
Statistica Sinica 28 (2018), 2771-2794
doi:https://doi.org/10.5705/ss.202016.0369

NONLINEAR REGRESSION ESTIMATION USING

SUBSET-BASED KERNEL PRINCIPAL COMPONENTS

Yuan Ke, Degui Li and Qiwei Yao

Penn State University, The University of York and London School of Economics

Abstract: We study the estimation of conditional mean regression functions through

the so-called subset-based kernel principal component analysis (KPCA). Instead of

using one global kernel feature space, we project a target function into different

localized kernel feature spaces at different parts of the sample space. Each local-

ized kernel feature space reflects the relationship on a subset between the response

and covariates more parsimoniously. When the observations are collected from a

strictly stationary and weakly dependent process, the orthonormal eigenfunctions

which span the kernel feature space are consistently estimated by implementing an

eigenanalysis on the subset-based kernel Gram matrix, and the estimated eigen-

functions are then used to construct the estimation of the mean regression func-

tion. Under some regularity conditions, the developed estimator is shown to be

uniformly consistent over the subset with a convergence rate faster than those of

some well-known nonparametric estimation methods. In addition, we discuss some

generalizations of the KPCA approach, and consider using the same subset-based

KPCA approach to estimate the conditional distribution function. The numerical

studies including three simulated examples and two data sets illustrate the reli-

able performance of the proposed method. In particular, the improvement over the

global KPCA method is evident.

Key words and phrases: Conditional distribution function, eigenanalysis, kernel

Gram matrix, KPCA, mean regression function, nonparametric regression.

1. Introduction

Let Y be a scalar response variable and X be a p-dimensional random vector.

We are interested in estimating the conditional mean regression function defined

by

h(x) = E(Y |X = x), x ∈ G, (1.1)

where G ⊂ Rp is a measurable subset of the sample space of X, and P(X ∈ G) > 0.

We allow that the mean regression function h(·) is not specified, except for cer-

tain smoothness conditions, which makes (1.1) more flexible than the traditional

parametric linear and nonlinear regression. Nonparametric estimation of h(·) has
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been extensively studied in the existing literature such as Green and Silverman

(1994), Wand and Jones (1995), Fan and Gijbels (1996), Fan and Yao (2003)

and Teräsvirta, Tjøstheim and Granger (2010). When the dimension of random

covariates p is large, a direct use of nonparametric regression estimation meth-

ods, such as the spline and kernel-based smoothing, typically perform poorly

due to the so-called “curse of dimensionality”. Hence, some dimension-reduction

techniques/assumptions (such as the additive models, single-index models and

varying-coefficient models) have to be imposed when estimating the mean regres-

sion function. However, it is well known that some dimension reduction tech-

niques may result in systematic biases in estimation. For instance, the estimation

based on an additive model may perform poorly when the additive assumption

does not hold.

In this paper we propose a data-driven dimension reduction approach through

the use of a Kernel Principal Components Analysis (KPCA) for the random co-

variate X. The KPCA is a nonlinear version of the standard linear Principal

Component Analysis (PCA) and overcomes the limitations of the linear PCA by

conducting the eigendecomposition of the kernel Gram matrix, see, for example,

Schölkopf, Smola and Müller (1999), Braun (2005) and Blanchard, Bousquet and

Zwald (2007). See also Section 2.2 for a detailed description on the KPCA and

its relation to the standard PCA. The KPCA has been applied in, among others,

feature extraction and de-noising in high-dimensional regression (Rosipal et al.

(2001)), density estimation (Girolami (2002)), robust regression (Wibowo and

Desa (2011)), conditional density estimation (Fu, Shih and Wang (2011); Izbicki

and Lee (2013)), and regression estimation (Lee and Izbicki (2016)).

Unlike the existing literature on KPCA, we approximate the mean regres-

sion h(x) on different subsets of the sample space of X by linear combinations

of different subset-based kernel principal components. The subset-based KPCA

identifies nonlinear eigenfunctions in a subset, and thus reflects the relationship

between Y and X on that set more parsimoniously than, for example, a global

KPCA (see Proposition 1 in Section 2.2). The subsets may be defined according

to some characteristics of X and/or those on the relationship between Y and X

(e.g., MACD for financial prices, different seasons/weekdays for electricity con-

sumption, or adaptively by some change-point detection methods) and they are

not necessarily connected sets. This is a marked difference from such conven-

tional nonparametric regression techniques as the kernel smoothing and nearest

neighbour methods. Meanwhile, we assume here that the observations are col-

lected from a strictly stationary and weakly dependent process, which relaxes the
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independence and identical distribution assumption in the KPCA literature and

makes the proposed methodology applicable to the time series data. Under some

regularity conditions, we show that the estimated eigenvalues and eigenfunctions

constructed through an eigenanalysis on the subset-based kernel Gram matrix

are consistent. The conditional mean regression function h(·) is then estimated

through the projection to the kernel spectral space that is spanned by a few es-

timated eigenfunctions whose number is determined by a simple ratio method.

The developed conditional mean estimation is shown to be uniformly consistent

over the subset with a convergence rate faster than those of some well-known

nonparametric estimation methods. We further extend the subset-based KPCA

method to estimation of the conditional distribution function:

FY |X(y|x) = P(Y ≤ y|X = x), x ∈ G, (1.2)

and establish the corresponding asymptotic property.

The rest of the paper is organized as follows. Section 2 introduces the subset-

based KPCA and the estimation methodology for the mean regression func-

tion. Section 3 derives the main asymptotic theorems of the proposed estimation

method. Section 4 extends the proposed subset-based KPCA for estimation of

conditional distribution functions. Section 5 illustrates the finite sample perfor-

mance of the proposed methods by simulation. Section 6 reports on two data

applications. Section 7 concludes the paper. Proofs of the theoretical results are

available in an online supplementary material.

