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Abstract: This paper deals with the asymptotic statistical properties of a class of

redescending M-estimators in linear models with increasing dimension. This class

is large enough to include popular high breakdown point estimators such as S-

estimators and MM-estimators, which were not covered by existing results in the

literature. We prove consistency assuming only that p/n → 0 and asymptotic nor-

mality essentially if p3/n → 0, where p is the number of covariates and n is the

sample size.
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1. Introduction

The growing number of statistical problems with a large number of param-

eters has motivated the study of the asymptotic properties of estimators for

statistical models with a number of parameters that diverges with the sample

size. For the case of linear regression, consider a sequence of regression models

yi,n = xTi,nβ0,n + ui,n, 1 ≤ i ≤ n

where yi,n ∈ R, xi,n ∈ Rpn is a vector of fixed predictor variables, β0,n ∈ Rpn
is to be estimated and ui,n are i.i.d. random variables defined in a common

probability space with distribution function F0. u will denote a random variable

with distribution F0. We consider the case in which pn may tend to infinity

with n at a certain rate. To lighten the notation, we drop the n subscript from

yi,n,xi,n, β0,n, pn and ui,n.

It is well known that the Least Squares estimator of β0 is not robust, that is,

it can be ruined by a small number of extreme outliers in the data, and it is very

inefficient when the errors are heavy-tailed. This fact has led to the development

of robust estimators. A general framework for estimation in the linear model is

provided by M-estimators. The notion of an M-estimator was first introduced

in the landmark paper Huber (1964) for the case of the estimation of a location
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parameter and extended to the linear model in Huber (1973). Given a suitably

chosen loss function ρ, the corresponding regression M-estimator is defined, see

for example Section 4.4 of Maronna, Martin and Yohai (2006), as

β̂ = arg min
β∈Rp

n∑
i=1

ρ

(
ri(β)

σ̂n

)
, (1.1)

where ri(β) = yi − xTi β and σ̂n is an estimate of scale of the errors ui, that may

be estimated a priori or simultaneously. The scale estimate in (1.1) is needed to

make the resulting regression estimator scale equivariant. For example, σ̂n could

be the median of the absolute values of the residuals of some initial regression

estimator. For the case of a convex and differentiable loss function, (1.1) is

essentially equivalent to
n∑
i=1

ψ

(
ri(β̂)

σ̂n

)
xi = 0, (1.2)

where ψ = ρ′; see Section 4.4 of Maronna, Martin and Yohai (2006). In this case,

the resulting M-estimator is called a monotone regression M-estimator. When ψ

tends to zero at infinity the resulting estimator is called a redescending regression

M-estimator and, in this case, some solutions of (1.2) may not correspond to

solutions of (1.1).

The robustness of an estimator can be measured by its stability when a small

fraction of the observations is arbitrarily replaced by outliers that may not follow

the assumed model. A robust estimator should not be much affected by a small

fraction of outliers. A popular quantitative measure of an estimator’s robustness,

introduced by Donoho and Huber (1983), is the finite-sample replacement break-

down point. Very loosely speaking, the finite-sample replacement breakdown

point of an estimator is the maximum fraction of outliers that the estimator may

tolerate without being completely ruined. It can be shown that any regression

equivariant estimator has a breakdown point of at most 1/2. See, for exam-

ple, Section 5.4.1 of Maronna, Martin and Yohai (2006). On the other hand,

the breakdown point of monotone regression M-estimators is zero; see Section

5.16.1 of Maronna, Martin and Yohai (2006). Moreover, monotone regression

M-estimators may be highly inefficient when the errors are heavy tailed. These

facts have motivated the study of M-estimators defined using bounded, and hence

non-convex, loss functions, since they can be tuned to have the maximal break-

down point of 1/2, and be simultaneously highly efficient when the errors are

normal and when they are heavy-tailed.

A brief history of the study of the asymptotic properties of M-estimators for
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linear regression models with a diverging number of parameters goes as follows.

