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Abstract: Given a fixed-sample-size test that controls the error probabilities under
two specific arbitrary distributions, we propose and analyze a 3-stage test and two
4-stage tests. For each test, we specify a novel, concrete, non-conservative design,
and establish a first-order asymptotic approximation for the expected sample size
under the two prescribed distributions as the error probabilities go to zero. As a
corollary, we show that the proposed multistage tests can asymptotically achieve
the optimal expected sample size under these two distributions in the class of all
sequential tests with the same error control. Furthermore, the tests are shown to
be more robust than Wald’s sequential probability ratio test when applied to one-
sided testing problems and the error probabilities under control are small. We
apply these general results to testing problems in the independent and identically
distributed setup and beyond, such as testing the correlation coefficient of a first-
order autoregressive process or testing the transition matrix of a finite-state Markov
chain, and illustrate them in various numerical studies.
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1. Introduction

A typical motivation for employing a sequential test, that is, a testing
procedure with a sample size that depends on the collected observations, is that
its average sample size can be much smaller than that of the corresponding fized-
sample-size test. One of the first tests of this kind was the double sampling
procedure in Dodge and Romig| (1929)), a precursor to the sequential probability
ratio test (SPRT) and the field of “sequential analysis” (Wald (1947)). However,
implementing the SPRT and most sequential tests in the literature (see, e.g.,
Tartakovsky, Nikiforov and Basseville (2014)) requires continuous monitoring
of the data collection process. This is often inconvenient, if not infeasible,
in application areas such as sampling inspection (Dodge and Romig| (1929)),
clinical trials (Jennison and Turnbull (1999); Bartroff, Lai and Shih| (2012))),
and educational assessment (Wang et al.| (2016)). As a result, such applications
focus on multistage tests, also known as group-sequential tests, where the
implementation requires collecting only a small number of groups of samples.
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Works on multistage tests, such as |Armitage, McPherson and Rowe (1969);
Pocock! (1977)); |O’'Brien and Fleming| (1979); Pocock (1982); Wang and Tsiatis
(1987); [Emerson and Fleming (1989); Eales and Jennison| (1992)); Pampallona
and Tsiatis (1994); Barber and Jennison| (2002)), typically focus on testing the
mean of independent and identically distributed (i.i.d.) Gaussian observations
with a known variance, are designed to control predetermined type-I and type-
II error probabilities under two specific distributions, and require equal stage
sizes. Free parameters, if any, as in Wang and Tsiatis (1987), are selected to
optimize the expected sample size under a certain distribution, for example, the
one under which the type-II error probability is controlled. This optimization is
performed using dynamic programming in Eales and Jennison (1992)) and Barber
and Jennison, (2002)).

Multistage tests with unequal and random stage sizes have been considered
by [Lan and DeMets| (1983)); Kim and DeMets| (1987)); |Jennison (1987), and Lai
and Shih| (2004)). The latter work also studies more general testing problems
related to the parameters of an exponential family.

In all of the aforementioned works, the stage sizes are treated as user-specified
inputs. However, Lorden| (1983) showed that a 3-stage test with properly designed
stages can achieve the optimal expected sample size under both hypotheses among
all sequential tests with the same or smaller error probabilities, asymptotically
as the latter go to zero. In the case of two simple hypotheses for i.i.d. data,
this was shown for multistage tests with deterministic stage sizes (Section 2 of
Lorden| (1983))). In the case of composite hypotheses for the one-sided testing
problem in a one-parameter exponential family, this was shown for multistage
tests with adaptive stage sizes, that is, they can depend on data from previous
stages (Section 3 of [Lorden| (1983)). Such multistage tests are also considered
in Bartroff and Lai (2008alb), who propose a less conservative design. These
asymptotic optimality results all require certain assumptions on the decay rates
of the prescribed error probabilities, which are not allowed to go to zero very
asymmetrically.

In the present work, we focus on the design and analysis of multistage tests
with deterministic stage sizes, and strengthen, extend, and generalize the results
in Section 2 of [Lorden| (1983). First, unlike the previously mentioned works, we
do not require i.i.d. observations. Instead, we assume a fixed-sample-size test is
given that can control the type-I and type-II error probabilities under two specific
distributions below arbitrary levels. Given this, we introduce and analyze a 3-
stage test, that generalizes the one in Section 2 of [Lorden (1983)), and two novel
4-stage tests. For each test, we propose a concrete design that guarantees non-
asymptotic and non-conservative error control. The designs require knowledge of
the number of observations and the threshold the fixed-sample-size test requires
in order to achieve certain error control. While there are not, in general, explicit
formulae for these quantities, they can be estimated via simulation. For this task,
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we also propose an efficient importance sampling approach, which is necessary in
the case of small error probabilities, where a plain Monte Carlo approach may be
inefficient or even infeasible (see, e.g., Bucklew| (2010))).

