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Abstract: Random walk models driven by GARCH errors are widely applicable in

diverse areas in finance and econometrics. For a first-order autoregressive model

driven by GARCH errors, let bφn be the least squares estimate of the autoregressive

coefficient. The asymptotic distribution of bφn is given in Ling and Li (2003) when

the GARCH errors have finite variances. In this paper, the limit distribution of
bφn is established as functionals of a stable process when the GARCH errors are

heavy-tailed with infinite variances. An estimate of the tail index of the limiting

stable process is proposed and its asymptotic properties are derived. Furthermore,

it is shown that the least absolute deviations procedure works well under the unit-

root and heavy-tailed GARCH setting. This research provides a relatively broad

treatment of unit-root GARCH models that includes the commonly entertained

unit-root IGARCH scenario.
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1. Introduction

Consider the models

Yt = φYt−1 + εt, (1.1)

Yt = µ + φYt−1 + εt, (1.2)

where Y0 = 0 and the εt follow a first-order generalized autoregressive conditional
heteroscedasticity model (GARCH(1, 1))

εt = σtηt, σt ≥ 0 , (1.3)

σ2
t = ω + aσ2

t−1 + bε2
t−1, ω > 0, a ≥ 0, b ≥ 0 , (1.4)

where {ηt} are i.i.d. symmetric random variables.
There is an extensive literature on unit-root estimation and testing for the

case a = b = 0, i.e., {εt} are i.i.d. random variables. For a concise review on the
recent developments on this topic, see Chan (2009) and the references therein.
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The unit-root problem for the case of non i.i.d. errors (a 6= 0 or b 6= 0) has also
been receiving considerable attention in the literature. One of the main reasons
for this is that when Yt in model (1.1) represents the log price of an underlying as-
set, then it is often found that the return process εt follows a GARCH(1, 1) model
as prescribed by (1.3) and (1.4), see for example Bernard et al. (2008). Under
these circumstances, the original testing for unit-root in (1.1) is tantamount to
testing for unit-root with GARCH(1, 1) errors. Motivated by this consideration,
extensive research have been conducted. For example, Weiss (1986) studied the
distribution of quasi-maximum likelihood estimation (QMLE) when Eε4

t < ∞
for ARCH models. Hall and Yao (2003) considered QMLE, and Peng and Yao
(2003) studied the least absolute deviations estimation (LAD) when Eε2

t < ∞
and Eη4

t = ∞. Ling and Li (1998) and Seo (1999) considered the distribution
of the maximum likelihood estimation for non-stationary autoregressive moving
average time series with GARCH errors for the case Eε4

t < ∞. Ling and Li (2003)
and Ling, Li and McAleer (2003) generalized the results to the case Eε2

t < ∞
but Eη4

t < ∞, and obtained the limit distribution of the estimated unit-root as a
functional of the Brownian motion. Chan and Peng (2005) studied least absolute
deviations estimation for the AR(1) process with a = 0 and Eη2

t < ∞. Recently,
Wang (2006) studied the asymptotic distribution of the Dickey-Fuller test under
Eε2

t < ∞, i.e., a + bEη2
t < 1.

Although the GARCH error model enjoys tremendous popularity in modeling
stock returns, one critical issue remains. In fitting the log returns to (1.4), it is
often reported in the data that the estimates of the parameter a + bEη2

t are very
close to unity, see Mikosch and Stărică (2000). In this case, the model exhibits
the so-called IGARCH effect where Eε2

t = ∞. As a result, many of the previously
developed theories are not applicable. One of the main purposes of this paper
is to study the asymptotic distribution of unit-root estimators when {εt} is a
GARCH(1, 1) process with infinite variance. In particular, it is shown that when
a + bEη2

t > 1, the asymptotic distribution of the LSE converges to a functional
of a stable process, and when a + bEη2

t = 1, the asymptotic distribution of the
LSE converges to a functional of the Brownian motion, similar to the case when
a + bEη2

t < 1.
Another objective of this paper is to study the asymptotic properties of the

least absolute deviations estimators of the parameters a and b in (1.4) when Eε2
t =

∞, extending results of Peng and Yao (2003). By completing the asymptotic
theory for both finite and infinite variance scenarios, we offer a relatively broad
coverage of the unit-root problem for the AR model driven by GARCH errors,
including the commonly entertained IGARCH case.
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The paper is organized as follows. Section 2 gives the main results. As the
limit process depends on an unknown parameter of the tail index, estimation
of parameters and the corresponding limit distributions are given in Section 3.
Properties of the least absolute deviations estimators of the GARCH parameters
are given in Section 4. Simulations are reported in Section 5. Section 6 presents
the proofs of the main theorems. Preliminary lemmas and a critical result of the
weak convergence of a stable process for strongly mixing sequence are relegated to
Appendix. In the sequel, we use the symbol C to denote an unspecified positive
and finite constant that may take a different value at each appearance.

2. Asymptotic Distributions

Given Y0 = 0 and observations Y1, . . . Yn, to test φ = 1 against φ < 1, the
Dickey-Fuller (DF) test ρ̂n based on least squares (LS) regression of Yt on Yt−1

for model (1.1) is

ρ̂n = n(φ̂n − 1) =
( 1

n

n∑
i=1

Y 2
i−1

)−1( n∑
i=1

Yi−1εi

)
. (2.1)

Similarly, the unit-root statistic ρ̂µn for model (1.2) when there exists a drift in
the autoregressive model is

ρ̂µn = n(φ̂µn − 1) =
( 1

n

n∑
i=1

(Yi−1 − Y )2
)−1( n∑

i=1

(Yi−1 − Y )εi

)
=

( 1
n

n∑
i=1

Y 2
i−1 − (Y )2

)−1( n∑
i=1

Yi−1εi − Y
n∑

i=1

εi

)
, (2.2)

where Y =
n∑

i=1

Yi−1/n. We impose the following assumptions.

H1. Elog(a + bη2
t ) < 0.

H2. There exists a k0 > 0 such that E(a + bη2
t )

k0 ≥ 1 and E(a + bη2
t )

k0 log+(a +
bη2

t ) < ∞, where log+(x) = max{0, log(x)}.

H3. The distribution F of η1 is a mixture of an absolutely continuous component
with respect to the Lebesgue measure λ on R and Dirac masses at some
points µi ∈ R, i = 1, . . . , N , that is,

dF =
N∑

i=1

pid δµi + (1 − p)f dλ, pi ≥ 0,

N∑
i=1

pi = p ∈ [0, 1),
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where f is a density of continuous component and satisfying

(x0
− − δ, x0

−) ∪ (x0
+, x0

+ + δ) ⊂ {f > 0} (2.3)

for some δ > 0 and x0
− = sup{x|x < 0, f(x)>0}, x0

+ =inf{x|x>0, f(x)>0}.

The first result gives weak convergence for the partial sum process of the sequence
{εi}. Herein, the symbol

f.d.d.−→ denotes the convergence of the finite-dimension
distribution in D[0, 1]. Moreover, the symbol ⇒ denotes the weak convergence
in D[0, 1] (the space of functions on [0, 1] which are right-continuous and have
left-hand limits, see Billingsley (1999)).

Theorem 2.1. Under the conditions H1, H2 and H3, the following hold.
(a) There exists a unique α ∈ (0, k0] such that E(a + bη2

1)
α = 1.

(b) If α ∈ (0, 1), then

( 1
(c1n)1/(2α)

[nt]∑
i=1

εi,
1

(c1n)1/α

[nt]∑
i=1

ε2
i

)
f.d.d.−→

(
Z2α(t), Zα(t)

)
,

where Z2α(t) is a stable process with index 2α and c1 = c0E|η1|2α, where c0

is a constant to be defined in Lemma A.1.

(c) If α = 1, then

1√
c1n log n

[nt]∑
i=1

εi ⇒ W (t),

where c1 = c0Eη2
1 =: c0σ

2 and {W (t), 0 ≤ t ≤ 1} is a standard Brownian
motion.

Applying Theorem 2.1 yields the asymptotic distributions of ρ̂n and ρ̂µn.

Theorem 2.2. Suppose that φ = 1 in model (1.1) or (φ, µ) = (1, 0) in model (1.2).
Under the conditions of Theorem 2.1, the following hold.
(a) For α ∈ (0, 1),

ρ̂n = n(φ̂n − 1) d−→
∫ 1
0 Z−

2α(t) dZ2α(t)∫ 1
0 Z2

2α(t) dt
, (2.4)

ρ̂µn = n(φ̂µn − 1)

d−→
∫ 1
0 Z−

2α(t) dZ2α(t) − Z2α(1)
∫ 1
0 Z2α(t) dt∫ 1

0 Z2
2α(t) dt − (

∫ 1
0 Z2α(t) dt)2

, (2.5)

where Z−
2α(t) denotes the left-hand limit of Z2α(t) and d−→ denotes conver-

gence in distribution.
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(b) For α ≥ 1,

ρ̂n = n(φ̂n − 1) d−→
∫ 1
0 W (t) dW (t)∫ 1

0 W 2(t) dt
(2.6)

ρµn = n(φµn − 1)

d−→
∫ 1
0 W (t) dW (t) − W (1)

∫ 1
0 W (t) dt∫ 1

0 W 2(t) dt − (
∫ 1
0 W (t) dt)2

. (2.7)

Remark 2.1. Condition H1 is a necessary and sufficient condition for the exis-
tence of stationary solution of σ2

t (see Nelson (1990)). If condition (H2) holds,
then condition (H1) is equivalent to E(a+ bη2

1)
µ < 1 for some µ > 0 (see Remark

2.9 of Basrak, Davis and Mikosch (2002)).