To the best of our knowledge, the first analysis of this problem appears in Huber

(1973). In Huber (1973), Huber studied the asymptotic properties of monotone

regression M-estimators defined without using an estimate of scale. Motivated

by problems in X-ray crystallography, Huber proposed to study the properties

of these estimators when p = pn → ∞ and proved asymptotic normality when

p3/n→ 0. This result was improved by Yohai and Maronna (1979), who obtained

similar results assuming only p5/2/n→ 0. Carroll (1982) extended this result to

heteroscedastic linear models. Portnoy (1984) and Portnoy (1985) studied the

asymptotic properties of the solutions of M-estimating equations, (1.2), without

including an estimate of scale and proved consistency and asymptotic normality

assuming (p log p)/n → 0 and (p log n)3/2/n → 0 respectively. Mammen (1989)

obtained similar results, but assuming only (p3/2 log n)/n → 0. Welsh (1989),

Bai and Wu (1994a) and Bai and Wu (1994b) further improved these results by

relaxing the regularity conditions imposed on ρ or the rate of growth of p. He and

Shao (2000) studied M-estimators of general parametric models with increasing

dimension. More recently, El Karoui et al. (2013), Bean et al. (2013), El Karoui

(2013), Donoho and Montanari (2016), and Nevo and Ritov (2016) have studied

the asymptotic properties of monotone M-estimators when p/n→ m ∈ (0, 1).

A related line of work is that of penalized M-estimators in the context of

sparse high-dimensional linear models. Li, Peng and Zhu (2011) studied the

asymptotic properties of penalized M-estimators defined using a convex loss func-

tion and a general penalty term, assuming that p/n→ 0. Bradic (2016) and Loh

(2017) also studied the asymptotic properties of penalized M-estimators, but

allowing for p to be possibly much greater than n.

None of these results are directly applicable to M-estimators defined us-

ing a bounded loss function, or to high-breakdown point estimators such as S-

estimators (Rousseeuw and Yohai (1984)) or MM-estimators (Yohai (1987)). The

only available result is that of Davies (1990), who proved the consistency of S-

estimators assuming (p log n)/n → 0. In this paper, we prove consistency and

asymptotic normality results for a class of redescending M-estimators that is

large enough to include both S and MM-estimators. More precisely, we prove

the consistency of the estimators under very general assumptions and requiring

only that p/n → 0 and we prove their asymptotic normality essentially when

p3/n→ 0.

The rest of this paper is organized as follows. In Section 2 we present the

class of estimators we study and we show that S and MM-estimators belong
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to this class. Moreover, we state and discuss the assumptions needed to prove

our results, and compare our assumptions with those previously considered in the

literature. In Section 3 we state our main results. Section 4 includes a simulation

study of the finite-sample performance of two estimators that are covered by

our theoretical results. Finally, in Section 5 we provide some conclusions. The

Supplementary Material to this article contains the proofs of all our results.

2. Definitions and Assumptions

We begin by defining the class of estimators for which we prove results. We

consider

Ln(β, σ̂n) =

n∑
i=1

ρ1

{
ri(β)

σ̂n

}
, (2.1)

and study the class of estimators defined by

β̂ = arg min
β∈Rp

Ln(β, σ̂n) (2.2)

where σ̂n is an estimate of the scale of the errors, that we assume satifies

σ̂n
p−→ s0 (2.3)

for some deterministic positive value s0, and ρ1 is a bounded ρ-function in the

sense of Maronna, Martin and Yohai (2006). In detail, ρ is said to be a ρ-

function if (i) ρ is bounded, with limt→∞ ρ(t) = 1 and ρ(0) = 0; (ii) ρ is even and

continuous; (iii) ρ(t) is a non-decreasing function of |t|; (iv) ρ(t2) < limt→∞ ρ(t)

and 0 ≤ t1 < t2 imply ρ(t1) < ρ(t2).

Hence, β̂ as defined by (2.2) is a regression M-estimator defined using a

particular type of bounded loss function. To make the notation lighter, we drop

the σ̂n argument form the definition of Ln, keeping it implicit.

