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Abstract: Mediation analysis examines the relationships between an exposure,

a mediator, and an outcome. Although many approaches are available for

performing such analyses they all require access to a single complete data set

that contains the three key variables: outcome, exposure, and mediator. Here, we

propose semiparametric methods for mediation analysis to estimate the standard

causal parameters (direct and indirect effects) by combining information from

several incomplete data sets, each containing only two of the three key variables.

Importantly, our methods also handle scenarios in which only summary statistics

based on those data sets are available. The resulting estimates of the causal

parameters are asymptotically unbiased and normally distributed. We evaluate

the performance of our methods in finite samples using simulations, and quantify

the loss in efficiency from the lack of a complete data set with all three variables.

We then apply proposed method to determine whether the number of terminal duct

lobular units in the breast mediate the relationship between a polygenic risk score

and breast cancer risk.

Key words and phrases: Data integration, direct and indirect effects, semiparametric

likelihood, summary level information.

1. Introduction

Mediation analysis has become a popular statistical tool for understanding

the relationship between an exposure (E), a mediator (M), and an outcome (Y ).

Many advanced methods for mediation analysis have recently been developed

that handle almost any situation (e.g., Derkach et al. (2019); Daniels et al. (2012);

Huang (2019); Cheng et al. (2018); Zeng et al. (2021); Huang and Cai (2016)).

However, all available methods have the critical limitation that they require the

three relevant variables to be measured in a single common data set. Here, we

develop methods for mediation analysis when we have three “incomplete” data

sets, each containing only two of the three variables (i.e., E and M , M and Y ,

E and Y ).

In our motivating study (Bodelon et al. (2020)), we wanted to understand

how genetic risk factors, summarized by a polygenic risk score (PRS, E),

influenced a woman’s breast cancer risk (Y ). The effect of the PRS may be
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mediated by the number of terminal duct lobular units (TDLUs, M). TDLUs are

epithelial structures that produce milk during lactation. We measured the PRS

and the number of TDLUs in a cohort of women, yielding a data set with two of

the three needed variables (E and M , but not Y ). However, published summary

statistics (odds ratios, ORs) for the association of PRS and breast cancer risk (E

and Y ) (Mavaddat et al. (2019)) and between TDLUs and breast cancer risk (M

and Y ) (Figueroa et al. (2014)) are available. Thus, we aim to perform a medi-

ation analysis by combining information from these three incomplete data sets.

Here, we develop methods for performing a mediation analysis in three

scenarios. For all scenarios, we assume we have a data set containing individual-

level data on E and M . In the first scenario, we have two summary statistics

(e.g., published ORs) that capture the relationships between E and Y and

between M and Y , respectively. In the second scenario, we have a summary

statistic describing one relationship (either between E and Y , or between M

and Y ), and a data set with individual-level measurements for evaluating the

second relationship. In the third scenario, we have two additional data sets, each

containing individual-level data on two of the three variables. For all scenarios,

we assume that information on a common set of covariates is available for all

three data sources.

We highlight some key features of our proposed methods. The methods can

be applied to outcomes that follow any distribution in the exponential family, do

not require parametric assumptions about the joint distribution of E and M , and

accommodate differences in covariate adjustments. They can handle interactions

between M and a categorical E when the effect of M on Y is measured in

subgroups defined by categories of E. They can also be extended to include

multiple exposures and mediators.

Our proposed methods extend approaches developed to handle studies with

missing data. We draw heavily on ideas from two-phase (e.g., case-cohort)

designs, where some variables are measured on an entire cohort, and then a

limited number of “expensive” variables (e.g., biomarkers) are measured only

on a small sub-sample of individuals. Specifically, we build on methods that

use a semiparametric maximum likelihood (e.g., Lin and Zeng (2006); Breslow

and Holubkov (1997)). We also draw from methods that calibrate models,

using published summary-level statistics from large studies, using a constrained

maximum likelihood estimation (Chatterjee et al. (2016); Zhang et al. (2020);

Kundu, Tang and Chatterjee (2019)). However, these methods all assume that

at least one data set contains measurements on all primary variables.

The remainder of the paper is organized as follows. We first describe

the statistical methods and discuss the theoretical properties of the resulting

estimates (Section 2). We then study the estimates in finite samples using

simulations (Section 3), and analyze breast cancer data (Section 4), Section 5

concludes the paper.
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2. Methods

2.1. Overview

We first describe the model and target parameters. We assume that given an

exposure E, a mediator M , and covariates X = (X1, . . . , Xk), the distribution of

the outcome Y belongs to an exponential family,

f(Y |M,E,X; θ, ψ) = exp

[
Y θ − b(θ)

a(ψ)
+ c(Y, ψ)

]
, (2.1)

with

θ = α+ βM + γE + δ′X. (2.2)

We let η = (α, β, γ, δ)′ denote all parameters in (2.2), including a vector of

covariate effects, δ ∈ Rk.

We partition the total effect (TE) of changing the exposure value from E = e

to E = e′ into a natural direct effect (NDE) and a natural indirect effect (NIE),

while controlling for X, as follows:

TEx = E [Y {e′,M(e′)} − Y {e,M(e)}|X = x] = NDEx +NIEx,

where

NDEx = E [Y {e′,M(e)} − Y {e,M(e)}|X = x] and (2.3)

NIEx = E [Y {e′,M(e′)} − Y {e′,M(e)}|X = x]. (2.4)

Under models (2.1) and (2.2) and the assumptions outlined in Imai, Keele

and Tingley (2010); Imai, Keele and Yamamoto (2011), the expectations are

calculated using the conditional distribution

E [Y {e,M(e′)}|X = x] =

∫

M

b′(α+ βm+ γe+ δ′x)dFM |E=e′,X=x(m).

There are many parametric, semiparametric and nonparametric approaches

for estimating the TE, NDE, and NIE when individual-level data on Y , M , E,

and X are available on all subjects in a study (e.g., Daniels et al. (2012); Derkach

et al. (2019). Here, we describe approaches for estimating these parameters when

we have multiple incomplete data sets. Specifically, we consider three scenarios

that are defined by the available information. For all scenarios, we assume that

we have a data set with individual level information on (M,E,X), and that

all three sources of information are based on samples from the same underlying

population. The three scenarios are as follows:

1. We have estimates of the associations between M and Y and between E

and Y , with both estimates adjusted for the common set of covariates X.
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2. We have an estimate of the association between M and Y , adjusted for X,

and a data set with individual-level data on (M,E,X), or, alternatively, we

have an estimate of the association between E and Y , adjusted for X, and

individual-level data on (Y,M,X).