In order to obtain theoretical insights about the proposed multistage tests, we
impose some structure on the above general setup. Specifically, we assume that
there exist thresholds for which the error probabilities of the fixed-sample-size test
under the two prescribed distributions decay exponentially fast in the sample size.
Based on this assumption, we establish first-order asymptotic approximations for
the expected sample sizes of the proposed multistage tests under the distributions
where the error probabilities are controlled, as the latter go to zero. For the 3-
stage test, the relative decay of the error probabilities is allowed to be much
more asymmetric than the one required in Section 2 of Lorden (1983)). Even
more asymmetric decay is allowed for the two 4-stage tests.

When the given fixed-sample-size test is the likelihood ratio test, the proposed
multistage tests are shown, similarly to the SPRT, to achieve the optimal expected
sample size under the two prescribed distributions in the family of all sequential
tests with the same or smaller error probabilities, to a first-order asymptotic
approximation as the latter go to zero. The difference is that the asymptotic
optimality of the multistage tests, unlike that of the SPRT, requires certain
restrictions on how asymmetrically the error probabilities decay (which are less
strict for the 4-stage tests than for the 3-stage test).

In order to obtain a more complete picture for this comparison, we establish
a distribution-free asymptotic upper bound on the expected sample sizes of the
proposed multistage tests as at least one of the two prescribed error probabilities
goes to zero. This reveals that, when the prescribed error probabilities are small,
these multistage tests are much more robust than the SPRT, whose expected
sample size can be inflated when the true distribution is “between” the prescribed
ones (see, e.g., Bechhofer| (1960)).

We illustrate the proposed methodology and the above asymptotic results
in numerical studies for various testing problems. Indeed, the distributional
assumptions for our asymptotic analysis can be shown to hold, using the Géartner—
Ellis theorem from large deviation theory (see, e.g., [Dembo and Zeitouni| (1998)),
for various testing problems beyond the i.i.d. setup. Two specific examples,
used in our numerical studies, are testing the correlation coefficient of a first-
order autoregression series and testing the transition matrix of an irreducible
and recurrent finite-state Markov chain.

The remainder of this paper is organized as follows. In Section 2, we
formulate the testing setup. In Section 3, we introduce and design the proposed
multistage tests. In Section 4, we establish our asymptotic theory. In Section 5,
we conclude and discuss potential extensions. In Section S1 of the Supplementary
Material, we state sufficient conditions for the asymptotic analysis of Section 4.
In Section S2, we develop an importance sampling approach for the efficient
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implementation of the proposed design when the error probabilities are small. In
Section S3, we illustrate the general theory in three specific testing problems. In
Section S4, we present our numerical studies. All proofs are presented in Section
Sh.

Next, we introduce some notations. We denote by N the set of positive
integers, that is, N = {1,2,...}, and by R the set of real numbers. For z,y € R,
we set x Ay = min{x, y} and xVy = max{x, y}. For positive sequences (z,), (¥,),
we write x,, ~ vy, for lim,(z,/y,) = 1, x,, 2 y, for lim, (x,/y.) > 1, z, <y, for
lim, (,/y,) <1, z, < ¥, for z,/y, — 0, and z,, > y, for x,/y, — oco.

2. Problem Formulation

We consider a sequence of S-valued random elements, X = {X,,n € N},
where (S,S8) is an arbitrary measurable space. For any n € N, we denote by
F, the o-algebra generated by the first n terms of this sequence, that is, F,, =
o(X1,...,X,). We denote by P the distribution of X, assume that it belongs to
some family, P, and consider the following hypothesis testing problem:

Hy: PePy, versus H,:PeP, (2.1)

where Py and P; are disjoint subsets of P.

We assume that the data can be collected sequentially, and that it is possible
to decide after each observation whether or not to stop sampling. Thus, if 7 is
the total sample size of a testing procedure and d is its decision, with H; being
selected when d = i for i € {0,1}, we say that x = (7,d) is a test for if
T is a stopping time with respect to the filtration {F,, n € N} and d is an F,-
measurable Bernoulli random variable, that is, {r = n}, {Tr =n, d =i} € F, for
every n € N and ¢ € {0,1}.

We refer to a test as a fized-sample-size test if 7 is deterministic and as a
multistage test if 7 can take a small number of values. We denote by C the
family of all tests, and we further introduce a subfamily of tests that control the
two types of error probabilities under two specific, but arbitrary, distributions.
Specifically, we fix Py € Py and P, € Py, and, for any «, 3 € (0,1), we denote
by C(c, ) the family of tests whose type-1 error probability under P, does not
exceed a and whose type-II probability under P; does not exceed 3, that is,

Cla,B) ={(r,d) €C: Po(d=1) <a and P,(d=0)<g}. (2.2)

For each i € {0,1}, we denote by E; the expectation under P;, and by £;(«, 3)
the optimal expected sample size in C(«, 3) under P;, that is,

Li(a, ) = inf{E;[7] : (1,d) € C(a, B)} . (2.3)
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First, we aim to introduce 3-stage and 4-stage tests with deterministic stage
sizes that can be designed to belong to C(a, 3) for any given «, 8 € (0,1). For
this design, we only require the existence of a fixed-sample-size test that can
provide such error guarantees. Thus, our only standing assumption throughout
this paper is that there is a sequence of test statistics, T' = {7}, n € N}, such
that, for every n € N, T,, is F,,-measurable and, for any «, 8 € (0,1), there exist
n € N and k € R so that the fized-sample-size test that rejects Hy if and only
if T,, > Kk belongs to C(a, ). Suppressing the dependence on T', we denote by
n*(a, #) the smallest such sample size, that is,

n*(o, B) =min{n € N: Ix € R so that Po(T, > k) <

and Py(T, < k) < B}, (24)

and by k*(a,f) any of the corresponding thresholds. In Section S2 of the
Supplementary Material, we discuss the computation of these quantities in
practice when they do not admit closed-form expressions.