Two commonly used bounded ρ-functions are Tukey’s Bisquare loss function,

given by

ρBc (t) = 1−

{
1−

(
t

c

)2
}3

I{|t| ≤ c}, (2.4)

and Welsh’s loss function, given by

ρWc (t) = 1− exp

(
−
(
t

c

)2
)
, (2.5)

where c > 0 is some tuning constant, that can be chosen to give the resulting

M-estimator of regression a given asymptotic efficiency at the normal distribu-

tion. For example, the tuning constants needed for 85% efficiency at the normal
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Figure 1. Plots of several loss functions.

distributions are 3.44 for Tukey’s Bisquare and 1.46 for Welsh’s loss. In Figure 1

we show plots of ρB3.44, ρ
W
1.46, the absolute value loss that defines the Least Abso-

lute Deviations estimator and the quadratic loss that defines the Least Squares

estimator. The absolute value and the quadratic loss were standardized so as to

have a maximum value of 1 over the interval [−3.5, 3.5].

Even though to prove our theoretical results we only need (2.3) to hold,

using a robust estimate of scale in (2.1) is crucial for obtaining robust regression

estimators. The intuition behind using a bounded loss function is to give small

weights to outliers, that is, observations with ‘large’ standardized residuals. The

robust scale estimate used to standardize the residuals gives an indication of the

typical size of the residuals when no outliers are present in the data. Moreover,

a scale estimate is needed to make β̂ scale equivariant, and the breakdown point

of σ̂n affects the breakdown point of β̂. Hence, robust scale estimates play an
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important role in robust regression. See for example Section 4.4.2 of Maronna,

Martin and Yohai (2006). In Lemma 3 we give an example of a robust estimate

of scale that satisfies (2.3).

A large class of robust estimates of scale is given by M-estimates of scale.

Let ρ0 be a bounded ρ-function. Given a vector v = (v1, . . . , vn) and 0 < b < 1,

the corresponding M-estimate of scale σ̂Mn (v) is defined, see Yohai (1987) for

example, as the value s > 0 that is the solution of

1

n

n∑
i=1

ρ0

(vi
s

)
= b, (2.6)

if #{i : vi = 0} < (1− b)n, and as zero otherwise. We use the notation σ̂Mn () to

refer to the function whose value when evaluated at a vector v is σ̂Mn (v). In Sec-

tion 3.2.2 of Maronna, Martin and Yohai (2006) it is shown that the breakdown

point of the M-estimate of scale is min(b, 1 − b). In practice, b is usually taken

to be 1/2, so that the M-estimate of scale has maximal breakdown point. Then,

one can choose ρ0 such that Eρ0(v) = 1/2 for v standard normal, to achieve

consistency for the standard deviation in the case of normal observations. For

example, one can take ρ0 = ρB1.54, where ρB is Tukey’s Bisquare loss, (2.4).

2.1. S and MM-estimators

We show that S and MM-estimators are included in the class of estimators

defined by (2.2).

S-estimators, introduced in Rousseeuw and Yohai (1984), are regression es-

timators that can be tuned to have a high breakdown point. They are defined

by

β̂S = arg min
β∈Rp

σ̂Mn (r(β)), (2.7)

where r(β) = (r1(β), . . . , rn(β)) and σ̂Mn () is an M-estimator of scale. If σ̂Mn ()

is defined using b = 1/2, then β̂S has breakdown point equal to 1/2, but S-

estimators cannot combine a maximal breakdown point with arbitrarily high-

efficiency at the normal distribution. Let ρ0 be the ρ-function used to define

σ̂Mn (). Then, S-estimators satisfy

β̂S = arg min
β∈Rp

n∑
i=1

ρ0

(
ri(β)

σ̂Mn (r(β̂S))

)
,

see Section 5.6.1 of Maronna, Martin and Yohai (2006). In Lemma 3 we show that

σ̂Mn (r(β̂S)) converges in probability to a positive value and hence S-estimators are

included in the class of estimators defined by (2.2), since they are M-estimators
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defined using a ρ-function and an estimate of scale that converges in probability

to a positive constant.

