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Abstract: We investigate the simultaneous estimation and inference of the central

mean subspace and central variance subspace to reduce the effective number of

covariates that predict, respectively, the mean and variability of the response vari-

able. We study the estimation, inference and efficiency properties under different

scenarios, and further propose a class of locally efficient estimators when the truly

efficient estimator is not practically available. This partially explains the neces-

sity of some dimension-reduction assumptions that are commonly imposed on the

conditional mean function in estimating the central variance subspace. Compre-

hensive simulation studies and a data analysis are performed to demonstrate the

finite sample performance and efficiency gain of the locally efficient estimators in

comparison with existing estimation procedures.
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1. Introduction

In many statistical studies, variance functions are treated as nuisance pa-

rameters (Carroll (2003)). They are solely used to improve the estimation of the

mean functions. However, there are many other statistical studies where variance

functions are important and are the main interest of these studies. Important

applications of variance functions include, but are not limited to, description of

volatility or risk in a stock market and identification of homoscedastic transfor-

mations in regression. For more classical applications of variance functions, one

can refer to Box and Hill (1974), Box and Meyer (1986), Carroll and Ruppert

(1988), Davidian, Carroll and Smith (1988), Davidian and Carroll (1987). In the

recent study of social inequality (Western and Bloome (2009)), variance func-

tion estimation is the main quantity to characterize the income insecurity. More

recently, it is further recognized that variability can also serve as a predictor of

other outcomes. For example, that large variability of weight presents a hazard

to heart health. Thomas, Stefanski and Davidian (2012) showed that individual
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variability in longitudinal measurements can predict certain health outcomes.

Teschendorff and Widschwendter (2012) argued that, in cancer genomics, differ-

ential variability is important in predicting disease phenotypes. Even when the

mean function is the sole quantity of interest, the variance function is still needed

in inference for the mean (Cai and Wang (2008), Ma and Zhu (2014)). See Lian,

Liang and Carroll (2014) for a review of the importance of variance functions in

statistical models.

Modeling and estimating the variance function is not always easy. The

location-scale family is probably among the most familiar in modeling the vari-

ance function together with the mean (Meyer (1987)). But, since both the mean

and variance functions are parametrically modeled, this approach is restrictive

and only suits the case of low dimensional covariates. In fact, when the covariate

is univariate, the variance function can be estimated nonparametrically without

ever modeling or estimating the mean function (Tong and Wang (2005), Tong,

Ma and Wang (2013) and references therein). In this sense, variance function

estimation is well studied when covariates are of low dimension. However, things

are quite different when the covariate dimension is high, and mean estimation

can no longer be avoided. In this territory, Cai, Levine and Wang (2009) ex-

plored the issue of variance estimation in nonparametric regression, Zhu and Zhu

(2009) proposed the central variance subspace to describe the variance, Lian,

Liang and Carroll (2014) adopted a partially linear structure in modeling the

variance function.

In this work, we adopt the modeling strategy of the central variance subspace

(Zhu and Zhu (2009)). However, our work is different in that we simultaneously

consider modeling the mean structure via central mean subspace (Cook and Li

(2002)). This turns out to be crucial, partly because, as we have pointed out,

mean estimation is unavoidable in the presence of high dimensional covariates

even if our sole interest is in the variance. Specifically, let x ∈ Rp be a p-

dimensional covariate vector and Y ∈ R be the associated univariate response

variable. For large p, we assume that there exist α ∈ Rp×dα , β ∈ Rp×dβ , for some

smallest possible dα and dβ much smaller than p, such that

E(Y |x) = E(Y |αTx), var(ε|x) = var(ε|βTx), (1.1)

where ε
def
= Y −E(Y |x). This assumption essentially reduces the effective number

of covariates from p to dα in estimating mean and to dβ in estimating variance.

That is, it suffices to replace x with αTx and βTx respectively in understanding

how the conditional mean and variance vary with x. If dα, dβ are sufficiently small
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and we can identify α,β or their column subspaces, we can then change the prob-

lem of studying E(Y |x) and var(ε|x) to the problem of studying E(Y |αTx) and

var(ε|βTx), which subsequently facilitates the implementation of nonparametric

regression techniques such as local polynomial regression or spline approxima-

tion. In (1.1), we do not require α = β or dα = dβ, which is different from the

conditional kth moment subspace defined by Yin and Cook (2002). If α = β,

then (1.1) coincides with their second moment subspace, hence we can view (1.1)

as its generalization.

Although our main interest is in estimating the central variance subspace, or

equivalently the parameter β if a unique parameterization is decided a priori, we

study the estimation of the central mean subspace, or α simultaneously due to

the tight connection between the two. Obviously, model (1.1) can be equivalently

written as

Y = m(αTx) + σ(βTx)ε, (1.2)

where m(·) and σ(·) ≥ 0 are unspecified functions, and ε satisfies E(ε|x) = 0,

E(ε2|x) = 1. In contrast with Lian, Liang and Carroll (2014), we do not further

require ε, or equivalently ε/σ(βTx), to be independent of x, hence our model is

more flexible in this aspect. Model (1.1), or equivalently model (1.2), is also much

less stringent than the central subspace model considered in Ma and Zhu (2013b)

in that it only specifies some dimension-reduction forms for the means of Y and

ε2 on x, hence only the first two conditional moments of Y on x. The moments of

orders higher than two can be arbitrary functions of x. In contrast, the central

subspace model assumes the entire distributional function of Y depends on x

only through a few linear combinations of x or, equivalently, all the conditional

moments of Y given x admit dimension-reduction structures. In addition, model

(1.1) allows us to investigate how the covariates affect the mean and the variance

individually, while the central second moment subspace model in Yin and Cook

(2002) and the central subspace model in Ma and Zhu (2013b) require a common

dimension reduction form for both the mean and the variance. For completeness,

we will also study the estimation and inference issues when the mean and the

variance subspaces coincide.

