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Abstract: Given a fixed-sample-size test that controls the error probabilities under

two specific arbitrary distributions, we propose and analyze a 3-stage test and two

4-stage tests. For each test, we specify a novel, concrete, non-conservative design,

and establish a first-order asymptotic approximation for the expected sample size

under the two prescribed distributions as the error probabilities go to zero. As a

corollary, we show that the proposed multistage tests can asymptotically achieve

the optimal expected sample size under these two distributions in the class of all

sequential tests with the same error control. Furthermore, the tests are shown to

be more robust than Wald’s sequential probability ratio test when applied to one-

sided testing problems and the error probabilities under control are small. We

apply these general results to testing problems in the independent and identically

distributed setup and beyond, such as testing the correlation coefficient of a first-

order autoregressive process or testing the transition matrix of a finite-state Markov

chain, and illustrate them in various numerical studies.
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1. Introduction

A typical motivation for employing a sequential test, that is, a testing

procedure with a sample size that depends on the collected observations, is that

its average sample size can be much smaller than that of the corresponding fixed-

sample-size test. One of the first tests of this kind was the double sampling

procedure in Dodge and Romig (1929), a precursor to the sequential probability

ratio test (SPRT) and the field of “sequential analysis” (Wald (1947)). However,

implementing the SPRT and most sequential tests in the literature (see, e.g.,

Tartakovsky, Nikiforov and Basseville (2014)) requires continuous monitoring

of the data collection process. This is often inconvenient, if not infeasible,

in application areas such as sampling inspection (Dodge and Romig (1929)),

clinical trials (Jennison and Turnbull (1999); Bartroff, Lai and Shih (2012)),

and educational assessment (Wang et al. (2016)). As a result, such applications

focus on multistage tests, also known as group-sequential tests, where the

implementation requires collecting only a small number of groups of samples.
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Works on multistage tests, such as Armitage, McPherson and Rowe (1969);

Pocock (1977); O’Brien and Fleming (1979); Pocock (1982); Wang and Tsiatis

(1987); Emerson and Fleming (1989); Eales and Jennison (1992); Pampallona

and Tsiatis (1994); Barber and Jennison (2002), typically focus on testing the

mean of independent and identically distributed (i.i.d.) Gaussian observations

with a known variance, are designed to control predetermined type-I and type-

II error probabilities under two specific distributions, and require equal stage

sizes. Free parameters, if any, as in Wang and Tsiatis (1987), are selected to

optimize the expected sample size under a certain distribution, for example, the

one under which the type-II error probability is controlled. This optimization is

performed using dynamic programming in Eales and Jennison (1992) and Barber

and Jennison (2002).

Multistage tests with unequal and random stage sizes have been considered

by Lan and DeMets (1983); Kim and DeMets (1987); Jennison (1987), and Lai

and Shih (2004). The latter work also studies more general testing problems

related to the parameters of an exponential family.

In all of the aforementioned works, the stage sizes are treated as user-specified

inputs. However, Lorden (1983) showed that a 3-stage test with properly designed

stages can achieve the optimal expected sample size under both hypotheses among

all sequential tests with the same or smaller error probabilities, asymptotically

as the latter go to zero. In the case of two simple hypotheses for i.i.d. data,

this was shown for multistage tests with deterministic stage sizes (Section 2 of

Lorden (1983)). In the case of composite hypotheses for the one-sided testing

problem in a one-parameter exponential family, this was shown for multistage

tests with adaptive stage sizes, that is, they can depend on data from previous

stages (Section 3 of Lorden (1983)). Such multistage tests are also considered

in Bartroff and Lai (2008a,b), who propose a less conservative design. These

asymptotic optimality results all require certain assumptions on the decay rates

of the prescribed error probabilities, which are not allowed to go to zero very

asymmetrically.

In the present work, we focus on the design and analysis of multistage tests

with deterministic stage sizes, and strengthen, extend, and generalize the results

in Section 2 of Lorden (1983). First, unlike the previously mentioned works, we

do not require i.i.d. observations. Instead, we assume a fixed-sample-size test is

given that can control the type-I and type-II error probabilities under two specific

distributions below arbitrary levels. Given this, we introduce and analyze a 3-

stage test, that generalizes the one in Section 2 of Lorden (1983), and two novel

4-stage tests. For each test, we propose a concrete design that guarantees non-

asymptotic and non-conservative error control. The designs require knowledge of

the number of observations and the threshold the fixed-sample-size test requires

in order to achieve certain error control. While there are not, in general, explicit

formulae for these quantities, they can be estimated via simulation. For this task,
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we also propose an efficient importance sampling approach, which is necessary in

the case of small error probabilities, where a plain Monte Carlo approach may be

inefficient or even infeasible (see, e.g., Bucklew (2010)).

In order to obtain theoretical insights about the proposed multistage tests, we

impose some structure on the above general setup. Specifically, we assume that

there exist thresholds for which the error probabilities of the fixed-sample-size test

under the two prescribed distributions decay exponentially fast in the sample size.

Based on this assumption, we establish first-order asymptotic approximations for

the expected sample sizes of the proposed multistage tests under the distributions

where the error probabilities are controlled, as the latter go to zero. For the 3-

stage test, the relative decay of the error probabilities is allowed to be much

more asymmetric than the one required in Section 2 of Lorden (1983). Even

more asymmetric decay is allowed for the two 4-stage tests.

When the given fixed-sample-size test is the likelihood ratio test, the proposed

multistage tests are shown, similarly to the SPRT, to achieve the optimal expected

sample size under the two prescribed distributions in the family of all sequential

tests with the same or smaller error probabilities, to a first-order asymptotic

approximation as the latter go to zero. The difference is that the asymptotic

optimality of the multistage tests, unlike that of the SPRT, requires certain

restrictions on how asymmetrically the error probabilities decay (which are less

strict for the 4-stage tests than for the 3-stage test).