3. We have two data sets, one with individual-level measurements on (Y,E,X),

and one with individual-level data on (Y,M,X).

We comment on scenarios in which the data sets have different sets of covariates

in Table 1 in Section 2.9. For brevity, we denote the full predictor set by D =

(M,E,X) , and a specific realization by d = (m, e,x).

2.2. Estimation based on two marginal estimates: Scenario 1

In this scenario, we have a data set with individual-level measurements

Di = (Mi, Ei,Xi), for i = 1, . . . , N1. We also have an estimate of the marginal

association between M and Y , adjusted for X. In other words, a prior study

collected data on (M,Y,X), assuming

f(Y |M,X; θM , ψM) = exp

[
Y θM − b(θM)

a(ψM)
+ c(Y, ψM)

]
, (2.5)

with θM = αM + βMM + δ′
MX and reported η̂M = (α̂M , β̂M , δ̂M). We also have

an estimate of the marginal association between E and Y , adjusted for X. In

other words, another study collected data on (E, Y,X), assuming

f(Y |E,X; θE, ψE) = exp

[
Y θE − b(θE)

a(ψE)
+ c(Y, ψE)

]
, (2.6)

with θE = αE + γEE + δ′
EX and reported η̂E = (α̂E, γ̂E, δ̂E). For now, we

assume that the data sets are large so that both estimates η̂M and η̂E are close

to the true values ηM = (αM , βM , δM) and ηE = (αE, γE, δE), respecyivly. We

now propose a new semiparametric method to estimate parameters η for the joint

model given in (2.1) and (2.2), using ηM , ηE ,and Di, for i = 1, . . . , N1.

Letting ∇ denote the gradient operator that yields the vector of partial

derivatives, the score vectors for the working models (i.e., the models that do

not contain E, M , and Y ) of the form (2.5) and (2.6) are

UM(ηM) = ∇η
M
log{f(Y |M,X; θM , ψM)},

UE(ηE) = ∇η
E
log{f(Y |E,X; θE, ψE)}.

Following Chatterjee et al. (2016), under mild conditions White (1982), the

expectations of the score vectors under the true model (2.1) and (2.2) can be

used to convert the external marginal estimates ηM and ηE into a system of
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equations with unique solutions corresponding to the true parameters η,

E {UM(ηM);η} =



D



Y

UM(ηM)f(Y |D; θ, ψ)dY


dF (D) = 0 (2.7)

E {UE(ηE);η} =



D



Y

UE(ηE)f(Y |D; θ, ψ)dY


dF (D) = 0, (2.8)

where f(Y |D; θ, ψ) corresponds to the full model (2.1). The system of equations

(2.7 and 2.8) does not require that the working models (2.5) and (2.6) and the

full model (2.1) use the same link functions, but does assume that the joint

distribution of (Y,M,E,X) is the same in the two studies.

For the canonical link, that is, θ = θ(η), the system of equations (2.7) is



D

{b′(α+ βM + γE + δ′X)− b′(αM + βMM + δ′
MX)} dF (D) = 0,



D

{b′(α+ βM + γE + δ′X)− b′(αM + βMM + δ′
MX)}MdF (D) = 0,



D

{b′(α+ βM + γE + δ′X)− b′(αM + βMM + δ′
MX)}XdF (D) = 0.

We obtain three equations based on (2.8) similarly. The intercept α and the

covariate-specific parameters δ are present in equations (2.7) based on UM , and

in (2.8) based on UE. To eliminate this over-determination we add the two score

equations for α and δ, and estimate η = (α, β, γ, δ) by solving the system of

equations

S(α) =



D


b′(θ)− b′(θM)

2
− b′(θE)

2


dF (D) = 0

S(β) =



D

{b′(θ)− b′(θM)}MdF (D) = 0 (2.9)

S(γ) =



D

{b′(θ)− b′(θE)}EdF (D) = 0.

S(δ) =



D


b′(θ)− b′(θM)

2
− b′(θE)

2


XdF (D) = 0,

with θ = α+βM+γE+δ′X, θM = αM+βMM+δ′
MX, and θE = αE+γEE+δ′

EX.

We now illustrate the approach for a special case.

Example 1. Let Y given M , E, and X be normally distributed. Then, the

system of equations (2.9), written in matrix form, simplifies to




1 E(M) E(E) E(X′)

E(M) E(M)2 E(ME) E(MX ′)

E(E) E(ME) E(E2) E(EX ′)

E(X) E(MX) E(EX) E(XX′)







α

β

γ

δ


 =




[E(θE) + E(θM)]/2

E(θMM)

E(θEE)

[E(θEX) + E(θMX)]/2


 .
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The left-most matrix is the Fisher information matrix I under a normal model

with mean (2.2), and there is a unique solution for η = (α, β, γ, δ) if and only if

I has full rank (i.e., is invertible).

The normal example points to the proof of the proposition for outcomes Y

with distributions in the exponential family which we state next.

Proposition 1. Under the model defined by (2.1) and (2.2), the system of

equations (2.9) has a unique solution that is equal to the true parameters η =

(α, β, γ, δ)′ if and only if the Fisher information matrix I has full rank.

Proof. To demonstrate that only the true parameters η are solutions to the

system of equations (2.9), we apply the inverse function theorem “Theorems

about Differentiable Functions” (Allendoerfer (1974)). This theorem states that

the corresponding objective function to the system of equations (2.9) is strictly

convex with a unique minimum iff the Jacobian with respect to η is positive

definite.

Let S = (S(α), S(β), S(γ), S(δ))′, with S given in (2.9). The Jacobian matrix

with respect to η is

J =
(
∇ηS

)
=

(
E(b′′

(θ)) E(b′′
(θ)D′)

E(b′′
(θ)D) E(b′′

(θ)DD′)

)
,

which is the Fisher information matrix, I. Thus, the solution η is unique if and

only if I has full rank.

