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Abstract: We study the problem of two-sample comparison with categorical data

when the contingency table is sparsely populated. In modern applications, the

number of categories is often comparable to the sample size, causing existing meth-

ods to have low power. When the number of categories is large, there is often

underlying structure on the sample space that can be exploited. We propose a

general non-parametric approach that utilizes similarity information on the space

of all categories in two sample tests. Our approach extends the graph-based tests

of Friedman and Rafsky (1979) and Rosenbaum (2005), which are tests base on

graphs connecting observations by similarity. Both tests require uniqueness of the

underlying graph and cannot be directly applied on categorical data. We explored

different ways to extend graph-based tests to the categorical setting and found two

types of statistics that are both powerful and fast to compute. We showed that their

permutation null distributions are asymptotically normal and that their p-value ap-

proximations under typical settings are quite accurate, facilitating the application

of the new approach. The approach is illustrated through several examples.

Key words and phrases: Categorical data, contingency table, discrete data, graph-

based tests, minimum spanning trees, two-sample tests.

1. Introduction

Testing whether two data samples are drawn from the same distribution is a

fundamental problem in statistics. For low-dimensional Euclidean data, there are

many approaches, both parametric and non-parametric, to this problem. When

the data are categorical, the existing approaches are much more limited. The

standard procedure is to assume that each sample is drawn from a multinomial

distribution, and the comparison becomes a test of whether the two samples

come from the same multinomial distribution. Classical methods, such as the

Pearson’s Chi-square test and the deviance test, work well when we observe each

category a large number of times. At least, the region in the contingency table

where the two groups truly differ needs to be adequately sampled for existing

tests to achieve good power. However, in many modern applications, the number

of possible categories is comparable to or even larger than the sample size. Some

examples are the following.

http://dx.doi.org/10.5705/ss.2012.125s
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Preference rankings: Survey data in marketing or psychometric research often

come in the form of preference rankings. Subjects may be asked to rate wine

(rank from best to worst tasting), pictures (choose 3 most familiar out of

5), or insurance plans (identify the most and least desirable). See Diaconis

(1988) and Critchlow (1985) for more detailed examples on ranked and

partially ranked data. It is a common problem to compare two groups of

subjects to see if there is any between-group difference in preference. The

number of possible full rankings is the factorial of the number of objects

being rated, and the number of possible rankings is higher if some subjects

only partially rank the objects.

Haplotype association: In genetics, a haplotype is a combination of alleles

at adjacent loci on a chromosome that is transmitted together. A com-

mon problem of genetic association studies is to compare haplotype counts

between treatment and control groups (e.g., see Zaykin et al. (2002) and

Furihata, Ito, and Kamatani (2006)). Each haplotype can be represented

as a fixed-length binary vector. The number of possible haplotypes is expo-

nential in the number of loci. Haplotypes that are longer than 10 are often

of interest in genetics, leading to > 1, 000 possible combinations. However,

the number of subjects in association studies is often only in the thousands

or even hundreds, and the counts for most haplotypes are small.

Sequence or document comparisons: In the modern age of digitized texts,

it is often of interest to compare the word composition in two different doc-

uments. A similar problem is the comparison of DNA or protein sequences,

which plays a large role in bioinformatics (Lippert, Huang, and Waterman

(2002)). The number of possible words in these applications can be very

large, while the counts for most words are small. For recent interest in this

problem see Perry and Beiko (2010), Bush and Lahn (2006) and Rajan,

Aravamuthan, and Mande (2007) for examples.

Classical Chi-square tests have low power in these scenarios due to sparsity

of the contingency table and high dimensionality of the parameter space. For

exact tests, it is possible to generalize the concept to the setting of more than

two categories, but this is computationally challenging (Mehta and Patel (1983))

and not efficient due to the existence in high dimensions of many tables that have

the same probability as the one observed.

When the number of categories is very large, there is often underlying simi-

larity between different categories that can be exploited. For example, rankings

can be related through Kendall’s or Spearman’s distance. Hamming distance

or other more sophisticated measures can be used to compare haplotypes and
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fixed-length words in DNA sequences. In document comparison, the similari-

ties between words are not equally likely: Some words are synonyms of others;

Some are more likely to be used together. Such similarity information between

categories can be used to improve the power of two-sample tests.

We assume that a distance matrix has been given on the set of categories, and

adopt the graph-based approach proposed by Friedman and Rafsky (1979) and

Rosenbaum (2005), where a graph is constructed on all subjects so that subjects

more similar in value are connected by an edge. Friedman and Rafsky’s test is

based on a minimum spanning tree (MST), and Rosenbaum’s test is based on

minimum distance pairing (MDP). The test statistic in both cases is the number

of edges connecting subjects from different groups. The underlying rationale

is that, if two groups come from the same distribution, subjects coming from

the same group should be as distant to each other as subjects coming from

different groups. More details of these tests are given in Section 2.2. Both tests,

however, require uniqueness of the underlying graphs. When the distance matrix

on subjects is filled with ties, which is characteristic of categorical data, neither

approach can be directly applied.

Ties in the distance matrix lead to ambiguity in constructing the MST or

MDP, and the number of possible graphs increases rapidly with the number of

ties. Some efforts were made to address this problem. In the analysis of a partially

ranked data set with 38 subjects in 23 categories, Critchlow (1985) tried both

the graph obtained from the union of all MSTs (uMST), and the graph obtained

from the union of all nearest neighbor graphs (uNNG). Nettleton and Banerjee

(2001) also used uNNG on a binary clinical feature data set with 64 subjects in 63

categories. In general, nearest neighbor graphs do not work well for categorical

data, see Section 3. In this paper, Critchlow’s method using the uMST is studied

in more detail and a computationally tractable form for categorical data is given.

A different statistic, based on averaging over all optimal graphs of a certain kind,

is also proposed and analyzed.