In order to obtain a more complete picture for this comparison, we establish

a distribution-free asymptotic upper bound on the expected sample sizes of the

proposed multistage tests as at least one of the two prescribed error probabilities

goes to zero. This reveals that, when the prescribed error probabilities are small,

these multistage tests are much more robust than the SPRT, whose expected

sample size can be inflated when the true distribution is “between” the prescribed

ones (see, e.g., Bechhofer (1960)).

We illustrate the proposed methodology and the above asymptotic results

in numerical studies for various testing problems. Indeed, the distributional

assumptions for our asymptotic analysis can be shown to hold, using the Gärtner–

Ellis theorem from large deviation theory (see, e.g., Dembo and Zeitouni (1998)),

for various testing problems beyond the i.i.d. setup. Two specific examples,

used in our numerical studies, are testing the correlation coefficient of a first-

order autoregression series and testing the transition matrix of an irreducible

and recurrent finite-state Markov chain.

The remainder of this paper is organized as follows. In Section 2, we

formulate the testing setup. In Section 3, we introduce and design the proposed

multistage tests. In Section 4, we establish our asymptotic theory. In Section 5,

we conclude and discuss potential extensions. In Section S1 of the Supplementary

Material, we state sufficient conditions for the asymptotic analysis of Section 4.

In Section S2, we develop an importance sampling approach for the efficient
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implementation of the proposed design when the error probabilities are small. In

Section S3, we illustrate the general theory in three specific testing problems. In

Section S4, we present our numerical studies. All proofs are presented in Section

S5.

Next, we introduce some notations. We denote by N the set of positive

integers, that is, N ≡ {1, 2, . . .}, and by R the set of real numbers. For x, y ∈ R,
we set x∧y ≡ min{x, y} and x∨y ≡ max{x, y}. For positive sequences (xn), (yn),

we write xn ∼ yn for limn(xn/yn) = 1, xn ≳ yn for limn (xn/yn) ≥ 1, xn ≲ yn for

limn (xn/yn) ≤ 1, xn ≪ yn for xn/yn → 0, and xn ≫ yn for xn/yn → ∞.

2. Problem Formulation

We consider a sequence of S-valued random elements, X ≡ {Xn, n ∈ N},
where (S,S) is an arbitrary measurable space. For any n ∈ N, we denote by

Fn the σ-algebra generated by the first n terms of this sequence, that is, Fn ≡
σ(X1, . . . , Xn). We denote by P the distribution of X, assume that it belongs to

some family, P, and consider the following hypothesis testing problem:

H0 : P ∈ P0 versus H1 : P ∈ P1, (2.1)

where P0 and P1 are disjoint subsets of P.

We assume that the data can be collected sequentially, and that it is possible

to decide after each observation whether or not to stop sampling. Thus, if τ is

the total sample size of a testing procedure and d is its decision, with Hi being

selected when d = i for i ∈ {0, 1}, we say that χ ≡ (τ, d) is a test for (2.1) if

τ is a stopping time with respect to the filtration {Fn, n ∈ N} and d is an Fτ -

measurable Bernoulli random variable, that is, {τ = n}, {τ = n, d = i} ∈ Fn for

every n ∈ N and i ∈ {0, 1}.
We refer to a test as a fixed-sample-size test if τ is deterministic and as a

multistage test if τ can take a small number of values. We denote by C the

family of all tests, and we further introduce a subfamily of tests that control the

two types of error probabilities under two specific, but arbitrary, distributions.

Specifically, we fix P0 ∈ P0 and P1 ∈ P1, and, for any α, β ∈ (0, 1), we denote

by C(α, β) the family of tests whose type-I error probability under P0 does not

exceed α and whose type-II probability under P1 does not exceed β, that is,

C(α, β) ≡ {(τ, d) ∈ C : P0(d = 1) ≤ α and P1(d = 0) ≤ β}. (2.2)

For each i ∈ {0, 1}, we denote by Ei the expectation under Pi, and by Li(α, β)

the optimal expected sample size in C(α, β) under Pi, that is,

Li(α, β) ≡ inf {Ei[τ ] : (τ, d) ∈ C(α, β)} . (2.3)
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First, we aim to introduce 3-stage and 4-stage tests with deterministic stage

sizes that can be designed to belong to C(α, β) for any given α, β ∈ (0, 1). For

this design, we only require the existence of a fixed-sample-size test that can

provide such error guarantees. Thus, our only standing assumption throughout

this paper is that there is a sequence of test statistics, T ≡ {Tn, n ∈ N}, such
that, for every n ∈ N, Tn is Fn-measurable and, for any α, β ∈ (0, 1), there exist

n ∈ N and κ ∈ R so that the fixed-sample-size test that rejects H0 if and only

if Tn > κ belongs to C(α, β). Suppressing the dependence on T , we denote by

n∗(α, β) the smallest such sample size, that is,

n∗(α, β) ≡min
{
n ∈ N : ∃κ ∈ R so that P0(Tn > κ) ≤ α

and P1(Tn ≤ κ) ≤ β
}
,

(2.4)

and by κ∗(α, β) any of the corresponding thresholds. In Section S2 of the

Supplementary Material, we discuss the computation of these quantities in

practice when they do not admit closed-form expressions.

Second, we aim to show that, when the test statistic T is selected appro-

priately, the proposed multistage tests achieve the optimal expected sample size

in C(α, β) under both P0 and P1, that is, L0(α, β) and L1(α, β), to a first-order

asymptotic approximation as α, β → 0. For this asymptotic optimality result, we

need some additional distributional assumptions, which we state in Section 4.

We end this section by illustrating the above testing formulation using the

generic one-sided testing problem, which we use in all our examples and numerical

studies in Sections S3–S4 of the Supplementary Material.

2.1. The one-sided testing problem

Suppose that the family of plausible distributions, P, is parametrized by a

scalar parameter, µ, taking values in an open interval M ⊆ R. That is, if we

denote by Pµ and Eµ the distribution and expectation, respectively, of X when

the true parameter is µ, then P = {Pµ : µ ∈ M}. Moreover, suppose the testing

problem of interest is whether the true parameter µ is smaller or larger than some

user-specified value, µ∗ ∈M , that is,

H0 : µ < µ∗ versus H0 : µ > µ∗, (2.5)

or equivalently, P0 = {Pµ : µ < µ∗} and P1 = {Pµ : µ > µ∗}. Suppose further

that the type-I error probability must be controlled below α when µ = µ0, and

the type-II error probability must be below β when µ = µ1, where α, β ∈ (0, 1)

and µ0, µ1 ∈ M , µ0 < µ∗ < µ1. Then, this is a special case of the framework

introduced in this section, with Pi = Pµi
, i ∈ {0, 1}.

