖R(γ,ω)
kn

‖2,

where R
(γ,ω)
kn

= θ −
∑kn

j=1 γj〈Γnwj , θ〉wj.

Proof. Observe that ∆nx = 〈Γnx, θ〉+ ∆ε
nx for all x ∈ H, with ∆ε

n = n−1
∑n

i=1

〈Xi, ·〉εi. Consequently,

θ − θ̂ = R
(γ,ω)
kn

−
kn∑
j=1

γj∆ε
nwjwj , with R

(γ,ω)
kn

= θ −
kn∑
j=1

γj〈Γnwj , θ〉wj . (A.9)

Then the regression model (1.1), (A.9), and conditions on ε imply that

EXn+1(Yn+1 − 〈Xn+1, θ̂〉)2

= EXn+1(εn+1 − 〈Xn+1, R
(γ,ω)
kn

−
kn∑
j=1

γj∆ε
nwjwj〉)2

= σ2 +
kn∑

j1=1

kn∑
j2=1

γj1γj2EXn(∆ε
nwj1∆

ε
nwj2)〈Xn+1, wj1〉〈Xn+1, wj2〉

−2〈Xn+1, R
(γ,ω)
kn

〉〈Xn+1,

kn∑
j=1

γjEXn(∆ε
nwj)wj〉 + 〈Xn+1, R

(γ,ω)
kn

〉2.
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Now, note that

EXn(∆ε
nwj) = 0, EXn(∆ε

nwj1∆
ε
nwj2) =

σ2

n
〈Γnwj1 , wj2〉. (A.10)

Therefore, using (A.10), we have

EXn+1(Yn+1 − 〈Xn+1, θ̂〉)2

= σ2 +
σ2

n

kn∑
j1=1

kn∑
j2=1

γj1γj2〈Γnwj1 , wj2〉〈Xn+1, wj1〉〈Xn+1, wj2〉 + 〈Xn+1, R
(γ,ω)
kn

〉2.

Analogously, for the conditional error of estimation, (A.9) gives

EXn(‖θ − θ̂‖2) =
kn∑

j1=1

kn∑
j2=1

γj1γj2EXn(∆ε
nwj1∆

ε
nwj2)〈wj1 , wj2〉

−2〈R(γ,ω)
kn

,

kn∑
j=1

γjEXn(∆ε
nwj)wj〉 + ‖R(γ,ω)

kn
‖2

and, applying (A.10) again,

EXn(‖θ − θ̂‖2) =
σ2

n

kn∑
j1=1

kn∑
j2=1

γj1γj2〈Γnwj1 , wj2〉〈wj1 , wj2〉 + ‖R(γ,ω)
kn

‖2.

Lemma A.2. With γn = ‖∆‖H′{1/(λkn λ̂kn) + 2(1/λkn + 1/λ̂kn)
∑kn

j=1 aj},

‖mkn − m̂αn
kn

‖H′ ≤ γn‖Γ − Γn‖∞ +
‖∆ − ∆n‖H′

λ̂kn

+ αn
‖∆‖H′

λkn λ̂kn

.

Proof. Take Γ̃kn =
∑kn

j=1 λj〈v̂j , ·〉v̂j . The first step is to write

‖mkn − m̂αn
kn

‖H′ ≤ ‖∆Πkn‖H′‖(ΠknΓΠkn)−1 − Γ̃−1
kn

‖∞
+‖∆Πkn‖H′‖Γ̃−1

kn
− (Π̂kn(Γn + αnI)Π̂kn)−1‖∞

+‖∆Πkn − ∆nΠ̂kn‖H′‖(Π̂kn(Γn + αnI)Π̂kn)−1‖∞. (A.11)

From (11) and (14) in the proof of Lemma 5.1 in Cardot, Ferraty, and Sarda
(1999),

‖∆Πkn‖H′‖(ΠknΓΠkn)−1 − Γ̃−1
kn

‖∞ ≤ 2
‖∆‖H′

λkn

‖Γ − Γn‖∞
kn∑
j=1

aj , (A.12)