In Section 3, analytically tractable forms of the two statistics based on aver-

aging over and union of minimum spanning trees are derived and compared via

simulation to statistics based on MDP and NNG. While the two MST-based tests

are shown to be more powerful than the MDP- and NNG-based tests, neither

the averaged nor the union-based statistic dominate in power for the simulation

scenarios explored. Algorithmic details for computing these two statistics are de-

scribed and, in particular, the averaged statistic is shown to be computationally

intractable for some problems. A generalized version of the averaged statistic,

with better computational properties, is proposed. In Section 4, the graph-based

approach is illustrated in simulations and data examples, and shown to have

much better power than Chi-square tests. In Section 5, permutation null dis-

tributions of the proposed statistics are described. After mean- and variance-
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Table 1. Basic Notations.

1 2 . . . K Total
Group a na1 na2 . . . naK na
Group b nb1 nb2 . . . nbK nb
Total m1 m2 . . . mK N

mk = nak + nbk, k = 1, . . . ,K;

na =
∑K

k=1 nak, nb =
∑K

k=1 nbk, N = na + nb =
∑K

k=1mk.

standardization, the statistics are shown to be asymptotically normal, under cer-

tain assumptions on the cell counts and the graph’s structure, as the number of

observed categories goes to infinity.

2. Preliminaries

2.1. Notations

We start by introducing our notation. The different categories are indexed

by 1, 2, . . . ,K, with arbitrary naming of the categories. The two groups are

labeled a and b, and the data are given in the form of a two-way contingency

table (Table 1). Without loss of generality, we assume that each category has at

least one subject over the two groups. That is, categories with no observation in

either group can be omitted from the analysis without loss of information.

We sometimes refer to individual subjects themselves and denote them by

Y1, . . . , YN . Thus, each Yi takes value in {1, . . . ,K} and has a group label

gi =

{
a, if Yi belongs to group a;

b, if Yi belongs to group b.
(2.1)

We assume that a distance matrix, {d(i, j) : i, j = 1, . . . ,K} has been given on

the set of possible categories, with d(i, j) small if categories i and j are similar.

Possible ways of defining the distance matrix are shown for various examples in

Section 1.

A graph G is defined by its vertices and edges. We use G to refer to both

the graph and its set of edges when the vertex set is implicitly obvious. | · | is
used to denote the size of the set, so |G| is the number of edges in G. For any

node i in the graph G, EG
i denotes the set of edges in G that contain node i, VG

i

denotes the set of nodes in G that are connected to node i by an edge, and EG
i,2

denotes the set of edges in G that contain at least one node in VG
i . For any event

A, IA is the indicator function that takes value 1 if A is true and 0 otherwise.
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2.2. A review of graph-based two-sample tests

By graph-based two-sample tests, we refer to tests that are based on graphs

with the subjects {Yi} as nodes. We here suppose {Yi} take distinct values such

that certain graphs can be constructed uniquely. The graph can be constructed

using the distance matrix on {Yi}. Friedman and Rafsky (1979) proposed the first

graph-based two-sample test as a generalization of the Wald-Wolfowitz runs test

to multivariate settings. Their test is based on a MST on the subjects, which is a

spanning tree connecting all subjects that minimizes the sum of distances across

edges. The Friedman-Rafsky test is based on the number of edges connecting

subjects across different groups: ∑
(i,j)∈G

Igi ̸=gj , (2.2)

where G is the MST. The statistic is standardized to have mean zero and variance

one, and its value is compared to the null distribution obtained by permuting the

group labels. Friedman and Rafsky showed that, while this test has low power in

low dimensions, it has comparable power to likelihood ratio tests in a numerical

study of normal data in > 20 dimensions, and higher power when the normal

assumption is violated.

Another graph-based two-sample method, the cross-match test, was pro-

posed by Rosenbaum (2005). This test is based on a minimum distance non-

bipartite pairing (MDP) that divides the N subjects into N/2 (assuming N is

even) non-overlapping pairs in such a way as to minimize the total of N/2 dis-

tances between pairs. For odd N Rosenbaum suggested creating a pseudo data

point that has distance 0 with all other subjects, and later discarding the pair

containing this pseudo point. The sum (2.2) is computed with G set to the MDP.

The test statistic is the mean- and variance- standardized version of this sum.

Note that the topology of the MDP does not depend on the distance matrix,

with each node always having degree 1. This fact makes the test based on MDP

truly distribution-free under the null hypothesis.

Both methods assume uniqueness of the type of graph used. For categorical

data, ties appear in the distance matrix whenever a category has multiple counts.

Even sparse contingency tables have quite a few cells containing more than one

subject. The number of possible graphs grows rapidly with the number of ties.

Thus, Friedman and Rafsky’s and Rosenbaum’s methods cannot be directly ap-

plied to categorical data. For categorical data, distances are often based on

qualitative measures and thus, while their relative ranking may be trustworthy,

their absolute scale is not. Hence, we do not consider methods based directly on

the distance matrix. While there are many ways to construct a graph based on
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Figure 1. Illustration of MST, MDP, and NNG on six points. Notice that
only one of the two possible MSTs on the six points and one of the two
possible NNGs on the six points are shown.

a distance matrix, we limit our study to MST, MDP, and NNG as representa-

tive. Figure 1 illustrates the three different types of graphs on a simple example

containing six points. These six points take on six distinct values.

3. Generalized Graph-Based Test Statistics

One natural solution, when the optimizing graph is not unique, is to average

the test statistic over all graphs of the given kind. In this section, we consider

the statistic based on averaging (2.2) over all MSTs (RaMST). Another solution

to non-uniqueness it to take the union over all optimizing graphs, such as the

statistic based on the uMST (RuMST). RaMST and RuMST are analytically tractable

and intuitively appealing, and their derivations are shown in Section 3.1. For

comparison, we also consider the statistic based on averaging (2.2) over all MDPs,

RaMDP, and the statistic based on uNNG, RuNNG. Computation of RaMDP, described

in Appendix A, is often intractable. Computation of uNNG is instantaneous.