MM-estimators, introduced in Yohai (1987), are regression estimators that

can be tuned to attain both a high breakdown point and an arbitrarily high

asymptotic efficiency at the normal distribution. Suppose β̂1 is a highly robust,

but not necessarily highly efficient, initial estimator. In practice, β̂1 is usually

an S-estimator, tuned to have maximal breakdown point. Let σ̂Mn () be an M-

estimator of scale defined using a bounded ρ-function ρ0 and b. Let ρ1 be another

ρ-function that satisfies ρ1(t) ≤ ρ0(t) for all t. Then the MM-estimator is defined

by

β̂MM = arg min
β∈Rp

n∑
i=1

ρ1

(
ri(β)

σ̂Mn (r(β̂1))

)
.

It can be shown, see Maronna, Martin and Yohai (2006), that β̂MM has a break-

down point that is at least as high as that of β̂1. The original definition of

MM-estimators is actually more general, but for technical convenience we work

with this definition. Note that if we take β̂1 as an S-estimator, then β̂MM is in-

cluded in the class of estimators defined by (2.2). As we will see in the simulation

study included in Section 4, MM-estimators can be tuned to be simultaneously

efficient at the normal distribution and at heavy tailed distributions such as Stu-

dent’s t, while at the same time being resistant to the presence of outliers in the

data.

2.2. Assumptions

We now state and discuss the assumptions needed to prove our results re-

garding the theoretical properties of (2.2).

R0. ρ0 is a ρ-function and, for some m > 0, ρ0(t) = 1 if |t| ≥ m.

R1. ρ1 is a continuously differentiable ρ-function. Let ψ1 be the derivative of

ρ1. Then ψ1(t) and tψ1(t) are bounded.

R2. ρ1 is a three-times continuously differentiable ρ-function. Let ψ1 be the

derivative of ρ1. Then ψ1(t), ψ
′
1(t), ψ

′′
1(t), tψ1(t), tψ

′
1(t) and tψ′′1(t) are

bounded.

These are additional conditions on the loss functions. We used ρ0 in (2.6)

to define M-estimates of scale and ρ1 was used in (2.2) to define the estimators

we are studying. Conditions R0 and R1 are satisfied by, for example, Tukey’s
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Bisquare loss function. Condition R2 is a strengthening of condition R1, and it

is needed to obtain the asymptotic distribution of the estimators. It is satisfied

by, for example, Welsh’s loss (2.5) and by

ρ(t) = 1−
(
1− t2

)4
I {|t| ≤ 1} ,

which is similar to Tukey’s Bisquare loss.

F0. F0 has a density, f0, that is an absolutely continuous, even, monotone de-

creasing function of |t|, and a strictly decreasing function of |t| in a neigh-

bourhood of 0.

Here F0 does not require finite moments from F0, the distribution of the

errors. The condition is clearly satisfied by the normal distribution, but also by

heavy tailed distributions, such as Student’s t-distribution. As shown in Lemma

6 in the Supplement, F0 and R2 together imply that Eψ′1(u/s0) > 0, a fact that

is needed to obtain the rate of convergence of the estimators.

X0. p < [n(1− b)] for all n, where b is the constant used in (2.6).

X1. a) There exists a constant M > 0 such that (1/n)
∑n

i=1 ‖xi‖2 ≤ pM for

all n.

b) There exists a constant B > 0 such that maxi≤n ‖xi‖ ≤ Bn for all n.

Condition X0 is needed in the proof of the consistency of the scale estimate pro-

vided by the S-estimator. To prove the consistency of the regression estimators

we need p/n → 0. To obtain the rate of consistency of the estimators we need

(p log n)/n → 0. Note that (p log n)/n → 0 is no stronger than (p log p)/n → 0,

paraphrasing Portnoy (1984): if p ≤
√
n, (p log n)/n ≤ (log n)/

√
n → 0; while

if p ≥
√
n, (p log n)/n ≤ (2p log p)/n. X1 is needed to obtain the rate of con-

vergence of the estimators. X1 a) holds when the covariates are standardized.