To estimate the variance or the central variance subspace, a common ap-

proach is to obtain residuals and then work with the residual squares and the

covariates. See, for example, Zhu and Zhu (2009), Zhu, Dong and Li (2013)

and Luo, Li and Yin (2014) for such two step estimation procedures. Obtaining

residuals requires consistent estimation of the conditional mean or the central
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mean subspace, where many existing methods apply (Li and Duan (1989), Li

(1992), Ichimura (1993), Cook and Li (2002), Xia et al. (2002), Ma and Zhu

(2014), Luo, Li and Yin (2014)). The two-step procedure of estimating mean

and variance separately may not be the most efficient approach. In fact, for the

model described in (1.1) or (1.2), efficiency or even inference properties of these

procedures have not been studied rigorously in the literature. We conjecture that

one reason for this gap in the literature is the subtlety of space estimation, in

that α and β are not identifiable, only the space spanned by their columns is

identifiable. The other reason is that the separation of the estimation of the two

subspaces breaks the natural bond of the two problems and hides the complete

picture.

Here, we direct our interest to both subspaces. We investigate the simul-

taneous estimation and inference of the central mean and the central variance

subspaces, and further study the estimation efficiency. Our work is different

from Yin and Cook (2002) in that we estimate two generally different spaces,

the central mean subspace and central variance subspace, while they estimate

a single space which simultaneously satisfies the central mean and variance re-

quirement. Our work is also different from a recent work by Luo, Li and Yin

(2014), in that they estimate each subspace separately without taking into ac-

count the dimension reduction property of the other component of the model.

We first parameterize the central mean and the central variance subspaces so that

estimating these two subspaces is equivalent to estimating a vector of free param-

eters. Such a parameterization allows us to derive the semiparametric efficient

score for simultaneously estimating the central mean and the central variance

subspaces, to understand the efficiency properties in this problem, and to con-

struct a class of locally efficient estimators that perform satisfactorily in practice.

We further consider a special case in which the central mean subspace and the

central variance subspace coincide, and perform the parallel studies. Estimation

and inference results of the two situations turn out to be very different.

2. The Efficient and Locally Efficient Estimators

2.1. Some preliminaries

In this section we investigate efficient and locally efficient estimators of the

central mean and the central variance subspaces. Although in the classical semi-

parametric analysis, approaches and tools have been developed (Bickel et al.

(1993)), these tools are applicable only when the quantities under investigation
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are parameters, not spaces, as we encounter here. The lack of inference tools

for space estimation leads us to convert the problem of space estimation and

inference to that of the parameter estimation and inference. As long as we can

characterize each space with a unique set of parameters, then analysis of the

parameters is equivalent to the analysis of the spaces. To simultaneously study

the central mean and central variance subspaces, we are obliged to parameterize

the two spaces simultaneously.

We now describe the parameterization we propose. For convenience, we

assume dβ and dα are fixed numbers, and the issue of deciding the suitable

dβ and dα will be discussed in Section 6. Simultaneously parameterizing two

spaces is much more complex than parameterizing a single space, the latter was

studied in Ma and Zhu (2013a). We first assume the upper block of β is the dβ-

dimensional identity matrix Idβ×dβ , while its lower block is an arbitrary matrix

of size (p− dβ)× dβ, denoted B. Thus,

βp×dβ =

(
Idβ×dβ
B(p−dβ)×dβ

)
.

This parameterization implies that we know dβ useful covariates and arrange

them as the beginning dβ components of x. This is not a strong implication

since usually each covariate is included because it is useful. When dβ = 1, the

parameterization reduces to the familiar parameterization in single index mod-

els where the first parameter is assumed to be 1 (hence the first component is

assumed to be useful). Unfortunately, these dβ components in the conditional

variance function may not coincide with the dα useful components for the con-

ditional mean function part, hence it does not necessarily lead to a convenient

parameterization of α. We further identify dα variables that are known to be

useful for the conditional mean component. Assume the intersection of the dβ
variable set and dα variable set contains d0 variables. We arrange these d0 vari-

ables as the first d0 components in x. We then arrange the remaining dβ − d0

variables from the conditional variance set as the next dβ − d0 components in x

and arrange the remaining dα−d0 variables from the conditional mean set as the

last dα − d0 components in x. There are p − dβ − dα + d0 variables left and we

arrange them arbitrarily as the remaining middle components of x. This allows

us to use the original parameterization of β as we described, and at the same

time allows us to require α to satisfy the following requirements. The upper

d0 × dα block consists of a d0-dimensional identity matrix Id0×d0 on the left and

a d0 × (dα − d0) matrix of zeros on the right. The middle (p − dα) × dα block,
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denoted A, is an arbitrary matrix. The last (dα − d0) × dα block consists of a

(dα − d0) × d0 matrix of zeros on the left and a (dα − d0)-dimensional identity

matrix I(dα−d0)×(dα−d0) on the right. Thus, α is of the form

αp×dα =

 Id0×d0 0d0×(dα−d0)

A(p−dα)×dα
0(dα−d0)×d0 I(dα−d0)×(dα−d0)

 ,

where A is an arbitrary (p − dα) × dα matrix. Under this parameterization, we

estimate the central mean and the central variance subspaces via estimating A

and B. The parameterization via A and B is a one-to-one mapping to these

two subspaces. Recall that to insure the identifiability of a single-index model,

one convention is to fix the first entry of the index parameter to be exactly one

(Ichimura (1993)). Our proposal here is a generalization of the conventional

parameterization used in single-index models. For notational convenience, we

write vecm(α) as the concatenation of the columns of A and vecl(β) as the

concatenation of the columns of B in our subsequent exposition.

Example 1. We consider model (1.2) with dα = 2 and dβ = 1. Suppose we know

in advance that the last two components of x contribute to the mean part and

the first component of x contributes to the variance part. We then parameterize

β and α as follows:

βp×1 =

(
1

B(p−1)×1

)
, and αp×2 =

(
A(p−2)×2

I2×2

)
.

If we also know that the first component of x contributes to the mean part as

well, then β and α are parameterized as follows:

βp×1 =

(
1

B(p−1)×1

)
, and αp×2 =

1 0

A(p−2)×2

0 1

 .

We point out that the familiar parameterization where both β and α are required

to have orthonormal columns does not yield identification of β and α, hence is

not suitable for further estimation and inference analysis.