2. Methodology

Let {(Yi,Xi), 1 ≤ i ≤ n} be observations from a strictly stationary process

with the same marginal distribution as that of (Y,X). Our aim is to estimate the

mean regression function h(x) for x ∈ G, as specified in (1.1). We first introduce

the kernel spectral decomposition in Section 2.1, followed by the illustration on

the kernel feature space and the relationship between the KPCA and the standard

PCA in Section 2.2, and we propose an estimation method for the conditional

mean regression function in Section 2.3.

2.1. Kernel spectral decomposition

Let L2(G) be the Hilbert space consisting of all the functions defined on G
which satisfy that, for any f ∈ L2(G),∫

G
f(x)PX(dx) = E

{
f(X)I(X ∈ G)

}
= 0,
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G
f2(x)PX(dx) = E

{
f2(X)I(X ∈ G)

}
<∞,

where PX(·) denotes the probability measure of X, and I(·) is an indicator func-

tion. The inner product on L2(G) is defined as

〈f, g〉=
∫
G
f(x)g(x)PX(dx)=Cov (f(X)I(X ∈ G), g(X)I(X ∈ G)) , f, g ∈ L2(G).

(2.1)

Let K(·, ·) be a Mercer kernel defined on G × G, i.e., K(·, ·) is a bounded

and symmetric function, and for any u1, . . . ,uk ∈ G and k ≥ 1, the k× k matrix

with K(ui,uj) being its (i, j)-th element is non-negative definite. For any fixed

u ∈ G, K(x,u) can be seen as a function of x. A Mercer kernel K(·, ·) defines

an operator on L2(G) as

f(x) →
∫
G
K(x,u)f(u)PX(du).

It follows from Mercer’s Theorem (Mercer (1909)) that a Mercer kernel admits

a spectral decomposition

K(u,v) =

d∑
k=1

λkϕk(u)ϕk(v), u,v ∈ G, (2.2)

where λ1 ≥ λ2 ≥ · · · ≥ λd > 0 are the positive eigenvalues of K(·, ·), and

ϕ1, ϕ2, . . . are the orthonormal eigenfunctions in the sense that∫
G
K(x,u)ϕk(u)PX(du) = λkϕk(x), x ∈ G, (2.3)

〈ϕi, ϕj〉 =

∫
G
ϕi(u)ϕj(u)PX(du) =

{
1 i = j,

0 i 6= j.
(2.4)

As we can see from the spectral decomposition (2.2), d = max{k : λk > 0}
and is possibly infinity. We say that the Mercer kernel is of finite-dimension when

d is finite, and of infinite-dimension when d = ∞. To simplify the discussion,

in this section and Section 3 below, we assume d is finite. This restriction will

be relaxed in Section 4. We refer to Ferreira and Menegatto (2009) for Mercer’s

Theorem for metric spaces. The eigenvalues λk and the associated eigenfunctions

ϕk are usually unknown, and they need to be estimated in practice. To this end,

we construct the sample eigenvalues and eigenvectors through an eigenanalysis of

the kernel Gram matrix defined in (2.6) below, and then obtain the estimate of

the eigenfunction ϕk by the Nyström extension (Drineas and Mahoney (2005)).



TITLE 2775

Take {
(Y Gj ,X

G
j ), j = 1, . . . ,m

}
=
{

(Yi,Xi)
∣∣ 1 ≤ i ≤ n, Xi ∈ G

}
, (2.5)

where m is the number of observations satisfying Xi ∈ G, and the subset-based

kernel Gram matrix as

KG =


K(XG1 ,X

G
1 ) K(XG1 ,X

G
2 ) · · · K(XG1 ,X

G
m)

K(XG2 ,X
G
1 ) K(XG2 ,X

G
2 ) · · · K(XG2 ,X

G
m)

...
...

. . .
...

K(XGm,X
G
1 ) K(XGm,X

G
2 ) · · · K(XGm,X

G
m)

 . (2.6)

Let λ̂1 ≥ · · · ≥ λ̂m ≥ 0 be the eigenvalues of KG , and ϕ̂1, . . . , ϕ̂m be the corre-

sponding m orthonormal eigenvectors. Write

ϕ̂k =
{
ϕ̂k(X

G
1 ), . . . , ϕ̂k(X

G
m)
}T
. (2.7)

We use the so-called Nyström extension to obtain estimates of the eigenfunc-

tions. The method was originally introduced to get the approximate numerical

solution of an integral equation by replacing the integral with a representative

weighted sum. The integral in (2.3) can be approximated by (1/m)
∑m

i=1K(x,XGi )

ϕk(X
G
i ). Under some mild conditions (e.g., Assumption 3 in Section 3), and us-

ing the Law of Large Numbers, such an approximation is sensible. Hence, the

eigenfunction ϕk(x) can be approximated by 1/(mλk)
∑m

i=1K(x,XGi )ϕk(X
G
i ).

Replacing λk and ϕk(X
G
i ) by λ̂k/m and

√
mϕ̂k(X

G
i ), respectively, we take the

Nyström extension of the eigenvector ϕ̂k as

ϕ̃k(x) =

√
m

λ̂k
·
m∑
i=1

K(x,XGi )ϕ̂k(X
G
i ), x ∈ G, k = 1, . . . , d. (2.8)

Let

λ̃k =
λ̂k
m
, k = 1, . . . , d. (2.9)

Proposition 3 in Section 3 shows that, for any x ∈ G, λ̃k and ϕ̃k(x) are consistent

estimators of λk and ϕk(x), respectively.

Another critical issue in applications is to estimate the dimension of the

Mercer kernel K(·, ·). When the dimension of K(·, ·) is d and d � m, we can

estimate d by a ratio method (Lam and Yao (2012)):

d̂ = arg min
1≤k≤bmc0c

λ̂k+1

λ̂k
= arg min

1≤k≤bmc0c

λ̃k+1

λ̃k
, (2.10)

where c0 ∈ (0, 1) is a pre-specified constant, such as c0 = 0.5, and bzc denotes

the integer part of the number z. The numerical results in Sections 5 and 6 show
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that this ratio method works well in finite sample cases.