Remark 1. In the context of the above one-sided testing problem, a test χ ≡
(τ, d) in C(α, β) should ideally control the type-I error probability below α for
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every µ ≤ µ0 and the type-II error probability below β for every µ ≥ µ1, that is,

Pµ(d = 1) ≤ α for every µ ≤ µ0,

Pµ(d = 0) ≤ β for every µ ≥ µ1.
(2.6)

This is obviously the case for the fixed-sample-size test that rejects H0 if and

only if Tn > κ when

Pµ0
(Tn > κ) = sup

µ≤µ0

Pµ(Tn > κ), Pµ1
(Tn ≤ κ) = sup

µ≥µ1

Pµ(Tn ≤ κ). (2.7)

If the monotonicity property (2.7) holds for every n ∈ N and κ ∈ R, then the

uniform error control in (2.6) will also hold for the proposed multistage tests in

this work.

3. The Multistage Tests

In this section, we introduce and analyze the multistage tests that we consider

in this work.

3.1. The 3-stage test

We first introduce and analyze a test that offers two opportunities to

accept the null hypothesis and two to reject it. Its implementation requires

the specification of three positive integers, n0, n1, N , and three real thresholds,

κ0, κ1,K, so that

n0 ∨ n1 ≤ N and κ0 ≤ κ1 if n0 = n1. (3.1)

Specifically, n0 (resp. n1) is the number of observations collected by the first

opportunity to accept (resp. reject) H0, and N is the maximum number of

observations that can be collected.

Given these parameters, the test proceeds as follows:

(i) n0 ∧ n1 observations are initially collected.

• If n0 ≤ n1 and Tn0
≤ κ0, then H0 is accepted.

• If n1 ≤ n0 and Tn1
> κ1, then H0 is rejected.

(ii) If no decision has been reached yet, (n0 ∨ n1) − (n0 ∧ n1) additional

observations are collected.

• If n0 ≤ n1 and Tn1
> κ1, then H0 is rejected.

• If n1 ≤ n0 and Tn0
≤ κ0, then H0 is accepted.

(iii) If no decision has been reached yet, N − (n0 ∨ n1) additional observations

are collected, and H0 is rejected if and only if TN > K.
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To avoid a possible overlap between acceptance and rejection regions when n0 ∨
n1 = N , we include the convention that whenever the test reaches its final stage,

the only effective threshold is K.

This testing procedure can be implemented by collecting at most three

samples of deterministic sizes. In what follows, we refer to it as the 3-stage

test and denote it by χ̃ ≡ (τ̃ , d̃).

Remark 2. This test was first proposed in Section 2 of Lorden (1983), where

X is an i.i.d. sequence and the test statistic, T , is the average log-likelihood

ratio between P1 and P0. Our setup here is essentially universal, because the

only assumption in this section about X and T is that the corresponding fixed-

sample-size test can control the error probabilities below arbitrary, user-specified

levels, that is, that n∗(α, β) is finite for every α, β ∈ (0, 1). Moreover, we next

propose a concrete and non-asymptotic specification of the design parameters,

which is novel and practically useful, even in the specific setup of Section 2 of

Lorden (1983).

3.1.1. Error control

By the definition of the 3-stage test, it follows that, for any selection of its

parameters and any P ∈ P,

P(d̃ = 1) ≤ P (Tn1
> κ1) + P (TN > K) , (3.2)

P(d̃ = 0) ≤ P (Tn0
≤ κ0) + P (TN ≤ K) . (3.3)

Consequently, if the sample size and the threshold are

n0 = n∗(γ, β) and κ0 = κ∗(γ, β) for some γ ∈ [α ∨ β, 1) (3.4)

in the first opportunity to accept H0,

n1 = n∗(α, δ) and κ1 = κ∗(α, δ) for some δ ∈ [α ∨ β, 1) (3.5)

in the first opportunity to reject H0, and

N = n∗(α, β) and K = κ∗(α, β) (3.6)

in the final stage, then by (3.2) with P = P0, and by (3.3) with P = P1, we have

P0(d̃ = 1) ≤ 2α and P1(d̃ = 0) ≤ 2β. This observation leads to the following

theorem.

Theorem 1. Let α, β ∈ (0, 1). If the design parameters are selected according

to (3.4)–(3.6), with α and β replaced by α/2 and β/2, respectively, then (3.1) is

satisfied and χ̃ ∈ C(α, β).
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Proof. Condition (3.1) can be verified using the following straightforward obser-

vations:

n∗(α1, β1) ≤ n∗(α2, β2) if α1 ≥ α2 and β1 ≥ β2, (3.7)

κ∗(α1, β1) ≤ κ∗(α2, β2) if n∗(α1, β1) = n∗(α2, β2) and α1 ≥ α2, β1 ≤ β2.

The proof that χ̃ ∈ C(α, β) follows by the discussion preceding this theorem.

Theorem 1 specifies a design for χ̃ ∈ C(α, β) up to two free parameters,

γ, δ ∈ [(α ∨ β)/2, 1). Increasing the value of γ (resp. δ) reduces the number of

observations until the first opportunity to accept (resp. reject) H0, but increases

the probability of continuing to the final stage. To solve this trade-off, in

Subsection 3.1.3, we propose selecting γ (resp. δ) to minimize an upper bound

on E0[τ̃ ] (resp. E1[τ̃ ]) that is independent of δ (resp. γ).