Second, we aim to show that, when the test statistic T is selected appro-
priately, the proposed multistage tests achieve the optimal expected sample size
in C(«, f) under both Py and Py, that is, Lo(«, 8) and L1(, ), to a first-order
asymptotic approximation as «, § — 0. For this asymptotic optimality result, we
need some additional distributional assumptions, which we state in Section 4.

We end this section by illustrating the above testing formulation using the
generic one-sided testing problem, which we use in all our examples and numerical
studies in Sections S3—S4 of the Supplementary Material.

2.1. The one-sided testing problem

Suppose that the family of plausible distributions, P, is parametrized by a
scalar parameter, u, taking values in an open interval M C R. That is, if we
denote by P, and E, the distribution and expectation, respectively, of X when
the true parameter is u, then P = {P, : u € M}. Moreover, suppose the testing
problem of interest is whether the true parameter u is smaller or larger than some
user-specified value, p, € M, that is,

Hy:p<p, versus Hy:p> p., (2.5)

or equivalently, Py = {P, : p < p.} and Py = {P, : p > p.}. Suppose further
that the type-I error probability must be controlled below a when p = g, and
the type-II error probability must be below 8 when p = py, where «, 8 € (0,1)
and po, b1 € M, po < ps < p1- Then, this is a special case of the framework
introduced in this section, with P, =P, i € {0,1}.

Remark 1. In the context of the above one-sided testing problem, a test xy =
(1,d) in C(«, ) should ideally control the type-I error probability below « for
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every p < po and the type-1I error probability below 5 for every p > pq, that is,

P.(d

=1) < « for every u < o,
P,(d =0) < B for every pu > pu.

(2.6)

This is obviously the case for the fixed-sample-size test that rejects Hy if and
only if T}, > x when

P, (T, > k) = sup P,(T,, > k), P, (T, <k)=supP,(T, <k). (2.7)

r<po KZpa

If the monotonicity property (2.7) holds for every n € N and x € R, then the
uniform error control in (2.6) will also hold for the proposed multistage tests in
this work.

3. The Multistage Tests

In this section, we introduce and analyze the multistage tests that we consider
in this work.

3.1. The 3-stage test

We first introduce and analyze a test that offers two opportunities to
accept the null hypothesis and two to reject it. Its implementation requires
the specification of three positive integers, ng,n:, N, and three real thresholds,
Ko, k1, K, so that

noVng <N and kg<r; if ng=ng. (3.1)

Specifically, ng (resp. n;) is the number of observations collected by the first
opportunity to accept (resp. reject) Hy, and N is the maximum number of
observations that can be collected.

Given these parameters, the test proceeds as follows:

(i) no A my observations are initially collected.

o If ny <ny and T,,, < Ko, then H, is accepted.

o If ny <ng and T,,, > k1, then Hy is rejected.

(ii) If no decision has been reached yet, (ng V ni) — (no A ny) additional
observations are collected.

o If ng <ny and T,,, > k1, then Hy is rejected.

o If ny <ng and T,,, < Ko, then Hy is accepted.

(iii) If no decision has been reached yet, N — (ng V ny) additional observations
are collected, and H) is rejected if and only if Ty > K.
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To avoid a possible overlap between acceptance and rejection regions when ng V
ni; = N, we include the convention that whenever the test reaches its final stage,
the only effective threshold is K.

This testing procedure can be implemented by collecting at most three
samples of deterministic sizes. In what follows, we refer to it as the 3-stage

test and denote it by x = (7, d).

Remark 2. This test was first proposed in Section 2 of Lorden| (1983)), where
X is an i.i.d. sequence and the test statistic, T, is the average log-likelihood
ratio between P; and Py. Our setup here is essentially universal, because the
only assumption in this section about X and T is that the corresponding fixed-
sample-size test can control the error probabilities below arbitrary, user-specified
levels, that is, that n*(«, 3) is finite for every «, 8 € (0,1). Moreover, we next
propose a concrete and non-asymptotic specification of the design parameters,
which is novel and practically useful, even in the specific setup of Section 2 of
Lorden| (1983]).

3.1.1. Error control
By the definition of the 3-stage test, it follows that, for any selection of its
parameters and any P € P,

)

1)<
P(d=0) <

Consequently, if the sample size and the threshold are
no=n"(y,8) and ko=k"(y,5) forsome ~v€laVp1) (3.4)
in the first opportunity to accept H,
ny =n*(a,0) and k; =k"(a,d) forsome 0 €[aVp,1) (3.5)
in the first opportunity to reject Hy, and
N =n"(a,) and K =«k"(c,f) (3.6)

in the final stage, then by (3.2) with P = Py, and by (3.3) with P = P, we have
Po(d = 1) < 2 and Py(d = 0) < 25. This observation leads to the following
theorem.