2.2. The efficient score function

From model (1.2), it is easy to see that the joint probability density of (x, Y )

is fx,Y (x, Y ) = η1(x)η2(ε,x)/σ(βTx) where ε = {Y −m(αTx)}/σ(βTx). Here,

η1(x) ≥ 0 is the marginal density function of x that satisfies
∫
η1(x)dµ(x) = 1,

η2(ε,x) ≥ 0 is the conditional density of Y on x and satisfies
∫
η2(ε,x)dµ(ε) = 1,
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εη2(ε,x)dµ(ε) = 0,

∫
ε2η2(ε,x)dµ(ε) = 1. To estimate α,β, we view vecm(α)

and vecl(β) as the parameters of interest, with total number of parameters

dt = (p−dα)dα+ (p−dβ)dβ, and η1, η2,m, σ as the infinite dimensional nuisance

parameters. From the geometrical approach (Bickel et al. (1993) and Tsiatis

(2006)), we can obtain the efficient score function. It is unfortunately very com-

plex, hence we first introduce some notations to simplify its expression. Let ⊗
represent Kronecker product, and take

µ3 ≡ µ3(x) = E(ε3|x),

c ≡ c(x) = {E(ε4|x)− E(ε3|x)2 − 1}−1/2,

u ≡ u(ε,x) = c(x)
{
ε2 − 1− E(ε3|x)ε

}
,

k1 ≡ k1(αTx,βTx) = σ−1E{c2(x)µ3(x)|αTx,βTx},
k2 ≡ k2(βTx) = E{c2(x)|βTx},
k3 ≡ k3(αTx) = E[{1 + c2(x)µ2

3(x)}σ−2|αTx],

g1 ≡ g1(βTx) = σ−1E
[
c2(x)µ3(x)vecm

{
x⊗m′(αTx)T

}
|βTx

]
,

g2 ≡ g2(αTx) = E
[
σ−2

{
1 + c2(x)µ2

3(x)
}

vecm
{
x⊗m′(αTx)T

}
|αTx

]
,

f1 ≡ f1(αTx) = 2E
{
σ−2c2(x)µ3(x)vecl

(
x⊗ σ′T

)
|αTx

}
,

f2 ≡ f2(βTx) = 2σ−1E
{
c2(x)vecl

(
x⊗ σ′T

)
|βTx

}
.

(2.1)

The display in the curly brackets in the definition of c ≡ c(x) is always positive.

It is used to normalize u ≡ u(ε,x) so that u has unit variance. Let a1(αTx),

a2(αTx), respectively solve the equations

k3a1 − E{k1k
−1
2 E(k1a1|βTx)|αTx} = g2 − E(k1k

−1
2 g1|αTx),

k3a2 − E{k1k
−1
2 E(k1a2|βTx)|αTx} = E(k1k

−1
2 f2|αTx)− f1,

(2.2)

and define

b1(βTx) = k−1
2 {E(k1a1|βTx)− g1},

b2(βTx) = k−1
2 {f2 + E(k1a2|βTx)}.

Finally, let a = (aT
1 ,a

T
2 )T and b = (bT

1 ,b
T
2 )T. Then the efficient score for simul-

taneously estimating the central mean and central variance subspaces, derived in

the Supplement, is

Seff(x, Y ) =

{ε− uc(x)µ3(x)} vecm

{
x⊗ m′(αTx)T

σ(βTx)

}
2uc(x)vecl

{
x⊗ σ′(βTx)T

σ(βTx)

}
−ucb−(ε− ucµ3)σ−1a.
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2.3. Locally efficient estimation

The efficient score suffers from some practical difficulties. First of all, (2.2)

contains two integral equations that typically have to be solved numerically.

While this is feasible and it has already been done in the literature (see, for

example, Tsiatis and Ma (2004), Ma and Carroll (2006)), it slows down the

implementation. A more serious issue is that the efficient score contains the

quantities µ3(x) ≡ E(ε3|x) and µ4(x) ≡ E(ε4|x). This is an obstacle because

estimating these quantities is subject to the curse of dimensionality, which is

the original reason that motivated the literature of dimension reduction. We

emphasize that the knowledge of µ3(x) and µ4(x) in constructing the efficient

estimator is determined by the structure of the model. This is a fact that will

not change if the efficient estimator were derived from any different approach.

The difficulty of estimating µ3(x) and µ4(x) is also inherent to the problem as

a direct consequence of curse of dimensionality. Thus, the difficulty in obtaining

an efficient estimator in this problem is universal.

One could brave the estimation under the curse of dimensionality to achieve

efficiency, however, a practical compromise is to seek local efficiency, where we

replace quantities such as µ3(x), µ4(x), and possibly some other quantities, by

known functions or models that do not necessarily reflect the truth. To this end,

a popular choice is to set µ3(x) = 0 and set µ4(x) to be some known fourth mo-

ment function such as µ4(x) = 3 if ε is treated as an independent normal random

variable.This treatment is not technically necessary and does not have to reflect

the true nature of ε, but it substantially eases the computation in the estimation

of the central mean and central variance subspaces. Any choices of µ3(x), µ4(x)

calculated from some other working models for the error distribution are equally

valid. We choose to work out the details under the normal working model only. If

one suspects a different model might be more appropriate, then one can choose a

suitable model in each problem. Under the choice of the current vanishing µ3(x)

and prespecified µ4(x), c(x) is a fully specified function. Further simplification

yields u = c(ε2 − 1), k1 = 0, k2 = E(c2|βTx), k3 = E(σ−2|αTx), g1 = 0, g2 =

vecm{E(xσ−2|αTx)⊗m′T}, f1 = 0, f2 = 2σ−1vecl{E(xc2|βTx)⊗σ′T}. From the

first equation of (2.2), we obtain a1 = E(σ−2|αTx)−1vecm{E(xσ−2|αTx)⊗m′T},
and b1 = 0. From the second equation of (2.2), we obtain a2 = 0 and b2 =

2σ−1vecl{E(xc2|βTx)/E(c2|βTx) ⊗ σ′T}. Hence we have an explicit expression

of the locally efficient score as
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S?eff(x, Y ) (2.3)

=


{
Y −m(αTx)

}
vecm

[
σ−2

{
x− E(xσ−2|αTx)

E(σ−2|αTx)

}
⊗m′T

]
2σ−1(ε2 − 1)vecl

[
c2

{
x− E(xc2|βTx)

E(c2|βTx)

}
⊗ σ′T

]
 .