3.1.2. The expected sample size

By the definition of the 3-stage test, it follows that, for any P ∈ P,

• if n0 ≤ n1 < N , then

E[τ̃ ] = n0 + (n1 − n0) · P (Tn0
> κ0) + (N − n1) · P

(
Tn0

> κ0

Tn1
≤ κ1

)
, (3.8)

• if n1 ≤ n0 < N , then

E[τ̃ ] = n1 + (n0 − n1) · P (Tn1
≤ κ1) + (N − n0) · P

(
Tn1

≤ κ1

Tn0
> κ0

)
, (3.9)

where E is the expectation under P.

Applying to these identities the inequality

max{0,P(A)− P(Bc)} ≤ P(A ∩B) ≤ P(A),

we obtain, for any selection of the design parameters, the following bounds:

E[τ̃ ] ≥ n0 · P(Tn1
≤ κ1) + (N − n0) · {P(Tn0

> κ0)− P(Tn1
> κ1)}+ ,

E[τ̃ ] ≤ n0 + (N − n0) · P(Tn0
> κ0) (3.10)

and

E[τ̃ ] ≥ n1 · P(Tn0
> κ0) + (N − n1) ·

{
P(Tn1

≤ κ1)− P(Tn0
≤ κ0)

}+
,

E[τ̃ ] ≤ n1 + (N − n1) · P(Tn1
≤ κ1). (3.11)



MULTISTAGE TESTS 2333

When, in particular, the design parameters are selected as in Theorem 1, by

(3.10) with P = P0, we obtain

n0 ·
(
1− α

2

)
+ (N − n0) ·

(
γ − α

2

)
≤ E0[τ̃ ] ≤ n0 + (N − n0) · γ,

where γ ∈
[
α ∨ β
2

, 1

)
, n0 = n∗

(
γ,
β

2

)
, N = n∗

(
α

2
,
β

2

)
,

(3.12)

and by (3.11) with P = P1, we obtain

n1 ·
(
1− β

2

)
+ (N − n1) ·

(
δ − β

2

)
≤ E1[τ̃ ] ≤ n1 + (N − n1) · δ,

where δ ∈
[
α ∨ β
2

, 1

)
, n1 = n∗

(
α

2
, δ

)
, N = n∗

(
α

2
,
β

2

)
.

(3.13)

We can see that, at least when α (resp. β) is small, the upper bound in (3.12)

(resp. (3.13)) is approximately equal to the lower bound and, thus, it provides

an accurate approximation to E0[τ̃ ] (resp. E1[τ̃ ]). This observation motivates the

method for selecting the free parameters, γ and δ, which we present next.

3.1.3. Specification of the free parameters

For any given α, β ∈ (0, 1), we suggest selecting γ (resp. δ) to minimize the

upper bound in (3.12) (resp. (3.13)) over a grid L̃α,β of [(α ∨ β)/2, 1), that is, as
follows:

γ̃ ≡ argmin
γ∈L̃α,β

[
n∗
(
γ,
β

2

)
+

{
n∗
(
α

2
,
β

2

)
− n∗

(
γ,
β

2

)}
· γ
]

δ̃ ≡ argmin
δ∈L̃α,β

[
n∗
(
α

2
, δ

)
+

{
n∗
(
α

2
,
β

2

)
− n∗

(
α

2
, δ

)}
· δ
]
,

(3.14)

where we suppress the dependence of γ̃ and δ̃ on α and β to lighten the notation,

and we allow ties to be solved in an arbitrary way. In practice, the grid

L̃α,β should, of course, be selected as fine as possible, given the computational

constraints involved with the evaluation of the function n∗. Nevertheless, as show

in the next section, it suffices to have a grid length that goes to zero as fast as

| log(α ∧ β)|−1 as α, β → 0 in order to achieve asymptotic optimality under both

P0 and P1 for a large class of testing problems.

3.2. The 4-Stage tests

Next, we introduce and analyze two novel tests, χ̂ ≡ (τ̂ , d̂) and χ̌ ≡
(τ̌ , ď). These tests differ from that of the previous subsection only in that the

first (resp. second) one allows for stopping and accepting (resp. rejecting) the

null hypothesis if the value of the test statistic after collecting N0 (resp. N1)
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observations is smaller (resp. larger) than K0 (resp. K1). Here, N0, N1 are

additional positive integers and K0,K1 are additional real thresholds such that

n0 ≤ N0 ≤ N and K0 ≤ κ1 if N0 = n1,

n1 ≤ N1 ≤ N and κ0 ≤ K1 if n0 = N1.
(3.15)

Both tests can be implemented by collecting at most four samples of deter-

ministic sizes, and, thus, we refer to them as 4-stage tests. To avoid repetition,

we present a detailed analysis for χ̂, and only state the corresponding results for

χ̌.

Specifically, given the above parameters, χ̂ proceeds as follows:

(i) n0 ∧ n1 observations are initially collected.

• If n0 ≤ n1 and Tn0
≤ κ0, then H0 is accepted.

• If n1 ≤ n0 and Tn1
> κ1, then H0 is rejected.

(ii) If no decision has been reached yet, {(n0 ∨ n1) ∧N0} − (n0 ∧ n1) additional

observations are collected.

• If n0 ≤ n1 ≤ N0 and Tn1
> κ1, then H0 is rejected.

• If n0 ≤ N0 ≤ n1 and TN0
≤ K0, then H0 is accepted.

• If n1 ≤ n0 ≤ N0 and Tn0
≤ κ0, then H0 is accepted.

(iii) If no decision has been reached yet, (n1 ∨N0)−{(n0 ∨ n1)∧N0} additional

observations are collected.

• If n1 ≤ N0 and TN0
≤ K0, then H0 is accepted.

• If N0 ≤ n1 and Tn1
> κ1, then H0 is rejected.

(iv) If no decision has been reached yet, N − (n1 ∨N0) additional observations

are collected and H0 is rejected if and only if TN > K.

Similarly to the 3-stage test, to avoid possible overlap between acceptance and

rejection regions when n1 ∨ N0 = N , we include the convention that when the

test reaches its final stage, K is the only effective threshold.