Theorem 1. Let o, € (0,1). If the design parameters are selected according

to (3.4)—(3.6), with o and § replaced by /2 and [3/2, respectively, then (3.1)) is
satisfied and x € C(a, B3).
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Proof. Condition (3.1)) can be verified using the following straightforward obser-
vations:

n*(al,ﬁl) S n*(ag,ﬁg) if (631 Z (%) and 51 2 52, (37)
K*(a, 1) < K" (ag, B2) if n*(aq, B1) =n" (a2, B2) and a1 > ay, B < B,
The proof that x € C(«, 3) follows by the discussion preceding this theorem.
Theorem 1 specifies a design for Y € C(a,3) up to two free parameters,
7,0 € [(aV ()/2,1). Increasing the value of  (resp. d) reduces the number of
observations until the first opportunity to accept (resp. reject) Hy, but increases
the probability of continuing to the final stage. To solve this trade-off, in

Subsection 3.1.3, we propose selecting v (resp. ¢) to minimize an upper bound
on Eo[T] (resp. E1[T]) that is independent of 0 (resp. ).

3.1.2. The expected sample size
By the definition of the 3-stage test, it follows that, for any P € P,

e if ng <n; < N, then

n1

- T, >
E[T]:n0+(n1—no)‘P(Tno>:‘€0)+(N—TL1)'P<TO /10)7 (38)
e if ny <ny < N, then

E[#] = n1 + (no — 1) - P (Ty, < k1) + (N — ng) - P (Tm = “1> . (3.9

no >HO

where E is the expectation under P.
Applying to these identities the inequality

max{0, P(4) — P(B°)} < P(AN B) < P(A),

we obtain, for any selection of the design parameters, the following bounds:

E[7] > no-P(T), < k1) + (N —ng) - {P(T, > ko) — P(T,, > 1)},

E[7] < no+ (N —ng) - P(T,, > ko) (3.10)
and

E[7] > ny - P(T, > ko) + (N —ny) - {P(T, < k1) — P(Thy < ko) } ",

E[7] < ny+ (N —ny) - P(T,, < k). (3.11)
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When, in particular, the design parameters are selected as in Theorem 1, by

(3.10) with P = P, we obtain

n0~<1—a>+(N—n0)-('y—a> < Eol7] < no + (N = 1) -7,

2 2 (3.12)
where ~ e |2YA 4 (B _ (e B '
ere 9 ) y Mo =" 712 ) =n 272 )
and by (3.11)) with P = Py, we obtain
B B 8
ny - 1—5 +(N—’I’Z1) 5—5 §E1[7]§n1+(N—n1)5,
(3.13)

avp _ (e (2B
where § € [2,1>, n=n (2,5), N=n <2,2>.

We can see that, at least when « (resp. () is small, the upper bound in
(resp. ) is approximately equal to the lower bound and, thus, it provides
an accurate approximation to Eq[7] (resp. E;[7]). This observation motivates the
method for selecting the free parameters, v and 4, which we present next.

3.1.3. Specification of the free parameters
For any given «, 8 € (0,1), we suggest selecting v (resp. d) to minimize the
upper bound in (3.12)) (resp. (3.13))) over a grid L, s of [(arV 3)/2,1), that is, as

follows:
oo o)+ 39+ 64
veLa.s "2 272 9
e (3){r(32) (3}

where we suppress the dependence of 4 and § on a and 5 to lighten the notation,

14)

and we allow ties to be solved in an arbitrary way. In practice, the grid
fjaﬁ should, of course, be selected as fine as possible, given the computational
constraints involved with the evaluation of the function n*. Nevertheless, as show
in the next section, it suffices to have a grid length that goes to zero as fast as
|log(a A B)|7! as o, B — 0 in order to achieve asymptotic optimality under both

Py and P; for a large class of testing problems.
3.2. The 4-Stage tests

Next, we introduce and analyze two novel tests, ¥ = (7,d) and Y =
(7,d). These tests differ from that of the previous subsection only in that the
first (resp. second) one allows for stopping and accepting (resp. rejecting) the
null hypothesis if the value of the test statistic after collecting Ny (resp. NVp)
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observations is smaller (resp. larger) than K, (resp. K;). Here, Ny, N; are
additional positive integers and Ky, K; are additional real thresholds such that

nogN()SN and K()S/'f,l if N0:n17

. (3.15)
n1§N1§N and /‘i()gKl if TL(]:Nl.

Both tests can be implemented by collecting at most four samples of deter-
ministic sizes, and, thus, we refer to them as /-stage tests. To avoid repetition,
we present a detailed analysis for x, and only state the corresponding results for

X-
Specifically, given the above parameters, x proceeds as follows:
(i) no Ay observations are initially collected.
o If ng <ny and T,,, < Ko, then Hy is accepted.
o If ny <ng and T,,, > k1, then Hy is rejected.

(ii) If no decision has been reached yet, {(ngV ny) A No} — (ng A ny) additional
observations are collected.

o If ng <ny < Ny and T),, > k1, then Hj is rejected.
o If ng < Ny <n; and Ty, < K, then H, is accepted.
o If ny <ng < Ny and T),, < kg, then H is accepted.