2.2. Kernel feature space and KPCA

Let M(K) be a d-dimensional linear space spanned by the eigenfunctions

ϕ1, . . . , ϕd, and

dim {M(K)} = d = max{k : λk > 0}.

By the spectral decomposition (2.2),M(K) can also be viewed as a linear space

spanned by functions gu(·) ≡ K(·,u) for all u ∈ G. Thus we call M(K) the

kernel feature space as it consists of the feature functions extracted by the kernel

function K(·, ·), and call ϕ1, . . . , ϕd the characteristic features determined by

K(·, ·) and the distribution of X on set G. In addition, we call ϕ1(X), ϕ2(X), . . .

the kernel principal components of X on set G, and one can see they are nonlinear

functions of X in general. We next suggest how the KPCA is connected to the

standard PCA.

Any f ∈M(K) whose mean is zero on G can be written as

f(x) =

d∑
j=1

〈f, ϕj〉ϕj(x) for x ∈ G.

Furthermore,

||f ||2 ≡ 〈f, f〉 = Var
(
f(X)I(X ∈ G)

)
=

d∑
j=1

〈f, ϕj〉2.

Now we introduce a generalized variance incited by the kernel function K(·, ·):

VarK(f(X)I(X ∈ G)) =

d∑
j=1

λj 〈f, ϕj〉2, (2.11)

where λj is assigned as the weight on the “direction” of ϕj for j = 1, . . . , d. Then

it follows from (2.2) and (2.3) that

ϕ1 = arg max
f∈M(K), ||f ||=1

∫
G×G

f(u)f(v)K(u,v)PX(du)PX(dv)

= arg max
f∈M(K), ||f ||=1

d∑
j=1

λj 〈f, ϕj〉2

= arg max
f∈M(K), ||f ||=1

VarK(f(X)I(X ∈ G)),

which indicates that the function ϕ1 is the “direction” which maximizes the

generalized variance VarK(f(X)I(X ∈ G)). Similarly it can be shown that ϕk
is the solution of the above maximization problem with additional constraints
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〈ϕk, ϕj〉 = 0 for 1 ≤ j < k. Hence, the kernel principal components are the or-

thonormal functions in the feature spaceM(K) with the maximal kernel induced

variances defined in (2.11). In other words, the kernel principal components

ϕ1, ϕ2, . . . can be treated as “directions” while their corresponding eigenvalues

λ1, λ2, . . . can be considered as the importance of these “directions”.

A related but different approach is to view M(K) as a reproducing kernel

Hilbert space, for which the inner product is defined differently from (2.1) to

serve as a penalty in estimating functions via regularization; see Section 5.8 of

Hastie, Tibshirani and Friedman (2009) and Wahba (1990). Since the reproduc-

ing property is irrelevant in our context, we adopt the more natural inner product

(2.1). For the detailed interpretation of KPCA in a reproducing kernel space, we

refer to Section 14.5.4 of Hastie, Tibshirani and Friedman (2009).

We end this subsection by stating a proposition that shows that the smaller

G, the lower the dimension ofM(K) is. This indicates that a more parsimonious

representation can be obtained by using the subset-based KPCA instead of the

global KPCA. The proof of the proposition follows immediately from (2.2) and

Proposition 2 below.

Proposition 1. Let Ḡ be a measurable subset of the sample space of X such

that G ⊂ Ḡ, and K(·, ·) be a Mercer kernel on Ḡ × Ḡ. The kernel feature spaces

defined with sets G and Ḡ are denoted, respectively by M(K) and M̄(K). Then

dim {M(K)} ≤ dim
{
M̄(K)

}
.

2.3. Estimation for conditional mean regression

For the simplicity of presentation, we assume that the mean of random vari-

ate h(X) = E(Y |X) on set G is 0,

E {h(X)I(X ∈ G)} = E {E(Y |X)I(X ∈ G)} = E {Y I(X ∈ G)} = 0.

This amounts to replacing Y Gi by Y Gi − Ȳ G in (2.5) with Ȳ G = m−1
∑

1≤j≤m Y
G
j .

In general M(K) is a genuine subspace of L2(G). Suppose that on set G,

h(x) =

∫
yfY |X(y|x)dy =

d∑
k=1

βkϕk(x), x ∈ G, (2.12)

where fY |X(·|x) denotes the conditional density function of Y given X = x, and

βk = 〈ϕk, h〉 =

∫
x∈G

ϕk(x)PX(dx)

∫
yfY |X(y|x)dy = E {Y ϕk(X) I(X ∈ G)} .

This leads to the estimator for βk constructed as
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β̃k =
1

m

m∑
i=1

Y Gi ϕ̃k(X
G
i ), k = 1, . . . , d, (2.13)

where (Y Gi ,X
G
i ), i = 1, . . . ,m, are defined in (2.5), and ϕ̃k(·) are given in (2.8).

Consequently the estimator for h(·) is taken as

h̃(x) =

d∑
k=1

β̃kϕ̃k(x), x ∈ G. (2.14)

When the dimension of the kernel K(·, ·) is unknown, the sum on the right hand

side here runs from j = 1 to d̂, with d̂ determined via (2.10).

The estimator in (2.14) is derived under the assumption that on set G,

h(x) ∈ M(K). When this condition is unfulfilled, (2.14) is an estimator for

the projection of h(·) on M(K). Hence the goodness of h̃(·) as an estimator for

h(·) depends critically on (i) kernel function K, (ii) set G and PX(·) on G. In

the simulation studies in Section 5, we will illustrate an approach to specify G.