The first and second components in (2.3) are, respectively, the efficient score

of the central mean model without variance structure and the efficient score of

the central variance model without mean structure (Ma and Zhu (2014), Luo,

Li and Yin (2014)). Intuitively, this is because µ3 = 0 implies the uncorrela-

tion between ε and ε2 conditional on x, hence the two moment models do not

affect one another. There are many interesting aspects of (2.3). First of all, in

using this locally efficient score to construct estimating equations, we need to esti-

mate the conditional expectations E(·|βTx), E(·|αTx) and m(·),m′(·), σ(·), σ′(·).
Fortunately, all of these are low dimensional problems and can be handled via

traditional nonparametric methods with moderate sample sizes. For example,

E(x|αTx), E(x|βTx) can be replaced by

Ê(x|αTx) =

∑n
i=1 xiKh0

(αTxi −αTx)∑n
i=1Kh0

(αTxi −αTx)
,

Ê(x|βTx) =

∑n
i=1 xiKh1

(βTxi − βTx)∑n
i=1Kh1

(βTxi − βTx)
,

where h0 and h1 are bandwidths, Kh0
(·)=K(·/h0)/h0

dα andKh1
(·)=K(·/h1)/h1

dβ ,

and K is the multiplication of dα or dβ univariate kernel functions, denoted by

K. Similarly, we can use[
m̂
(
αTx

)
, {m̂

(
αTx

)
}′
]

def
= arg min

a,b

n∑
i=1

{
Yi − a− bT

(
αTxi −αTx

)}2
Kh2

(
αTxi −αTx

)
,[

σ̂2
(
βTx

)
, {σ̂2

(
βTx

)
}′
]

def
= arg min

a,b

n∑
i=1

{
ε̂2
i − a− bT

(
βTxi − βTx

)}2
Kh3

(
βTxi − βTx

)
to replace m(αTx), m′(αTx) and σ2(βTx), {σ2(βTx)}′ respectively, where ε̂i =

Yi − m̂(αTxi). As a known function of x, c may or may not represent the truth.

The resulting estimating equation is always consistent due to how c appears in

S?eff . One phenomenon that is quite unique here is that, even when c(x) happens
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to be the truth, S?eff may still be inefficient. This is because the true efficiency

requires the correct specification of both µ3 and µ4, instead of simply a true c as

a combination of them. Here σ in the first equation of (2.3) plays the same role

as c in the second equation. Its mis-specification in the first equation does not

affect the consistency. Hence, if desired, we can replace σ using a known form

for simplicity. For example, we can let σ = 1 in the first equation and c = 1 in

the second equation to obtain

S?eff(x, Y ) =

{Y −m(αTx)
}

vecm
[{

x− E(x|αTx)
}
⊗m′T

]
2σ−1(ε2 − 1)vecl

[{
x− E(x|βTx)

}
⊗ σ′T

]  .

Of course, further simplification is still possible. For example, in the first equa-

tion, we can specify a form of m,m′ and estimate E(x|αTx) only, or specify

E(x|αTx),m′ and estimate m only. Similarly, in the second equation, we can

choose to specify σ, σ′ and estimate E(x|βTx) only or specify E(x|βTx), σ′ and

estimate σ only.

Iteratively solving for the parameters in α and β, denoted as θ, from the

estimating equation
n∑
i=1

S?eff(xi, Yi) = 0, (2.4)

through Newton-Raphson method similarly as done in Ma and Zhu (2013b),

where S?eff is given via (2.3) with the unknown functions replaced by their esti-

mates, provides a locally efficient estimator.

Theorem 1. If θ̂ solves (2.4), then under the regularity conditions stated in the

Supplement,

√
n
(
θ̂ − θ

)
−→ N

{
0, E

(
−
∂S?eff

∂θT

)−1

E
(
S?effS?Teff

)
E

(
−
∂S?Teff

∂θ

)−1
}
,

in distribution when n→∞.

If we specify a local model η?2(ε,x) with the first four moments, then the

resulting E(−∂S?eff /∂θT)−1S?eff is a valid influence function, which implies that

E
(
−∂S?eff/∂θ

T
)

is always invertible. From Theorem 1, taking into consideration

that the efficient estimation variance of θ̂ is {E(SeffST
eff)}−1, it is clear that

because of the difficulty in obtaining the true µ3(x), µ4(x), our local estimator

has a potential efficiency loss quantified by

n{var(θ̂)− var(θ̂eff)} = var

{
E

(
−
∂S?eff

∂θT

)−1

S?eff − E(SeffST
eff)−1Seff

}
.
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We have been estimating α and β and treating them as equally important.

If only the index α of the mean component or β of the variance component is

of interest, we can easily extract the sole information about α or β by retaining

the first or second component of θ̂ as α̂ or β̂, and extracting the upper-left

(p−dα)dα× (p−dα)dα or lower-right (p−dβ)dβ× (p−dβ)dβ matrix from var(θ̂)

as the corresponding asymptotic variance matrix. Usually, a simplification can

be obtained through noting that E(∂S?eff,α/∂β
T) = 0 and E(∂S?eff,β/∂α

T) = 0.

Here, we use S?eff,α and S?eff,β to denote, respectively, the first (p− dα)dα and the

last (p− dβ)dβ components of S?eff . Thus, we have

var(β̂) = n−1E

(
−
∂S?eff,β

∂βT

)−1

E
(
S?eff,βS

?T
eff,β

)
E

(
−
∂S?Teff,β

∂β

)−1

asymptotically, where all the functions are evaluated at the truth. One obser-

vation then is that the estimation variance of α̂ has no effect on the estimation

variance of β̂ asymptotically. Hence, in terms of the quality of the β estimation

measured by its asymptotic variance, plugging in any consistent estimator α̂ to

the estimating equation
∑n

i=1 S?eff,β(xi, Yi) = 0 has the same consequence.