Remark 2.2. If there exists h0 > 0 such that E|ηt|h0 = ∞ and E|ηt|h < ∞ for
all h < h0, then conditions H1 and H2 are satisfied.

Remark 2.3. If f(x) is positive in a neighborhood of zero, then (2.3) is true
with x0

− = x0
+ = 0. Condition H3 is the weakest condition among the existing

results on mixing conditions for GARCH(1, 1) process. For more information,
refer to Francq and Zaköıan (2006).

Remark 2.4. If α > 1, by condition H2, E|η1|2α < ∞ and as a result, Eη2
1 < ∞.

By virtue of Hölder’s inequality, E(a + bη2
1) ≤ [E(a + bη2

1)
α]1/α = 1. Since η2

1

is non-degenerate, we have E(a + bη2
1) < 1. When Eη2

1 = 1 and a + b < 1, the
asymptotic distribution of Theorem 2.2 is given in Wang (2006). Therefore, for
the proof of Theorem 2.2, it is enough to show the case that α = 1.

Remark 2.5. The limit distributions of Theorem 2.2 are the same as those in
Chan and Tran (1989), in which the errors {εt} are assumed to be i.i.d. with
infinite variance.

Remark 2.6. To apply Theorem 2.1, one needs to estimate c0. By its definition
in Lemma A.1, it can be estimated by

n−1
∑n

t=1

(
[ω̂ + (â + b̂η̂2

t )σ̂
2
t ]

bα − [(â + b̂η̂2
t )σ̂

2
t ]

bα
)

α̂n−1
∑n

t=1

(
(â + b̂η̂2

t )bα log+(â + b̂η̂2
t )

) ,

where ω̂, â, b̂, α̂ are consistent estimators of ω, a, b, α, and σ̂2
t = ω̂+(â+b̂η̂2

t−1)σ̂
2
t−1.

3. Hill Estimators

Note that the limit partial sum process of ε is a stable process with index 2α,

which is unknown a priori. To apply Theorem 2.1, we need to estimate α. In this
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section, we construct a Hill estimator for α and study its asymptotic property
based on the empirical residuals ε̂i = Yi − φ̂Yi−1, i = 1, . . . , n, where φ̂ represents
the LSE φ̂n or φ̂µn.

Let Λ = 1/(2α) be the tail index. Let max1≤i≤n ε̂i = ε̂n:n ≥ ε̂n−1:n ≥ · · · ≥
ε̂n−kn:n be the kn + 1 largest order statistics. Estimate Λ by

Λ̂ =
1
kn

kn∑
i=1

log
ε̂n−i−1:n

ε̂n−kn:n
.

Theorem 3.1. Suppose the conditions of Theorem 2.1 hold and that there exists
some β > 0 such that

P (εt > x) = c0x
−2α(Eη2α

t )(1 + O(x−β)), x → ∞. (3.1)

For α > 1/2, log2 n log4(log n) = o(kn) and kn = o(min{nβ/(β+α), n2α/(1+α)}),
we have √

kn(Λ̂ − Λ) d−→ N(0, Σ2),

where Σ2 = Λ2Var[
∑n

i=1(I(εi > F−1(1 − kn/n)) − kn/n)]/kn, and F is the dis-
tribution of ε1.

Remark 3.1. For the asymptotic normality of the Hill estimator, the second
order regularly varying condition is necessary. This condition is satisfied for a
GARCH model when (i) E(a+bη2

1)
α+δ < ∞, and (ii) g(µ) = E(a+bη2

1)
α+iµ, µ ∈ C

is analytic in a neighborhood of µ = 0 and g(µ) 6= 1 for −δ < Im(µ) < 0 (η1

is normal, for example). In fact, apart from a constant, Goldie (1991) shows
that under conditions (i) and (ii), σ satisfies the second order regularly varying
condition (3.1). Since εt = σtηt, it follows that under the same condition, εt also
has the second order regularly varying property.

Remark 3.2. To apply Theorem 3.1, it is necessary to give an estimate for
the variance Σ2. To this end, we first estimate F by the empirical distribution
Fn(x) =

∑b
i=1 I(ε̂i ≤ x)/n based on the residuals {ε̂i}. We suggest running m

replications {ε̂(j)
i , 1 ≤ i ≤ n, 1 ≤ j ≤ m} for the residuals {ε̂i, 1 ≤ i ≤ n}, and

estimating Σ2 by

Σ̂2 = Λ̂2m−1
m∑

j=1

[ n∑
i=1

[
I(ε̂(j)

i > F−1
n (1 − kn

n
)) − kn

n

]
(kn)−1

]2

.

Remark 3.3. Another related problem to the Hill estimator is selecting the
binwidth kn. A natural choice would be the kn that minimizes the mean squared
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error of the estimate Λ̂, kn = argminkE[Λ̂ − Λ]2. Since Λ is unknown, we sug-
gest using the bootstrap procedure of Danielsson et al. (2001) to select kn.
Specifically, let n1 < n and X∗

n1
= {X∗

1 , . . . , X∗
n1
} be resamples drawn from

Xn = {X1, . . . , Xn} with replacement. Let X∗
1,n1

≤ X∗
2,n1

≤ X∗
n1,n1

denote the
order statistics of X∗

n1
, and define

Λ̂∗
n1

(k) :=
1
k

k∑
i=1

log X∗
n1−i+1,n1

X∗
n1−k,n1

, M∗
n1

(k) =
1
k

k∑
i=1

( log X∗
n1−i−1,n1

X∗
n1−k,n1

)2
.

Then let k̂n = argminkE((M∗
n1

(k)− 2Λ̂∗
n1

(k)2)2|Xn). It is shown in Danielsson et
al. (2001) that such a k̂n is consistent and asymptotically optimal in terms of
attaining a minimum mean squared error.

4. Estimation of ν0 = (ω0, a0, b0)

To fit the model, we need to estimate the parameters ν0 = (ω0, a0, b0) pre-
scribed in (1.4) from the data. Although there is an extensive literature on
this topic, most of it focuses on cases with stationary data. When models (1.3)
and (1.4) are entertained, we are dealing with unit-root nonstationarity com-
pounded with heavy-tailedness. It is therefore interesting to investigate to what
extent the unit-root and/or the heavy-tailedness affects the asymptotic properties
of the estimates of a and b.

To estimate the parameters of a GARCH model, QMLE is usually applied
and this requires the existence of the fourth moment of the error ηt and the sec-
ond moment of εt in model (1.4). But when the unit-root is present and IGARCH
is entertained, these moment assumptions fail to hold. Other estimation proce-
dures should then be used. One commonly used alternative is the least absolute
deviations estimator. LAD is studied in Peng and Yao (2003) when Eε2

t < ∞
and Eε4

t = ∞. No result for the LAD, however, seems to be available for the case
of an IGARCH model when Eε2

t = ∞.

To this end, let εi(z) = Yi−zYi−1, hi(ν, z) = σ2
i (ω, a, b, z) = ω+aσ2

i−1(ω, a, b,
z) + bεi−1(z)2, and set ε̂i = εi(φ̂), where φ̂ is the LSE φ̂n in model (1.1) and φ̂µn

in model (1.2). Let Θ be the parameter space of (ω, a, b) satisfying a < 1 and
H1. We estimate ν0 by the LAD estimator

ν̂ = arg min
ν∈Θ

n∑
i=1

(∣∣∣ ε̂i√
hi(ν, φ̂)

∣∣∣ +
1
2

log hi(ν, φ̂)
)
, (4.1)

and establish its limit distributions when Eε2
t = ∞, which is encompassed by the

case E(a + bη2
t ) ≥ 1.
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Theorem 4.1. Suppose that (i) φ = 1 in model (1.1) and (φ, µ) = (1, 0) in
model (1.2); (ii) E|ηt| = 1 and Eη2

t < ∞; (iii) Θ is a compact set containing
ν0. Then we have the following.

(1) If E(a0 + b0η
2
t )

α = 1 for some α > 1/2, then ν̂
p−→ ν0.