X1 b) appears in Portnoy (1984) and holds, for example, if all the covariates

are bounded and p < n, which we assume throughout this paper. To illustrate

whether a condition on the design is reasonable, it is usual to show that if the

predictors were sampled from some distribution, say the multivariate normal for

example, then the condition holds with high probability; see for example Yohai

and Maronna (1979) and Portnoy (1985). If Xi, i = 1, . . . , n, are independent and

identically distributed random vectors in Rp such that for some C, EX2
i,j ≤ C

for all i, j and n, then X1 holds in probability for Xi if p/n→ 0; see Section 4 of

Portnoy (1984).
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Let γ1,n and γ2,n be the smallest and largest eigenvalues of Σn = (1/n)∑n
i=1 xix

T
i .

X2. Σn is non-singular for all n and τ = supn γ2,n <∞.

Condition X2 is common in the literature and appears in, for example, Port-

noy (1985) and Welsh (1989). See also Bai and Wu (1994a). It is needed to

obtain the rate of consistency of the estimators.

For 0 < α < 1, let

λn(α) = min
A⊂{1,...,n},#A=[nα]

{
min

θ,‖θ‖=1

(
max
i∈A
|xTi θ|

)}
.

X3. For some 0 < α < 1, lim infn λn(α) > 0.

The function λn(α) that appears in X3 was introduced in Davies (1990). For

A ⊂ {1, . . . , n} with #A = [nα] let Σ(A) = (1/[nα])
∑

i∈A xix
T
i . Let γ1,n(A) be

the smallest eigenvalue of Σ(A). Take θ with ‖θ‖ = 1. Then

θTΣ(A)θ ≤ max
i∈A
|xTi θ|2.

Hence γ1,n(A) ≤ min‖θ‖=1 maxi∈A |xTi θ|2 and

min
A⊂{1,...,n},#A=[nα]

γ1,n(A) ≤ λn(α)2.

It follows that lim infn λn(α) > 0 holds if the smallest eigenvalues of the covari-

ance matrices formed from any subsample of size [nα] are uniformly bounded

away from zero. An extended discussion of X3 can be found in the Supplement.

The following lemma gives necessary conditions for lim infn λn(α) > 0 to hold.

Lemma 1. Assume X1 a) holds. Then, if lim infn λn(α) > 0 for some 0 < α < 1,

there exist positive numbers η1, η2 and n0 such that

1

n

n∑
i=1

xix
T
i I{‖xi‖ < η1

√
p} − η2Ip

is positive definite for all n ≥ n0.

If X1 and X3 hold, by Lemma 1 we have that infn γ1,n > 0.

For z ∈ Rp and c > 0, let I(z, c) =
{
i = 1, . . . , n :

∣∣xTi z
∣∣ ≤ c}, let B(δ) be

the ball in Rp centered at zero with radius δ, and let S∗ be the sphere centered

at zero with radius 1.

X4. For any c > 0 there are constants a > 0, δ > 0 and C > 0 such that for all

β ∈ B(δ), z ∈ S∗, and n,
∑

i∈J
(
xTi z

)2 ≥ an, where J = I(β, c) ∩ I(z, C).
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X5. For any c > 0 and ε > 0 there are constants δ
′
> 0 and C > 0 such that for

all β ∈ B(δ
′
), z ∈ S∗, and n,

∑
i/∈J
(
xTi z

)2 ≤ εn, where J = I(β, c)∩I(z, C).

X6. maxi≤n ‖xi‖2 = o(n/p2).

X4 and X5 were introduced in Portnoy (1984) where they appear as X1

and X2. Portnoy (1984) showed that these conditions hold in probability if the

covariates are sampled from an appropriate distribution in Rp, such as a scale

mixture of standard multivariate normals, and (p log n)/n → 0. X4 and X5 are

used in Lemma 7, a result that is needed in the proof of the rate of convergence

of the estimators. This lemma shows that, very loosely speaking, Ln(β) is convex

in a neighbourhood of the true regression parameter with probability tending to

one.