In Section 3.2, we study by simulation the performance of RaMST, RuMST, RaMDP,

and RuNNG, comparing them to each other and to Chi-square tests. Our results

show that tests based on minimum spanning trees have the best power, and the

intuition for this is explained. The statistics based on uMDP and average over all

NNGs are not included in the comparison because they do not have the potential

of high power according to the performance of RaMDP and RuNNG in Section 3.2,

and calculating them is not instantaneous. To clarify ambiguities, RG is used to

denote the test statistic on graph G in general, with exceptions for RaMST and

RaMDP.

Computation of RaMST and RuMST is described in more detail in Section 3.3.

When the number of MSTs on categories is large, which is common for categorical

data, computation for RaMST can be very costly. We generalize the statistic based



GRAPH-BASED TESTS FOR CATEGORICAL DATA 1485

Figure 2. Embedding the MST on categories on the subjects. This figure
only shows 3 out of 15552 possible embeddings.

on RaMST to a similar but simpler form in Section 3.4.

3.1. The test statistics based on MST

3.1.1. RaMST

For each k = 1, . . . ,K, let Ck ⊂ {1, . . . , N} be the subjects that belong to

category k. From Table 1, |Ck| = mk. Let Tk be the set of all spanning trees

for Ck. Since the distance between any two subjects in Ck is zero, any spanning

tree of Ck is a MST of Ck. Let T ∗
0 be the set of all MSTs on the categories. We

can embed each tree in T ∗
0 as a graph on the subjects by randomly picking one

subject in Ck to represent category k, for k = 1, . . . ,K. For each τ∗0 ∈ T ∗
0 , there

are
∏K

k=1m
|Eτ∗0

k |
k different embeddings. For example, Figure 2 shows 3 out of 15552

(= 2·33 ·1·42 ·32 ·2) possible embeddings for a MST on six categories containing 2,

3, 1, 4, 3 and 2 subjects. Let T0 be the set of all graphs obtained from embedding

a tree from T ∗
0 on the subjects. Then |T0| =

∑
τ∗0∈T ∗

0

(∏K
k=1m

|Eτ∗0
k |

k

)
. Let T be

the set of all MSTs on theN subjects. Then, any member of T can be represented

as a union of a graph from T0 and a graph from each of {Tk : k = 1, . . . ,K},
and vice versa. Thus,

T =
{
τ0 ∪ (

K∪
k=1

τk) : τ0 ∈ T0, τk ∈ Tk, k = 1, . . . ,K
}
,

with |T | = |T0|
∏K

k=1 Smk
, where Sm = mm−2 is the number of spanning trees on

m points, by Cayley’s formula. The test statistic based on averaging all MSTs

on subjects is

RaMST
∆
= |T |−1

∑
τ∈T

Rτ , (3.1)

where Rτ is (2.2) with G = τ . One can give a computationally tractable form for



1486 HAO CHEN AND NANCY R. ZHANG

RaMST in terms of the cell counts of the contingency table and the set of possible

MSTs on categories.

Theorem 1. The test statistic based on averaging over all MSTs on subjects is

RaMST =

K∑
k=1

2naknbk
mk

+ |T0|−1
∑

τ∗0∈T ∗
0

K∏
k=1

m
|Eτ∗0

k |
k

∑
(u,v)∈τ∗0

naunbv + navnbu
mumv

. (3.2)

The proof for Theorem 1 is in Supplementary material S.1.

The statistic RaMST has a much simpler form if there is a unique MST on

categories, or if the total number of subjects in each category is the same.

Corollary 1. When |T ∗
0 | = 1, then

RaMST =
K∑
k=1

2naknbk
mk

+
∑

(u,v)∈τ∗0

naunbv + navnbu
mumv

, (3.3)

where τ∗0 is the unique MST on categories.

The form (3.3) of the statistic is intuitive. For each category k, we call the

term 2naknbk/mk the mixing potential of the category. The mixing potential is

maximized when the subjects in category k are evenly divided between groups

a and b; it is minimized when the category contains subjects from only one

group. A mixing potential for each edge (u, v) can also be defined as (naunbv +

navnbu)/(mumv). The edge-wise mixing potential is maximized when the edge

connects a category containing only group a subjects with a category containing

only group b subjects; it is minimized when both categories contain subjects only

from one group. Thus, mixing potentials over categories and over edges between

categories measure the similarity between the two groups. Corollary 1 shows

that, when the MST on categories is unique, the test statistic RaMST reduces to

the sum of mixing potentials over nodes and edges of the MST on categories.

The similarity information on the categories is explicitly incorporated into the

test through the sum of mixing potentials over the edges between categories. In

testing, (3.2) and (3.3) must be compared to their permutation distributions. A

generalized statistic proposed later in Section 3.4 is based directly on (3.3).

3.1.2. RuMST

Let M∗
0 denote the set of edges appearing in at least one MST on categories,

M∗
0 = {(u, v) ∈ τ∗0 : τ∗0 ∈ T ∗

0 }.

Thus M∗
0 is the uMST with the categories as nodes. When there is only one MST

on categories, τ∗0 , then M∗
0 = τ∗0 ; when there are multiple MSTs on categories,
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which is common for categorical data, obtainingM∗
0 is not straightforward. Com-

putation of M∗
0 is discussed in Section 3.3. One can state the analytic form of

RuMST given M∗
0.

Theorem 2. The test statistic based on uMST is

RuMST =

K∑
k=1

naknbk +
∑

(u,v)∈M∗
0

(naunbv + navnbu). (3.4)

Proof. Within each category, every pair of subjects is connected, which gives

the first term of (3.4). If categories u and v are connected in any τ∗0 ∈ T ∗
0 , then

each point in category u is connected to every point in category v, giving the

second term of (3.4). If categories u and v are not connected in any τ∗0 ∈ T ∗
0 , no

edge will appear between categories u and v in uMST.