(iii) If no decision has been reached yet, (ny V No) — {(ng V ni) A Ny} additional
observations are collected.

o If n; < Ny and Ty, < Ko, then H, is accepted.
o If Ny < ny and T},, > k1, then Hj is rejected.

(iv) If no decision has been reached yet, N — (n; V Ny) additional observations
are collected and H, is rejected if and only if Ty > K.

Similarly to the 3-stage test, to avoid possible overlap between acceptance and
rejection regions when n; V Ny = N, we include the convention that when the
test reaches its final stage, K is the only effective threshold.

3.2.1. Error control
By the definition of y, it follows that, for any selection of its parameters and
any P € P,

(T, > K1) +P(Tn > K), (3.16)
(T, < ko) +P(Ty, <Ky)+P(Ty <K). (3.17)

Therefore, if we select ng,n1, N, ko, k1, K as in (3.4)—(3.6), and also

No=n*(v/,B) and K, =r"(v,B) for some 7 € [aV S3,7], (3.18)
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then by (3.7, it follows that conditions (3.1)) and (3.15) are satisfied. Moreover,
by (3.16) with P = P, and by (3.17) with P = Py, it follows that Po(d = 1) < 2

A

and P;(d =0) < 38.
Using a similar analysis, if ng,n1, N, ko, k1, K are selected as in (3.4])—(3.6))
and

N, =n*(a,d') and K; = k*(a,0") for some ¢ € [aV j3,0], (3.19)

then conditions (3.1)) and (3.15) are satisfied, and Po(d = 1) < 3 and Py(d =
0) < 28. Thus, we have shown the following theorem.

Theorem 2. Let a, 8 € (0,1).

(i) If the design parameters of X are selected according to (3.4)—(3.6|) and (3.18]),
with « and B replaced by /2 and /3, respectively, then conditions (3.1)

and (3.15) are satisfied and ¥ € C(a, B).

(ii) If the design parameters of x are selected according to (3.4)—(3.6]) and (3.19)),
with o and B replaced by /3 and /2, respectively, then conditions ((3.1)

and (3.15) are satisfied and x € C(a, B).

Theorem 2 specifies designs for y and x that guarantee the desired error
control up to three free parameters, v,7',9 and ~,4d,d’, respectively. We next
propose a specific selection for these parameters, similar to the one for the 3-
stage test in Subsection 3.1.3.

3.2.2. The expected sample size
By the definition of x, it follows that, for any P € P,

(] ifn0§n1 SNogN, then

) T, > K
E[7] = no + (m1 = no) - P (T > o) + (No —ma) - P <Tn1 < /<a(1)>

’IynO > Ko
+(N—=No)-P| T,, <Ky |, (3.20)
TNO > KO

[ ianSNOS’mSN, then

) Th, > kK
E[T] =Ny =+ (N() - ’I’Lo) . P (Tng > K/O) + (nl - NO) . P <TN0 > I{%)
TnO > Ko
+HN —m)-P| Ty, > Ko |, (3.21)
T, < k1
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e if ng <ny < Ny <N, then

~ Tnl S "
E[#] = na + (ng =) - P (T, < a) + (Np — o) - P <Tn0 > ml)>

Tn1 S K1
F(N=Ny)-P| T >k | (3.22)
Ty, > Ko

Applying to these identities the inequalities
max{P(A) — P(B°) — P(C°),0} <P(ANnBNC) <P(A4),
we obtain, for any selection of the design parameters, the following bounds:

E[f] > no-P(Tn, < k1) + (No—ng) - {P(T},, > ko) — P(T,,, > K1)}
+(N = No) - {P(T, > Ko) — P(T,,, < ko) — P(T,,, > k1) }7,
E[7] < no+ (Nog —ng) - P(Ty, > ko) + (N — Ny) - P(T, > Kp) (3.23)

and

E[7] > ny - {P(T},, > ko) — P(Tn, < Ko)}
+(N —ny) - {P(T,, < k1) — P(T,, < ko) — P(Ty, < Kp)}
E[7] < ny+ (N —ny) - P(T,, < k1). (3.24)

When, in particular, the parameters of \ are selected as in Theorem 2(i), by

(3.23]) with P = P, we obtain
Eo[7] < no+ (No —n9) v+ (N = No) -7,

Eo[ﬂZno-(1—§>+<No—no).<,y_<;>

e

sy {(1-8) -} @)

where (g) V (g) <A <y<1, ng=n* <% §>7
, B a B
No=n*(7,2), N=n"(2,C

0 7’L<’Y73 5 n 273 )

and by (3.24) with P = P, we obtain

n1-<1—23ﬁ>+(]\7—n1)-< —25> <E#] <+ (N —ny)-35,

where 56{(3)\/<§)J),n1:7f<§,>,Af:7f<g,§>. (3.26)



MULTISTAGE TESTS 2337

A similar analysis shows that when the parameters of ¥ are selected according
to Theorem 2(ii), then

n0~<1—2§1>+(N—n0)-<’y—23a)<E0[ | <ng+ (N —ng) -7,

wterer < [(2) 0 (D)) mo (D) v (22), o2

Ei[f] <ni+ (N1 —my) -0+ (N —DNy) -0,
Ei[7] >y (1—§> + (N; —ny) (5_§>

HN =Ny - {(1 - {j) (- (1 - 5/) }+, (3.29)
where (3) v <§> <§d<d<l1l, ni=n" (3,5),
len*<§,5’>, N:n*<§,§>.