X6 is needed in the proof of the asymptotic normality of the estimators. It

holds, for example, if the covariates are bounded and p3/n→ 0. This is the rate

of growth of p allowed by the asymptotic normality result of Huber (1973).

3. Main Results

In this section, we state and prove our main results.

We make extensive use of the tools from empirical processes theory that

appear in Pollard (1989) and van der vaart and Wellner (1996). The results in

Pollard (1989), in particular the maximal inequalities of Theorem 4.2, are stated

and proved for i.i.d. random variables. The maximal inequality of Theorem

2.14.1 of van der vaart and Wellner (1996) is stated and proved for i.i.d. random

variables. In Theorem 1 we extend Theorem 4.2 of Pollard (1989) to make

it directly applicable to our scenario of interest, where the observations are of

the form (vi, zi), i = 1, . . . , n, for v1, . . . ,vn i.i.d. random vectors in Rm and

z1, . . . , zn fixed vectors in Rd.
We first introduce some notation. Let ε > 0. Let H be a class of functions

defined on Rd and let ‖.‖ be a pseudo-norm on H. The capacity number of

H, D(ε,H, ‖.‖), is the largest N such that there exists h1, . . . , hN in H with

‖hi − hj‖ > ε for all i 6= j. The capacity number is also called the packing

number in the literature. Given Q, a probability measure on Rd with finite

support, let ‖.‖2,Q be the L2(Q) pseudo-norm.

Theorem 1. Let z1, . . . , zn be fixed vectors in Rd. Let v1, . . . ,vn be i.i.d. random

vectors in Rm. Let H be a class of functions defined in Rm+d and taking values
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in R. Assume H has envelope H that satisfies(
1

n

) n∑
i=1

EH2(vi, zi) <∞

and that H contains the zero function. Furthermore, assume that there exists

a decreasing function D(ε) that satisfies
∫ 1
0 {logD(ε)}1/2 dε < ∞, such that for

all 0 < ε < 1 and any probability measure on Rm+d with finite support Q with

‖H‖2,Q > 0, D(ε‖H‖2,Q,H, ‖.‖2,Q) ≤ D(ε). Then

(i)

E sup
h∈H

∣∣∣∣∣ 1√
n

n∑
i=1

{h(vi, zi)− Eh(vi, zi)}

∣∣∣∣∣
≤M

{
1

n

n∑
i=1

EH2(vi, zi)

}1/2 [∫ 1

0
{logD(ε)}1/2 dε

]
,

(ii)

E sup
h∈H

∣∣∣∣∣ 1√
n

n∑
i=1

{h(vi, zi)− Eh(vi, zi)}

∣∣∣∣∣
2

≤M 1

n

n∑
i=1

EH2(vi, zi)

[∫ 1

0
{logD(ε)}1/2 dε

]2
,

where M > 0 is a fixed universal constant.

The following lemma is a key result in the proof of the consistency of the

estimators. Lemma 2 of Davies (1990) is a similar result, but requires (p log n)/n

→ 0. The improved rate provided by Lemma 2 explains the difference in the rate

of growth of p our consistency result requires, p/n→ 0, and the rate required by

Davies’ result, (p log n)/n→ 0.

Lemma 2. Assume ρ is a ρ-function. Consider the class of functions

H =

{
hs,θ(t,x) = ρ

(
t− xTθ

s

)
: θ ∈ Rp , s > 0

}
.

Then

E sup
h∈H

∣∣∣∣∣ 1n
n∑
i=1

{h(ui,xi)− Eh(u,xi)}

∣∣∣∣∣ ≤M
√
p

n
,

where M > 0 is a constant depending only on ρ. In particular, if p/n→ 0,

sup
h∈H

∣∣∣∣∣ 1n
n∑
i=1

{h(ui,xi)− Eh(u,xi)}

∣∣∣∣∣ p−→ 0.
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The following lemma proves the consistency of σ̂Mn (r(β̂S)), where β̂S is an

S-estimator as defined in (2.7).