Remark 1. Both RuMST and RaMST are derived from sums of Igi ̸=gj over edges

of the uMST on subjects. The main difference between them is that RuMST treats

all of the edges equally, while RaMST assigns each edge a weight proportional to

the number of MSTs on subjects in which the edge appears. Comparing (3.4) to

(3.3), the denominators in (3.3) are omitted in (3.4). Each edge within category

k appears in |T |/(mk/2) MSTs, while each edge between categories appears in

|T |/(mumv) MSTs. Therefore, in comparison with RaMST, RuMST puts relatively

more weight on between-category edges than within-category edges.

3.2. A numerical study

The power of the tests based on RaMST, RuMST, RaMDP and RuNNG was studied

and compared to Pearson’s Chi-square and deviance tests on simulated data sets.

In each simulation, 30 points were randomly sampled from different distributions

– N(0, 1) vs N(1, 1), N(0, 1) vs N(0, 4), N(0, 1) vs N(1, 4), and U(0, 5) vs U(1, 6).

The combined sample of 60 points was then discretized into 12 bins of equal

width. The value 12 was chosen so that the average number of data points per

category was 5, mimicking the low cell count scenario. The bins were ranked by

their start positions, and the distance between two categories was defined as the

difference in their ranks. The p-values for all tests were calculated through 1,000

permutation samples for each simulation run, and the power was obtained from

1,000 simulation runs. Figure 3 shows power versus type I error for each test

and each simulation setting, and a table listing the power when significance level

is 0.05. In the plots, since Pearson’s Chi-square and deviance tests gave similar

results, only the results for the deviance test are shown. The deviance test is

denoted by “LR” since it is based on the log-likelihood ratio.
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First, compare RaMST, RaMDP, and RuNNG. RaMST was always significantly more

powerful than RaMDP, which in turn was always more powerful than RuNNG. This

result is intuitive from the definition of the different graphs. Since the MST must

span the entire data set, K−1 out of its N−1 edges are forced to connect points

between categories. For MDP, if a category has even number of subjects, the

subjects in that category would be paired amongst themselves; between-category

edges are only possible for those categories having an odd number of subjects.

For uNNG, as long as a category has more than one subject, the subjects in

that category would not be connected to subjects from other categories. There-

fore, tests based on MST make the most use of the similarity information among

categories, while the test based on RuNNG makes the least use of this informa-

tion. The simulation results show a positive correlation between using similarity

information and the power of the test.

In simulations, RuMST and RaMST performed similarly under the scenarios that

compared two Normal distributions, while RuMST had very little power, even lower

than RaMDP and the deviance test, for the comparison of two Uniform distributions

with different supports. When comparing two Normal distributions, the similar-

ity between two categories was closely related to the difference of the ranks of

the categories. That is, the further apart the ranks of the two categories, the

less similar. However, when comparing two Uniform distributions with different

supports, only the ranks at the two ends are informative while the middle ranks

are not. Since RuMST puts more weight on between-category edges compared to

RaMST, its power would be lower if the similarity measure among categories were

not informative. Note that of all the graph-based tests, only the test based on

RaMST consistently outperformed the deviance test.

This simulation study is limited and only used ranked data. We chose this

study design for its interpretability. Though simple, the results are informative

and show the advantage of averaged MST over averaged MDP and uNNG for

categorical data. Also, averaged MST is better than uMST when the similarity

measure used to construct the graph is not effective; if the similarity measure is

effective, the test based on uMST is comparable to, and sometimes better than,

the test based on averaged MST. Hence we focus on the tests based on RaMST and

RuMST.

3.3. Computational issues

The analytic forms (3.2) and (3.4), require enumeration of all MSTs on

categories for RaMST; and enumeration of all edges in M∗
0 for RuMST. LetM = |T ∗

0 |
be the number of MSTs on categories. If the distance matrix between categories

is continuous-valued, then usually M = 1. Even when the distance matrix is

arithmetic, M is often small enough to be manageable. However, for problems
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aMST uMST aMDP uNNG LR Pearson
N(0,1) vs N(1,1) 0.762 0.740 0.679 0.492 0.605 0.605
N(0,1) vs N(0,4) 0.558 0.585 0.482 0.382 0.394 0.396
N(0,1) vs N(1,4) 0.804 0.824 0.722 0.569 0.632 0.626
U(0,5) vs U(1,6) 0.665 0.486 0.607 0.383 0.600 0.552

Figure 3. Power versus type I error for tests based on RaMST, RuMST, RaMDP,
the likelihood ratio (deviance), and RuNNG under different simulation settings.
The table lists the power under 0.05 significance level.

that exhibit certain symmetries, enumeration of the set of all MSTs on categories

is not computationally feasible. For the haplotype association problem in Section

4.2, the number of MSTs on categoriesM can be computed using the Matrix-Tree
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Theorem if we assume all categories are non-empty:

M = 22
l−l−1

l∏
i=2

exp
{(

l
i

)
log i

}
,

where l is the haplotype length. From the formula for M , it increases quickly
as l increases. When the length of the haplotype is 6, a reasonably short length
in genetic studies, there are only 64 possible categories while M equals 1.66 ×
1045. One may argue that in this case, (3.2) may be further simplified using the
symmetry over categories, so that enumeration of |T ∗

0 | is not necessary. This
is true if all categories are non-empty, but if one or more of the categories are
empty, the symmetry breaks and M is still too large for enumeration.