‖∆Πkn − ∆nΠ̂kn‖H′ ≤ 2‖∆‖H′‖Γ − Γn‖∞
kn∑
j=1

aj + ‖∆ − ∆n‖H′ . (A.13)
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Moreover, with arguments as in the proof of Lemma 5.1 in Cardot, Ferraty, and
Sarda (1999), we have

‖∆Πkn‖H′‖Γ̃−1
kn

− (Π̂kn(Γn + αnI)Π̂kn)−1‖∞ ≤ ‖∆‖H′

λkn λ̂kn

(‖Γ − Γn‖∞ + αn),(A.14)

‖(Π̂kn(Γn + αnI)Π̂kn)−1‖∞ ≤ 1

λ̂kn

. (A.15)

Hence, using (A.12), (A.13), (A.14), and (A.15) in (A.11), we get

‖mkn − m̂αn
kn

‖H′ ≤ ‖∆‖H′

(
1

λkn λ̂kn

+ 2
( 1

λkn

+
1

λ̂kn

) kn∑
j=1

aj

)
‖Γ − Γn‖∞

+
‖∆ − ∆n‖H′

λ̂kn

+ αn
‖∆‖H′

λkn λ̂kn

.

Lemma A.3. Under (H.2) and (H.3), we have

P (‖∆n − ∆‖H′ > ξ) ≤ 2 exp
(
− ξ2n

2 c′3(c
′
3 + c′4ξ)

)
.

Proof. This result adapts Lemma 5.3 in Cardot, Ferraty, and Sarda (1999) to
the weaker assumption (H.3) (see Remark 4). Take

Wi = 〈Xi, ·〉Yi − E(〈X, ·〉Y ), i = 1, . . . , n,

with E(Wi) = 0. Note that Wi = 〈Xi, ·〉m(Xi) − E(〈X, ·〉m(X)) + 〈Xi, ·〉εi, and
consequently

‖Wi‖H′ ≤ ‖m‖H′(‖Xi‖ + E‖Xi‖) + |εi|‖Xi‖.
As a by-product, ∀l ≥ 2, one has

‖Wi‖l
H′ ≤

l∑
k=0

Ck
l ‖m‖k

H′(‖Xi‖ + E‖Xi‖)k|εi|l−k‖Xi‖l−k.

From this inequality, (H.2), (H.3), and ‖m‖H′ < c0 < +∞ imply

E(‖Wi‖l
H′)≤ l!

l∑
k=0

Ck
l ck

0(2c1)kc2c
l−k
1 = l! c2

l∑
k=0

Ck
l (2c0c1)kcl−k

1 = l! c2(c1 + 2c0c1)l.

Then E(‖Wi‖l
H′) ≤ (l!/2)b2

i h
l−2, where bi =

√
2c2(c1 +2c0c1) and h = c1 +2c0c1.

We can then apply the Yurinskii exponential inequality (see Yurinskii (1976)) to
obtain

P (‖
n∑

i=1

Wi‖H′ > xBn) ≤ 2 exp
(
− x2

2(1 + 1.62xh/Bn)

)
,
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where Bn = (
∑n

i=1 b2
i )

1/2 = n1/2c′3 with c′3 =
√

2c2(c1 + 2c0c1). Hence,

P (‖∆n − ∆‖H′ > ξ) = P (‖
n∑

i=1

Wi‖H′ >

√
nξ

c′3
Bn) ≤ 2 exp

(
− ξ2n

2 c′3(c
′
3 + c′4ξ)

)
,

where c′4 is a positive finite constant.
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E-mail: vieu@cict.fr

(Received April 2010; accepted January 2011)

file:ferraty@cict.fr
file:wenceslao.gonzalez@usc.es
file:adela.martinez@usc.es
file:vieu@cict.fr

	1. Introduction
	2. Functional Linear Model and FPCA
	3. Presmoothing via Covariance Structure
	3.1. Consistency
	3.2. Conditional errors

	4. Simulation Study
	4.1. Case A
	4.2. Case B

	5. Data Applications
	5.1. Canadian weather data
	5.2. Spectrometric data
	5.3. Atmospheric pollution data

	6. Comments
	Appendix
	A.1. Proof of Theorem 1
	A.2. Proof of Theorem 2
	A.3. Proof of Theorem 3
	A.4. Proof of Corollary 1
	A.5. Technical lemmas