3. Numerical Studies

3.1. Simulation

We illustrate our proposed methodology through a simulated example. We

fixed n = 800 and p = 6. We generated X1, X2, X5 and X6 independently from

the standard normal distribution, and X3 and X4 from the Bernoulli distribution

with success probability 0.5. Given x = (X1, . . . , X6)T, we generated Y from a

normal distribution with mean function m(αTx) = (αT
1 x+ 1)2 + (αT

2 x+ 1)2 and

standard deviation σ(βTx) = 0.5/{0.1 + (βT
1 x)2 + (βT

2 x)2}. Here α = (α1,α2),

β = (β1,β2), α1 = (1, 0,−0.2,−0.2, 0.2, 0.2)T, α2 = (0, 1,−0.5, 0.2,−0.2, 0.2)T,

β1 = (1, 0,−0.5,−0.2,−0.5,−0.2)T and β2 = (0, 1,−0.2,−0.5,−0.2,−0.5)T. Thus,

A = (A1,A2), B = (B1,B2), A1 = (−0.2,−0.2, 0.2, 0.2)T, A2 = (−0.5, 0.2,−0.2,

0.2)T, B1 = (−0.5,−0.2,−0.5,−0.2)T and B2 = (−0.2,−0.5,−0.2,−0.5)T.

If ε = Y −m(αTx), we solved the estimating equation (2.4), where

S?eff(x, Y )

=

{Y −m(αTx)}vecm
[{

x− E(x|αTx)
}
⊗ {m(αTx)}′T

]
{σ2(βTx)}−2{ε2 − σ2(βTx)}vecl

[{
x− E(x|βTx)

}
⊗ {σ2(βTx)}′T

] ,

to simultaneously estimate both α and β. For comparison purpose, we imple-
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Table 1. The bias (“bias”) and the sample standard errors (“std”) for rMAVE, SEE,
ECS, C2MS, and our estimating equations estimators (EEE), and the inference results,

respectively the average of the estimated standard deviation (“ŝtd”) and the coverage
of the estimated 95% confidence interval (“cp”), of our proposals. All numbers reported
below are multiplied by 100.

α1,3 α1,4 α1,5 α1,6 α2,3 α2,4 α2,5 α2,6

true −0.20 −0.20 0.20 0.20 −0.50 0.20 −0.20 0.20
rMAVE bias −0.07 0.17 0.07 −0.00 0.18 −0.04 −0.10 0.06

std 3.04 2.97 1.40 1.45 3.16 2.97 1.50 1.29
SEE bias 0.13 0.16 0.02 −0.19 0.28 −0.31 0.11 −0.05

std 3.65 2.91 2.25 4.87 9.71 4.27 1.90 2.95
ECS bias 0.26 0.17 −0.23 −0.01 0.05 −0.36 −0.32 0.62

std 2.69 2.16 2.65 3.19 2.89 2.51 2.95 3.39
C2MS bias 1.75 2.74 −3.78 −1.46 11.03 −2.73 2.74 2.34

std 19.67 19.61 27.07 29.27 20.20 20.63 28.09 29.75
EEE bias 0.03 0.31 −0.06 −0.09 0.20 −0.09 0.09 0.07

std 2.32 2.22 1.15 1.00 2.44 2.18 1.13 0.99

ŝtd 2.23 2.14 1.03 0.93 2.32 2.11 1.00 0.93
cp 93.00 94.50 94.30 94.10 94.00 95.00 94.10 93.90

β1,3 β1,4 β1,5 β1,6 β2,3 β2,4 β2,5 β2,6
true −0.50 −0.20 −0.50 −0.20 −0.20 −0.50 −0.20 −0.50

rMAVE bias 1.94 −1.12 1.80 −1.09 −1.20 0.98 −0.85 1.75
std 38.46 34.33 20.85 20.24 42.64 33.69 19.62 21.03

SEE bias 0.53 −0.39 0.27 −0.09 0.69 0.22 0.07 0.36
std 3.49 3.36 3.11 3.05 5.87 5.90 2.83 2.47

ECS bias 0.80 0.11 −0.67 0.22 −0.27 1.16 1.00 −1.49
std 3.11 2.71 3.34 4.00 4.97 4.19 5.11 6.04

C2MS bias 14.55 1.19 29.54 6.47 −0.08 17.56 −6.82 29.86
std 27.34 24.20 39.07 37.66 29.85 30.20 38.48 43.22

EEE bias 0.04 −0.11 0.14 −0.31 −0.35 0.21 0.07 0.11
std 8.76 8.43 4.89 5.23 8.82 8.49 5.01 4.85

ŝtd 11.39 11.34 5.61 5.74 11.43 11.47 5.66 5.66
cp 97.10 97.20 94.80 94.90 97.50 97.90 95.10 94.90

mented the refined minimum average variance estimation (rMAVE, Xia et al.

(2002) with Y and the residual squares ε2 as response variables, respectively, to

estimate α and β. These rMAVE estimators are used as initial values in solving

(2.4) throughout our numerical studies.

We summarized the simulation results from 1,000 data sets in Table 1. In

estimating α, our proposal has slightly better performance than rMAVE in that

it has slightly smaller standard deviations. In estimating β, our proposal is an

obvious winner since both the estimation biases and the Monte Carlo standard
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deviations are significantly smaller than those from rMAVE. We also compared

with the efficient central space (ECS) method of Ma and Zhu (2013b) and semi-

parametric estimating equation (SEE) based estimator of Luo, Li and Yin (2014).

The performances of SEE and ECS appear similar. We found that in estimating

α, our proposal has slightly better performance with smaller standard deviations,

while in estimating β, our estimating equation estimators yield smaller biases but

larger standard deviations. We further compared with the conditional 2nd mo-

ment subspace (C2MS) estimator of Yin and Cook (2002), and found that our

results are significantly better.

In Table 1, we report the averages of the estimated standard deviations

(“ŝtd”) and the empirical coverage probabilities (“cp”) at the nominal level 95%.