3.2.1. Error control

By the definition of χ̂, it follows that, for any selection of its parameters and

any P ∈ P,

P(d̂ = 1) ≤ P (Tn1
> κ1) + P (TN > K) , (3.16)

P(d̂ = 0) ≤ P (Tn0
≤ κ0) + P (TN0

≤ K0) + P (TN ≤ K) . (3.17)

Therefore, if we select n0, n1, N , κ0, κ1,K as in (3.4)–(3.6), and also

N0 = n∗(γ′, β) and K0 = κ∗(γ′, β) for some γ′ ∈ [α ∨ β, γ], (3.18)
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then by (3.7), it follows that conditions (3.1) and (3.15) are satisfied. Moreover,

by (3.16) with P = P0, and by (3.17) with P = P1, it follows that P0(d̂ = 1) ≤ 2α

and P1(d̂ = 0) ≤ 3β.

Using a similar analysis, if n0, n1, N , κ0, κ1,K are selected as in (3.4)–(3.6)

and

N1 = n∗(α, δ′) and K1 = κ∗(α, δ′) for some δ′ ∈ [α ∨ β, δ], (3.19)

then conditions (3.1) and (3.15) are satisfied, and P0(ď = 1) ≤ 3α and P1(ď =

0) ≤ 2β. Thus, we have shown the following theorem.

Theorem 2. Let α, β ∈ (0, 1).

(i) If the design parameters of χ̂ are selected according to (3.4)–(3.6) and (3.18),

with α and β replaced by α/2 and β/3, respectively, then conditions (3.1)

and (3.15) are satisfied and χ̂ ∈ C(α, β).

(ii) If the design parameters of χ̌ are selected according to (3.4)–(3.6) and (3.19),

with α and β replaced by α/3 and β/2, respectively, then conditions (3.1)

and (3.15) are satisfied and χ̌ ∈ C(α, β).

Theorem 2 specifies designs for χ̂ and χ̌ that guarantee the desired error

control up to three free parameters, γ, γ′, δ and γ, δ, δ′, respectively. We next

propose a specific selection for these parameters, similar to the one for the 3-

stage test in Subsection 3.1.3.

3.2.2. The expected sample size

By the definition of χ̂, it follows that, for any P ∈ P,

• if n0 ≤ n1 ≤ N0 ≤ N , then

E[τ̂ ] = n0 + (n1 − n0) · P (Tn0
> κ0) + (N0 − n1) · P

(
Tn0

> κ0

Tn1
≤ κ1

)

+(N −N0) · P

 Tn0
> κ0

Tn1
≤ κ1

TN0
> K0

 , (3.20)

• if n0 ≤ N0 ≤ n1 ≤ N , then

E[τ̂ ] = n0 + (N0 − n0) · P (Tn0
> κ0) + (n1 −N0) · P

(
Tn0

> κ0

TN0
> K0

)

+(N − n1) · P

 Tn0
> κ0

TN0
> K0

Tn1
≤ κ1

 , (3.21)
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• if n1 ≤ n0 ≤ N0 ≤ N , then

E[τ̂ ] = n1 + (n0 − n1) · P (Tn1
≤ κ1) + (N0 − n0) · P

(
Tn1

≤ κ1

Tn0
> κ0

)

+(N −N0) · P

 Tn1
≤ κ1

Tn0
> κ0

TN0
> K0

 . (3.22)

Applying to these identities the inequalities

max{P(A)− P(Bc)− P(Cc), 0} ≤ P(A ∩B ∩ C) ≤ P(A),

we obtain, for any selection of the design parameters, the following bounds:

E[τ̂ ] ≥ n0 · P(Tn1
≤ κ1) + (N0 − n0) · {P(Tn0

> κ0)− P(Tn1
> κ1)}

+(N −N0) · {P(TN0
> K0)− P(Tn0

≤ κ0)− P(Tn1
> κ1)}+,

E[τ̂ ] ≤ n0 + (N0 − n0) · P(Tn0
> κ0) + (N −N0) · P(TN0

> K0) (3.23)

and

E[τ̂ ] ≥ n1 · {P(Tn0
> κ0)− P(TN0

≤ K0)}
+(N − n1) · {P(Tn1

≤ κ1)− P(Tn0
≤ κ0)− P(TN0

≤ K0)}
E[τ̂ ] ≤ n1 + (N − n1) · P(Tn1

≤ κ1). (3.24)

When, in particular, the parameters of χ̂ are selected as in Theorem 2(i), by

(3.23) with P = P0, we obtain

E0[τ̂ ] ≤ n0 + (N0 − n0) · γ + (N −N0) · γ′,

E0[τ̂ ] ≥ n0 ·
(
1− α

2

)
+ (N0 − n0) ·

(
γ − α

2

)
+(N −N0) ·

{(
1− α

2

)
− (1− γ)− (1− γ′)

}+

, (3.25)

where

(
α

2

)
∨
(
β

3

)
≤ γ′ ≤ γ < 1, n0 = n∗

(
γ,
β

3

)
,

N0 = n∗
(
γ′,

β

3

)
, N = n∗

(
α

2
,
β

3

)
,

and by (3.24) with P = P1, we obtain

n1 ·
(
1− 2β

3

)
+ (N − n1) ·

(
δ − 2β

3

)
≤ E1[τ̂ ] ≤ n1 + (N − n1) · δ,

where δ ∈
[(

α

2

)
∨
(
β

3

)
, 1

)
, n1 = n∗

(
α

2
, δ

)
, N = n∗

(
α

2
,
β

3

)
. (3.26)
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A similar analysis shows that when the parameters of χ̌ are selected according

to Theorem 2(ii), then

n0 ·
(
1− 2α

3

)
+ (N − n0) ·

(
γ − 2α

3

)
≤ E0[τ̌ ] ≤ n0 + (N − n0) · γ,

where γ ∈
[(

α

3

)
∨
(
β

2

)
, 1

)
, n0 = n∗

(
γ,
β

2

)
, N = n∗

(
α

3
,
β

2

)
, (3.27)

and

E1[τ̌ ] ≤ n1 + (N1 − n1) · δ + (N −N1) · δ′,

E1[τ̌ ] ≥ n1

(
1− β

2

)
+ (N1 − n1)

(
δ − β

2

)
+(N −N1) ·

{(
1− β

2

)
− (1− δ)−

(
1− δ′

)}+

, (3.28)

where

(
α

3

)
∨
(
β

2

)
≤ δ′ ≤ δ < 1, n1 = n∗

(
α

3
, δ

)
,

N1 = n∗
(
α

3
, δ′
)
, N = n∗

(
α

3
,
β

2

)
.