Lemma 3. Assume R0, F0 and X0 hold and that p/n → 0. If f0 is strictly

decreasing on the non-negative real numbers, then σ̂Mn {r(β̂S)} P→ s(F0), where

s(F0) is the positive solution of Eρ0(u/s) = b.

In particular, if ρ0 is chosen to satisfy Eρ0(u) = b for u with standard normal

distribution, σ̂Mn (r(β̂S)) is a consistent estimator of the standard deviation in the

case of normal errors.

We are now ready to state the consistency of the estimators defined by (2.2).

Theorem 2 (Consistency). If R1 and F0 hold and p/n → 0, then, for any

0 < α < 1, λn(α)‖β̂ − β0‖
P→ 0.

Note that Theorem 2 together with X3 entails that β̂ is consistent. In the

following theorem, we derive its rate of convergence.

Theorem 3 (Rate of convergence). If R2, F0 and X1-X5 hold and (p log n)/n→
0, then ‖β̂ − β0‖ = OP (

√
p/n)

If, under the assumptions of Theorem 3, we further assume that maxi≤n ‖xi‖2

= o(n/p) it follows that maxi≤n |xTi (β̂−β0)|
p−→ 0. Hence, Theorem 2 of Mammen

(1989) can be applied to obtain asymptotic expansions for S-estimators.

Next, we derive the asymptotic distribution of β̂.

Theorem 4 (Asymptotic distribution). Let an be a vector in Rp satisfying

‖an‖ = 1. Let r2n = aTnΣ−1n an. If R2, F0 and X1-X6 hold and (p log n)/n → 0,

then
√
nr−1n aTn

(
β̂ − β0

)
d−→ N

(
0, s20

a(ψ1)

b(ψ1)2

)
,

where a(ψ1) = Eψ2
1 (u/s0) and b(ψ1) = Eψ′1 (u/s0).

4. Simulation Study

The simulation study in this section aims at showing the usefulness of the

class of estimators considered in the previous section, in particular of MM-

estimators, in dealing with outliers in the data and heavy tailed errors. We

compare the finite-sample performance with regards to robustness and efficiency

of the following estimators.

LS The Least Squares estimator. This is the maximum likelihood estimator

for the case of normal errors.
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LAD The Least Absolute Deviations estimator. This is a monotone M-estimator

and also the maximum likelihood estimator for the case of double expo-

nential errors.

Tukey An MM-estimator, defined using Tukey’s loss function, (2.4), and tuned

to have an 85% asymptotic efficiency when the errors are normally dis-

tributed, with tuning constant c = 3.44. The initial estimator is an S-

estimator defined using b = 1/2 and Tukey’s loss function with tuning

constant equal to 1.54. Hence, the initial S-estimator has maximal break-

down point and the associated scale estimate is consistent in the case of

normal errors.

Welsh An MM-estimator, defined using Welsh’s loss function, (2.5), and tuned

to have an 85% asymptotic efficiency when the errors are normally dis-

tributed, with tuning constant c = 1.46. The initial estimator is the same

as that of the last estimator.

Both MM-estimators are included in the class of estimators defined in Section

2 for which we proved asymptotic results. Tuning for an 85% efficiency at the

normal distribution is chosen because that value of efficiency provides a good

trade-off between robustness and efficiency, see Section 5.9 of Maronna, Martin

and Yohai (2006). All computations were performed in R. To compute the MM-

estimators we used the robust and robustbase packages.

We generated 500 Monte Carlo replications of a linear model with p pre-

dictors and n observations. We considered three possible combinations of (p, n):

(5, 40), (50, 500) and (100, 1,500). We considered normally distributed predictors.