Remark 1. We assume that the intercepts αM and αE are provided, and that the

true intercept α is obtained from the system of equations (2.9). For some special

cases of distributions of the form of (2.1) and (2.2), one can estimate β, γ, and

δ, while ignoring the intercept. Let E(M) = E(E) = E(X1) = · · · = E(Xk) = 0.

Then, for example, when Y given E, M and X is normally distributed, α =

αE = αM and thus all intercepts can be set to zero. When Y given E, M , and

X has a logistic distribution in which β, γ, and δj, for j = 1, . . . , k, are small,

then α ≈ αE ≈ αM and α ≈ log{P (Y = 1)/P (Y = 0)}, where P (Y = 1) is the

prevalence of the outcome Y in the source population.

Remark 2. Estimates ηM and ηE from retrospective case-control studies can

be used to obtain consistent estimates of (β, γ, δ), even though the data in such

studies do not follow the population distribution of Di (Carroll, Wang and Wang

(1995)). However, α is not estimable. Here, we propose setting α = log{P (Y =

1)/P (Y = 0)} when β, γ, and P (Y = 1) are small. In our simulations, we show

the robustness of this approach for rare outcomes.

To obtain a solution for the system of equations (2.9), one needs to

specify a joint distribution F (D). We estimate F using the empirical distri-

bution based on the individual-level observations Di, characterized by F̂ (d) =
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(1/N1)
∑N1

j=1 I{Dj ≤ d}, where I is the indicator function and dF (di) is the

point mass for the ith observation. We thus obtain

Sα(F̂ ) =
N1∑
i=1

{
b′(θi)−

b′(θMi)

2
− b′(θEi)

2

}
= 0,

Sβ(F̂ ) =
1

N1

N1∑
i=1

mi {b′(θi)− b′(θMi)} = 0, (2.10)

Sγ(F̂ ) =
1

N1

N1∑
i=1

ei {b′(θi)− b′(θEi)} = 0,

Sδ(F̂ ) =
1

N1

N1∑
i=1

xi

{
b′(θi)−

b′(θMi)

2
− b′(θEi)

2

}
= 0.

The equations in (2.10) are of the form
∑N1

i=1 S(Di, η̂, η̂
∗) = 0, where η̂∗ =

(η̂E, η̂M) are estimates of η∗ = (ηE,ηM) from studies with sample sizes N2 and

N3.

Proposition 2. Assume that Ni → ∞, for i = 1, 2, 3, such that Nk/N1 → ρk
(with 0 < ρk < ∞) for k = 2, 3, and as N1 → ∞, η̂∗ converges to a normal

distribution,
√
N1(η̂

∗ − η∗) −→
d

N (0,Ση∗). Then, under the model in (2.1) and

(2.2), the solution η̂ = (α̂, β̂, γ̂, δ)′ of (2.10) satisfies

lim
N1→∞

√
N1 (η̂ − η) −→

d
N

(
0, J−1B(η)J−1 + J−1ΩΣη∗Ω′J−1

)
, (2.11)

where B(η) = E{S(D,η,η∗)S(D,η,η∗)′}, Ω = E{∇η∗S(D,η,η∗)}, and J =

E{∇ηS(D,η,η∗)}.

Proof. By the Taylor expansion around η and η∗,

0 =
N1∑
i=1

S(Di, η̂, η̂
∗) =

N1∑
i=1

S(Di, η̂,η
∗)+

N1∑
i=1

∇η∗S(Di, η̂,η
∗)(η̂∗−η∗)+oP (

√
N1)

and

oP (
√
N1) =

N1∑
i=1

S(Di,η,η
∗) +

N1∑
i=1

∇ηS(Di,η,η
∗)(η̂ − η)

+
N1∑
i=1

∇η∗S(Di,η,η
∗)(η̂∗ − η∗).

In addition, we observe that, asymptotically,

[
1√
N1

∑
i S(Di,η,η

∗)√
N 1(η̂

∗ − η∗)

]
= N

([
0

0

]
,

[
B(η) 0

0 Ση∗

])
. (2.12)
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Applying Theorem 1 of Yuan and Jennrich (2000) yields the result in (2.11).

2.3. Estimation based on one incomplete data set and a marginal

estimate: Scenario 2

We now assume that in addition to the study with individual-level data on

Di, for i = 1, . . . , N1, we have another (incomplete) data set with individual-

level data on (Yj, Ej,Xj), for j = 1, . . . , N2, and marginal estimates η̂M . The

scenario with individual-level data on (Y,M,X) and marginal estimates η̂E can

be handled following the same approach.

Similarly to Chatterjee et al. (2016), we construct the observed-data likeli-

hood

L2(θ, ψ) =
N1∏
i=1

f(Di)
N2∏
k=1

∫

M

f(Yk|Dk; θ, ψ)f(Dk)dMk, (2.13)

under the constraint E {UM(ηM);η} = 0, with θ = α + βM + γE + δ′X. In

contrast to scenario 1 with summary statistics only or the problem studied in

Chatterjee et al. (2016), f(D) cannot be factored out or estimated only from the

first data set without loss of efficiency.

For simplicity, we assume that E and X are discrete, and that all unique

values of E and X are observed in both individual-level data sets. Specifically,

the distribution of Di is given by the point masses p = (p1, . . . , pR) at the R

unique values of D and nr =
∑N1

i=1 I {Di = dr)}, for r = 1, . . . , R. Then, the

observed-data likelihood can be written as

Ls
2(θ, ψ) =

R∏
r=1

pnr
r

N2∏
k=1

∑
r

f(Yk|dr; θ, ψ)I [Ek = er,Xk = xr] pr,

under the constraint
∑R

r=1 {E(Y |dr;η)− E(Y |mr,xr;ηM)}V, where V′ = (1,

mr,xr). Letting λ denote the vector of Lagrange multipliers, the constrained

log-likelihood is given by

LLs
2(θ, ψ) =

R∑
r=1

nr log(pr) +
N2∑
k=1

log

{
R∑

r=1

f(Yk|dr; θ, ψ)I [Ek = er,Xk = xr] pr

}

+λ′N2

R∑
r=1

{E(Y |dr;η)− E(Y |mr,xr;ηM)}V. (2.14)

In the Supplementary Material, we propose a computationally efficient and

numerically robust expectation-maximization (EM) algorithm that maximizes

expression (2.14) as a function of η and p. Next, we demonstrate uniqueness

of the maximum, and establish the consistency and asymptotic normality of the

corresponding MLE estimates.
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Proposition 3. Under the model defined by equations (2.1) and (2.2), the

constrained log-likelihood in (2.14) has a unique maximum that is a stationary

point.