Consider the listing of all edges in uMST on categories, M∗
0, which is required

for RuMST. This task can be completed in O(K2) time through an algorithm
proposed by Eppstein (1995). Details of the algorithm are in Appendix B, and
its theoretical justification is completed by Chen (2012). The O(K2) time is
usually affordable since K is no larger than the sample size. Thus RuMST is
computationally feasible for any problem. On the other hand, RaMST requires
the enumeration of all MSTs on categories, not just their edges, and thus adds
O(M) computation time to the algorithm. For the haplotype example, this makes
RaMST computationally infeasible. In the next Section, we propose a statistic that
is motivated by RaMST but is computationally tractable for all problems.

3.4. A fast method generalized from RaMST

Corollary 1 gives a simple and intuitive form of RaMST when there is a unique
MST on categories. In that special case, RaMST is the sum of mixing potentials
computed within each category and mixing potentials computed between cate-
gories that are connected by an edge of the MST τ∗0 . Evidence against the null
increases if this sum of mixing potentials is small, as compared to random permu-
tation. In (3.3), the MST τ∗0 serves as an enumeration of the pairs of categories
that are highly similar. There is nothing sacred about the choice of MST for this
role. The intuitive interpretation for (3.3) remains if we replace τ∗0 by any other
graph C0 that represents proximity between categories.

We assumed so far that a distance matrix on categories is used to represent
the similarity between categories. We now bypass the distance matrix and assume
that similarity is directly represented by a graph C0 with the categories as nodes.
Our goal is to incorporate the proximity information encoded by the graph into
the two group comparison. We propose a statistic obtained by substituting C0

for τ∗0 in (3.3):

RC0 =
K∑
k=1

2naknbk
mk

+
∑

(u,v)∈C0

naunbv + navnbu
mumv

. (3.5)
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There is a similar interpretation as for RaMST. Consider all C0-spanning graphs

that are graphs on subjects, where every pair of subjects are connected by a path

if they are in the same category or they are in two categories that are connected

by a path in C0. Hence, minimum distance C0-spanning graphs connect subjects

within categories by spanning trees, and connects exactly one pair of subjects

between each pair of categories that have an edge in C0. RC0 is the averaged

sum (2.2) over all minimum distance C0-spanning graphs.

If C0 is given, computing RC0 requires O(K + |C0|) time. If C0 is not given,

the choice of C0 can often be guided by domain knowledge. In our examples,

choices for C0 include the uMST on categories that we denote by C-uMST (same

as M∗
0), and the uNNG on categories that we denote by C-uNNG. Since C-uMST

and C-uNNG can both be computed in O(K2) time, RC-uMST and RC-uNNG require

only O(K2) computation time for any problem.

4. Examples

The application of RC-uMST, RC-uNNG and RuMST are illustrated on several ex-

amples, both real and simulated. In the simulated examples, their powers are

compared to those of Chi-square tests. The p-values for all tests were calcu-

lated through 1,000 permutation samples for each run, and the power calculated

through 1,000 simulation runs.

4.1. Preference ranking

Consider comparing two groups of subjects on the ranking of four objects.

Let Ξ be the set of all permutations of the set {1, 2, 3, 4}. Data were simulated as

follows: Subjects from group a have no preference among the four objects, and

their rankings were uniformly drawn from Ξ; rankings of subjects from group b

were generated from the distribution

Pθ(ζ) =
1

ψ(θ)
exp{−θd(ζ, ζ0)}, ζ, ζ0 ∈ Ξ, θ ∈ R, (4.1)

where d(·, ·) is a distance function and ψ a normalizing constant. This probability

model, first considered by Mallows (1957) with Kendall’s or Spearman’s distance,

favors rankings that are similar to a modal ranking ζ0 if θ > 0. See Diaconis

(1988) for more discussion. The larger the value of θ, the more clustering there

should be in group b around the mode ζ0. We experimented with both Kendall’s

and Spearman’s distance and various values for θ. We assumed that the true

distance function used to generate the data is either known and used to construct

the graph, or unknown, in which case an incorrect distance is used.

Figure 4 shows C-uMST and C-uNNG formed on a typical data set generated

under θ = 5 with na = nb = 20. Spearman’s distance was used in both the
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Figure 4. C-uMST and C-uNNG constructed on a typical data set generated
under parameters ζ0 = 1, 234 and θ = 5, with na = nb = 20. Spearman’s
distance was used in both the generating model and for constructing the
graph. Each node is labeled by the ranking it represents, followed by the
number of subjects from groups a and b with that ranking in parentheses.

generating model and for constructing the graph. In this instance, C-uMST

contained all edges in C-uNNG with three extra edges, shown in thinner lines.

The reason this happened is that no category was as close to category “3241”

as category “3142”, and no category is as close to category “3142” as category

“3241”. For MST on categories, more edges are needed to form a spanning tree.

It is clear that in this case, there are three MSTs on categories, each one obtained

by adding one of the three thinner edges to the C-uNNG. In most simulation runs,

C-uMST and C-uNNG were the same, while in those runs where they differed,

C-uNNG was always a subset of C-uMST.

Figure 5 shows the power versus type I error, for θ = 5 and na = nb = 20,

under different combinations of using Kendall’s or Spearman’s distance for the

generating model and for constructing the graph, as well as the power under

0.05 significance level. We see that even when a wrong distance was used, the

graph-based tests still had significantly higher power than the Chi-square tests.

For this simulation setting, RuMST was the most powerful among the three graph-

based tests; RC-uMST and RC-uNNG performed similarly with RC-uMST a little better

in all cases, implying that the extra edges in C-uMST gave additional useful

information.