Ideally we would like to choose a K(·,·) that induces a large enoughM(K) such

that h ∈M(K). Some frequently used kernel functions include

• Gaussian kernel: K(u,v) = exp(−||u− v||2/c),

• Thin-plate spline kernel: K(u,v) = ||u− v||2 log(||u− v||),

• Polynomial kernel (Fu, Shih and Wang (2011)):

K(u,v) =


{1− (u′v)`+1}

(1− u′v)
, if u′v 6= 1,

`+ 1, otherwise,

where || · || denotes the Euclidean norm, c is a positive constant, and ` ≥ 1 is an

integer. Also note that, for any functions in ψ1, . . . , ψd ∈ L2(G),

K(u,v) =

d∑
k=1

ψk(u)ψk(v) (2.15)

is a well-defined Mercer kernel. A possible choice of the kernel function is to

let {ψ1(u), . . . , ψd(u)} be a set of basis functions of u, e.g., Fourier series, poly-

nomial series, wavelets, B-spline, etc. The numerical studies in Sections 5 and

6 use (2.15) with appropriately chosen functions ψk in the estimation and di-

mension reduction procedure, which performs reasonably well. We have that the

dimension of M(K) with K(·, ·) defined above is controlled by d.

Proposition 2. For the kernel function K(·, ·) defined in (2.15), dim (M(K)) ≤ d.
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3. Large Sample Theory

In this section, we study the asymptotic properties for the estimators of the

eigenvalues and eigenfunctions of the Mercer kernel as well as the mean regression

estimation. We start with some regularity conditions which are sufficient to derive

our asymptotic theory.

Assumption 1. The process {(Yi,Xi)} is strictly stationary and α-mixing (or

strongly mixing) dependent with

αt = O(t−κ), κ > 2δ∗ + p+
3

2
, (3.1)

where p is the dimension of the random covariate, and 0 ≤ δ∗ <∞ such that the

volume of the set G has the order mδ∗.

Assumption 2. The positive eigenvalues of the Mercer kernel K(·, ·) are distinct

and satisfy 0 < λd < · · · < λ2 < λ1 <∞.

Assumption 3. The eigenfunctions ϕj, j = 1, . . . , d, are Lipschitz continuous

and bounded on the set G. The kernel K(·,x) is Lipschitz continuous and bounded

on the set G for any x ∈ G.

Remark 1. Assumption 1 is mild and can be satisfied by some commonly-used

time series models; see e.g., Section 2.6 of Fan and Yao (2003) and the references

within. For example the causal ARMA processes with continuous innovations

are α-mixing with exponentially decaying mixing coefficients. For the processes

with exponentially decaying mixing coefficients, (3.1) is fulfilled automatically,

and the technical arguments in the proofs can be simplified. We allow set G to

expand with the size of the sub-sample in G in the order of mδ∗ , and δ∗ would be 0

if G is bounded. Assumptions 2 and 3 impose mild restrictions on the eigenvalues

and eigenfunctions of the Mercer kernel, respectively. The boundedness condition

on ϕj and K(·,x) in Assumption 3 can be replaced by 2(2 + δ)-order moment

conditions for some δ > 0, and Proposition 3 still holds at the cost of more lengthy

arguments. Furthermore, by the smoothness condition on the kernel function,

and using (3.2) in Proposition 3 below, we can easily show that the ϕ̃j(·) defined

in (2.8), j = 1, . . . , d, are continuous and bounded with probability tending to

one.

Proposition 3. If Assumptions 1–3 hold, then

max
1≤k≤d

|λ̃k − λk| = max
1≤k≤d

∣∣∣∣ 1

m
λ̂k − λk

∣∣∣∣ = OP (m−1/2), (3.2)

max
1≤k≤d

sup
x∈G
|ϕ̃k(x)− ϕk(x)| = OP (ξm) , (3.3)
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where ξm = m−1/2 log1/2m.

Remark 2. Proposition 3 is of independent interest. It complements some sta-

tistical properties of the KPCA in the literature such as Braun (2005) and Blan-

chard, Bousquet and Zwald (2007). Note that P(X ∈ G) can be consistently

estimated by m/n. If it is assumed that P(X ∈ G) = c0 > 0, m would be of

the same order as the full sample size n (with probability tending to one). As

a consequence, the convergence rates in (3.2) and (3.3) would be equivalent to

OP (n−1/2) and OP (n−1/2 log1/2 n), respectively, which are not uncommon in the

context of functional principal component analysis (Bosq (2000); Horváth and

Kokoszka (2012)).

Theorem 1. If Assumptions 1–3 hold, E(|Y |2+δ) < ∞ for some δ > 0 and

h(·) ∈M(K), then

sup
x∈G
|h̃(x)− h(x)| = OP (ξm) . (3.4)

Remark 3. When m is of the same order as n, the uniform convergence rate

in (3.4) is equivalent to OP (n−1/2 log1/2 n), which is faster than the well-known

uniform convergence rate OP ((nb)−1/2 log1/2 n) in the kernel smoothing method

(Fan and Yao (2003)), where b is a bandwidth that converges to zero as n tends

to ∞. The intrinsic reason of the faster rate in (3.4) is that we assume the

dimension of the subset-based kernel feature space is finite, and thus the number

of the unknown elements in (2.12) is also finite. Section 4 below shows that

the increasing dimension of the kernel feature space slows down the convergence

rates.

4. Extensions of the Estimation Methodology

In this section, we consider two extensions of the methodology proposed in

Section 2: the estimation of the conditional distribution function, and when the

dimension of a kernel feature space diverges together with the sample size.

4.1. Estimation for conditional distribution functions

Estimation of the conditional distribution function defined in (1.2) is a key

aspect in such statistical topics as quantile regression, as the conditional mean

regression may be not informative enough in many situations. Nonparametric

estimation of the conditional distribution has been extensively studied in the

literature, including Hall, Wolff and Yao (1999), Hansen (2004) and Hall and

Yao (2005). In this section, we use the subset-based KPCA approach to estimate
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a conditional distribution function in low-dimensional kernel feature space when

the random covariates are multi-dimensional.