(2) If E(a0 + b0η
2
t )

α = 1 for some α > 1, then

√
n(ν̂ − ν0)

d−→ 2(N(0, A) − Fζ)/E[h−2(ν0)[h′(ν0)]T h′(ν0)] , (4.2)

where A = E(|ηi| − 1)2E[h−2
i (ν0)[h′

i(ν0)]T h′
i(ν0)], h′

i(ν) = ∂hi(ν)/∂ν, hi(ν)
:= hi(ν, 1), F = E{(

∑∞
j=1 b0a

j−1
0 εi−j) [h′

i(ν0)]T h−2
i (ν0)}, and

ζ =


R 1
0 W (t)dW (t)

R 1
0 W (t)dt

R

0 W 2(t)dt
, for model (1.1),

(
R 1
0 W (t)dW (t)−W (1)

R 1
0 W (t)dt)

R 1
0 W (t)dt

R 1
0 W 2(t)dt−(

R 1
0 W (t)dt)2

, for model (1.2).

Remark 4.1. When α ≤ 1, to establish the asymptotic distribution of ν̂ defined
in (4.1), the convergence rate of φ̂ has to be n−1/2−1/(2α) for α < 1 and (n log n)−1

for α = 1. But according to Theorem 2.2, the convergence rate of the φ̂ is only
n−1. This difficulty can be resolved if we estimate (ν, φ) simultaneously as

(ν̂, φ̂) = arg min
(ν,φ)

n∑
i=1

(∣∣∣ εi(φ)√
hi(ν, φ)

∣∣∣ +
1
2

log hi(ν, φ)
)
.

5. Simulations

Numerical simulations were conducted to demonstrate the effectiveness of
the asymptotic results. Tables 1 lists the empirical percentiles of the limit distri-
bution of ρ̂n and ρ̂µn in Theorem 2.2, where the data was simulated from model
(1.1) and (1.2) with n = 1, 000, ω = 0.5, b = 0.7, a = 0.3, 0.5 and 0.1, and {ηt}
were i.i.d. standard normal. Five thousand independent samples were generated
for each simulated series. Since {ηt} was normal, bigger a resulted in a smaller
tail index α. Table 1 shows that the smaller is the tail index α, the heavier is
the tail of the density of ρ̂n and ρ̂µn. Further, when α < 1 (a = 0.5), the thick-
ness of the tail was more pronounced. When α ≥ 1 (a = 0.1 and 0.3), not only
were the tails of the limit distribution thinner, but the changes of the tails were
also becoming less pronounced. These phenomena can be explained by virtue of
Theorem 2.2. As α < 1, the limit distribution of ρ̂n or ρ̂µn is a functional of an
integral of stable processes, but when α ≥ 1, the limit distribution is a functional
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Table 1. Empirical percentiles of ρ̂n, ρ̂µn with ω = 0.5, b = 0.7.

a
Probability of a smaller value

0.01 0.025 0.05 0.10 0.25 0.75 0.90 0.95 0.975 0.99
0.3 -23.25 -15.320 -11.28 -7.06 -3.09 0.30 0.93 1.34 1.700 2.26

ρ̂n 0.5 -102.11 -59.840 -36.25 -20.08 -6.46 0.30 1.06 2.07 4.430 12.72
0.1 -15.75 -11.080 -8.33 -5.88 -2.93 0.23 0.93 1.27 1.590 2.08
0.3 -37.28 -27.410 -19.80 -14.68 -8.72 -2.23 -0.83 -0.06 0.610 1.71

ρ̂µn 0.5 -112.85 -71.780 -49.92 -29.69 -12.67 -1.81 -0.12 1.42 5.030 13.19
0.1 -25.47 -19.570 -15.79 -12.32 -7.78 -2.18 -0.72 -0.01 0.560 1.21

Table 2. Bias, variance, and MSE of Λ̂ for different kn when ω = 0.5, a = 0.3, b = 0.7.

λ̂
Number (kn) of the order statistics

50 100 150 200 250 300 350 400 450 500 550
Bias 0.028 0.007 0.030 0.053 0.078 0.104 0.136 0.171 0.212 0.259 0.316
Var 0.027 0.017 0.012 0.009 0.008 0.007 0.006 0.005 0.004 0.004 0.004
MSE 0.028 0.017 0.013 0.012 0.014 0.018 0.024 0.034 0.049 0.071 0.103

of an integral of Brownian motions only. These results are similar to those of
Chan and Tran (1989).

To gain a further understanding of these phenomena, the probability density
functions of ρ̂n and ρ̂µn of the three cases reported in Table 1 are plotted in
Figure 1.

To shed some light on how the number (kn) affects the Hill estimator (Λ̂), we
simulated model (1.1) with n = 1, 000 and 2, 000 repetitions with normal {ηt}.
Table 2 gives the bias, the variance and the mean squared error (MSE) of Λ̂ for
various kn when ω = 0.5, a = 0.3, and b = 0.7. Table 2 shows that Λ̂ is very
sensitive to kn. To obtain a more robust Λ̂, kn cannot be too small or too large.
When kn is too small, it results in a small bias but a big variance; when kn is too
big, it leads to a small variance but a big bias. Therefore, adequately choosing
kn is important in using the Hill estimator.

To assess the effect of kn, the graphs of the bias (filled square), the variance
(filled triangle) and the MSE (filled circle) of Λ̂(kn) for different values of kn

are plotted in the left-hand panels in Figures 2–4. The marked dot on the MSE
curve corresponds to the selected kn when minimum MSE was achieved. For
such a selected kn, the estimated probability density function (solid line) and
the asymptotic normal limit (dashed line) are plotted in the right-hand panels of
the same figures. Figure 2 plots the case ω = 0.5, a = 0.3, and b = 0.7 (α = 1),
Figure 3 is for the case ω = 0.5, a = 0.4, and b = 0.7 (α < 1), and Figure 4
is for the case ω = 0.5, a = 0.1, and b = 0.7 (α > 1). These graphs show the
bias-variance trade off in kn. Comparing the three cases, we see that if the tail
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Figure 1. Probability density function of ρ̂n and ρ̂µn.

Figure 2. Hill estimators Λ̂ and their densities for ω = 0.5, a = 0.3 and b = 0.7.

index α is small, then a large kn should be chosen to minimize the mean squared
error. This observation concurs with the findings reported in Danielsson et al.
(2001). An explanation for this phenomenon is that such a kn is determined by
the quantity nβ/(β+α) defined in Theorem 3.1. As a result, a small α leads to a
big kn. From Figures 2−4, we see that when the tail index α > 1, the pdf of the
limit distribution approximates the normal limit reasonably well; when the tail
index α < 1, however, the approximation becomes less satisfactory.

Finally, small-scale simulations for the LAD estimator were also conducted.
We simulated Yt, t = 1, . . . , 400 from model (1.1) and estimated φ by the LSE
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Figure 3. Hill estimators Λ̂ and their densities for ω = 0.5, a = 0.4 and b = 0.7.

Figure 4. Hill estimators Λ̂ and their densities for ω = 0.5, a = 0.1 and b = 0.5.

φ̂n. Using residuals {ε̂t = Yt − φ̂Yt−1}, we computed the LAD estimate and the
QMLE for (ω, a, b). Three hundred independent samples were drawn for three
cases: Case 1, (ω, a, b) = (0.5, 0.6, 0.3) and {ηt} are standard normal; Case 2,
(ω, a, b) = (0.5, 0.6, 0.1) and {ηt} are t3; Case 3, (ω, a, b) = (0.5, 0.6, 0.18) and
{ηt} are t5. The bias and MSE of LAD and the QMLE are presented in Table 3.
From Table 3, we see that the LAD estimate approximates the true (ω, a, b) better
than the QMLE when the errors {εt} are heavy-tailed. Even when εt has a light
tail (Case 1), the LAD estimate performs comparably well with the QMLE. From
these simulations, it seems reasonable to argue that the LAD estimate performs
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Table 3. Bias and MSE of estimator ν̂.

Parameter Case 1: N(0, 1) Case 2: t3 Case 3: t5
(ω, a, b) 0.500 0.600 0.300 0.500 0.600 0.100 0.500 0.600 0.180

LAD Bias −0.018 −0.093 0.046 −0.019 −0.073 0.067 −0.007 −0.065 0.058
MSE 0.031 0.039 0.045 0.026 0.032 0.029 0.026 0.029 0.039

QMLE Bias −0.023 −0.072 0.058 0.015 −0.052 0.081 −0.005 −0.065 0.086
MSE 0.023 0.027 0.043 0.029 0.032 0.043 0.026 0.032 0.049

reasonably well when the errors are heavy-tailed, and is a viable alternative to
the QMLE for the light-tailed case.

6. Proofs

6.1. Proofs of Theorems 2.1 and 2.2

Proof of Theorem 2.1. Conclusion (a) follows from Lemma A.1, leaving parts
(b) and (c). For α ∈ (0, 1), let Sjn(t) =

∑[nt]
i=1 εj

i/(c1n)j/(2α), j = 1, 2, and let
Sn(t) = (S1n(t), S2n(t)). To show the finite-dimensional distributions of Sn(t)
converge to Z(t) = (Z2α(t), Zα(t)), it is enough to show that for any t1, . . . , tk ∈
(0, 1],

(Sn(t1), . . . , Sn(tk))
d−→ (Z(t1), . . . , Z(tk)).