Proposition 4. Let (η̂, λ̂, p̂) denote the values that maximize the constrained

log-likelihood (2.14). With N1 → ∞ and Nk/N1 → ρk (with 0 < ρk < ∞), for

k = 2, 3, under standard regularity conditions (Chatterjee et al. (2016)), (η̂, p̂) is

a consistent estimate for (η, F ), and

lim
N2→∞

√
N2 (η̂ − η) −→

d
N (0, Jη) , (2.15)

where Jη is the asymptotic covariance matrix of η defined in the Supplementary

Material, S.3.

The proofs for these propositions are given in the Supplementary Material,

S.2 and S.3.

2.4. Estimation based on three incomplete data sets: Scenario 3

Here, we assume that we have three incomplete data sets with individual-

level data, a study with measures Di, for i = 1, . . . , N1, a study with measures

(Yk, Ek,Xk), for k = 1, . . . , N2, and a study with measures (Yj,Mj,Xj), for

j = 1, . . . , N3. The observed-data likelihood is

L3(θ, ψ) =
N1∏
i=1

f(Di)
N2∏
k=1

∫

M

f(Yk|Dk; θ, ψ)f(Dk)dMk

N3∏
j=1

∫

E

f(Yj|Dj; θ, ψ)f(Dj)dEj.

Again, f(D) cannot be factored out or estimated from the first data set only

without causing a loss of efficiency. We assume that E, M , andX are discrete and

all unique values of E, M , and X are present in the data set with measurements

on D, and we estimate F nonparametrically with mass points at the unique

observed data points. Using the same notation as in the previous sections, the

observed-data log-likelihood corresponding to L3(θ, ψ) is

LLs
3(θ, ψ) =

R∑
r=1

nr log(pr) +
N2∑
k=1

log

{
R∑

r=1

f(Yk|dr; θ, ψ)I [Ek = er,Xk = xr] pr

}

+
N3∑
j=1

log

{
R∑

r=1

f(Yj|dr; θ, ψ)I [Mj = mr,Xj = xr] pr

}
. (2.16)

In the Supplementary Material, we propose an EM algorithm for maximizing

expression (2.16) with respect to η and p. The next two propositions state the

existence of a unique solution and the asymptotic properties of the estimates,
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respectively.

Proposition 5. Under the model defined by equations (2.1) and (2.2), the

observed-data log-likelihood (2.16) has a unique maximum.

Proposition 6. Let (η̂, p̂) maximize the log-likelihood (2.16). Under standard

regularity conditions (see Lin and Zeng (2006)), as N1 → ∞, Nk/N1 → ρk (with

0 < ρk < ∞), for k = 2, 3, F̂ → F , and

lim
N2→∞

√
N2 (η̂ − η) −→

d
N

(
0, I−1

η

)
, (2.17)

where I−1
η denotes the inverse information matrix defined in Supplementary

Material, S.3.

Our semiparametric method is related to methods for two-phase studies

(Breslow and Holubkov (1997)) and response-dependent sampling (e.g. Lin and

Zeng (2006)). Proofs of the propositions are provided in the Supplementary

Material, S.2 and S.4.

2.5. Estimation under case-control sampling

So far, we have assumed that the distributions of (Y,E,M,X) in the three

data sources are the same. We now consider the setting in which the two

studies with data on a binary Y are conducted using case-control (i.e., outcome-

dependent) sampling, and this assumption does not hold. The extension to the

scenario in which one study is based on case-control sampling is straight forward.

Because the intercept α in a logistic model is not identifiable under case-control

sampling, we assume all intercepts αM , αE, and α are known. In practice, we

propose using α ≈ αE ≈ αM and α ≈ log{P (Y = 1)/P (Y = 0)}, where P (Y = 1)

is the prevalence of Y in the source population. Under scenario 1, the parameters

can then be estimated using the approach in Section 2.2. Here, we modify the

methods for the other two scenarios.

We start with scenario 2. Let N1
2 and N 0

2 denote the number of cases

and controls, respectively, sampled in the second study, and PY = P (Y =

1) =
∫
D
P (Y = 1|D;η)dF (D) be the marginal probability of Y in the source

population. The observed-data likelihood is

LR
2 (θ, ψ) =

N1∏
i=1

f(Di)

{
N2∏
k=1

∫

M

f(Yk|Dk; θ, ψ)f(Dk)dMk

}
P

−N1
2

Y (1 − PY )
−N0

2 ,

under the constraint E {UM(ηM);η} = 0. This constraint is based on the score

equation for βM only, as αM is assumed to be known. Similar to Section 2.3, the

constrained semiparametric log-likelihood is
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LLR
2 (θ, ψ) =

R∑
r=1

nr log(pr) +
N2∑
k=1

log

{∑
r

f(Yk|dr; θ, ψ)I [Ek = er,Xk = xr] pr

}

−N 1
2 log(PY )−N 0

2 log(1− PY )

+λ′N2

∑
r

{E(Y |dr;η)− E(Y |mr,xr;ηM)}
(
mr

xr

)
pr, (2.18)

where PY =
∑

r P (Y = 1|dr,xr; θ)pr and λ is the vector of Lagrange multiplier.

Supplementary Material, S.4 gives an EM algorithm for maximizing the above

expression with respect to (β, γ, δ) and the vector of point masses p. Propositions

3 and 4 still hold under retrospective sampling.

We next discuss scenario 3. Let N 1
j , N

0
j denote the numbers of cases and

controls, respectively, sampled into study j, j = 2, 3 with N1
T = N1

2 + N 1
3 and

N 0
T = N0

2 +N 0
3 . The observed-data likelihood is

LR
3 (θ, ψ) =

N1∏
i=1

f(Di)
N2∏
k=1

∫

M

f(Yk|Dk; θ, ψ)f(Dk)dMk

×
N3∏
j=1

{∫

E

f(Yj|Dj; θ, ψ)f(Dj)dEj

}
P

−N1
T

Y (1− PY )
−N0

T .