Let F∗(y|x)=FY |X(y|x)−c∗, where c∗ = P(Y ≤ y,X ∈ G). Then E{F∗(y|X)}
= 0. In practice c∗ can be easily estimated by the relative frequency. Suppose

that

F∗(y|x) = FY |X(y|x)−c∗ =

∫ y

−∞
fY |X(z|x)dz−c∗ =

d∑
k=1

β∗kϕk(x), x ∈ G. (4.1)

The coefficients β∗k in this decomposition depend on y. The orthonormality of ϕi
implies that

β∗k = 〈F∗(y|·), ϕk〉 =

∫
G
ϕk(x)PX(dx)

{∫ y

−∞
fY |X(z|x)dz − c∗

}
=

∫
I(z ≤ y, x ∈ G)ϕk(x)fY |X(z|x)dzPX(dx)− c∗

∫
G
ϕk(x)PX(dx)

= E {I(Y ≤ y, X ∈ G)ϕk(X)} − c∗E {I(X ∈ G)ϕk(X)} .

This leads to the estimator for β∗k as

β̃∗k =
1

m

m∑
i=1

I(Y Gi ≤ y)ϕ̃k(X
G
i )− c̃∗

m

m∑
i=1

ϕ̃k(X
G
i ), (4.2)

where (Y Gi ,X
G
i ) are defined in (2.5), ϕ̃k(·) are defined in (2.8), and

c̃∗ =
1

n

n∑
i=1

I (Yi ≤ y, Xi ∈ G) , (4.3)

n is the full sample size. Consequently, we obtain an estimator for the conditional

distribution

F̃Y |X(y|x) =

d∑
k=1

β̃∗kϕ̃k(x) + c̃∗. (4.4)

The estimator F̃Y |X(·|x) is not necessarily a bona fide distribution function. Some

further normalization may be required to make the estimator non-negative, non-

decreasing and between 0 and 1 (Glad, Hjort and Ushakov (2003)).

By the classic result for α-mixing sequences, we can show that c̃∗ is a con-

sistent estimator of c∗ with a root-n convergence rate. Then, by Proposition 3

and the proof of Theorem 1, we have a convergence result for F̃Y |X(y|x).

Theorem 2. If Assumptions 1–3 hold and F∗(y|·) ∈M(K), then

sup
x∈G

∣∣∣F̃Y |X(y|x)− FY |X(y|x)
∣∣∣ = OP (ξm) (4.5)

for any given y, where ξm is defined in Proposition 3.
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4.2. Kernel feature spaces with diverging dimensions

We next consider the case when the dimension of the kernel feature space

dm ≡ max{k : λk > 0} depends on m, and may diverge to infinity as m tends to

infinity. Let

ρm = min (λk − λk+1, k = 1, . . . , dm) .

For a more general asymptotic theory, we need to slightly modify Assumption 2.

Assumption 2∗. The positive eigenvalues of the Mercer kernel K(·, ·) are dis-

tinct and satisfy 0 < λdm < · · · < λ2 < λ1 <∞,
∑dm

k=1 λk <∞.

Proposition 4. If Assumptions 1, 2∗ and 3 hold, dm = o
(
mρ2

mλ
2
dm
/ logm

)
, and

the α-mixing coefficient decays to zero at an exponential rate, then

max
1≤k≤dm

|λ̃k − λk| = max
1≤k≤dm

∣∣∣∣ 1

m
λ̂k − λk

∣∣∣∣ = OP

(
d1/2
m ξm

)
, (4.6)

max
1≤k≤dm

sup
x∈G
|ϕ̃k(x)− ϕk(x)| = OP

(
d

1/2
m ξm

(ρmλdm)

)
. (4.7)

Remark 4. When dm is fixed, if we take both ρm and λdm bounded away from

zero, the convergence rates in Proposition 4 are simplified. When dm → ∞ as

m→∞, we usually have ρm → 0 and λdm → 0. This implies that the convergence

rates in (4.6) and (4.7) would be generally slower than those in (3.2) and (3.3).

Let ci, i = 1, . . . , 5, be five positive constants. For any two sequences am and bm,

am ∝ bm means that 0 < c4 ≤ am/bm ≤ c5 <∞ when m is sufficiently large. If

dm = c1 logm, ρm = c2 log−1m and λdm = c3 log−1m, we have

d1/2
m ξm ∝ m−1/2 logm,

d
1/2
m ξm
ρmλdm

∝ m−1/2 log3m.

Using Proposition 4 and the proof of Theorem 1, we can obtain the uniform

convergence rate for the conditional mean regression estimation when dm is di-

verging.

In practice, we may encounter the more challenging case when the dimension

of the Mercer kernel is infinite (e.g., λk ∝ k−ι1 with ι1 > 0 or λk ∝ ιk2 with

0 < ι2 < 1). Then, the convergence result in Proposition 4 is not directly

applicable as the rates in (4.6) and (4.7) diverge when the dimension is infinite.

However, the proposed subset-based KPCA approach can still be used to estimate

the conditional mean regression function. Assuming that the mean regression

function h(x) ∈ M(K) and noting that the dimension of M(K) is infinite, we

have
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h(x) =

∞∑
k=1

βkϕk(x) =

dm∑
k=1

βkϕk(x) +

∞∑
k=dm+1

βkϕk(x) ≡ h1(x) + h2(x), (4.8)

where βk and ϕk(x) are defined as in Section 2, and dm is divergent under the

condition in Proposition 4. LetM1(K) be a dm-dimensional kernel feature space

spanned by ϕ1, . . . , ϕdm . From (4.8), the mean regression function h(x) can be

well approximated by its projection onto the dm-dimensional kernel feature space

M1(K) as long as the approximation error h2(x) uniformly converges to zero at

a certain rate. The latter usually holds if we impose some smoothness condition

on h(x) and let dm diverge at an appropriate rate; this is similar to the conditions

on sieve approximation accuracy (Chen (2007)).

Let b?m = supx∈G |h2(x)|. We can estimate βk and ϕk, k = 1, . . . , dm, in the

same manner as in Sections 2.2 and 2.3. Denote the estimates by β̃k and ϕ̃k, and

let h̃m(x) =
∑dm

k=1 β̃kϕ̃k(x). By Proposition 4 and the proof of Theorem 1, we

can establish the uniform convergence rate

sup
x∈G
|h̃m(x)− h1(x)| = OP (ν?m),

where ν?m = d
3/2
m ξm/(ρmλdm). Furthermore, we can prove, via the decomposition

in (4.8), that

sup
x∈G
|h̃m(x)− h(x)| = sup

x∈G
|h̃m(x)− h1(x)|+ sup

x∈G
|h2(x)| = OP (ν?m + b?m).