We only give k = 2 in detail, other cases can be shown similarly. It follows from
Lemma A.6 that for any given t ∈ (0, 1), Sn(t) d−→ Z(t). With the Cramér-Wold
device, to have (Sn(t1), Sn(t2))

d−→ (Z(t1), Z(t2)), it is sufficient to show that
for any c = (c1, c2), d = (d1, d2) ∈ R2 and t1 < t2, c · Sn(t1) + d · Sn(t2)

d−→
c · Z(t1) + d · Z(t2).

Let an = (c1n)1/(2α), then for any δ > 0, P (|εi| > δan) ≤ δ−2α/n. It
follows that for any m = o(n),

∑[nt1]+m
i=[nt1]+1(d1εi/an + d2ε

2
i /a2

n)
p−→ 0. Thus, when

m = o(n),

c · Sn(t1) + d · Sn(t2)

= (c1 + d1)S1n(t1) + (c2 + d2)S2n(t1) +
[nt2]∑

i=[nt1]+1+m

(d1εi

an
+

d2ε
2
i

a2
n

)
+ op(1).

By Lemma A.4 we have, for m large enough, the right side has the same distri-
bution as

(c1 + d1)S1n(t1) + (c2 + d2)S2n(t1) +
[nt2]∑

i=[nt1]+1+m

(d1ε
′
i

an
+

d2ε
′2
i

a2
n

)
,
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where {ε′i} is an independent copy of {εi}. Thus

c · Sn(t1) + d · Sn(t2)
d−→ (c1+d1)Z2α(t1)+(c2+d2)Zα(t1)+d1(Z2α(t2)−Z2α(t1))+d2(Zα(t2)−Zα(t1))

= c · Z(t1) + d · Z(t2). (6.1)

This completes the proof of (b).
In the following, we apply a central limit theorem for a triangular array

of martingale difference sequences (see Theorem 18.2 of Billingsley (1999)) to
deal with weak convergence for the case α = 1. Let an =

√
c1n log n, bn =√

c0n log log n and ζni = εiI(σi ≤ bn)/
√

c1n log n. Then

1
an

[nt]∑
i=1

εi =
1
an

[nt]∑
i=1

εiI(σi ≤ bn) +
1
an

[nt]∑
i=1

εiI(σi > bn) =: Sn1(t) + Sn2(t).

It is easy to see that for any δ > 0,

P ( sup
0≤t≤1

|Sn2(t)| > δ) ≤ P ( sup
1≤i≤n

σi > bn) ≤ nP (|σi| > bn) ≤ 1
log log n

→ 0.

(6.2)
So, it is enough to show that

Sn1(t) =
[nt]∑
i=1

ζni ⇒ W (t) in D[0, 1]. (6.3)

If Ft is the σ−field generated by {εi, i ≤ t}, then E(ζni|Fi−1) = 0. Since Eη2
1 < ∞

by virtue of H2, it follows that for any δ > 0,

n∑
i=1

E[ζ2
niI(|ζni| ≥ δ)] = (c1 log n)−1E[(ε1I(σ1 ≤ bn))2I(|(ε1I(σ1 ≤ bn)| ≥ δan)]

≤ (c1 log n)−1E[σ2
1I(σ1 ≤ bn)]E[η2

1I(|η1| ≥
δan

bn
]

= (c1 log n)−1

∫ bn

0
2x[P (|σ1| > x) − P (σ1 > bn)] dx

E
[
η2
1I(|η1| ≥

δan

bn

]
≤ (c1 log n)−1

(
1 +

∫ bn

1
2y−1 dy

)
E

[
η2
1I(|η1| ≥

δan

bn

]
→ 0. (6.4)
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By Theorem 18.2 of Billingsley (1999), for the proof of (6.3) it is enough to show
that for any t ∈ [0, 1],

[nt]∑
i=1

E(ζ2
ni|Fi−1) = Eη2

1

[nt]∑
i=1

σ2
i I(σi ≤ bn)

a2
n

=
1

c0n log n

[nt]∑
i=1

σ2
i I(σi ≤ bn)

p−→ t.

(6.5)
Note that

Eσ2
1I(σ1 ≤ bn)) =

∫ bn

0
2x[P (|σ1| > x) − P (σ1 > bn)] dx

≤ 1 +
∫ bn

1
2c0y

−1 dy ∼ c0 log n,

Eσ2
1I(σ1 ≤ bn)) ≥

∫ √
n

1
2x[P (|σ1| > x) − P (σ1 > bn)] dx

≥
∫ √

n

1
2c0y

−1 dy − 1 ∼ c0 log n.

Thus, for n large enough, Eσ2
1I(σ1 ≤ bn)) ∼ c0 log n, and (6.5) is equivalent to

showing

1
c0n log n

[nt]∑
i=1

[σ2
i I(σi ≤ bn) − Eσ2

i I(σi ≤ bn)]
p−→ 0. (6.6)

To this end, split σ2
i I(σi ≤ bn) − Eσ2

i I(σi ≤ bn) into two parts: ξn,i = σ2
i I(σi ≤√

ny)−Eσ2
i I(σi ≤

√
ny) and Xn,i = σ2

i I(
√

ny < σi ≤ bn)−Eσ2
i I(

√
ny < σi ≤ bn),

where y > 0. Since σ2
i satisfies the β-mixing condition with exponential decay, it

follows that for n large enough and for any δ > 0,

E
( 1

c0n log n

[nt]∑
i=1

ξn,i

)2

=
1

(c0n log n)2
( [nt]∑

i=1

Eξ2
n,i + 2

[nt]∑
i=1

[nt]∑
j=i+1

Eξn,iξn,j

)
≤ 2tn−1ny2(c0 log n)−2E(σ2

i I(σi ≤ bn)) + 2tn−1(c0 log n)−2
{ m∑

i=1

Eξn,1ξn,i+1

+
[nt]∑

i=m+1

[(ρi)δ/(2+δ)(E|ξn,1|2+δ)2/(2+δ) + Eξn,1Eξn,i+1]
}

≤ 4ty2(c0 log n)−1 + 4tn−1mny2(c0 log n)−1
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+4tn−1(c0 log n)−2ρmδ/(2+δ)[(
√

ny)2(1+δ)E|ξn,1|]2/(2+δ)

[nt]∑
i=1

ρiδ/(2+δ)

→ 0, (6.7)

for any t ∈ [0, 1] by taking m = [−2 log n/ log ρ] and y → 0. This implies that
for large n and small y,

1
c0n log n

[nt]∑
i=1

ξni
p−→ 0. (6.8)

By Lemma A.1, it follows that for large x, P (σ2
1 > x) ∼ c0x

−1. As with Theorem
4.1 of Davis and Mikosch (1998), it can be seen that Conditions 1, 2, 3 in Lemma
A.5 are satisfied for the process {σ2

t }. Therefore, there exists a process N (see
Lemma A.5) such that

Nn =
n∑

i=1

δσ2
i /n

d−→ N.

For any y > 0, let T :
∑∞

i=1 δxi →
∑∞

i=1 xiI(y,∞)(|xi|). Then T is continuous and
by the Continuous Mapping Theorem (see (3.8) of Davis and Hsing (1995)), we
have

1
c0n

n∑
i=1

{σ2
i I(

√
ny < σi) − E[σ2

i I(
√

ny < σi ≤
√

n)]} d−→ T (N) + log y.

This implies that for any t > 0,

1
c0n log n

[nt]∑
i=1

{σ2
i I(

√
ny < σi) − E[σ2

i I(
√

ny < σi ≤ bn)]} p−→ 0.

On the other hand, from (6.2), it follows that for any δ > 0,

P
{ 1

c0n log n

n∑
i=1

σ2
i I(σi > bn) > δ

}
≤ P{ max

1≤i≤n
σi > bn} → 0.

Thus, (c0n log n)−1
∑[nt]

i=1 Xn,i
p−→ 0, which combined with (6.8) yields (6.6). This

completes the proof of (c) and the proof of Theorem 2.1.

Proof of Theorem 2.2. Note that under either φ = 1 in model (1.1) or
(φ, µ) = (1, 0) in model (1.2), Yi = Yi−1 + εi =

∑i
j=1 εj . This implies that

Yi−1εi = Yi−1(Yi − Yi−1). Thus,

ρ̂n =
( 1

n

n∑
i=1

Y 2
i−1

)−1( n∑
i=1

Yi−1εi

)
=

( 1
n

n∑
i=1

Y 2
i−1

)−1( n∑
i=1

Yi−1(Yi − Yi−1)
)
,

(6.9)
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ρ̂µn =
( 1

n

n∑
i=1

Y 2
i−1

)( n∑
i=1

Yi−1(Yi − Yi−1) − Y

n∑
i=1

εi

)
. (6.10)

When α = 1, by (c) of Theorem 2.1 and the Continuous Mapping Theorem, we
have

ρ̂n =
( 1

n

n∑
i=1

[(c1n)−1/2αYi−1]2
)−1( n∑

i=1

[(c1n)−1/2αYi−1][(c1n)−1/2α(Yi − Yi−1)]
)

d−→
∫ 1

0
W (t) dW (t)/

∫ 1

0
W 2(t) dt. (6.11)

Similarly, by (6.10) and the Continuous Mapping Theorem, we have

ρ̂µn
d−→

∫ 1
0 W (t) dW (t) − W (1)

∫ 1
0 W (t) dt∫ 1

0 W 2(t) dt − (
∫ 1
0 W (t) dt)2

.