Since all the estimator considered were regression, affine and scale equivariant,

there is no loss in generality in taking the predictors to be i.i.d standard normal,

and the true regression parameter β0 to be zero. We first considered two possible

error distributions, normal (light tailed) and Student’s t-distribution with three

degrees of freedom (heavy tailed). Let β̂i be the result of one of the estimators

being compared in the i-th Monte Carlo replication and let β̂iML be the Maxi-

mum Likelihood estimator computed using the i-th replication of the data. We

measure the finite sample efficiency as (
∑500

i=1 ‖β̂iML‖2)/(
∑500

i=1 ‖β̂i‖2).
Results are shown in Table 1. The efficiency of LS in the case of normal

errors is not included in the table, since it is always 1. For normal errors, it is

seen that the finite sample efficiency of the estimators is close to the asymptotic

one, 85% for the MM-estimators and 64% for the LAD estimator. For the MM-

estimator defined using Tukey’s loss, the efficiency is seen to increase as the ratio
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Table 1. Efficiencies of the estimators for errors with standard normal distribution and
Student’s t-distribution with 3 degrees of freedom.

Normal Student
(p, n) Tukey Welsh LAD Tukey Welsh LAD LS
(5, 40) 0.78 0.83 0.63 0.88 0.92 0.80 0.57
(50, 500) 0.81 0.82 0.65 0.93 0.96 0.81 0.55
(100, 1,500) 0.82 0.83 0.64 0.94 0.97 0.80 0.53

Table 2. Maximum MSE of the estimators under contamination.

(p, n) Tukey Welsh LAD LS
(5, 40) 0.57 0.67 3.15 6.05
(50, 500) 0.69 0.80 1.92 5.92
(100, 1,500) 0.60 0.74 1.49 5.54

p/n decreases. For the case of errors with Student’s t-distribution with three

degrees of freedom, the LS estimator is very inefficient, the LAD estimator does

well and the MM-estimators are highly efficient. For both error distributions, the

MM-estimators are more efficient than the LAD estimator. The MM-estimator

defined using Welsh’s loss is more efficient than the one defined using Tukey’s

loss. As we will see, the price to pay for this increase in efficiency is a loss in

robustness.

To measure the robustness of the estimators to outliers, we introduced con-

tamination in the data. We only considered normal errors. In each Monte Carlo

replication, we contaminated 10% of the data by replacing, for i = 1, . . . , [0.1n],

xi with (5, 0, . . . , 0) and yi with 5k, where k, the outlier size, was moved in a

grid between 0 and 3 with step 0.1. We then computed for each estimator the

maximum mean squared error over all outlier sizes. Results are shown in Table

2. It is seen that the LS estimator and the LAD estimator are heavily affected by

the outliers, more so in the case of a relatively high p/n ratio. On the other hand,

both MM-estimators are seen to be resistant to the contamination. Note how-

ever that the MM-estimator defined using Welsh’s loss has maximum MSEs that

are around 10% higher than those of the MM-estimator defined using Tukey’s

loss. Finally, in Figure 2 a plot of the MSEs as a function of the outlier size

for (p, n) = (5, 40) is shown. The resulting curves for both MM-estimators are

similar, and flatten out quickly. On the other hand, the performance of the LS

and LAD estimators continues to deteriorate as the outlier size increases.
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Figure 2. MSE as function of outlier sizes for (p, n) = (5, 40) and normal errors.

5. Discussion

Recent papers, such as Bean et al. (2013) and Donoho and Montanari (2016),

have studied the asymptotic properties of monotone M-estimators when p/n →
m ∈ (0, 1). Extending their results to redescending M-estimators is part of our

current research. We should note however, that the computation of redescending

M-estimators is in general challenging, since it involves minimizing non-convex

functions.

Recently Smucler and Yohai (2017) proposed regularized versions of MM-

estimators, in an effort to obtain robust estimators that perform variable selection

and work even when p > n. They studied their asymptotic properties only in the

fixed p regime. Extending their results to linear models with increasing dimension

is an interesting problem, requiring further research.

Supplementary Materials

The Supplementary Material contains the proofs of all the results stated in

the paper, and a discussion of one of the main assumptions needed to prove the

results.
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