5. Simulation Studies

In this section, we report on three simulations that illustrate the finite sample

performance of the proposed subset-based KPCA method and compare it with

the global KPCA and other existing nonparametric estimation methods: cubic

spline, local linear regression and kernel ridge regression. The first simulation

assesses the out-of-sample estimation performance of conditional mean function

based on a multivariate nonlinear regression model. In the second simulation,

we examine the one-step ahead out-of-sample forecast performance based on a

multivariate nonlinear time series model.In the third simulation, we examine the

finite sample performance of the estimation of conditional distribution function.

Throughout this section, the kernel function is either the Gaussian kernel or

as formulated in (2.15) with {ψ1(u), . . . , ψd(u)} a set of normalized polynomial

basis functions (with the unit norm) of u = (u1, . . . , up)
T of order 2 and 3:

{1, uk, . . . , urk, k = 1, . . . , p}, where r = 2, 3 and d = rp + 1. Here we call the

kernel the quadratic kernel when r = 2 and the cubic kernel when r = 3. In
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practice, d is estimated by the ratio method as in (2.10). The simulation results

show that (2.10) can correctly estimate d̂ = d with frequency close to 1. The

subset is chosen to be the bκnc nearest neighbors, where n is the sample size and

κ ∈ (0, 1) is a constant bandwidth. The bandwidth κ and the tuning parameter

c in the Gaussian kernel are selected by a 5-fold cross validation.

Example 1. Consider the model

yi = g(x2i) + sin(π(x3i + x4i)) + x5i + log(1 + x2
6i) + εi,

where x1i, . . . , x6i and εi are i.i.d. N(0, 1), g(x) = e−2x2

for x ≥ 0, and g(x) = e−x
2

for x < 0. In the model, the covariate x1i is irrelevant to yi.

We drew a training sample of size n = 500 or 1,000 and a testing sample

of size 200. We estimated the conditional mean regression function using the

training sample, and then calculated the mean squared errors (MSE) and out-of-

sample R2s over the testing sample as follows:

MSE =
1

200

200∑
i=1

{yi − h̃(xi)}2, R2 = 1−
∑200

i=1{yi − h̃(xi)}2∑200
i=1 (yi − ȳ)2 ,

where h̃(·) is defined as in (2.14), xi = (x1i, . . . , x6i)
T, and ȳ is the sample mean

of yi over the training sample.

By repeating this procedure over 200 replications, we obtained a sample of

MSE and R2 with size 200. The estimation performance was assessed by the

sample mean, median and variance of MSE and R2. The simulation results are

reported in Table 1. In this simulation, for the quadratic kernel and cubic kernel,

the ratio method in (2.10) can always correctly estimate d̂ = rp + 1. According

to the results in Table 1, the subset-based KPCA with the quadratic kernel

outperforms the global KPCA methods and other nonparametric methods as it

has the smallest sample mean, median and variance of MSE and the highest R2.

In addition, both the quadratic kernel and cubic kernel perform better than the

Gaussian kernel due to the fact that they can better capture different degree of

smoothness in different directions.

To assess the the bandwidth choice for subset-based KPCA, we set n = 500,

let κ vary from 0.05 to 0.8 and calculated the sample mean of MSE over 100

replications. The results are plotted in Figure 1. According to Figure 1, the

subset-based KPCA method is not sensitive to the choice of κ. The smallest

MSE is achieved at κ = 0.27, and any κ between 0.15 and 0.45 yields similar

result.

Furthermore, we compared the computational costs between the subset-
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Figure 1. The out-of-sample estimation performance of the subset-based KPCA approach
with the quadratic kernel with respect to the bandwidth κ when n = 500.

based KPCA and global KPCA approaches with quadratic kernel function. The

computational cost of subset-based KPCA includes the selection of bandwidth

κ. The bandwidth κ was selected by 5-fold cross validation over 10 grid points,

equally spaced between 0.1 and 0.5. We let the sample size increase from 400

to 1,000 with a step size of 20 and recorded the computational time over 100

replications for both approaches. The comparison results are presented in Figure

2. The major computational cost of the global KPCA methods is the eigen-

decomposition of the n × n gram matrix which is of computational complexity

O(nω) for some ω > 2. To see this, we calculated the empirical order of growth

for both approaches:

ω̂ =
1

30

30∑
l=1

log(Tl+1/Tl)

log(nl+1/nl)
,

where nl is the l-th component in the set {400, 420, . . . , 980, 1,000} and Tl is the

corresponding computational cost over 100 replications. The empirical order of

growth for the global KPCA is 2.69, whereas that for the subset-based KPCA

is 2.17. Hence, both Figure 2 and the calculation of empirical order of growth

show the subset-based KPCA method scales with sample size much better than

does its global counterpart.

Example 2. Consider the time series model

yt = sin(0.02πyt−1) + exp(−y2
t−2) + ln(1 + |yt−3|)− 0.3|yt−4|+ 0.2εt,

where y0 = 0 and {εt} is a sequence of independent N(0, 1) random variables.

We estimate the conditional mean E(yt|yt−1, yt−2, yt−3, yt−4) and denote the es-
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Table 1. Out-of-sample estimation performance in Example 1.