This, combined with Remark 2.4, completes the proof of (b) in Theorem 2.2.

When α ∈ (0, 1), rewrite ρ̂n =
( 1

n

n∑
i=1

Y 2
i−1

)−1[1
2

(
Y 2

n −
n∑

i=1

ε2
i

)]
and

ρ̂µn =
( 1

n

n∑
i=1

Y 2
i−1

)−1(Y 2
n

2
− 1

2

n∑
i=1

ε2
i − Y

n∑
i=1

εi

)
.

Let Y1n(t) =
∑[nt]

i=1 εiI(|εi| ≤ an)/an, Y2n(t) =
∑[nt]

i=1 εiI(|εi| > an)/an, and
Yn(t) = Y1n(t)+Y2n(t). By the symmetric assumption we have, for all n, {εiI(|εi|
≤ an)/an} is a martingale difference sequence and supn supt∈[0,1] E|Y1n(t)| < ∞.

By Doob’s inequality, we have the following results.

(a) {max0≤t≤1 |Y1n(t)|} is stochastically bounded.

(b) For any a < b, a, b ∈ R, if Na,b(Y1n) is the number of up-crossings of [a, b]
by the process Y1n, then {Na,b(Y1n)} is stochastically bounded.

If β = min{2α − τ, 1} , τ < 2α, and Na,b(Y2n) is the number of up-crossings of
[a, b] by the process Y2n, then

max
n

E( max
0≤t≤1

|Y2n(t)|)β ≤ max
n

a−β
n

n∑
i=1

E[|εi|βI(|εi| > an)] < ∞,

E{Na,b(Y2n)} ≤ E
( ∑n

i=1 I(|εi| > an)
)

= nP (|ε1| > an) < ∞.

This implies that {max0≤t≤1 |Y2n(t)|} and {Na,b(Y2n)} are stochastically bounded.
Since

max
0≤t≤1

|Yn(t)| ≤ max
0≤t≤1

|Y1n(t)| + max
0≤t≤1

|Y2n(t)|
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and the number Na,b(Yn) of up-crossings of [a, b] by Yn is no more than Na,b(Y1n)+
Na,b(Y2n), it follows that {max0≤t≤1 |Yn(t)|} and {Na,b(Yn)} are stochastically
bounded sequences. By Theorem 3.2 of Jakubowski (1997), it follows that {Yn(·)}
is uniformly S-tight in D[0, 1]. Let τm = {0 = tm,0 < tm,1 < · · · < tm,km = 1}
be such that maxk |tm,k − tm,k−1| → 0 and Xn(t) =

∑[nt]
i=1 1/n. Along the lines of

Lemma 8 of Jakubowski (1996), we have for any δ > 0,

lim
m→∞

sup
n

P
[ ∣∣∣( ∫ 1

0
(Yn(t−))τm dXn(t),

∫ 1

0
(Y 2

n (t−))τm dXn(t)
)

−
( ∫ 1

0
Yn(t−) dXn(t),

∫ 1

0
Y 2

n (t−) dXn(t)
)∣∣∣ > δ

]
= 0, (6.12)

where (Xn(t))τm is given by (Xn(1))τm = Xn(1) and (Xn(t))τm = Xn(tk) when
tk ≤ t < tk+1, k = 1, . . . ,m − 1. By (a) of Theorem 2.1, we have

( ∫ 1

0
(Yn(t−))τm dXn(t),

∫ 1

0
(Y 2

n (t−))τm dXn(t), Yn,
n∑

i=1

ε2
i

a2
n

)
d−→

( ∫ 1

0
(Z2α(t−))τm dt,

∫ 1

0
(Z2

2α(t−))τm dt, Z2α(1), Zα(1)
)
. (6.13)

By (6.12) and (6.13), we have (a) of Theorem 2.2, as desired.

6.2. Proof of Theorem 3.1.

By Theorem 2.1 of Drees (2000) it can be shown that

1√
kn

n∑
i=1

(
I(εi ≥ F−1(1 − knu

n
)) − knu

n

)
⇒ B(u) in D[0, 1], (6.14)

where B(·) is a standard Brownian motion. By standard arguments (see de Haan
and Resnick (1998)), for the proof of Theorem 3.1 it is enough to show that

sup
0≤u≤1

1√
kn

n∑
i=1

[I(ε̂i ≥ F−1(1 − knu

n
)) − I(εi ≥ F−1(1 − knu

n
))]

p−→ 0. (6.15)

Let

Sn(u, θ) =
1√
kn

n∑
i=1

[I(εi ≥ F−1(1 − knu

n
) +

θYi−1

n
) − I(εi ≥ F−1(1 − knu

n
))]

=:
1√
kn

n∑
i=1

Zi(u, θ). (6.16)
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Let Ft be the σ-field generated by {ηj , j ≤ t}. Then

E(Zi(u, θ)|Fi−1)

= E{I[F−1(1 − knu

n
) +

θYi−1

n
< εi ≤ F−1(1 − knu

n
)]

−I[F−1(1 − knu

n
) < εi ≤ F−1(1 − knu

n
) +

θYi−1

n
]|Fi−1}

= E
[
I
(θYi−1

n
< 0

) ∫ (F−1(1−knu/n))/σi

(F−1(1−knu/n)+θYi−1/n)/σi

σif(σix) dx|Fi−1

]
−E

[
I
(
θYi−1/n > 0

) ∫ (F−1(1−knu/n)+θYi−1/n)/σi

(F−1(1−knu/n))/σi

σif(σix) dx|Fi−1

]
=: Hi1 − Hi2, (6.17)

where f(x) is the density of ε. Note that sup1≤i≤n |Yi|/n1/(2α) = Op(1). It follows
from α > 1/2 that sup1≤i≤n Yi/n = op(1). By the continuity of f(·), we have

Hi1
p
= −f(F−1(1 − knu

n
))(

θYi−1

n
)I(θYi−1 < 0). (6.18)

Similarly, it can be seen that

Hi2
p
= f(F−1(1 − knu

n
))(

θYi−1

n
)I(θYi−1 > 0). (6.19)

Furthermore, for all |θ| ≤ M and 0 ≤ u ≤ 1,

1
kn

n∑
i=1

E(Z2
i (u, θ)|Fi−1) ≤

2
kn

n∑
i=1

(Hi1 + Hi2)

≤ 2
kn

max
1≤i≤n

M |Yi|f(F−1(1 − kn

n
))

= Op

(k
1/2α
n

n

)
= op(1). (6.20)

This implies that, for all |θ| ≤ M and 0 ≤ u ≤ 1,

1√
kn

n∑
i=1

Zi(u, θ)
p
=

1√
kn

n∑
i=1

E(Zi(u, θ)|Fi−1) =
1√
kn

n∑
i=1

(Hi1 − Hi2). (6.21)

Similar to the argument as (6.20), the right side of (6.21) is Op(k
1/2α+1/2
n n−1) =

op(1) by virtue of the condition that kn = o(n(2α)/(α+1)). Since Sn(u, θ) has con-
vex sample paths in u and θ, the above convergence implies uniform convergence
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on compact sets (see Pollard (1991)). Thus, (6.15) follows from n(φ̂−φ) = Op(1)
by Theorem 2.2.

6.3. Proof of Theorem 4.1

Set ln(ν) = n−1
∑n

i=1(|εi|/
√

hi(ν, 1) + ln
√

hi(ν, 1)) and l(ν) = Eln(ν). We
show the consistency of ν̂ via the following steps. First, along the lines of Theorem
1 of Lumsdaine (1996), we have ν0 as the unique minimization of l(ν). Second,
by the Ergodic Theorem,

sup
ν∈Θ

|ln(ν) − l(ν)| = op(1), (6.22)

and we have

sup
ν∈Θ

∣∣∣ 1
n

n∑
i=1

|ε̂i|/
√

hi(ν, φ̂) + ln
√

hi(ν, φ̂) − ln(ν)
∣∣∣ = op(1). (6.23)

Note that the left side of (6.23) is no more than

sup
ν∈Θ

1
n

n∑
i=1

[
|εi|

∣∣∣ 1√
hi(ν, φ̂)

− 1√
hi(ν, 1)

∣∣∣ +
∣∣∣ ln

√
hi(ν, φ̂)√
hi(ν, 1)

∣∣∣ +
∣∣∣(1 − φ̂)Yi−1√

hi(ν, φ̂)

∣∣∣]

≤ sup
ν∈Θ

1
n

n∑
i=1

[
|εi|

√
|hi(ν, φ̂) − hi(ν, 1)|√

ωhi(ν, 1)
+

1
2
|hi(ν, φ̂)−hi(ν, 1)|

hi(ν, 1)
+

1√
ω
|(1−φ̂)Yi−1|

]
.