The standard deviations are estimated using the asymptotic results in Theorem

1. The averages of the estimated standard deviations approximate the corre-

sponding Monte Carlo standard deviations (“std”) well, and the empirical cov-

erage probabilities are fairly close to the nominal level 95%, indicating that the

inference results of our proposal are reasonably precise.

3.2. Extra simulation

Following the request of a referee, we performed additional simulation stud-

ies. Specifically, we kept the mean and variance model of the simulation in Section

3.1, and generated ε from the standard t with (xTx+ 4) degrees of freedom. The

true values of µ3 and µ4 are 0 and 6/(xTx) + 3, respectively, in this case. We

still implemented (2.3) to estimate α and β. From (2.3), the change of µ4 only

affects the efficient score of the central variance space model. It does not affect

the efficient score of the central mean space model. The simulation results of

the locally efficient estimators and the oracle estimators are given in Table S1 in

the supplement. The two efficient estimators yield identical results in estimating

α, but different in estimating β. The oracle estimator appears to have smaller

biases than the locally efficient estimator, while it has slightly larger variances.

3.3. Analysis of bank data

We further demonstrate the performance of our estimating equation based

estimators through a gender discrimination data set. The Fifth National Bank

of Springfield (Albright, Winston and Zappe (1999)) faced a lawsuit for paying

substantially lower salaries to its female employees. To investigate whether this is

the fact, the bank collected annual salaries (Y ) of 207 employees, and some other

personal characteristics such as an employee’s current job level (X1), working
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Table 2. Analysis of the bank data.

rMAVE EEE from (2.4) EEE from (4.2)

α̂ β̂ α̂ ŝtd(α̂) β̂ ŝtd(β̂) β̂ ŝtd(β̂)
X2 0.324 0.142 0.310 0.058 0.320 0.114 0.205 0.037
X3 −0.083 0.164 −0.075 0.065 −0.085 0.187 −0.013 0.023
X4 0.070 0.038 0.074 0.045 0.066 0.074 0.073 0.009
X5 0.096 −1.676 0.086 0.077 0.100 0.124 −0.011 0.050
X6 0.689 −0.967 0.689 0.113 0.689 0.219 0.604 0.042

experience at current bank (X2), age (X3), prior experience at other banks (X4),

gender (X5) and a binary variable indicating whether a job is computer related

(X6).

Ma and Zhu (2012) demonstrated through bootstrap that the dependence of

Y on the covariates in this data set can be captured by a one-dimensional model.

We analyze this data set using (1.2) with dα = dβ = 1. We expect that an

employee’s annual salary is positively correlated with his/her current job level,

thus the coefficient of X1 must be nonzero. We fixed the coefficient of X1 at 1 for

identifiability, then applied rMAVE to estimate α in the mean function. Treating

the squared residual as response, we further applied rMAVE to estimate β in the

variance function. The results are in the first block of Table 2.

We also applied the estimating equations (2.4) to solve for both α and β.

The resulting estimates and their associated standard deviations are in the second

block of Table 2. Here α̂ and β̂ show no evidence of gender effect. In addition,

α̂ and β̂ are similar. This motivates us to consider

H0 : α = β.

To formally test this hypothesis, we write θ = (αT,βT)T and θ̂ = (α̂T, β̂T)T. In

addition, we denote var(θ̂) the asymptotic variance-covariance matrix of θ̂. Let

C be a 5× 10 matrix, with the identity matrix I5×5 on the left and the negative

identity matrix −I5×5 on the right. Then the above null hypothesis is equivalent

to H0 : Cθ = 0. Under H0, the test statistic

T ≡ θ̂TCT
{
Cv̂ar(θ̂)CT

}−1
Cθ̂ −→ χ2

5

in distribution, where χ2
5 denotes a χ2 distribution with 5 degrees of freedom,

and v̂ar(θ̂) is an estimate of var(θ̂), obtained using the results in Theorem 1.

Using the bank data, we obtained T = 0.193 and the p-value of 0.999. Therefore,

we cannot reject the null hypothesis, indicating that the central mean and the

central variance subspaces coincide in this data set.
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4. Analysis When Central Mean and Central Variance Subspaces Co-

incide

The numerical analysis on the bank data suggests that, in practice, it is not

unreasonable for the mean and variance to rely on the same set of indexes. This

can be described as model (1.2) with the additional assumption that α = β

contains (p−dβ)dβ parameters of interest, and corresponds to the central second

moment subspace defined in Yin and Cook (2002). Then

Y = m(βTx) + σ(βTx)ε. (4.1)

Accordingly, model (1.1) can be simplified to var(Y |x) = var(Y |βTx). This

simple additional information, however, drastically changes the model and its

subsequent estimation and inference results. The efficient estimation variance

decreases as a result of the additional model structure.

Using similar techniques as those used in the general case, in the Supplement,

we derive the efficient score to be

Seff(x, Y ) = ε

{
x⊗m′T

σ
(1+µ2

3c
2)− 2c2µ3vecl(x⊗ σ′T)

σ
+ µ3c

2a− (1+µ2
3c

2)b

}

+ (ε2−1)

{
2c2vecl(x⊗ σ′T)

σ
− c

2µ3vecl(x⊗m′T)

σ
− c2a + c2µ3b

}
.

Here, µ3, c are defined as before in (2.1), and a,b are explicitly given as

a(βTx) = vecl

{
2k2g2 ⊗ σ′T + k3g2 ⊗m′T − k2g3 ⊗m′T − 2k3g1 ⊗ σ′T

σ(k2
2 − k1k3)

}
,

b(βTx) = vecl

{
2k1g2 ⊗ σ′T + k2g2 ⊗m′T − k1g3 ⊗m′T − 2k2g1 ⊗ σ′T

σ(k2
2 − k1k3)

}
,

where now

k1 ≡ k1(βTx) = E(c2|βTx),

k2 ≡ k2(βTx) = E(c2µ3|βTx),

k3 ≡ k3(βTx) = E(1 + c2µ2
3|βTx),

g1 ≡ g1(βTx) = E(c2x|βTx),

g2 ≡ g2(βTx) = E(c2µ3x|βTx),

g3 ≡ g3(βTx) = E(x + c2µ2
3x|βTx).