Following the derivations in Section 2.4, the semiparametric log-likelihood is

LLR
3 (θ, ψ) =

R∑
r=1

nr log(pr) +
N2∑
k=1

log

{∑
r

f(Yk|dr; θ, ψ)I [Ek = er,Xk = xr] pr

}

+
N3∑
j=1

log

{∑
r

f(Yj|dr; θ, ψ)I [Mj = mr,Xj = xr] pr

}

−N 1
T log(PY )−N 0

T log(1− PY ) (2.19)

where PY is previously defined. An EM algorithm for maximizing the above

expression with respect to (γ, β, δ,p) is given in the Supplementary Material .

Propositions 5 and 6 still hold here. In Supplementary Material, S.4 we provide

the asymptotic covariance matrices of (γ, β, δ) for the two scenarios discussed

here.

2.6. Accommodating exposure and mediator interactions

Some approaches for mediation analysis allow for an interaction between the

exposure and the mediator (e.g. VanderWeele (2014)). The model in (2.1) can

be extended to include an interaction term,

θ = α+ βM + γE + ωME. (2.20)
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While our approach cannot in general handle an interaction term without

incorporating additional information, we can accommodate the special case of

a categorical E, where we can assess the effect of M for each exposure group, as

described next for the three scenarios in Section 2.1. However, when ω ̸= 0 in

(2.20), the NIE no longer estimates mediation; but rather the difficult-to-interpret

effect of changing the only value of M .

For ease of exposition, we use a binary E and do not adjust for X. We

assume that under scenario 1, effect estimates ηM |E=e = (αM |E=e, βM |E=e), for

e = 0, 1, are available. The expectations of the score vectors for ηM |E=e under

the true model (2.20) satisfy

∫

M,E

I(E = e)
{
b′(α+ βM + γE + ωME)− b′(αM |E=e + βM |E=eM)

}
dF = 0,

∫

M,E

I(E = e)
{
b′(α+ βM + γE + ωME)− b′(αM |E=e + βM |E=eM)

}
MdF = 0,

for e = 0, 1. The above two equations identify η = (α, β, γ)′ in model (2.1)

and (2.2) without interaction. With estimates from (2.6), η = (α, β, γ, ω) is

identifiable (which is shown similarly to Proposition 1), and η̂ is the solution of

the set of extended score equations given in Supplementary Material, S.5.

Under scenario 2, we assume we have ηM |E=e = (αM |E=e, βM |E=e), for

e = 0, 1, instead of ηM . Then all parameters can be estimated from the likelihood

(2.13) under the constraints S(β) and S(ω) given in Supplementary Material,

S.5. Lastly, under scenario 3, we assume that data (Yj,Mj) for subjects with

E = 0 and with E = 1 are available. The methods in Section 2.4 extend to this

scenario by replacing
∫
E
f(Yj|Mj, e; θ, ψ)f(Mj, e)de in the observed likelihood

with f(Yj|Mj, e = k; θ, ψ)f(Mj|e = k), for k = 0, 1. Note that only the

conditional probability of M given E has to be modeled. The identifiability

and consistency of η̂ = (α̂, β̂, γ̂, ω̂) are shown by extending Propositions 4–6.

2.7. Estimation of NDE and NIE

We conclude our theoretical derivations by describing the estimation of

the NDEx and NIEx defined in (2.3) and (2.4), respectively. Under our

semiparametric framework, (2.4) corresponds to

E [Y {e,M(e′)}|X = x] =
R∑

r=1

b′(α+ βmr + γe+ δ′x)
I(er = e′,xr = x)pr∑R
r=1 I(er = e′,xr = x)pr

,

and can be evaluated by plugging the estimated parameters into the above

equation. The variance of the estimated NDE and NIE are obtained by applying

the delta method or by using numerical simulations based on the asymptotic

normal distribution of (α̂, β̂, γ̂, δ̂, p̂).
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Table 1. Identifiability of causal effects. Extensions of the methods to the settings in
this table are provided in Supplementary Material.

Study 1 (M-Y ) Study 2 (E-Y ) Causal effects

identifiable

Adjusted for all X; Adjusted for all X; Yes

estimates for X provided estimates for X provided (Setting 1)

Adjusted for all X; Yes

estimates for X not provided (Setting 2)

Adjusted for X1; Adjusted for different covariates X2; Yes

estimates for X1 provided estimates for X2 provided (Setting 3)

Adjusted for X2; No; see Remark 3

estimates for X2 not provided (Setting 4)

In scenario 1, where we do not estimate the joint distribution of (α̂, β̂, γ̂, δ̂, p̂),

we estimate the variance of the estimated NDE and NIE using the following

bootstrap approach. At each bootstrap replication, we resample individual-level

data (M,E,X) with replacement, and simulate new values of η̂M and η̂E from

the asymptotic distribution N(η∗,Ση∗). We next estimate (α̂, β̂, γ̂, δ̂, p̂) and

the NIE and NDE based on this new bootstrap data. Lastly, we estimate the

variances of the NDE and NIE using the bootstrap sample variance.

2.8. Remarks on confounder adjustment

Thus far, we have assumed that the models for the associations between M

and Y and the association of E and Y are adjusted for the same confounders

X, and that we have association estimates δ for X or individual-level data on X

(setting 1 in Table 1). Supplementary Material provides theoretical justifications

and extensions of the methods when δ is not available or the models are adjusted

for different covariates (settings 2 and 3, Table 1).

Remark 3. The NDE and NIE are not identifiable if estimates for some

covariates are not provided by either of the two studies. If a data set containing

(Y,M,X1) is available, under some conditions, the regression parameters and

causal effects are identifiable even without providing estimates of the effects of

the covariates X2 from study 2. Recently Evans et al. (2018) constructed a

system of estimating equations that are functions of {Y − b′(M,X1,X2)} and

some vector function of g(M,X1), with the same dimension as the number of

regression coefficients (i.e., η) in the full model. If the Jacobian of the estimating

equations J = E
{
g(M,X1)∇ηb

′(M,X1,X2)
}
has full rank, then the regression

parameters and causal effects are identifiable. However, such a function may not

always exist. For example, if M and X1 are discrete and the number of unique

values of g(M,X1) is smaller than the number of regression coefficients, then J

does not have full rank.
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2.9. Extension to multiple mediators and/or exposures

Our method can be extended to scenarios with multiple exposures, E =

(E1, . . . , El), multiple mediators, M = (M1, . . . ,Mq), and covariates, X. These

extensions require that the primary data set contains all E, M , and X,

and is sufficiently large to model their joint distribution nonparametrically.