Since α > 1/2, it follows that Y ∗
n := max1≤i≤n |Yi/n| = op(1). Thus,

max
i

|hi(ν, φ̂) − hi(ν, 1)|
hi(ν, 1)

= max
i

b
∣∣∣ ∑i−1

j=0 ai−1−j [2(1 − φ̂)εjYj−1 + (1 − φ̂)2Y 2
j−1]

∣∣∣
(ω

∑i−1
j=0 aj + b

∑i−1
j=0 ai−1−jε2

j )

≤ C|n(1 − φ̂)|
i−1∑
j=0

a(i−1−j)/2Y ∗
n + C[n(1 − φ̂)]2

i−1∑
j=0

ai−1−j(Y ∗
n )2 = op(1).

Thus, by
∑n

i=1 |εi|/n = Op(1), we have (6.23). By (6.22) and (6.23),∣∣∣ 1
n

n∑
i=1

( |ε̂i|√
hi(ν, φ̂)

+ ln
√

hi(ν, φ̂)
)
− ln(ν0)

∣∣∣
=

∣∣∣l(ν) − ln(ν) + ln(ν) − 1
n

n∑
i=1

(
|ε̂i|/

√
hi(ν, φ̂) + ln

√
hi(ν, φ̂)

)
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+ln(ν0) − l(ν0) + l(ν0) − l(ν)
∣∣∣

= |l(ν) − l(ν0)| + op(1) (6.24)

holds uniformly for all ν ∈ Θ. Thus, with ν0 as the unique minimization of l(ν),

inf
ν∈Θ

∣∣∣ 1
n

n∑
i=1

( |ε̂i|√
hi(ν, φ̂)

+ln
√

hi(ν, φ̂)
)
−ln(ν0)

∣∣∣ = inf
ν∈Θ

|l(ν)−l(ν0)|+op(1) = op(1).

From the definition of ν̂, it follows that

|l(ν̂) − l(ν0)| =
∣∣∣ 1
n

n∑
i=1

( |ε̂i|√
hi(ν̂, φ̂)

+ ln
√

hi(ν̂, φ̂)
)
− ln(ν0)

∣∣∣ + op(1) = op(1),

which implies that ν̂
p−→ ν0. This completes the proof of the consistency of ν̂.

Next, we show (4.2). Let θ̃ =
√

n(ν̂ − ν0), x = (x1, x2, x3) ∈ R3, and

g(x, φ̂) =
n∑

i=1

[
(

|ε̂i|√
hi(ν0 + x√

n
, φ̂)

+
1
2

log hi(ν0 +
x√
n

, φ̂))

−(
|ε̂i|√

hi(ν0, φ̂)
+

1
2

log hi(ν0, φ̂))
]
.

Then θ̃ minimizes g(x, φ̂). With η̂i = ε̂i/

√
hi(ν0, φ̂), by a Taylor expansion and

elementary computations, it can be seen that under the conditions of Theorem
4.1,

g(x, φ̂) = − 1
2
√

n

n∑
i=1

x(|η̂i| − 1)h−1
i (ν0, φ̂)[h′

i(ν0, φ̂)]T

+
3
8n

n∑
i=1

x(|η̂i| − 1)h−2
i (ν0, φ̂)(h′

i(ν0, φ̂))T h′
i(ν0, φ̂)xT

+
1
8n

n∑
i=1

xh−2
i (ν0, φ̂)(h′

i(ν0, φ̂))T h′
i(ν0, φ̂)xT

− 1
4n

n∑
i=1

x(|η̂i| − 1)h−1
i (ν0, φ̂)h′′

i (ν0, φ̂)xT + op(1)

=: J1(x, φ̂) + J2(x, φ̂) + J3(x, φ̂) − J4(x, φ̂) + op(1), (6.25)

where h′′(ν0, φ̂) = ∂2h(ν, φ̂)/∂ν2|ν=ν0 . Let h′(ν0) and h′′(ν0) be the first and
second derivative of h(ν, 1) at ν0, respectively. The conclusion of Theorem 4.1
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follows once the following assertions are established. For any M > 0,

sup
|x|≤M

|J1(x, φ̂)+
x

2
√

n

n∑
i=1

[(|ηi|−1)]h−1
i (ν0)[h′

i(ν0)]T−
xFn(φ̂−1)

2n
√

n

n∑
i=1

Yi−1|=op(1).

(6.26)

sup
|x|≤M

|J2(x, φ̂) − 3
8n

n∑
i=1

x(|ηi| − 1)h−2
i (ν0)(h′

i(ν0)T h′
i(ν0)xT | = op(1), (6.27)

sup
|x|≤M

|J3(x, φ̂) − 1
8n

n∑
i=1

xh−2
i (ν0)(h′

i(ν0))T h′
i(ν0)xT | = op(1), (6.28)

sup
|x|≤M

|J4(x, φ̂) − 1
4n

n∑
i=1

x(|ηi| − 1)h−1
i (ν0)h′′

i (ν0)xT | = op(1), (6.29)

1√
n

n∑
i=1

(|ηi|− 1)h−1
i (ν0)[h′

i(ν0)]T
d−→ N(0, E(|ηi| − 1)2E(h−2

i (ν0)[h′
i(ν0)]T h′

i(ν0))),

(6.30)

Fn(φ̂ − 1)
n
√

n

n∑
i=1

Yi−1
d−→ Fζ, (6.31)

1
n

n∑
i=1

h−2
i (ν0)(h′

i(ν0))T h′
i(ν0)

p−→ E(h−2
i (ν0)[h′

i(ν0)]T h′
i(ν0)), (6.32)

1
n

n∑
i=1

x(|ηi| − 1)h−2
i (ν0)(h′

i(ν0)T h′
i(ν0)xT p−→ 0, (6.33)

1
n

n∑
i=1

x(|ηi| − 1)h−1
i (ν0)h′′

i (ν0)xT p−→ 0. (6.34)

As in the proof of Theorem 2.2 in Francq and Zaköıan (2004), it can be
shown that the second moment of h−1

i (ν0)[h′
i(ν0)]T exists. Therefore, (6.30)

follows from the Martingale Central Limit Theorem (see Theorem 3.2 of Hall
and Heyde (1980)), (6.31) follows from Theorem 2.2 and the Martingale Cen-
tral Limit Theorem for {Yi}, and (6.32), (6.33), and (6.34) follow from the Er-
godic Theorem. When α > 1, we have ε̂2

i = ε2
i + Op(n−1) + εiOp(n−1/2) and

hi(v0, φ̂) = hi(v0)+h
1/2
i (v0)Op(n−1/2). With these, (6.28), (6.27), and (6.29) can

be derived similarly to the proof of Theorem C of Ling and Li (2003). We give
only the proof of (6.26) in detail. Note that

J1(x, φ̂) = − x

2
√

n

n∑
i=1

(|ηi| − 1)h−1
i (ν0)[h′

i(ν0)]T
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+
x

2
√

n

n∑
i=1

(|ηi| − 1)[h−1
i (ν0)(h′

i(ν0))T − h−1
i (ν0, φ̂)(h′

i(ν0, φ̂))T ]

− x

2
√

n

n∑
i=1

(|ηi| − 1)(
√

hi(ν0) −
√

hi(ν0, φ̂))
[h′

i(ν0, φ̂)]T

h
3/2
i (ν0, φ̂)

− x

2
√

n

n∑
i=1

(|εi + (1 − φ̂)Yi−1| − |εi|)
[h′

i(ν0, φ̂)]T

h
3/2
i ((ν0, φ̂)

− x

2
√

n

n∑
i=1

(
√

hi(ν0) −
√

hi(ν0, φ̂))
[h′

i(ν0, φ̂)]T

h
3/2
i (ν0, φ̂)

=: I1n + I2n + I3n + I4n + I5n. (6.35)

We show I2n = op(1) for all x ∈ R3. Let

I2n(z) =
bx

2
√

n

n∑
i=1

(|ηi| − 1)[h−1
i (ν0)(h′

i(ν0))T − h−1
i (ν0, 1 − z

n
)(h′

i(ν0, 1 − z

n
))T ]

=:
bx

2
√

n

n∑
i=1

(|ηi| − 1)ξi(z).