Although the form of S
eff

is explicit and no longer involves solving integral

equations, it remains complex and involves estimating µ3(x) and µ4(x), cursed by

the possibly high dimensionality p. We compromise by looking for local efficiency.
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Here we only need to make assumptions on the same µ3 and µ4. If we adopt the

strategy for the general case where α is not necessarily the same as β, by setting

µ3 = 0 and pre-specifying c(x) as a known function of x, we have u = c(ε2 − 1),

k1 = E(c2|βTx), k2 = 0, k3 = 1, g1 = E(c2x|βTx), g2 = 0, g3 = E(x|βTx),

a = vecl{2E(c2x|βTx)⊗σ′T}E(c2|βTx)−1/σ, =
¯

vecl{E(x|βTx)⊗m′T}/σ. This

yields a much simpler form of the locally efficient score

S∗eff(x, Y ) =
2(ε2 − 1)

σ
vecl

[{
c2x− c2E(c2x|βTx)

E(c2|βTx)

}
⊗ σ′T

]
+
ε

σ
vecl

[{
x− E(x|βTx)

}
⊗m′T

]
.

This expression is practically useful for generating estimating equations. To be

precise, we can estimate β through solving
n∑
i=1

S∗eff(xi, Yi) = 0, (4.2)

where S∗eff is given above. The resulting estimator is always consistent, and is

efficient if indeed µ3 = 0 and a correct form of c(x) is used.

Theorem 2. If β̂ solves (4.2), then under the regularity conditions in the Sup-

plement,

√
n(β̂ − β)→ N

0, E

(
−
∂S∗eff

∂βT

)−1

E
(
S∗effS∗eff

T
)
E

(
−
∂S∗eff

T

∂β

)−1


in distribution when n→∞.

5. Further Numerical Studies

5.1. Additional simulation

When the central mean and the central variance subspaces coincide, we con-

sider solving (4.2), where

S∗eff(x, Y ) =
{ε2 − σ2(βTx)}
{σ2(βTx)}2

vecl
[{

x− E(x|βTx)
}
⊗ (σ2)′

T
]

+
ε

σ2(βTx)
vecl

[{
x− E(x|βTx)

}
⊗m′T

]
,

and ε = Y − m(βTx), which is indeed σ(βTx)ε as defined in (4.1). We also

compare this estimating equations approach to rMAVE based on Y and ε2, re-

spectively.

We set n = 800 and p = 6, and generated the covariates independently from
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Table 3. The bias (“bias”) and the sample standard errors (“std”) for rMAVE, SEE,
ECS, C2MS and our estimating equations estimators (EEE), and the inference results,

respectively, the average of the estimated standard deviation (“ŝtd”) and the coverage
of the estimated 95% confidence interval (“cp”), of our proposals. All numbers reported
below are multiplied by 100.

β1,3 β1,4 β1,5 β1,6 β2,3 β2,4 β2,5 β2,6
true −0.20 −0.20 0.20 0.20 −0.50 0.20 −0.20 0.20

rMAVE bias −0.03 0.16 −0.08 −0.14 −0.02 0.06 −0.00 −0.05
std 2.41 2.21 2.19 2.30 2.70 2.61 2.46 2.53

SEE bias 0.01 0.07 −0.11 −0.16 0.06 0.02 0.06 0.12
std 1.04 1.72 2.46 5.10 2.33 1.62 2.17 1.18

ECS bias −0.07 −0.24 0.14 0.13 −0.40 0.22 −0.17 0.15
std 1.28 1.08 1.13 1.17 1.30 1.15 1.22 1.25

C2MS bias −3.65 8.38 −8.68 0.03 3.78 −9.04 8.90 −0.13
std 71.36 58.99 63.47 59.44 72.80 57.31 65.87 61.63

EEE bias 0.09 −0.25 0.09 0.02 −0.36 0.18 −0.13 0.17
std 1.68 1.50 1.57 1.44 1.81 1.57 1.56 1.58

ŝtd 1.79 1.61 1.50 1.62 2.03 1.73 1.71 1.72
cp 96.10 96.60 94.20 95.50 96.90 95.30 96.10 96.60

a standard normal, and generated Y from the normal population with mean

m(βTx) = (xTβ1 + 1)(xTβ2 + 1) and standard deviation σ(βTx) = 0.5/{0.1 +

(xTβ1)2+(xTβ2)2}. Here β = (β1,β2), β1 = (1, 0,−0.2,−0.2, 0.2, 0.2)T and β2 =

(0, 1,−0.5, 0.2,−0.2, 0.2)T. Thus, B = (B1,B2), B1 = (−0.2,−0.2, 0.2, 0.2)T and

B2 = (−0.5, 0.2,−0.2, 0.2)T.

The simulations are repeated 1,000 times, and the results are summarized in

Table 3. There the estimators obtained by solving (4.2) have smaller standard

deviations than the rMAVE estimators. This is not surprising because the esti-

mating equation estimator is actually efficient in this case. In comparison with

ECS and SEE, our results are slightly worse than those of ECS, understandable

since ECS imposes stronger assumption on the whole distribution. The perfor-

mance of SEE is largely similar to that of ECS, although with worse results for

several parameters. In comparison with C2MS, our estiimator performs much

better. The estimated standard deviations of our method are close to the Monte

Carlo standard deviations, and the empirical coverage probabilities are close to

the nominal level 95%.

We further considered estimating β by pretending not to know that the cen-

tral mean and the central variance subspaces are identical. Thus we only assume

dα = dβ = 1 in model (1.2) and implement (2.4) to estimate α and β. The re-
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Table 4. The bias (“bias”) and the sample standard errors (“std”) for rMAVE , SEE,
ECS, C2MS and the estimators obtained from solving (6), and the inference results,

respectively, the average of the estimated standard deviation (“ŝtd”) and the coverage
of the estimated 95% confidence interval (“cp”), of our proposals. All numbers reported
below are multiplied by 100.