Remark 3. Compared with the corresponding bounds for the 3-stage test, with
the same selection of § (resp. 7), E;[7] is close to E;[7] (resp. Eo[7] is close to
Eo[7]) when 8 (resp. «) is small. Indeed, the additional stage in x (resp. x) is

and

useful mainly for reducing the expected sample size under Py (resp. P;). This is
illustrated in Figure 4 of the Supplementary Material.

3.2.3. Specification of the free parameters
We start with the specification of the free parameters of x. For any «, €
(0,1), we suggest selecting (y,7’) (resp. d) to minimize the upper bound in ([3.25))

(resp. (3.26))) in the following way:

a:ir= wn [ (5)+ o (5) = ()}
«

\g

Hr(5:9)-(5)) 4]
=g [ (5.8) (5. 5) = (5.9) o]
where Lq 5 is a grid of [(a/2) V (8/3),1).

Similarly, we suggest selecting the free parameters of x, v (resp. (4,9’)) to

minimize the upper bound in (3.27) (resp. (3.28])):

wl®
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0= ireggnmilgn [n (% g) + {n <§ g) —n’ (% g)} -’y],
_ . e
= o[ (§0) 5 {w (5.0) - (§0) 0 @0
a (B .
A (55) (5] o)

where L, 4 is a grid of [(a/3) V (8/2),1).

As in the 3-stage test, the grids should ideally be as fine as possible, subject to
computational constraints related to the evaluation of the function n*. However,
we will show that letting the grid length go to zero as fast as |log(a A B)|7! as
«, B — 0 suffices to achieve asymptotic optimality under Py and P; for a large
class of testing problems.

¢

(9,

4. Asymptotic Analysis

In this section, we obtain asymptotic bounds and approximations for the
expected sample sizes of the multistage tests of the previous section as a, 3 — 0.
For this analysis, we need to impose some structure on the almost universal setup
we have considered so far.

4.1. Assumptions on the testing problem

Throughout this section, we assume that Py and P; are mutually absolutely
continuous when restricted to F,,, for any n € N, and we denote by A = {A,,, n €
N} and A = {A,, n € N} the corresponding log-likelihood ratio and average
log-likelihood ratio statistics, respectively,

dPq

A, =log — dP,

(Fn) and A, =—-A,, neN. (4.1)

1
n

Moreover, we assume there are numbers Iy, I; > 0 so that

Po(A, = —1I) =Pi(A, = ) =1, (4.2)
for any € > 0, z Po(A, > —Ip +¢€) + Z Pi(A, <I, —¢€) < 0. (4.3)
n=1 n=1

These assumptions imply (see, e.g., (Tartakovsky, Nikiforov and Basseville| (2014,
Lemma 3.4.1 and Thm. 3.4.2)) asymptotic approximations for the optimal
expected sample sizes Lo(a, f) and Ly(c, ), defined in , as well as the
asymptotic optimality under Py and P, of Wald’s SPRT y’ = (7/,d’), where

T=inf{neN:A, ¢ (—A,B)} and d =1{A. > B}, (4.4)
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with A and B selected, for example, as A = |log | and B = |log a|. Specifically,
under the above assumptions, as o, 8 — 0,
| log o

o8Bl B ~ £y (0 ) ~ 2ol @)

0 1

Eo[7'] ~ Lo(a, B)

4.1.1. The i.i.d. setup

When X is an i.i.d. sequence with common density f; under P; with respect to
some dominating measure v, for i € {0,1}, and the Kullback—Leibler divergences
are positive and finite, that is,

DUl = [ 10g (;)f dv € (0,00)

f (4.6)
Difilf) = [1og (1) fidv € 0,00,
0
then the log-likelihood ratio statistic in (4.1) becomes
~ fi(X3)
A, = , néeN, 4.7
20X, D

and assumptions (4.2)—(4.3) hold with Iy = D(fo||f1) and I, = D(fi]|fo) (for

more details, see Subsection S1.3 of the Supplementary Material).

4.2. Assumptions on the test statistic

With respect to the test statistic, 71", throughout this section, we assume
there are real numbers Jy, J;, with Jy < Jq, so that

PO(Tn — J0> - Pl(Tn — Jl) — 1, (48)

and, for every k € (Jo, J1), the error probabilities of the fixed-sample-size test that
rejects Hy if and only if T,, > k go to zero exponentially fast in n. Specifically, we
assume there are nonnegative, convex, continuous functions v, ; : R — [0, o],
so that

- [Jo, J1] is a subset of the effective domains of ¥, and 1)y,
- ¥o(Jo) = 0 and vy is strictly increasing in [Jo, J1],
- ¢1(J1) = 0 and ¥ is strictly decreasing in [Jy, Ji],

- for every k € (Jy, J1),

lim % log Po(T, > K) = —o(k), (4.9)
lim 1 log P1(T), < k) = —¢n (k). (4.10)

n n
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Remark 4.