Note that for any M > 0,

sup
|x|,|z|≤M

|bx
n∑

i=1

(|ηi| − 1)(ξi(z)| ≤ sup
|z|≤M

bM ||
n∑

i=1

(|ηi| − 1)ξi(z)||,

and for any ε > 0, δ > 0,

P{ 1√
n
||

n∑
i=1

(|ηi| − 1)ξi(z)|| ≥ ε}

≤ 4E(|η1| − 1)2

nε2

n∑
i=1

E
{
||ξi(z)||2I

[
max

1≤j≤i−1
|Yj | ≤ n1/2+δ

]}
+

4E(|η1| − 1)2

nε2

n∑
i=1

E
{
||ξi(z)||2I

[
max

1≤j≤i−1
|Yj | > n1/2+δ

]}
=: Ξ1 + Ξ2. (6.36)

If max1≤j≤i−1 |Yj | ≤ n1/2+δ, we have when n is large, for all M > 0 and |z| ≤ M,

ω + bε2
j (1 − z/n) = ω + b[ε2

j + 2zYj−1εj/n + (zYj−1/n)2] ≥ (ω + bε2
j )/2, j ∈ N,

and

||ξi(z)|| ≤ Cn−1/2+δ(||h−1
i (ν0)[h′

i(ν0)]T || + 1). (6.37)
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Thus,
Ξ1 ≤ Cn−1+2δE{h−2

i (ν0)[h′
i(ν0)]T h′

i(ν0)} =: C ′n−1+2δ. (6.38)

Since α > 1, Yi =
∑i

j=1 εj is a martingale with zero-mean, and from the well-
known martingale inequality (see Theorem 2.4 of Hall and Heyde (1980)) we
have, as x → ∞,

P{ sup
1≤i≤n

|Yi| > 2n1/2+δ} ≤ E[|Yn|I(|Yn| > n1/2+δ)/n1/2+δ]

≤ {E|Yn|2/n1+2δ}1/2[P (|Yn| > n1/2+δ)]1/2 ≤ Cn−2δ.(6.39)

Using y/(1+y) < yτ for any τ > 0 and y > 0 and some elementary computations,
we can show E(||ξi(z)||2/θ) < ∞ for any θ > 0 and |z| ≤ M . This yields

E{||ξi(z)||2I[ max
1≤j≤i−1

|Yj |>n1/2+δ]}

≤ {E(||ξi(z)||2/θ)}θ{P [ max
1≤j≤i−1

|Yj |>n1/2+δ]}1−θ ≤ Cn−2(1−θ)δ. (6.40)

It follows that
Ξ2 ≤ Cn−2(1−θ)δ. (6.41)

Divide [−M,M ] into [2M/∆]+1 subintervals Qi =: [zi−1, zi] with interval length
∆, such that z0 = −M. By (6.38) and (6.41), it follows that

P
{

sup
zr, 0≤r≤[2M/∆]+1

|| 1√
n

n∑
i=1

(|ηi| − 1)ξi(zr)|| ≥ ε
}
≤ C(n−1+2δ + n−2(1−θ)δ)

∆
.

(6.42)
Let gi(s, t)=max{||h−1

i (ν0, s)h′
i(ν0, s)||, ||h−1

i (ν0, t)h′
i(ν0, t)||} and Y i =max1≤j≤i−1

|Yj |. Using 2|y| ≤ 1 + y2, it can be seen that

||ξi(s) − ξi(t)|| ≤ C|s − t|(1 + gi(s, t))(
Y i

n
+

CY
2
i

n2
).

Clearly, (1/
√

n)
∑n

i=1(|ηi| − 1)|s − t|(1 + gi(s, t))Y
2
i /n2 = op(|s − t|). Further,

since gi(s, t) has all finite moments and E|εi|2β < ∞ for any 1 < β < α, we have
E[gi(s, t)Y n/n]2 < ∞. This implies

P
{ 1√

n

∣∣∣∣∣∣ n∑
i=1

(|ηi| − 1)|s − t|(1 + gi(s, t))
Y i

n

∣∣∣∣∣∣ ≥ ε
}

≤ Cε−2n−1|s − t|2
n∑

i=1

E
[
gi(s, t)

Y n

n

]2
= O(|s − t|2). (6.43)
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Thus, by taking ∆ = n−δ,

1√
n
||

n∑
i=1

(|ηi| − 1)(ξi(s) − ξi(t))|| = op(|s − t|). (6.44)

By (6.42), and (6.44), we have I2n(z) = op(1) uniformly for all z ∈ R. Because
n(1 − φ̂) = Op(1), it follows that I2n = op(1). Similarly, we have I3n = op(1).

We now show that I4n = op(1). Let

I4n(z) = − x

2
√

n

n∑
i=1

(|εi +
zYi−1

n
| − |εi|)

[h′
i(ν0, 1 − z/n)]T

h
3/2
i

(ν0, 1 − z

n
).

From |x − y| − |x| = −ysgn(x) + 2
∫ y
0 [I(x ≤ t) − I(x ≤ 0)] dt for x 6= 0 and

sgn(εi) = sgn(ηi), we have

I4n(z) = − xz

2n
√

n

n∑
i=1

Yi−1sgn(ηi)
[h′

i(ν0, 1 − z/n)]T

h
3/2
i (ν0, 1 − z/n)

− x√
n

n∑
i=1

∫ −zYi−1/n

0
(I(εi ≤ t) − I(εi ≤ 0)) dt

[h′
i(ν0, 1 − z/n)]T

h
3/2
i (ν0, 1 − z/n)

=: I4n1(z) + I4n2(z).

By a standard argument (see for example Li and Li (2009)), we have that

I4n2(z) = −xz2f(0)
n2

√
n

n∑
i=1

Y 2
i−1[h

′
i(ν0, 1 − z

n
)]T h

−3/2
i (ν0, 1 − z

n
)h−1/2

i (ν0) + op(1)

= op(1)

holds uniformly for all z ≤ M,M > 0. Similar to the argument for I2n, we have
I4n1(z) = op(1) holds uniformly for all z ≤ M,M > 0. Thus, I4n = op(1).

For I5n, a Taylor expansion has(√
hi(ν0, 1 − z

n
) −

√
hi(ν0)

)
=

1
2
zh

−1/2
i (ν0, 1 − z∗

n
)(

∂hi(ν0, 1 − z∗/n)
∂z

),

where ∂hi(ν0, 1 − z∗/n)/∂z = (∂hi(ν0, 1 − z/n)/∂z)|z = z∗, and z∗ lies between
0 and z. Since hi(ν0, 1 − z/n) =

∑i
j=1(ω0a

j−1
0 + b0a

j−1
0 (εi−j + zYi−j−1/n)2), it

follows that

∂hi(ν0, 1 − z/n)
∂z

= 2b0

i∑
j=1

aj−1
0 (εi−j +

zYi−j−1

n
)
Yi−j−1

n
.



UNIT-ROOT AND INFINITE VARIANCE 1387

This gives that

x

2
√

n

n∑
i=1

(
√

hi(ν0, 1 − z

n
) −

√
hi(ν0))h′

i(ν0, 1 − z

n
)h−3/2

i (ν0, 1 − z

n
)

=
xz

4
√

n

n∑
i=1

h−2
i (ν0)(

∂hi(ν0, 1 − z∗n)
∂z

)h′
i(ν0) + op(1)

=
xz

2
√

n

n∑
i=1

h−2
i (ν0)

( i∑
j=1

b0a
j−1
0 εi−j

Yi−j−1

n

)
h′

i(ν0) + op(1).

uniformly for all z ∈ R. Thus,

I5n =
xn(φ̂ − 1)

2
√

n

n∑
i=1

( i∑
j=1

b0a
j−1
0 εi−j

Yi−j−1

n

)
[h′

i(ν0)]T h−2
i (ν0) + op(1).

Along the lines of Theorem 2.1 of Li and Li (2009), we have

1
2
√

n

n∑
i=1

( i∑
j=1

b0a
j−1
0 εi−j

Yi−j−1

n

)
[h′

i(ν0)]T h−2
i (ν0) =

1
2n

√
n

n∑
i=1

Yi−1F.

This gives

I5n =
xFn(φ̂ − 1)

2n
√

n

n∑
i=1

Yi−1 + op(1)

and completes the proof of (6.26).
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Appendix: Auxiliary Lemmas

Preliminary lemmas needed to prove the main theorems are stated and dis-
cussed in this section. We first note that {εt} of model (1.3) is a stationary
sequence with regularly varying tails.

Lemma A.1. Under conditions H1, H2, and H3, the following assertions hold.
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(a) There exists a unique solution α ∈ (0, k0] such that E(a + bη2
1)

α = 1.

(b) σ2
t has a unique strictly stationary solution and σ2

t satisfies the regularly
varying condition limx→∞ xαP{σ2

t > x} = c0, where

c0 =
E

(
[ω + (a + bη2

t )σ
2
t ]

α − [(a + bη2
t )σ

2
t ]

α
)

αE
(
(a + bη2

t )α log+(a + bη2
t )

) .

Proof. Observe that σ2
t = ω +aσ2

t−1 + bε2
t−1 = ω +(a+ bη2

t−1)σ
2
t−1. By Theorem

4 of Kesten (1973) (see also Goldie (1991)), we conclude (a) and (b) except for
the exact value of c0. However, c0 can be deduced via Theorem 4.1 of Goldie
(1991).

Lemma A.2. Let X,Y be independent random variables with E|X|β < ∞ for
some β > 0 and Y satisfying the regularly varying condition limx→∞ xβP (|Y | >

x) = C for C ≥ 0. Then, limx→∞ xβP (|XY | > x) = CE|X|β .