β1,3 β1,4 β1,5 β1,6 β2,3 β2,4 β2,5 β2,6
true −0.20 −0.20 0.20 0.20 −0.50 0.20 −0.20 0.20

rMAVE bias −0.01 0.17 −0.08 −0.16 −0.02 0.10 0.01 −0.06
std 2.38 2.20 2.20 2.32 2.71 2.64 2.47 2.57

SEE bias 0.01 0.07 −0.11 −0.16 0.06 0.02 0.06 0.12
std 1.04 1.72 2.46 5.10 2.33 1.62 2.17 1.18

ECS bias −0.07 −0.24 0.14 0.13 −0.40 0.22 −0.17 0.15
std 1.28 1.08 1.13 1.17 1.30 1.15 1.22 1.25

C2MS bias −1.00 3.22 −4.92 −0.40 1.29 −3.38 5.01 0.44
std 14.94 16.07 28.60 24.97 14.99 16.34 29.02 26.08

EEE bias 0.04 0.13 −0.08 −0.05 −0.01 0.08 −0.08 −0.00
std 1.68 1.56 1.64 1.73 1.97 1.85 1.73 1.82

ŝtd 1.52 1.47 1.44 1.46 1.82 1.68 1.66 1.68
cp 93.50 94.20 93.60 92.80 92.80 93.20 93.50 92.80

β1,3 β1,4 β1,5 β1,6 β2,3 β2,4 β2,5 β2,6
true −0.20 −0.20 0.20 0.20 −0.50 0.20 −0.20 0.20

rMAVE bias −0.01 0.63 −0.90 −0.51 1.07 −1.21 1.02 −0.26
std 9.41 9.13 8.55 8.83 9.71 9.23 8.42 8.51

SEE bias −0.06 −1.22 0.36 0.61 −0.28 0.26 −0.23 −0.23
std 2.50 2.92 3.08 3.01 3.83 3.23 3.84 3.14

ECS bias −0.07 −0.24 0.14 0.13 −0.40 0.22 −0.17 0.15
std 1.28 1.08 1.13 1.17 1.30 1.15 1.22 1.25

C2MS bias −1.00 3.22 −4.92 −0.40 1.29 −3.38 5.01 0.44
std 14.94 16.07 28.60 24.97 14.99 16.34 29.02 26.08

EEE bias 0.10 −0.22 0.10 −0.18 −0.20 0.06 0.09 0.01
std 4.86 4.10 4.13 4.07 4.28 4.39 4.13 3.91

ŝtd 5.42 4.77 4.91 4.86 5.33 4.92 4.89 4.95
cp 94.60 95.40 95.40 95.10 95.70 95.50 96.00 96.00

sults are summarized in Table 4. It can be seen that here the estimating equation

approach still yields consistent estimators of β. In terms of the estimation bias,

rMAVE and the estimating equation estimators are comparable, while in terms

of the Monte Carlo standard deviations, the estimating equation estimators are

clearly better. In comparison with ECS, SEE and C2MS, the same trend of rel-

ative performance is seen as in Table 3, while the difference is larger, especially

in terms of estimating the variance parameters. The estimators obtained from

(2.4) are not as efficient as those obtained from (4.2), which agrees with our
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− − − − − −

−

Figure 1. Scatter plot of Y versus (β̂Tx), with β̂ estimated from (4.2). The dash lines
are fitted curves and the solid lines are the 95% pointwise confidence intervals obtained
from kernel regression. The Y -axis of the plots represents respectively Yi (left) and

{Yi − m̂(β̂Txi)}2 (right).

expectation as (4.2) utilizes more model assumptions than (2.4).

Following a referee’s request, we also considered the case when the error term

ε was the standard t with (xTx+4) degrees of freedom. We repeated the simula-

tions 1,000 times and report the results in Table S2 in the supplement. There the

oracle estimators yield smaller estimation biases and standard deviations than

the locally efficient estimators. In Table S3 in the supplement, we provide the

simulation results when we pretend not to know that the central mean and the

central variance subspaces are identical. In this case, in terms of the estimation

biases, the oracle efficient estimator is an obvious winner, while in terms of the

standard deviations, the two estimators are comparable.

5.2. Bank data revisited

In Section 3, we have shown that the central mean and central variance

subspaces are identical in the bank data. Here we revisit this data set by using

(4.2) to estimate the parameters β, a basis of the central second moment subspace

(Yin and Cook (2002)). The resulting estimators, and their associated standard

deviations are in the last block of Table 2. It again shows that there exists no

gender or age effect, while the working experience and whether employee’s job is

computer related affect the salary significantly. Using the estimates β̂ from (4.2),

we show estimated mean and variance functions in Figure 1. The curves exhibit

obvious increasing patterns, indicating the existence of heteroscedasticity.
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6. Discussion

If the central mean and the central variance subspaces overlap but are not

identical, to compare the efficiency of various estimators in estimating the com-

mon part and the difference of these two subspaces is a challenging problem.

An aspect that we have left out is how to decide the dimensions dα and dβ.

To this end, VIC proposed in Ma and Zhang (2015) can be applied directly to

yield consistent estimation. Another approach to this issue is via bootstrap (Ye

and Weiss (2003)). Under each candidate (dα, dβ) value, we repeatedly estimate

the corresponding subspaces using the bootstrap data and calculate the average

correlation between the bootstrap data based subspaces and the original data

based subspaces. The (dα, dβ) combination that yields the largest correlation

is then selected as the effective dimensions. Similar procedure can be carried

out when the two subspaces are identical. Like all bootstrap based procedures,

the computational cost of this procedure can be quite high, hence it is worth

exploring alternative methods.

The efficiency of an estimator is dependent on the model assumptions, but

sometimes the change is surprisingly large. For example, if we have assumed ε to

be independent of x, then the results can change quite dramatically. Under such

model assumption, quantities such as f ′ε(ε)/fε(ε) appear in the efficient score.

Hence careful analysis is always needed in deriving efficient estimators, even if

the model assumption changes a little. Following this line, if we further assume

β = α, then the central mean, the central variance and the central space unify

into the same space spanned by β. This model has much more structure than

the model considered in Ma and Zhu (2013b), hence the efficient result derived

there does not apply.

Supplementary Materials

The regularity conditions, proofs of our main results and some additional

simulations can be found in an online supplementary document.
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