4.2. Haplotype Association

We consider a disease model where the probability for disease depends on the

haplotype at four single nucleotide polymorphisms (SNP). We encode the allele

at each SNP as 0 or 1, and so the haplotype can be represented as a binary string.
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uMST C-uMST C-uNNG Pearson LR
KK 0.784 0.660 0.648 0.450 0.439
KS 0.784 0.649 0.631 0.455 0.437
SS 0.807 0.715 0.703 0.485 0.480
SK 0.811 0.729 0.715 0.494 0.481

Figure 5. Power versus type I error for the five tests in the preference ranking
example with θ = 5 and na = nb = 20. A distance measure, Kendall’s
(K) or Spearman’s (S) distance, was used for the generating model and
for constructing the graph. The first letter denotes the distance used in
the generating model, and the second letter denotes the distance used in
constructing the graph. The table lists the powers under 0.05 significance
level.
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We assume that the disease probability depends on the number of positions at

which the subject’s haplotype agrees with a target haplotype:

P (Disease) = 0.3 + 0.1× (Number of positions in agreement).

Thus, the probability of disease can take values 0.3 0.4, 0.5, 0.6 or 0.7 depend-

ing on whether there are 0, 1, 2, 3 or 4 positions in agreement. To make the

problem harder, we assume that seven non-informative SNPs are analyzed to-

gether with the four informative SNPs, and that which and how many of the

11 SNPs are informative is unknown in the analysis. Thus the data actually

consists of haplotypes of length 11. There are 211 = 2, 048 possible categories.

In each simulation, 1,000 haplotypes with length 11 were generated uniformly

from all possible haplotypes. Each subject with a given haplotype was signed as

“patient” or “normal” according to the disease model. Since only 1,000 subjects

were simulated in each run, not all of the 2,048 categories were represented. The

number of non-empty categories in each run ranged from 755 to 823, with an

average of 791 in the 1,000 simulation runs. The Hamming distance was used

to construct the graph. Figure 6 shows the power versus type I error plots for

the five tests. It is clear that, by incorporating the information in the graph,

tests based on RuMST, RC-uMST, and RC-uNNG all have much higher power than the

Pearson’s Chi-square and deviance tests. Among the three graph-based tests,

the one based on RuMST works a little better than the ones based on RC-uMST and

RC-uNNG.

4.3. Binary clinical features

This example comes from Anderson et al. (1972) and Nettleton and Banerjee

(2001). Data on the presence or absence of 17 clinical features of the eye ailment

Keratoconjunctivitis Sicca (KCS) are given for two groups of patients. A question

asked by Nettleton and Banerjee was whether the two groups of patients share

a common distribution with respect to these clinical features. The sizes of the

groups are 40 and 24. It turned out that only two subjects had the same outcome

for the 17 clinical features, so there are in total 63 distinct categories. Hamming

distance was used to construct the graph, and p-values were calculated through

10, 000 permutation samples and are shown in Table 2. Nettleton and Banerjee’s

method is based on the uNNG on subjects. As discussed before and confirmed

by simulation studies in Section 3.2, the uNNG on subjects has lower power than

MST based tests when many categories have more than one subject. This is not

a problem in this data set because only one category has more than one subject.

We see that RuMST, RC-uMST, and RC-uNNG all detected the difference between the

two groups of patients, while the Chi-square tests did not.
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Figure 6. The power versus type I error plots for the five tests for the
haplotype example. The length of the haplotype is 11, with only 4 positions
informative.

Table 2. P -values for the KCS data set.

RuMST RC-uMST RC-uNNG Nettleton and Banerjee’s Pearson LR
0.0011 0.0010 0.0006 0.0007 0.5200 0.5200

5. Permutation Distributions of the Test Statistics

Based on the results in Sections 3.2−3.4, we focus now on RC-uMST and RuMST.

We consider the permutation distributions of these statistics in their generalized

forms. That is, we consider RC0 and TC0 , the latter defined as

TC0 =
∑
u

naunbu +
∑

(u,v)∈C0

(naunbv + nbunav). (5.1)

TC-uMST is equivalent to RuMST. The permutation distributions of RC-uMST and RuMST

follow immediately.

We use two quantities to characterize the permutation distributions:

λ := max
u

|EC0
u |, the maximum node degree in C0. (5.2)

β := max
u

mu, the maximum total count for a category. (5.3)

By permutation distribution, we are referring to the distribution of the statistic

under random uniform permutation of the group labels. This is used as the null

distribution to assess statistical significance. We use PP, EP, and VarP to denote

the probability, expectation, and variance under the permutation null.
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5.1. RC0

Lemma 1. The mean and variance of RC0 under the permutation null are

EP[RC0 ] = (N −K + |C0|)2p1, (5.4)

VarP[RC0 ] = 4(p1 − p2)(N −K + 2|C0|+
∑
u

|Eu|2

4mu
−

∑
u

|Eu|
mu

)

+(6p2 − 4p1)(K −
∑
u

1

mu
) + p2

∑
(u,v)∈C0

1

mumv

+(N −K + |C0|)2(p2 − 4p21), (5.5)

where

p1 =
nanb

N(N − 1)
, p2 =

4na(na − 1)nb(nb − 1)

N(N − 1)(N − 2)(N − 3)
. (5.6)

The proof of Lemma 1 is given in Supplementary material S2.1.

We need conditions to guarantee the convergence to normality of RC0 after

standardization by its mean and variance.

Condition 1.∑
u

mu(mu + |EC0
u |)(mu +

∑
v∈Vu

mv + |EC0
u,2|) ∼ o(K3/2),

∑
(u,v)∈C0

(mu+mv+|EC0
u |+|EC0

v |)(mu+mv+
∑

w∈(Vu∪Vv)

mw+|EC0
u,2|+|EC0

v,2|) ∼ o(K3/2).

Condition 1 constrains the size of “hubs” in the graph: The node degrees in C0

and the number of observations in each category must not be too large. It can

be simplified to stronger conditions that are easier to comprehend, for example

the following.

1′′ β6λ2 and λ8 are both o(K).

The second condition is usually trivial:

Condition 2. N, |C0|, and
∑

(u,v)∈C0
1/(mumv) are all O(K).

The asymptotic distribution of the standardized form of RC0 is given in the

following theorem.