Proof. This result can be easily proved by virtue of Proposition 3 of Breiman
(1965). We thank a referee for pointing this out.

Lemma A.3. Under the conditions of Theorem 2.1,

P{|ε1| > x} ∼ c0E|η1|2αx−2α as x → ∞.

Proof. By Lemma A.1, we have P (σt > x) = P (σ2
t > x2) ∼ c0x

−2α as x → ∞.

Clearly, E(a+bη2
1)

k0 log+(a+bη2
1) < ∞, a, b ≥ 0 and α ∈ (0, k0] implies E|η1|2α <

∞. By virtue of Lemma A.2, we have the result.

Lemma A.4. Suppose that H1, H2, and H3 are satisfied. Then {εt} is a
β-mixing stationary sequence with βk = E[supB∈σ(εt,t≥k) |P (B|σ(εs, s ≤ 0)) −
P (B)|] = O(ρk) for some 0 < ρ < 1.

Proof. If E log(a+bη2
1) < 0, we have that σ2

t has a stationary solution. Therefore,
{εt} = {σt ηt} is stationary. By Theorem 3 of Francq and Zaköıan (2006), we see
that under conditions H1 and H3, {σt} is a β-mixing process with an exponential
decay. Since ηt are i.i.d. random variables, {εt} satisfies the β-mixing condition
with an exponential decay. That is, βk = E[supB∈σ(εt,t≥k) |P (B|σ(εs, s ≤ 0)) −
P (B)|] = O(ρk) for some ρ < 1. The desired conclusion thus follows.

Let {Xt} be a strictly stationary sequence, {an}, {bn} be sequence of real
numbers such that limn→∞ nP{|X1| > an} = 1 and bn = a2

n. Let S1n =
∑n

i=1 Xi

and S2n =
∑n

i=1 X2
i .

Lemma A.5. Suppose the following hold
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1. The finite-dimensional distributions of {Xk} are regularly varying with index
α > 0.

2. {Xt} satisfies the mixing condition A(n) : there exists a sequence of positive
integers {rn} such that rn ↑ ∞, kn = [n/rn] ↑ ∞ as n → ∞, and

Eexp
{
−

n∑
i=1

f(
Xi

an
)
}
−

(
Eexp

{
−

rn∑
i=1

f(
Xi

an
)|Big}

)kn

→ 0

for any f ∈ Gb, where Gb is the collection of bounded non-negative step func-
tions on [−∞, 0) ∪ (0,∞].

3. lim
k→∞

lim sup
n→∞

P
(

sup
k≤|i|≤rn

|Xi| > any
∣∣∣|X0| > any

)
= 0, y > 0.

Then the following hold.

1. The extremal index γ exists and

γ = lim
n→∞

knP ( sup
1≤i≤rn

|Xi| > an) = lim
k→∞

E
(
|θ0|α − sup1≤j≤k |θj |α

)
+

E|θ0|α
,

where θj = Xj/(max1≤0≤i≤k |Xi|), j = 0, . . . , k, are the (k + 1)-dimensional
random vectors with values in the unit sphere Sk.

2. If γ > 0, the following hold.

(a) If δx is a unit point measure at the point x and Nn =
∑n

i=1 δXi/an
, then

Nn
d−→ N =

∞∑
i=1

∞∑
j=1

δPiQij ,

where
∑∞

i=1 δPi is a Poisson process on R+ with intensity measure v(dy) =
γαy−α−1 dy. Here {

∑∞
j=1 δQij} is a sequence of i.i.d. point processes with

common distribution Q and independent of {Pi} and

Q(·) = P
( rn∑

i=1

δXi/(sup1≤i≤rn
|Xi|) ∈ ·

∣∣∣ sup
1≤i≤rn

|Xi| > an

)
.

(b) For α ∈ (0, 1),(S1n

an
,
S2n

bn

)
d−→

(
ξα, ξα/2

)
=

( ∞∑
i=1

∞∑
j=1

PiQij ,
∞∑
i=1

∞∑
j=1

P 2
i Q2

ij

)
.
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(c) For α ∈ [1, 2), if for all δ > 0,

lim
y→0

lim sup
n→∞

P
{∣∣∣ n∑

i=1

XiI(|Xi| ≤ any) − EXi(|Xi| ≤ any)
∣∣∣ > δan

}
= 0,

then( 1
an

n∑
i=1

(Xi − EXiI(|Xi| ≤ an)),
1
bn

n∑
i=1

(X2
i − EX2

i I(|Xi| ≤ an))
)

d−→ (ξα, ξα/2),

where ξα (resp., ξα/2) is a stable variable given at (b), with index α (resp.,
α/2).

Proof. (a) follows from Theorem 2.7 of Davis and Hsing (1995). Using (a), (b)
and (c) can be shown similar to Theorem 3.1 of Davis and Hsing (1995), see also
Mikosch and Stărică (2000).

Lemma A.6. Let c1 = c0E|η1|2α. Under the conditions of Theorem 2.1,( 1
(c1n)1/(2α)

n∑
i=1

εi,
1

(c1n)1/α

n∑
i=1

ε2
i

)
d−→

(
Z2α, Zα

)
, α ∈ (0, 1).

Proof. For the proof, it is enough to check that the conditions of Lemma A.5
are satisfied by {εt}. By Corollary 2.7 of Basrak, Davis and Mikosch (2002), for
any finite integer k, (σ2

1, . . . , σ
2
k) are regularly varying with index α. It follows

that (σ1, . . . , σk) are regularly varying with index 2α. Then using an induction
method similar to that in the proof of (B) in Corollary 3.5 of Basrak, Davis and
Mikosch (2002), we conclude that (ε1, . . . , εk) = (σ1η1, . . . , σkηk) are regularly
varying with index 2α. Condition 2 of Lemma A.5 (the mixing condition), follows
from Lemma A.4. Let an = (c1n)1/(2α) and At = a + bη2

t−1. Since σ2
t = ω +

(a + bη2
t−1)σ

2
t−1, it follows that σ2

t = ω +
∏t

j=1 Ajσ
2
0 +

∑t
j=1

∏t
m=j+1 ωAm. This

implies that for any 0 < δ < 1 and M > 0,

P
(

sup
k≤|i|≤rn

∣∣∣εi| > any
∣∣∣|ε0| > any

)
= P

(
sup
|i|

ε2
i > a2

ny2||ε0| > any
)

≤ P
(
sup
|i|

i∏
j=1

Ajσ
2
0η

2
i >

a2
ny2

4

∣∣∣|ε0| > any
)

+ P
(

sup
|i|

i∑
j=1

i∏
m=j+1

ωAmη2
i >

a2
ny2

4

)

≤ P
(

sup
|i|

i∏
j=1

Ajσ
2
0η

2
i >

a2
ny2

4
, |η0| ≤ M

∣∣∣|σ0η0| > any
)
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+P (sup
|i|

i∏
j=1

Ajσ
2
0η

2
i >

a2
ny2

4
, |η0| > M

∣∣∣|ε0| > any) + Crn(any)−2δ
∞∑

j=1

(E|A1|δ)j

≤ Cny2α
[ rn∑

i=k

y−2δE(
i∏

j=1

(Ajη
2
i )

δ)E(
σ0

an
)2δI(σ0 >

any

M
)
]

+Cny2α[P (σ0|η0| > any, |η0| > M)] + Crna−2δ
n y−2δ

≤ M2α−2δ
rn∑
i=k

(EAδ
1)

i + CE[|η0|I(|η0| > M)] + Crna−2δ
n y−2δ → 0 ,

by taking rn = o(nδ/α), n → ∞, then letting M → ∞ and finally k → ∞,

where sup|i| is the abbreviation of supk≤|i|≤rn
and the last inequality follows by

Karamata’s Theorem and Lemma A.2.
Along the lines of Theorem 4.1 of Mikosch and Stărică (2000), we have

γ = lim
m→∞

E
(
|η1|2α − maxj=2,...,m+1 |ηj |2α

∏j−1
i=1 (a + bη2

i )
α
)

+

E|η2α
1

> 0.

Since εt is regularly varying with index 2α, by Lemma A.5 it suffices to show
that, as α ∈ [1/2, 1), for all δ > 0, limy→0 lim supn→∞ P{|

∑n
i=1 εiI(|εi| ≤

any) − EεiI(|εi| ≤ any)| > δan} = 0. Let Ft = σ(ηi, i ≤ t). By the sym-
metric assumption on ηt, we have E[

∑n
i=1 εiI(|εi| ≤ any)] = 0 and Xi1 :=

εiI(|εi| ≤ any) = εiI(|εi| ≤ any) − E[εiI(|εi| ≤ any)|Fi−1]. Furthermore, {Xi1}
is a sequence of martingale differences. By Bahr-Esseen’s inequality and Kara-
mata’s Theorem, it follows that as n → ∞ and y → 0, for any α ∈ [1/2, 1),
P{|

∑n
i=1 Xi1| > δan/2} ≤ 4n(δan)−2EX2

11 ≤ Cy2−2α → 0. Lemma A.6 follows.
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