Supplementary Material, S.6, describes details on a setting in which we have

estimated associations between Mj and Y , for j = 1, . . . , p, from p studies, and

estimated associations between Ej, for j = 1, . . . , q, and Y from q studies. Using

similar steps, one can easily extend our methods to other situations that include

information on mediators, covariates and exposures. If some variables are present

in multiple studies, the resulting over-determination of the model can be handled

in the same way as for the intercept or common covariates, by setting the average

of multiple score equations equal to zero.

3. Simulation Studies

We evaluate our procedures for estimating causal effects in several simulation

settings. Here, we consider case-control sampling for continuous E and M ,

and evaluate our procedures for estimating the regression and causal effects for

the four settings in Table 1, and for the three scenarios presented in Section

2. Simulations with discrete E and M and continuous Y are described in the

Supplementary Material, as well as simulations that assess whether analyzing

multiple incomplete data sets with large sample sizes is better than analyzing a

small study in which all three variables are measured. Lastly, the Supplementary

Material contains simulations that evaluate the effect of omitting an interaction

term or covariate adjustment in the model, or using misspecified intercepts α for

the binary outcome model.

3.1. Data generation

To estimate the regression and causal effects for the four settings presented

in Table 1, we consider case-control sampling for continuous E and M , and two

covariates X1 and X2. We assume E ∼ N(0, 1), X1 ∼ Binom(4, 0.5), X2 ∼
Binom(4, 0.5), and M = E + 1/2X1 + 1/2X2 + e, with e ∼ N(0, 1). For the

first data set we generate (Ei,Mi, X1i, X2i), for i = 1, . . . , 5000, from the above

model. For the second and third data sets, we generate large cohorts using

logit{P (Yi|Ei,Mi)} = α + βE + γM + δX1 + δX2, where α = log(0.01/0.99) =

−4.6, (β, γ) = (0.15, 0.15), and δ ∈ {(0, 0), (0.1, 0.1)}, and sample N0
2 = N 0

3 =

1000 controls and N 1
2 = N 1

3 = 1000 cases using a nested design. For each δ,

we simulate 10,000 studies. Then we apply our method under the four settings

in Table 1. We assume we have a data set with D = (E,M,X1, X2) and the

additional information described below.
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Setting 1: Both studies are adjusted for X1 and X2 and report all esti-

mates. We use the marginal estimates (α̂E, γ̂E, δ̂1E, δ̂2E) and (α̂M , β̂M , δ̂1M ,

δ̂2M), calculated using a logistic regression.

Setting 2: Both studies are adjusted for X1 and X2, but one study does

not provide estimates. We use the marginal estimates (α̂E, γ̂E, δ̂1E, δ̂2E)

calculated using, a logistic regression, and (α̂M , β̂M) calculated using a

logistic regression, adjusting for (X1, X2).

Setting 3: Each study is adjusted for one of the two covariates. We use

the marginal estimates (α̂E, γ̂E, δ̂1E) and (α̂M , β̂M , δ̂2M), calculated from a

logistic regression.

Setting 4: Both studies are adjusted for (X1, X2), but do not provide

estimates for the covariates. We use the marginal estimates (α̂E, γ̂E)

and (α̂M , β̂M), calculated using a logistic regression, adjusting for (X1, X2).

To evaluate our procedures for the three scenarios presented in Sections 2.2–

2.4, we use similar simulation studies, with the details provided in Section S8 of

the Supplementary Material.

Scenario 1: Two summary statistics. We use the marginal estimates

(α̂E, γ̂E) and (α̂M , β̂M) calculated using a logistic regression.

Scenario 2: Scenario 2: One summary statistic. We use the marginal

estimates (α̂E, γ̂E) from a logistic regression and a data set with information

on (M,Y ).

Scenario 3: We have two data sets containing (E, Y ) and (M,Y ). We

also used a traditional mediation analysis, where we have one data set with

all three variables as a “gold-standard” (VanderWeele (2014)).

Scenario 0: One complete data set. with (E,M, Y ) measured on N 1 =

N 0 = min(N 1
2 , N

1
3 ) cases and controls.

To apply our methods to the three simulated data sets, we disctretize E and

M by rounding them to the first digit (i.e., bandwidth of 0.1). The supplementary

Material contains results for discretization with a bandwidth of 0.2, starting from

zero (e.g., E = 0.12 is assigned to E = 0; E = 0.32 is assigned to E = 0.2).

We evaluate the mean of the estimated regression coefficients and causal effects,

their variances, and the coverage of their 95% confidence intervals (CIs), based

on 10,000 simulated studies.

3.2. Results

First, we evaluate the performance of the methods with covariate adjustment.

Table 2 shows the means over 10,000 estimated regression coefficients (β, γ),
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Table 2. Mean estimates of regression and causal parameters obtained under settings
1–4 in Table 1; Y binary, E and M continuous, (X1, X2) discrete.

(γ, β, δ1, δ2) = (0.15, 0.15, 0, 0) (γ, β, δ1, δ2) = (0.15, 0.15, 0.1, 0.1)

NDE = 0.0196, NIE = 0.0179 at (X1, X2) = (0, 1) NDE = 0.021; NIE = 0.0189 at (X1, X2) = (0, 1)

Setting β γ δ1 δ2 NDE NIE β γ δ1 δ2 NDE NIE

1 0.147 0.152 -0.001 -0.001 0.0190 0.0183 0.146 0.153 0.098 0.099 0.020 0.0199

2 0.147 0.151 -0.001 0.001 0.0191 0.0182 0.146 0.152 0.099 0.098 0.020 0.0197

3 0.149 0.152 -0.005 0.001 0.0192 0.0183 0.142 0.152 0.096 0.097 0.0195 0.020

4 0.121 0.177 NA NA 0.015 0.020 0.120 0.178 NA NA 0.0150 0.020

NDEs, and NIEs under the four settings in Table 1. All three methods for settings

1, 2, and 3 produce unbiased estimates of β, γ, and NDE and NIE. As expected,

when no association estimates for the covariates are provided, the estimates of (β,

γ), NDE, and NIE are biased. This highlights the importance of incorporating

covariate estimates in our methods.