Theorem 3. Assume that Conditions 1 and 2 hold. Under the permutation null

the standardized statistic (RC0 −EP[RC0 ])/
√

VarP[RC0 ] converges in distribution

to N(0, 1) as K → ∞ and na/N is bounded away from 0 and 1.
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The proof of Theorem 3 is given in Supplementary material S2.2.

Theorem 3 can be applied to any type of graph, allowing for repeated ob-

servations of each node. Since the statistics in Friedman and Rafsky (1979) and

Rosenbaum (2005) do not allow ties, their asymptotic normality results are also

restricted to the case where each node is observed only once. To compare Theo-

rem 3 to its counterparts, we let G = C0 and assume that mu ≡ 1. Thus N = K,

and
∑

(u,v)∈C0

1
mumv

= |C0| = |G|. Condition 2 requires that |G| ∼ O(K) and

Condition 1 can be simplified to∑
u

|EG
u ||EG

u,2| ∼ o(K3/2),∑
(u,v)∈G

(|EG
u |+ |EG

v |)(|EG
u,2|+ |EG

v,2|) ∼ o(K3/2).

Theorem 3 implies the asymptotic normality result in Rosenbaum (2005)

since |EG
u | ≡ 1, |EG

u,2| ≡ 1, |G| = K/2 for MDP. Friedman and Rafsky proved a

more general condition for asymptotic normality of sums (2.2) after standardiza-

tion: For sparse graphs where |G| ∼ O(K), the number of edge pairs that share

a common node must be O(K). Condition 1 is neither stronger or weaker than

Friedman and Rafsky’s condition. For example, a graph with one node of degree

K1/2 and all other nodes of degree 1 satisfies Friedman and Rafsky’s condition

but not Condition 1, since
∑

(u,v)∈G |EG
u ||EG

u,2| = O(K3/2). On the other hand,

a graph with
√
K nodes of degree K0.3 and all other nodes of degree 1 satisfies

Condition 1 but not Friedman and Rafsky’s condition.

5.2. TC0

Here is the counterpart of Lemma 1 for RC0 . Its proof is given in Supple-

mentary material S2.3..

Lemma 2. The mean and variance of TC0 under the permutation null are

EP[TC0 ] = (
∑
u

mu(mu − 1) + 2
∑

(u,v)∈C0

mumv)p1, (5.7)

VarP[TC0 ] = (p1 − p2)
∑
u

mu(mu +
∑
v∈Vu

mv − 1)(mu +
∑
v∈Vu

mv − 2)

+(p1 − p2/2)(
∑
u

mu(mu − 1) + 2
∑

(u,v)∈C0

mumv)

+(p2 − 4p21)(
∑
u

mu(mu − 1) + 2
∑

(u,v)∈C0

mumv)
2, (5.8)

where p1 and p2 are given in (5.6).
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The next theorem gives a sufficient condition for asymptotic normality of

TC0 under the permutation null.

Theorem 4. If
∑

umu(mu +
∑

v∈Vu
mv)

2 ∼ O(N), then under the permutation

null distribution, the standardized statistic (TC0 − EP[TC0 ])/
√

VarP[TC0 ], where

EP[TC0 ] and VarP[TC0 ] are given in (5.7) and (5.8), converges in distribution to

N(0, 1) as N → ∞, and na/N bounded away from 0 and 1.

Proof. Let G be the uMST on subjects. Then as long as
∑N

i=1 |EG
i |(|EG

i | −
1) ∼ O(N), asymptotic normality can be ensured following Friedman and Rafsky

(1979)’s result. Notice that if i is in category u, then |EG
i | = (mu− 1)+

∑
Vu
mv.

5.3. Checking the P -values under normal approximations

We checked the normal approximations to the p-values of the three graph-

based statistics – RC-uMST, RC-uNNG and RuMST – through simulation. We adopted

the setting of the haplotype example. In each simulation run, N haplotypes with

length l were generated uniformly from all possible haplotypes with length l.

They were assigned to the groups with equal probability. For each simulation

run, we calculated the difference between theoretical p-values from the normal

approximation and the permutation p-values from 10,000 permutations for the

three statistics. We considered different sparsity settings by varying l, which

controls the number of categories, and N . Under each setting, 100 simulation

runs were done, with the boxplots of the differences between theoretical and

simulation p-value shown in Figure 7. We increased l from 6 to 10, and thus the

number of possible categories considered is from 64 to 1024. The sample size

N varies from 100 to 1,000. This spectrum of values is reasonable for a genetic

association study.

Simulation results under this setting show that the normal approximation is

better for RC-uMST and RC-uNNG than for RuMST. Accuracy of normal approxima-

tions improved for all statistics as l and N increase. For RC-uMST and RC-uNNG,

when the number of possible categories is larger than 256 and the number of

observations larger than 200, the p-value from normal approximation was quite

accurate. For RuMST, the number of observations needs to be larger than 500 to

achieve similar accuracy. For RuMST, when the number of possible categories is

larger than the number of observations, the p-value calculated from the normal

approximation was negatively biased, and thus less conservative. The bias is

less severe for RC-uMST and RC-uNNG, while still problematic when the number of

possible categories is 1024 and the number of observation only 100. Skewness

correction can be done to make the theoretical p-values more accurate, but when

N is small, it would be easier to do permutation directly.
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Number of possible categories : 64

Number of possible categories : 256

Number of possible categories : 1024

Figure 7. Boxplots for the differences between p-values calculated from nor-
mal approximation and 10,000 permutations.

6. Conclusions and Discussion

Our approach to compare two categorical samples, useful when the contin-

gency table is sparsely populated, utilizes a graphical encoding of the similarity

between categories to improve the power of two-sample comparison. Simulations

and examples show that utilizing graphical information improves the power over

the deviance and Pearson’s Chi-square tests. Proposed statistics are shown to

be asymptotically normal after standardization under assumptions that limit the

hub size and density of the graph. This allows instantaneous type I error control

for large data sets.