Remark 3. Compared with the corresponding bounds for the 3-stage test, with

the same selection of δ (resp. γ), E1[τ̂ ] is close to E1[τ̃ ] (resp. E0[τ̌ ] is close to

E0[τ̃ ]) when β (resp. α) is small. Indeed, the additional stage in χ̂ (resp. χ̌) is

useful mainly for reducing the expected sample size under P0 (resp. P1). This is

illustrated in Figure 4 of the Supplementary Material.

3.2.3. Specification of the free parameters

We start with the specification of the free parameters of χ̂. For any α, β ∈
(0, 1), we suggest selecting (γ, γ′) (resp. δ) to minimize the upper bound in (3.25)

(resp. (3.26)) in the following way:

(γ̂, γ̂′) ≡ argmin
γ,γ′∈L̂α,β , γ′≤γ

[
n∗
(
γ,
β

3

)
+

{
n∗
(
γ′,

β

3

)
− n∗

(
γ,
β

3

)}
· γ

+

{
n∗
(
α

2
,
β

3

)
− n∗

(
γ′,

β

3

)}
· γ′
]
, (3.29)

δ̂ ≡ argmin
δ∈L̂α,β

[
n∗
(
α

2
, δ

)
+

{
n∗
(
α

2
,
β

3

)
− n∗

(
α

2
, δ

)}
· δ
]
,

where L̂α,β is a grid of [(α/2) ∨ (β/3), 1).

Similarly, we suggest selecting the free parameters of χ̌, γ (resp. (δ, δ′)) to

minimize the upper bound in (3.27) (resp. (3.28)):
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δ̌ ≡ argmin
δ∈Ľα,β

[
n∗
(
γ,
β

2

)
+

{
n∗
(
α

3
,
β

2

)
− n∗

(
γ,
β

2

)}
· γ
]
,

(δ̌, δ̌′) ≡ argmin
δ,δ′∈Ľα,β , δ′≤δ

[
n∗
(
α

3
, δ

)
+

{
n∗
(
α

3
, δ′
)
− n∗

(
α

3
, δ

)}
· δ (3.30)

+

{
n∗
(
α

3
,
β

2

)
− n∗

(
α

3
, δ′
)}

· δ′
]
,

where Ľα,β is a grid of [(α/3) ∨ (β/2), 1).

As in the 3-stage test, the grids should ideally be as fine as possible, subject to

computational constraints related to the evaluation of the function n∗. However,

we will show that letting the grid length go to zero as fast as | log(α ∧ β)|−1 as

α, β → 0 suffices to achieve asymptotic optimality under P0 and P1 for a large

class of testing problems.

4. Asymptotic Analysis

In this section, we obtain asymptotic bounds and approximations for the

expected sample sizes of the multistage tests of the previous section as α, β → 0.

For this analysis, we need to impose some structure on the almost universal setup

we have considered so far.

4.1. Assumptions on the testing problem

Throughout this section, we assume that P0 and P1 are mutually absolutely

continuous when restricted to Fn, for any n ∈ N, and we denote by Λ ≡ {Λn, n ∈
N} and Λ̄ ≡ {Λ̄n, n ∈ N} the corresponding log-likelihood ratio and average

log-likelihood ratio statistics, respectively,

Λn ≡ log
dP1

dP0

(Fn) and Λ̄n ≡ 1

n
Λn, n ∈ N. (4.1)

Moreover, we assume there are numbers I0, I1 > 0 so that

P0(Λ̄n → −I0) = P1(Λ̄n → I1) = 1, (4.2)

for any ϵ > 0,
∞∑

n=1

P0(Λ̄n > −I0 + ϵ) +
∞∑

n=1

P1(Λ̄n ≤ I1 − ϵ) <∞. (4.3)

These assumptions imply (see, e.g., Tartakovsky, Nikiforov and Basseville (2014,

Lemma 3.4.1 and Thm. 3.4.2)) asymptotic approximations for the optimal

expected sample sizes L0(α, β) and L1(α, β), defined in (2.3), as well as the

asymptotic optimality under P0 and P1 of Wald’s SPRT χ′ ≡ (τ ′, d′), where

τ ′ ≡ inf{n ∈ N : Λn /∈ (−A,B)} and d′ ≡ 1{Λτ ′ ≥ B}, (4.4)
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with A and B selected, for example, as A = | log β| and B = | logα|. Specifically,
under the above assumptions, as α, β → 0,

E0[τ
′] ∼ L0(α, β) ∼

| log β|
I0

and E1[τ
′] ∼ L1(α, β) ∼

| logα|
I1

. (4.5)

4.1.1. The i.i.d. setup

WhenX is an i.i.d. sequence with common density fi under Pi with respect to

some dominating measure ν, for i ∈ {0, 1}, and the Kullback–Leibler divergences

are positive and finite, that is,

D(f0∥f1) ≡
∫

log

(
f0
f1

)
f0 dν ∈ (0,∞)

D(f1∥f0) ≡
∫

log

(
f1
f0

)
f1 dν ∈ (0,∞),

(4.6)

then the log-likelihood ratio statistic in (4.1) becomes

Λn =
n∑

i=1

f1(Xi)

f0(Xi)
, n ∈ N, (4.7)

and assumptions (4.2)–(4.3) hold with I0 = D(f0∥f1) and I1 = D(f1∥f0) (for

more details, see Subsection S1.3 of the Supplementary Material).