Next, we summarize the results from the four sets of simulations that evaluate

the methods for the three scenarios in Section 2.1. The mean of the 10,000

estimated regression coefficients (β, γ), the NDE, and the NIE are virtually

unbiased for scenarios 1 and 2 and all parameter values (“mean” in Table 3).

The mean of the 10,000 analytical standard errors (“SE” in Table 3) agrees well

with the empirical standard errors and is similar for the same three scenarios.

The 95% Wald-based CIs have close to nominal coverage (“cov” in Table 3).

In scenario 3, the estimates of the regression coefficients, NDE, and NIE are

slightly biased, and the coverage of the 95% CIs is somewhat lower than 95%.

The bias disappeares and the CI coverage improves as the sample size increases

(Supplementary Material, Table S1) or we use a bandwidth for discretization of

0.2 (Supplementary Tables S2 and S3). Under scenario 0 (inference using one

data set with all variables), the standard deviations of the regression coefficients,

NDE, and NIE are noticeably smaller.

The Supplementary Material, Tables S4–S9 show additional results. When E

and M are discrete with either continuous or binary Y , the estimated regression

coefficients, NDEs, and NIEs are virtually unbiased for all settings and parameter

values (Supplementary Material, Tables S4–S6). The mean of the standard errors

agrees well with the empirical standard errors, and the coverage of the 95% Wald-

based CIs is close to nominal. For continuous E, M , and Y (Supplementary

Material, Table S7), the estimated regression coefficients, NIE, and NDE in

scenarios 1 and 2 are unbiased, and the analytical variances agree well with the

empirical variances. The 95% CIs have close to nominal coverage. In scenario 3,

the estimated regression coefficients, NDE and NIE are slightly biased, and the

covareage of 95% CI is somewhat too low. However, similarly to case of binary

Y , the bias decreases and the CI coverage improves with increasing sample size

(Supplementary Material, Table S1) or when the bandwidth of discretization
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Table 3. Simulation results for scenarios with binary Y , and continuous E and M . Mean:
average value of an estimator. SE: average value of the analytical standard error of the
estimator. Cov: coverage of the true value by the 95% confidence interval computed
using the asymptotic variance.

γ = 0.15; β = 0.15; NDE = 0.016; NIE = 0.015

β γ NDE NIE

Mean (SE) Cov Mean (SE) Cov Mean (SE) Cov Mean (SE) Cov

Scenario 0: 0.15 (0.05) 0.95 0.15 (0.06) 0.95 0.016 (0.007) 0.96 0.015 (0.006) 0.94

Scenario 1: 0.15 (0.08) 0.95 0.15 (0.11) 0.95 0.016 (0.012) 0.95 0.015 (0.010) 0.92

Scenario 2: 0.15 (0.07) 0.95 0.14 (0.10) 0.95 0.015 (0.011) 0.95 0.015 (0.009) 0.92

Scenario 3: 0.14 (0.06) 0.94 0.15 (0.09) 0.94 0.016 (0.009) 0.94 0.014 (0.008) 0.87

γ = 0.15; β = 0; NDE = 0.014; NIE = 0

Scenario 0: 0 (0.04) 0.96 0.15 (0.06) 0.95 0.014 (0.006) 0.95 0 (0.004) 0.97

Scenario 1: 0 (0.11) 0.95 0.15 (0.08) 0.95 0.015 (0.010) 0.94 -0.001 (0.012) 0.95

Scenario 2: 0 (0.10) 0.95 0.15 (0.07) 0.95 0.015 (0.009) 0.94 0 (0.010) 0.95

Scenario 3: 0.02 (0.09) 0.93 0.13 (0.06) 0.92 0.013 (0.007) 0.90 0.002 (0.009) 0.93

γ = 0; β = 0.15; NDE = 0; NIE = 0.015

Scenario 0: 0.15 (0.04) 0.95 0 (0.06) 0.95 0 (0.007) 0.96 0.015 (0.006) 0.94

Scenario 1: 0.15 (0.11) 0.95 0 (0.08) 0.95 0 (0.008) 0.98 0.014 (0.011) 0.95

Scenario 2: 0.14 (0.10) 0.95 0.01 (0.07) 0.95 0.001 (0.007) 0.98 0.013 (0.010) 0.95

Scenario 3: 0.13 (0.09) 0.93 0.01 (0.06) 0.93 0.001 (0.006) 0.97 0.012 (0.008) 0.93

γ = 0; β = 0; NDE = 0; NIE = 0

Scenario 0: 0 (0.04) 0.95 0 (0.06) 0.96 0 (0.006) 0.96 0 (0.004) 0.97

Scenario 1: 0 (0.11) 0.95 0 (0.08) 0.95 0 (0.008) 0.98 0 (0.010) 0.95

Scenario 2: 0 (0.10) 0.95 0 (0.07) 0.95 0 (0.007) 0.98 0 (0.009) 0.95

Scenario 3: 0 (0.09) 0.94 0 (0.06) 0.94 0 (0.006) 0.97 0 (0.008) 0.94

increases to 0.2 (Supplementary Material, Tables S8 and S9).

We examine the effect of changing the sample size for one of the three studies

on the variance of the NDEs and NIEs (Supplementary Material, Figures S1,

S2). Increasing N1, the sample size of the study with data on (E,M), did

not improve the efficiency or reduce the variance in any of the three scenarios

(Supplementary Figures S1A and S2A). Increasing N2, the sample size of the

study with measurements on (E, Y ), reduces the variances of the NDE and NIE

(Supplementary Material, Figures S1B and S2B). However, even for N2 = 10000,

the variances of the estimates are usually larger than those of a small study that

measures all three variables. Increasing N3, the sample size of the study with

(M,Y ), results in lower variances for both the NDE and the NIE (Supplementary

Material, Figures S1C and S2C), but the estimates are again less precise than

those of a small study with all three variables.