MSE (the smaller the better) R2
(the larger the better)

n = 500 Mean Median Variance Mean Median Variance
sKPCA+Quadratic 1.300 1.294 0.017 0.548 0.550 0.0020
sKPCA+Cubic 1.337 1.335 0.018 0.536 0.536 0.0021
sKPCA+Gaussian 1.573 1.586 0.026 0.454 0.448 0.0031
gKPCA+Quadratic 2.389 1.871 0.059 0.170 0.350 0.0071
gKPCA+Cubic 2.586 1.937 0.064 0.102 0.327 0.0077
gKPCA+Gaussian 3.023 2.021 0.093 −0.049 0.298 0.0112
Cubic Spline 1.386 1.383 0.018 0.518 0.519 0.0022
Local Linear 1.429 1.431 0.020 0.504 0.503 0.0024
Kernel Ridge 1.897 1.866 0.048 0.340 0.351 0.0056
n = 1,000 Mean Median Variance Mean Median Variance
sKPCA+Quadratic 1.243 1.236 0.013 0.575 0.578 0.0015
sKPCA+Cubic 1.278 1.271 0.016 0.564 0.566 0.0018
sKPCA+Gaussian 1.531 1.528 0.025 0.477 0.478 0.0029
gKPCA+Quadratic 2.380 2.371 0.051 0.187 0.191 0.0059
gKPCA+Cubic 2.541 2.508 0.059 0.133 0.144 0.0069
gKPCA+Gaussian 3.015 2.790 0.086 −0.029 0.047 0.0100
Cubic Spline 1.371 1.372 0.017 0.532 0.531 0.0020
Local Linear 1.404 1.418 0.018 0.520 0.516 0.0021
Kernel Ridge 1.858 1.831 0.042 0.324 0.346 0.0055

“sKPCA” and “gKPCA” stand for the subset-based KPCA and global KPCA;
“Quadratic”, “Cubic” and “Gaussian” stand for the quadratic kernel, cubic kernel
and Gaussian kernel, respectively; “Cubic Spline”, “Local Linear” and “Kernel
Ridge” stand for non-parametric estimation methods based on cubic spline, local
linear regression and kernel ridge regression.

timator as ŷt which is to be used as the one-step-ahead predictor of yt.

We generated a time series sample from this model with length T + 100. For

k = 1, . . . , 100, we used the T observations just before time T + k as the training

set to predict yT+k. The performance was measured by MSE and out-of-sample

R2:

MSPE =
1

100

100∑
k=1

(yT+k − ŷT+k)
2 , R2 = 1−

∑100
k=1 (yT+k − ŷT+k)

2∑100
k=1 (yT+k − ȳ)2 ,

where ȳ is the sample mean of yt over the training sample.

We set T = 500, and repeated the experiment 200 times for each method.

The sample means, medians and variances of MSE and R2 are presented in Table

2. As in Example 1, the subset-based KPCA method with the quadratic kernel

provides the most accurate prediction. The subset-based KPCA method with the

cubic kernel is a close second best in terms of both MSE and R2. Figure 3 plots
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Table 2. One-step ahead forecasting performance in Example 2.

MSE (the smaller the better) R2
(the larger the better)

Mean Median Variance Mean Median Variance
sKPCA + Quadratic 0.0435 0.0428 3.9× 10−5 0.804 0.807 7.9× 10−4

sKPCA + Cubic 0.0445 0.0437 4.6× 10−5 0.799 0.803 9.3× 10−4

sKPCA + Gaussian 0.0756 0.0751 4.1× 10−4 0.659 0.661 8.3× 10−3

gKPCA + Quadratic 0.1900 0.1908 6.9× 10−4 0.144 0.141 0.014
gKPCA + Cubic 0.2042 0.2058 9.5× 10−4 0.080 0.073 0.019
gKPCA + Gaussian 0.2172 0.2211 0.0038 0.022 0.041 0.077
Cubic Spline 0.0516 0.0512 4.7× 10−5 0.767 0.769 9.5× 10−4

Local Linear 0.0522 0.0515 4.9× 10−5 0.764 0.768 9.9× 10−4

Kernel Ridge 0.0721 0.0717 6.8× 10−5 0.675 0.677 1.4× 10−3
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Figure 2. The computation costs for global KPCA method and subset-based KPCA
method (with κ selected by 5-fold cross validation) with respect to the sample size.

a typical path together with their one-step-ahead forecasts for each method. The

typical path is the replication with median R2. Figure 3 shows that the forecasted

path from the subset-based KPCA method with the quadratic kernel follows the

true path closely. A similar pattern can also be found for other subset-based

KPCA method with the cubic and Gaussian kernel and the three nonparametric

methods (cubic spline, local linear and kernel ridge). However the global KPCA

methods fail to capture the variation of the series and tend to forecast the future

values by the overall mean value, which is not satisfactory.

Example 3. Consider the model

X1 ∼ N(0, 1), X2 ∼ N(0, 1),

Y |(X1, X2) ∼ N(X1, 1 +X2
2 ).
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Figure 3. One-step ahead out-of-sample forecasting performance based on the replication
with median R2 for each method. The black solid line is the true value and the red dashed
line is the predicted value.
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Table 3. Estimation of the conditional distribution function.

MSE LAE
Mean Median Variance

n = 300 6.0× 10−4 4.1× 10−4 3.6× 10−7 0.098
n = 500 3.7× 10−4 2.8× 10−4 8.6× 10−8 0.080

The conditional distribution of Y given X ≡ (X1, X2)T is a normal distribution

with mean X1 and variance 1 + X2
2 . According to the method proposed in

Section 4.1, we estimate the conditional distribution function FY |X(y|x) using

the subset-based KPCA with the quadratic kernel.

We drew a training sample of size n = 300 or 500 and a testing sample

of size 100. The estimated conditional distribution F̃Y |X(yi|xi) was obtained

using the training data. We repeated the simulation 200 times and measured

the performance by MSE as well as largest absolute error (LAE) over the testing

sample:

MSE =
1

100

100∑
i=1

{
F̃Y |X(yi|xi)− FY |X(yi|xi)

}2
,

LAE = sup
(y,x)∈Ω∗

∣∣∣F̃Y |X(y|x)− FY |X(y|x)
∣∣∣ ,

where Ω∗ is the union of all validation sets. The results are reported in Table

3. As the values of MSE and LAE in Table 3 are small, the proposed method

provides accurate estimation for the conditional distribution function.