4.2. Assumptions on the test statistic

With respect to the test statistic, T , throughout this section, we assume

there are real numbers J0, J1, with J0 < J1, so that

P0(Tn → J0) = P1(Tn → J1) = 1, (4.8)

and, for every κ ∈ (J0, J1), the error probabilities of the fixed-sample-size test that

rejects H0 if and only if Tn > κ go to zero exponentially fast in n. Specifically, we

assume there are nonnegative, convex, continuous functions ψ0, ψ1 : R → [0,∞],

so that

- [J0, J1] is a subset of the effective domains of ψ0 and ψ1,

- ψ0(J0) = 0 and ψ0 is strictly increasing in [J0, J1],

- ψ1(J1) = 0 and ψ1 is strictly decreasing in [J0, J1],

- for every κ ∈ (J0, J1),

lim
n

1

n
logP0(Tn > κ) = −ψ0(κ), (4.9)

lim
n

1

n
logP1(Tn ≤ κ) = −ψ1(κ). (4.10)



2340 XING AND FELLOURIS

Remark 4.

(1) When Tn = Λ̄n, (4.8) follows from (4.2) and (4.9)–(4.10) imply (4.3), with

J0 = −I0 and J1 = I1.

(2) In Section S1 of the Supplementary Material we state sufficient conditions

for the existence of functions ψ0 and ψ1 that satisfy (4.9)–(4.10), which we

also specify. In Section S3, we show that these sufficient conditions are

satisfied in various testing problems and for different test statistics. The

graphs of ψ0 and ψ1 in each of these examples are plotted in Figures 1a, 1c

and 1e of the Supplementary Material.

(3) In the i.i.d. setup of Subsection 4.1.1, the above assumptions hold when

T = Λ̄, as long as (4.6) holds (see Subsection S1.3).

The above assumptions suffice for obtaining first-order asymptotic upper

bounds on the expected sample sizes of the proposed multistage tests under P0

and P1 as α, β → 0. When T = Λ̄, they also suffice for obtaining matching lower

bounds. However, in order to establish such lower bounds when T ̸= Λ̄, we need

to additionally assume that

∃ a neighborhood of J1 in which ψ0 is finite and (4.9) holds

∃ a neighborhood of J0 in which ψ1 is finite and (4.10) holds.
(4.11)

In Section S1, we also state sufficient conditions for (4.11), which hold for all the

test statistics, different from Λ̄, that we consider in Section S3.

4.3. Asymptotic analysis for multistage tests

We now focus on the multistage tests introduced in Section 3 and establish

the main theoretical results of this work. They are based on asymptotic bounds

and approximations for n∗(α, β) as α, β → 0, which are presented in Section S5.1

of the Supplementary Material.

4.3.1. An upper bound on the maximum sample size

By the definition of the multistage tests and the selection of their parameters

according to Theorems 1 and 2, it follows that, for any α, β ∈ (0, 1) and any choice

of the free parameters, τ̃ , τ̂ , τ̌ ≤ n∗(α/3, β/3). Consequently, in view of Theorem

S2 of the Supplementary Material,

τ̃ , τ̂ , τ̌ ≲
| log(α ∧ β)|

C
as α, β → 0, (4.12)

where C is defined as

C ≡ sup
κ∈(J0,J1)

{ψ1(κ) ∧ ψ0(κ)} , (4.13)
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which, in the i.i.d. setup of Subsection 4.1.1, is well-known as the Chernoff

information (see, e.g., Dembo and Zeitouni (1998, Corollary 3.4.6)).

On the other hand, even when X is an i.i.d. sequence, the SPRT not only

does not have a bounded sample size, but even its expected sample size under

some P ∈ P, in contrast to P0 and P1, can be much larger than n∗(α, β) when α

and β are small. Indeed, consider a P ∈ P under which Λ is a random walk whose

increments have a zero mean and finite variance σ2. The expected sample size

under such a P of the SPRT, defined in (4.4), with A = | log β| and B = | logα|,
is

E[τ ′] ≈ | logα|| log β|
σ2

, (4.14)

where ≈ becomes an equality in the absence of overshoot over the boundaries (see,

e.g., Tartakovsky, Nikiforov and Basseville (2014, Chap. 3.1.1.2)). Comparing

this approximation with the upper bound in (4.12), all of the proposed multistage

tests outperform the SPRT under such a P when α and β are small. This

robustness property of the proposed multistage tests is illustrated in Figure 4

of the Supplementary Material.

4.3.2. Asymptotic analysis under P0 and P1

By the asymptotically optimal performance in (4.5), it follows that, as

α, β → 0,

E1[τ̃ ], E1[τ̂ ], E1[τ̌ ] ≳
| logα|
I1

and E0[τ̃ ], E0[τ̂ ], E0[τ̌ ] ≳
| log β|
I0

,

for any selection of the free parameters and any choice of the test statistic. In

the next lemma, we obtain a sharper asymptotic lower bound when T is not Λ̄,

but satisfies condition (4.11).

Lemma 1. Suppose that T ̸= Λ̄ and (4.11) holds. Then, for any selection of the

free parameters, as α, β → 0,

E1[τ̃ ], E1[τ̂ ], E1[τ̌ ] ≳
| logα|
ψ0(J1)

and E0[τ̃ ], E0[τ̂ ], E0[τ̌ ] ≳
| log β|
ψ1(J0)

.

We next state the main results of this section, from which the previous

asymptotic lower bounds are attained with an appropriate selection of the free

parameters. To avoid repetition, we state these results only when | logα| ≳
| log β|; analogous results hold when | logα| ≲ | log β|. Moreover, we denote

by l̃α,β, l̂α,β and ľα,β the lengths of the grids L̃α,β, L̂α,β and Ľα,β, respectively,

introduced in Subsections 3.1.3 and 3.2.3.

Theorem 3. Suppose that T = Λ̄. Let the free parameters be selected according

to (3.14) for the 3-stage test χ̃, and according to (3.29) and (3.30) for the 4-stage

tests χ̂ and χ̌, respectively. Moreover, suppose that, as α, β → 0,
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l̃α,β, l̂α,β, ľα,β ≲ | log(α ∧ β)|−1. (4.15)

(i) If α, β → 0 so that | logα| ≳ | log β|, then

E1[τ̃ ] ∼ E1[τ̂ ] ∼ E1[τ̌ ] ∼
| logα|
I1

∼ L1(α, β).