(1) When T, = A,,, ([4.8) follows from (4.2) and (4.9)-(#.10) imply (4.3), with
JO == _IO and Jl = I]_.

(2) In Section S1 of the Supplementary Material we state sufficient conditions
for the existence of functions ¥ and %, that satisfy 7, which we
also specify. In Section S3, we show that these sufficient conditions are
satisfied in various testing problems and for different test statistics. The
graphs of ¥, and 1, in each of these examples are plotted in Figures la, lc
and le of the Supplementary Material.

(3) In the i.i.d. setup of Subsection 4.1.1, the above assumptions hold when
T = A, as long as ([4.6]) holds (see Subsection S1.3).

The above assumptions suffice for obtaining first-order asymptotic upper
bounds on the expected sample sizes of the proposed multistage tests under P
and P; as a, 3 — 0. When T = A, they also suffice for obtaining matching lower
bounds. However, in order to establish such lower bounds when T # A, we need
to additionally assume that

3 a neighborhood of J; in which v is finite and (4.9) holds

(4.11)
3 a neighborhood of Jy in which ; is finite and (4.10]) holds.

In Section S1, we also state sufficient conditions for (4.11]), which hold for all the
test statistics, different from A, that we consider in Section S3.

4.3. Asymptotic analysis for multistage tests

We now focus on the multistage tests introduced in Section 3 and establish
the main theoretical results of this work. They are based on asymptotic bounds
and approximations for n*(a, 8) as «, f — 0, which are presented in Section S5.1
of the Supplementary Material.

4.3.1. An upper bound on the maximum sample size

By the definition of the multistage tests and the selection of their parameters
according to Theorems 1 and 2, it follows that, for any «, 8 € (0, 1) and any choice
of the free parameters, 7, 7, 7 < n*(a/3, 8/3). Consequently, in view of Theorem
S2 of the Supplementary Material,

7:7 7/;7 7"— SJ |log((é/\ IB)| as OC,IB — 07 (412)
where C' is defined as
C= sup {U1(k) Ao(k)}, (4.13)

I{G(JQ,Jl)
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which, in the ii.d. setup of Subsection 4.1.1, is well-known as the Chernoff
information (see, e.g., Dembo and Zeitouni| (1998, Corollary 3.4.6)).

On the other hand, even when X is an i.i.d. sequence, the SPRT not only
does not have a bounded sample size, but even its expected sample size under
some P € P, in contrast to Py and Py, can be much larger than n*(«, 5) when «
and [ are small. Indeed, consider a P € P under which A is a random walk whose
increments have a zero mean and finite variance o?. The expected sample size
under such a P of the SPRT, defined in , with A = |log 8| and B = |loga/,

is
log a| 1o

Efr] ~ 1108 ;|2 ghl (4.14)
where ~ becomes an equality in the absence of overshoot over the boundaries (see,
e.g., Tartakovsky, Nikiforov and Basseville (2014, Chap. 3.1.1.2)). Comparing
this approximation with the upper bound in , all of the proposed multistage
tests outperform the SPRT wunder such a P when o and 8 are small. This
robustness property of the proposed multistage tests is illustrated in Figure 4

of the Supplementary Material.

4.3.2. Asymptotic analysis under Py and P;
By the asymptotically optimal performance in (4.5)), it follows that, as
o, —0,

- . . log - R 5 log 3
e, Bl B 2 15 and Bl Bl Bl 2 122

Il IO
for any selection of the free parameters and any choice of the test statistic. In
the next lemma, we obtain a sharper asymptotic lower bound when T is not A,
but satisfies condition (4.11)).

Lemma 1. Suppose that T # A and [d.11)) holds. Then, for any selection of the
free parameters, as a, 5 — 0,

£l A B 2 DR and EfF) B07L Bl 2 SR
We next state the main results of this section, from which the previous
asymptotic lower bounds are attained with an appropriate selection of the free
parameters. To avoid repetition, we state these results only when |loga| >
|log B|; analogous results hold when |loga| < |log3|. Moreover, we denote
by l~a75, lAa_ﬂ and I, g the lengths of the grids iaﬁ, ia,g and L, g, respectively,
introduced in Subsections 3.1.3 and 3.2.3.

Theorem 3. Suppose that T = A. Let the free parameters be selected according
to (3.14) for the 3-stage test x, and according to (3.29) and (3.30) for the 4-stage
tests x and x, respectively. Moreover, suppose that, as o, 5 — 0,
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los, lag, lag < |loglanB)| " 4.15
B B B

(i) If a, B — 0 so that |loga| 2 |log 8], then

am~Em+vam~“f“A4mmm.

(ii) If, also, |loga| < |log B|/B" for some r > 0, then

_ [og s

Eo[7] T,

N;Co(()é,,ﬁ)
(#i3) If, also, |loga| < |log B|" for some r > 1, then

£l7] ~ Eolr) ~ B (0, )

0

Theorem 4. Suppose that T # A and condition (&.11) holds. Let the free
parameters be selected as in Theorem 3 and the grid lengths satisfy (4.15)).