6. Data Analysis

In this section, we apply the proposed subset-based KPCA method to two

data sets. Throughout this section, the kernel function is either the Gaussian

or the Quadratic kernel. The subset is chosen to be the bκnc nearest neighbors,

where n is the sample size and κ ∈ (0, 1). The bandwidth κ is selected by 5-fold

cross validation.

6.1. Circulatory and respiratory problem in Hong Kong

We studied the circulatory and respiratory problem in Hong Kong via an en-

vironmental data set. That contains 730 observations that were collected between

January 1, 1994 and December 31, 1995. The response variable is the number of

daily total hospital admissions for circulatory and respiratory problems in Hong

Kong, and the covariates are daily measurements of seven pollutants and environ-

mental factors: SO2, NO2, dust, temperature, change of temperature, humidity
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Table 4. Estimation performance for the Hong Kong environmental data.

R2
(the larger the better)

Method Mean Variance
sKPCA + Quadratic 0.1544 0.0025
sKPCA + Gaussian 0.1262 0.0027
gKPCA + Quadratic −0.3613 0.2232
gKPCA + Gaussian −3.7058 1.6653
Cubic spline 0.0687 0.0042

and ozone. We standardized the data so that all the covariates had zero sample

mean and unit sample variance. To check the stationarity, we applied the aug-

mented Dickey-Fuller test (Dickey and Fuller (1981)) to each variable in the data

set. The test was applied using the “urca” package in R and the lags included

were selected by AIC. For each variable, the test result suggests rejection of the

unit root null hypothesis. Therefore, we considered the variables in the dataset

to be stationary.

The objective of this study was to estimate the number of daily total hospital

admissions for circulatory and respiratory problem using the collected environ-

mental data, to estimate the conditional mean regression function. The estima-

tion performance was measured by the mean and variance of the out-of-sample

R2, that was calculated by a bootstrap method, as follows. We first randomly

divided the data set into a training set of 700 observations and a testing set of

30 observations. For each observation in the testing set, we used the training set

to estimate its conditional mean regression function. Then we calculated out-of-

sample R2 for the testing set as in Example 1. By repeating this re-sampling

and estimation procedure 1,000 times, we obtained a bootstrap sample of R2s,

and calculated its sample mean and variance.

We compared the performance among the five methods: the subset-based

KPCA with the quadratic kernel, the subset-based KPCA with the Gaussian

kernel, the global KPCA with the quadratic kernel, the global KPCA with the

Gaussian kernel, and the cubic spline. The cubic spline was fitted with 10 knots

using the “splines” package in R. The results are presented in Table 4. According

to the results in Table 4, the subset-based KPCA with the quadratic kernel has

the best estimation performance and the subset-based KPCA method outper-

forms the global KPCA method and cubic spline.

6.2. Forecasting the log return of CPI

The CPI is a statistical estimate that measures the average change in the
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price paid to a market basket of goods and services. The CPI is often used

as an important economic indicator in macroeconomic and financial studies. In

economics, the CPI is considered closely related to the cost-of-living index and

used to adjust the income eligibility levels for government assistance. In finance,

the CPI is considered as an indicator of inflation and used as the deflater to

translate other financial series to inflation-free ones. Hence, it is always of interest

to forecast the CPI. We performed one-step-ahead forecasting for the monthly

log return of CPI in the USA based on the proposed subset-based KPCA method

with the quadratic kernel. The data span from January 1970 to December 2014

with 540 observations. The augmented Dickey-Fuller test suggests the monthly

log return of CPI over this time span is stationary.

Instead of using the traditional linear time series models, we considered that

the log return of CPI follow the nonlinear AR(3) model

yt = g(yt−1, yt−2, yt−3) + εt,

where g(·) is an unknown function and εt denotes an unobservable noise at time

t. The regression function g(·) was estimated by the subset-based KPCA method

with the quadratic kernel.

For comparison, we also forecast yt based on a linear AR(p) model with the

order p determined by AIC. When the testing set starts from time T and ends

at time T + S, the forecast performance is measured by the out-of-sample R2 as

R2 = 1−
∑S

s=1 (yT+s − ŷT+s)
2∑S

s=1 (yT+s − ȳ)2
,

where ŷT+s is the estimator of yT+s, and ȳ is the sample mean of yt over the

training set.

We set the data from January 2005 to December 2014 as the testing set,

which contains 120 observations. We forecast each observation in the testing set

with the data up to its previous month. The out-of-sample R2 was calculated

over the testing set. The out-of-sample R2 of the nonlinear AR(3) model was

0.2318 while the R2 of the linear AR model was 0.0412. The detailed forecasting

results are plotted in Figure 4, which shows clearly that the forecast based on the

subset-based KPCA method is more accurate, it captures the variations much

better than the linear AR modeling method.

7. Conclusion

In this paper, we have developed a new subset-based KPCA method for

estimating nonparametric regression functions. In contrast to the conventional
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Figure 4. One step ahead out-of-sample forecast for the log return of CPI from January
2005 to December 2014. The black solid line is the true value, the red dashed line is
the forecast value obtained by the subset-based KPCA, and the blue dotted line is the
forecast value obtained by the linear AR model.

(global) KPCA method which builds on a global kernel feature space, we use

different lower-dimensional subset-based kernel feature spaces at different loca-

tions of the sample space. Consequently the resulting localized kernel principal

components provide more parsimonious representation for the target regression

function, which is also reflected by the faster uniform convergence rates presented

in Theorem 1, see also the discussions immediately below Theorem 1. The re-

ported numerical results with both simulations and data sets clearly illustrate

the advantages of using the subset-based KPCA method over its global counter-

part. It also outperforms some popular nonparametric regression methods such

as the cubic spline and kernel regression (the results on kernel regression are not

reported to save the space). As well, the quadratic kernel constructed based on

(2.15) using normalized univariate linear and quadratic basis functions performs

better than the more conventional Gaussian kernel for the examples reported in

Sections 5 and 6.
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Supplementary Materials

The online supplementary material contains the proofs of Propositions 1–4

and Theorem 1.
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