(ii) If, also, | logα| ≲ | log β|/βr for some r > 0, then

E0[τ̂ ] ∼
| log β|
I0

∼ L0(α, β).

(iii) If, also, | logα| ≲ | log β|r for some r ≥ 1, then

E0[τ̃ ] ∼ E0[τ̌ ] ∼
| log β|
I0

∼ L0(α, β).

Theorem 4. Suppose that T ̸= Λ̄ and condition (4.11) holds. Let the free

parameters be selected as in Theorem 3 and the grid lengths satisfy (4.15).

(i) If α, β → 0 so that | logα| ≳ | log β|, then

E1[τ̃ ] ∼ E1[τ̂ ] ∼ E1[τ̌ ] ∼
| logα|
ψ0(J1)

∼ I1
ψ0(J1)

L1(α, β).

(ii) If also | logα| ≲ | log β|/βr for some r > 0, then

E0[τ̂ ] ∼
| log β|
ψ1(J0)

∼ I0
ψ1(J0)

L0(α, β).

(iii) If also | logα| ≲ | log β|r for some r ≥ 1, then

E0[τ̃ ] ∼ E0[τ̌ ] ∼
| log β|
ψ1(J0)

∼ I0
ψ1(J0)

L0(α, β).

Remark 5.

(1) Condition (4.11) in Theorem 4 is used only to obtain the asymptotic lower

bounds in Lemma 1; that is, it is not needed to establish the corresponding

asymptotic upper bounds.

(2) As shown in their proofs, Theorems 3 and 4 remain valid as long as the

free parameters satisfy certain mild asymptotic relationships with the error

probabilities, found in (S5.61), (S5.64) and (S5.66); that is, they do not

have to be selected as the solutions to the minimization problems proposed

in Subsections 3.1.3 and 3.2.3.
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(3) Part (i) in Theorems 3 and 4 states that under P1, all multistage tests in

this work achieve the asymptotically optimal performance when T = Λ̄,

and have the same asymptotic relative efficiency when T ̸= Λ̄ and condition

(4.11) holds, as α, β → 0 so that | logα| ≳ | log β|. On the other hand, parts

(ii) and (iii) imply that the corresponding results under P0 hold as long as

α does not go to zero much faster than β, and that this constraint is much

stricter for χ̃ and χ̌ than it is for χ̂. This suggests that χ̂ will outperform

χ̃ and χ̌ under the null hypothesis when α is much smaller than β. This

insight is supported by Figures 2, 3, and 4 in the numerical studies presented

in the Supplementary Material.

(4) Analogous results hold when α, β → 0 so that | logα| ≲ | log β|.

(5) The asymptotic optimality under both P0 and P1 of the 3-stage test with

T = Λ̄ is established in Section 2 of Lorden (1983), in the i.i.d. setup of

Subsection 4.1.1, as α, β → 0 so that | log β|/r ≲ | logα| ≲ r | log β| for some

r ≥ 1. Therefore, apart from extending it to a more general distributional

setup, we generalize this result even in the i.i.d. case. Indeed, from (i) and

(iii) of Theorem 3 and the previous remark we conclude that the asymptotic

optimality of the 3-stage test under both P0 and P1 holds as α, β → 0 so

that | log β|1/r ≲ | logα| ≲ | log β|r for some r ≥ 1. At the same time,

we show how adding one additional stage can further relax this asymptotic

requirement. Specifically, from Theorem 3 and the previous remark we

conclude that the 4-stage test χ̂ is asymptotically optimal under both P0

and P1 as α, β → 0 so that | log β|1/r ≲ | logα| ≲ | log β|/βk for some r ≥ 1

and k > 0. Similarly, the 4-stage test χ̌ is asymptotically optimal under

both P0 and P1 as α, β → 0 so that | logα|1/r ≲ | log β| ≲ | logα|/αk for

some r ≥ 1 and k > 0.

5. Conclusion

Given a fixed-sample-size test that controls the error probabilities at two

specific distributions, we design and analyze a 3-stage and two 4-stage tests, with

deterministic stage sizes, that guarantee the same error control. Under general

distributional assumptions, which hold for many testing problems beyond the

i.i.d. setup, we also obtain asymptotic approximations for their expected sample

sizes under the two distributions at which we control the error probabilities, as

the latter go to zero. When, in particular, the test statistic is the average log-

likelihood ratio between these two distributions, these tests attain asymptotically

the optimal expected sample sizes under the two distributions in the family of

all sequential tests with the same error control, similarly to the corresponding

SPRT.
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The above asymptotic optimality properties require certain constraints on

how asymmetrically the two error probabilities go to zero. These constraints are

removed in Xing and Fellouris (2022, 2023), in an i.i.d. setup, using a multistage

test in which the test statistic is the corresponding log-likelihood ratio, and the

number of stages is a function of the two user-specified error probabilities. Our

results can be used to extend theirs beyond the i.i.d. setup and for general test

statistics.

In order to design multistage tests that achieve asymptotic optimality under

every plausible distribution, or in the presence of nuisance parameters, at least

some stage sizes need to be adaptive, as in Section 3 of Lorden (1983), Hayre

(1985), Bartroff (2007), and Bartroff and Lai (2008a). In the first work, a uniform

asymptotic optimality property is established for i.i.d. data whose distribution

belongs to an exponential family and under the assumption of symmetric error

probabilities. Ideas from the present work may be used to extend these results

to more general distributional setups and more asymmetric error probabilities.

Finally, another direction of interest is the application of multistage tests,

as considered in this work, in a multiple testing setup, similarly to Malloy and

Nowak (2014) and Xing and Fellouris (2023).

Supplementary Material

The online Supplementary Material contains sufficient conditions for the

asymptotic analysis, an importance sampling approach for the efficient implemen-

tation of the proposed tests when the error probabilities are small, three specific

testing problems, two numerical studies that illustrate the general theory, and

proofs of all main results and supporting lemmas.
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