(i) If o, B — 0 so that |loga| 2 |log B8], then

N|loga\N I,
Yo(J1)  tho(J1)

Ei[7] ~ Ei[7] ~ Eq[7] Li(a, B).

(ii) If also |logal| < |log B]/5" for some r > 0, then

-~ Hogﬁ‘ -~ 1
Vi(Jo)  i(Jo)

Eo[7] Lo(a, B).

(iii) If also |logal < |log B|" for some r > 1, then

|10g5’N Iy
Vi(Jo)  ¥i(Jo)

Eo[7] ~ Eo[7] ~ Lo(a, B).

Remark 5.

(1) Condition (4.11)) in Theorem 4 is used only to obtain the asymptotic lower
bounds in Lemma 1; that is, it is not needed to establish the corresponding
asymptotic upper bounds.

(2) As shown in their proofs, Theorems 3 and 4 remain valid as long as the
free parameters satisfy certain mild asymptotic relationships with the error
probabilities, found in (S5.61), (S5.64) and (S5.66); that is, they do not
have to be selected as the solutions to the minimization problems proposed
in Subsections 3.1.3 and 3.2.3.
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(3) Part (i) in Theorems 3 and 4 states that under Py, all multistage tests in
this work achieve the asymptotically optimal performance when 7" = A,
and have the same asymptotic relative efficiency when T' # A and condition
holds, as a, 8 — 0 so that |loga| 2 |log 5|. On the other hand, parts
(ii) and (iii) imply that the corresponding results under Py hold as long as
a does not go to zero much faster than B, and that this constraint is much
stricter for ¥ and x than it is for y. This suggests that x will outperform
x and y under the null hypothesis when « is much smaller than . This
insight is supported by Figures 2, 3, and 4 in the numerical studies presented

in the Supplementary Material.
(4) Analogous results hold when «, 8 — 0 so that |log o] < |log ]

(5) The asymptotic optimality under both Py and P; of the 3-stage test with
T = A is established in Section 2 of [Lorden! (1983), in the i.i.d. setup of
Subsection 4.1.1, as «, § — 0 so that |log 8|/r < |loga| < r|log B| for some
r > 1. Therefore, apart from extending it to a more general distributional
setup, we generalize this result even in the i.i.d. case. Indeed, from (i) and
(iii) of Theorem 3 and the previous remark we conclude that the asymptotic
optimality of the 3-stage test under both Py and P; holds as o, 8 — 0 so
that |log B|'/" < |loga| < |logB|" for some r > 1. At the same time,
we show how adding one additional stage can further relax this asymptotic
requirement. Specifically, from Theorem 3 and the previous remark we
conclude that the 4-stage test x is asymptotically optimal under both P
and P; as a, 8 — 0 so that |log 8|'/" < |logal < |log B|/B* for some r > 1
and k > 0. Similarly, the 4-stage test x is asymptotically optimal under
both Py and P, as o, 3 — 0 so that |loga|'" < |log 8] < |logal/a* for
some r > 1 and k& > 0.

5. Conclusion

Given a fixed-sample-size test that controls the error probabilities at two
specific distributions, we design and analyze a 3-stage and two 4-stage tests, with
deterministic stage sizes, that guarantee the same error control. Under general
distributional assumptions, which hold for many testing problems beyond the
i.i.d. setup, we also obtain asymptotic approximations for their expected sample
sizes under the two distributions at which we control the error probabilities, as
the latter go to zero. When, in particular, the test statistic is the average log-
likelihood ratio between these two distributions, these tests attain asymptotically
the optimal expected sample sizes under the two distributions in the family of
all sequential tests with the same error control, similarly to the corresponding
SPRT.
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The above asymptotic optimality properties require certain constraints on
how asymmetrically the two error probabilities go to zero. These constraints are
removed in Xing and Fellouris (2022, [2023)), in an i.i.d. setup, using a multistage
test in which the test statistic is the corresponding log-likelihood ratio, and the
number of stages is a function of the two user-specified error probabilities. Our
results can be used to extend theirs beyond the i.i.d. setup and for general test
statistics.

In order to design multistage tests that achieve asymptotic optimality under
every plausible distribution, or in the presence of nuisance parameters, at least
some stage sizes need to be adaptive, as in Section 3 of |Lorden| (1983), Hayre
(1985)), Bartroft (2007)), and Bartroff and Lai| (2008a). In the first work, a uniform
asymptotic optimality property is established for i.i.d. data whose distribution
belongs to an exponential family and under the assumption of symmetric error
probabilities. Ideas from the present work may be used to extend these results
to more general distributional setups and more asymmetric error probabilities.

Finally, another direction of interest is the application of multistage tests,
as considered in this work, in a multiple testing setup, similarly to Malloy and
Nowak| (2014) and Xing and Fellouris| (2023).

Supplementary Material

The online Supplementary Material contains sufficient conditions for the
asymptotic analysis, an importance sampling approach for the efficient implemen-
tation of the proposed tests when the error probabilities are small, three specific
testing problems, two numerical studies that illustrate the general theory, and
proofs of all main results and supporting lemmas.
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