The power of the new approach depends on the choice of an informative

similarity measure between categories and relies on domain knowledge that is

specific to the application. When the number of categories is large, drawing
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relationships between categories is a necessary and often default step in analyzing
the data.

Generalization of our approach to multi-sample comparison is straightfor-
ward by letting gi take K

′ distinct values, where K ′ is the number of groups.
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Appendix A. The Test Statistic Based on RaMDP

We assume N , the total number of observations, to be even. Let K0 be the
number of categories containing an odd number of subjects. Since N is even, K0

is even. (K0 can be 0.). Without loss of generality, let categories 1, . . . ,K0 be the
categories containing an odd number of subjects, and categories K0 + 1, . . . ,K
be the categories containing an even number of subjects. More notations are as
follows.

• A = {x = (x1, . . . , xK0)
T : xi ∈ {a, b}, i = 1, . . . ,K0}: all possible combina-

tions of group identities of the subjects with one from each of the categories
containing an odd number of subjects.

• R0(na, nb): the number of edges connecting subjects from different groups
averaged over all perfect pairings of na points from group a and nb points
from group b in the same category, with na + nb being even.

• Rx,x ∈ A: the number of edges connecting subjects from different groups
averaged over all MDPs on categories 1, . . . ,K0.

Assumption 1. If a category has an even number of subjects, the subjects are
paired within the category.

Assumption 1 is usually true for MDP on subjects for categorical data. It is
explicitly stated here to avoid complications when the triangle inequality becomes
equality in the distance metric for any three categories.

Proposition 1. Under Assumption 1, the test statistic based on averaging (2.2)
over all MDPs is:

RaMDP =

K∑
k=K0+1

R0(nak, nbk)

+
1∏K0

k=1mk

∑
x∈A

{ K0∏
i=1

nxii

[
Rx +

K0∑
j=1

R0(nxjj − 1, nxc
jj
)
]}
, (A.1)
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where xci =

{
b if xi = a

a if xi = b
,

R0(na, nb) =
∑
i∈S

i

(
na
i

)(
nb
i

)
i! (na − i− 1)!!

(nb − i− 1)!!

(na + nb − 1)!!
(A.2)

with

S =

{
{0, 2, . . . , na ∧ nb} if na and nb both even,

{1, 3, . . . , na ∧ nb} if na and nb both odd,

Rx = |Ω∗|−1
∑

ω∗∈Ω∗

∑
(i,j)∈ω∗

Ixi ̸=xj
, (A.3)

where ω∗ is an MDP on categories 1, . . . ,K0, and Ω∗ is the set of all these ω∗’s.

Proof. Consider the simpler case of one category with na subjects from group

a and nb subjects from group b, with na + nb even. Since all subjects are in the

same category, any perfect pairing is an MDP. There are in total (na + nb − 1)!!

different perfect pairings.

When both na and nb are even, the possible numbers of edges connecting

different groups are 0, 2, . . . , na∧nb. Among all the (na+nb−1)!! perfect pairings,

the number of perfect pairings having i ∈ {0, 2, . . . , na ∧ nb} edges connecting

different groups is (
na
i

)(
nb
i

)
i! (na − i− 1)!! (nb − i− 1)!!. (A.4)

When both na and nb are odd, the possible numbers of edges connecting different

groups are 1, 3, . . . , na ∧ nb. Among all the (na + nb − 1)!! perfect pairings, the

number of perfect pairings having i ∈ {1, 3, . . . , na∧nb} edges connecting different
groups also has the form (A.4). (A.2) follows immediately.

Under Assumption 1, an MDP on all subjects would be an MDP on categories

1, . . . ,K0, (ω
∗), embedded on the subjects similar to the MST case, with all other

subjects paired within each category, so (A.1) follows naturally.

Remark 2. If N , the total number of observations, is odd, we can add a pseudo

category with one subject, whose distance to any other category is 0. All deriva-

tions are the same, except that the edge containing the pseudo category is dis-

carded from the MDP on categories in later steps.

Appendix B. Computation Time for RaMST and RuMST

The main tasks for computing RaMST and RuMST are to enumerate all MSTs

on categories for RaMST and to list the edges in M∗
0 for RuMST. Other tasks can

be finished in O(K) time.
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Let G be the complete graph on K categories, |G| = K(K − 1)/2. Eppstein

(1995) proposed a graph operation called the sliding transformation which, when

applied to G, produces an equivalent graph such that the MSTs on categories

correspond one-for-one with the spanning trees of the equivalent graph. The

enumeration of all spanning trees, without having to optimize for total distance,

is relatively straightforward. Thus, we adopted the following computational ap-

proach. Use Eppstein’s method to construct the equivalent graph of G, enumer-

ate all spanning trees of the equivalent graph, then transform back to get the

set of MSTs on G. The sliding transformation constructs the equivalent graph

in O(|G| +K logK) = O(K2) time. To perform the sliding transformation, an

initial MST is needed. Prim’s algorithm can be used to obtain the initial MST,

which requires O(K2) time, not increasing the time complexity. The theoretical

justification of this algorithm can be found in Eppstein (1995) and Chen (2012),

which completes many of the proofs of Eppstein (1995).

After removing any loops formed during the the sliding transformations, each

remaining edge appears in at least one spanning tree of the equivalent graph, thus

appearing in at least one MST on G. Now we have the list of edges in uMST on

G, and thus RuMST can be calculated in O(K2) time.

For enumerating all spanning trees of the equivalent graph, the algorithm

proposed by Shioura and Tamura (1995) is used; it requires O(K + |G|+M) =

O(K2+M) computation time, proven to be optimal in time complexity. Shioura

and Akihisa’s algorithm starts from a spanning tree formed by depth-first search,

then replaces one edge at a time using cycle structures in the graph, traversing

the space of all spanning trees of the graph. Hence, computing RaMST takes

O(K2 +M) time.
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