Lastly, we investigate the effects of a model misspecification on the estimates

of the regression coefficients and the causal effects (Supplementary Material,

Figures S3-S6). Omitting the interaction term δ from the model results in biased

estimates of the NDE that linearly increases with δ (Supplementary Material,
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Figures S3 and S4). For a binary Y , the bias is also observed in the estimates of

the regression coefficients. Omitting confounders for the relationship between M

and E leads to bias in both regression coefficients, and as a result, in the NDE

and NIE. These results again highlight the importance of confounder adjustments.

The results in Table S10 demonstrate that when Y given E and M has a logistic

distribution and in the populations P (Y = 1) << 1, misspecifing α = αE = αM

does not noticeably bias η.

4. Data Example

Genome-wide association studies (GWAS) have identified hundreds of genetic

variants that affect a woman’s breast cancer risk. Individual variants have only

weak associations with breast cancer risk, but when combined, the resulting

polygenic risk score (PRS) is strongly associated. The remaining question is

how this PRS and the underlying genetics affect the risk of breast cancer. In an

attempt to answer this question, studies have evaluated the relationship between

the PRS and various breast cancer risk factors, identifying an association with the

number of terminal duct lobular units (TDLUs), milk-producing breast structures

known to be associated with breast cancer risk.

We use our new approach to determine the proportion of the effect of

PRS (E) on breast cancer status (Y ) explained by the TDLU count (M). We

have (i) a data set with PRS scores and the TDLU counts for 1,398 women

(Bodelon et al. (2020)), (ii) a 4 × 2 table with the numbers of breast cancer

cases and controls by TDLU count categories (quartiles) in a case-control study

(Figueroa et al. (2014)), and (iii) an OR and 95% CI describing the effect of a

one-standard deviation (1-SD) increase in PRS on breast cancer risk (Mavaddat

et al. (2019)). Details onf the study-specific results are given in Supplementary

Material, Figure 7. We use the method for two marginal estimates described in

Section 2.2 and assume the five-year risk of breast cancer is 2% (Mavaddat et al.

(2019)). We discretize the PRS into bins of length 0.1.

The overall PRS effect on breast cancer risk is summarized by an OR =

1.65 (95% nCI: 1.59 – 1.72). Conditioned on the TDLU count, we estimate the

conditional OR = 1.63 (1.56 – 1.71), suggesting that the TDLU count does not

account for a significant proportion of the overall effect. We further estimated

the NIE and NDE. Assuming that the overall breast cancer risk was 2% in the

population, a 1-SD increase in PRS directly increases breast cancer risk by 0.44%

(0.31 – 0.58), and indirectly by a nonsignificant 0.074% ( -0.1 – 0.28). The results

are similar for sensitivity analyses when we vary the marginal effect of the TDLU

count on breast cancer risk to assess possible differences between the populations

of the two breast cancer studies.
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5. Discussion

We have proposed novel semiparametric approaches for mediation analysis to

estimate the NDE and NIE under three scenarios that arise in practice when the

exposure, mediator, and outcome are not measured in a single study. We have

demonstrated that all regression parameters are identifiable under the generalized

linear model (2.1 and 2.2), and estimates are consistent and asymptotically

normal. We discussed an extension to allow for interactions between the mediator

and the exposure in some settings, and how to accommodate multiple mediators,

multiple exposures, and confounders.

We highlight the key features of our method. Most importantly, simulation

studies with small sample sizes show that our approaches yield unbiased estimates

and confidence intervals with nominal coverage. Moreover, for continuous

outcomes, the estimates obtained when only summary statistics were available

(scenario 1) were as efficient as the estimates obtained when there were partially

observed data (scenarios 2, 3). For binary outcomes, the estimates from scenario

1 were less efficient than those of the other two scenarios, and the estimates of

the regression coefficients, NDE, and NIE from scenario 3 were about 20% more

efficient. However, the efficiency of the estimates from our methods is noticeably

lower than that of estimates based on a single data set that contains all relevant

variables.

Our approach builds on existing statistical methods that combine information

from multiple data sets to estimate parameters. However, these methods,

discussed below, require that at least one data set contains all relevant variables.

First, our research is closely related to related to methods for two-phase and

outcome-dependent sampling designs, where a subset of units is selected from

a large data set to measure additional variables of interest (e.g., Lin and Tang

(2011)). Methods based on semiparametric maximum likelihood that account for

a sampling design have been proposed to analyze such studies (e.g., Breslow

and Holubkov (1997); Lin and Zeng (2006)). Several approaches, including

methods based on calibration equations (Chen and Chen (2000)), regression

imputation (Cheng et al. (2019)), and inverse probability weighting (Cao, Tsiatis

and Davidian (2009)), have been proposed to combine a small study with a

complete set of variables with a large external data set with fewer variables in

order to improve the regression coefficient efficiency. Many of these methods

require access to individual-level data from both data sets. Chatterjee et al.

(2016) and Zhang et al. (2020) proposed a constrained MLE for model calibration

using summary-level information from multiple sources. Second, our model

assumes that the three sources of information are based on samples from the same

underlying population. Many methods have been developed to extend causal

inferences from a one population to another population under generalizability

or transportability assumptions (see ,e.g., Buchanan et al. (2018)). Under these
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assumptions, Yang and Ding (2020) and Evans et al. (2018) proposed approaches

for combining multiple data sets in order to estimate the causal effects of an

exposure on an outcome that can handle nonrepresentative sampling. If we had

a common set of covariates across all our studies, we could adapt these methods

to our approach, but this extension is beyond the scope of this study.

We highlight some limitations of the proposed framework. First, the model

specified in Section 2.1 assumes no interaction between the exposure and the

mediator. In the presence of an interaction, the estimates of NIE and NDE are

biased. If no additional data with all three measurements are available, then

including the unknown interaction parameter in the outcome model in Section

2.1 causes identifiability problems. Thus, in sensitivity analyses to assess the

potential bias in NIE and NDE, one can model the interaction term as a linear

function of γ, ω = kγ, where k represents a specified proportion of the additive

effect of the exposure. Alternatively, when individual-level data on (Y,E,X) or

(Y,M,X) are available, we can estimate the interaction between E and M by

adapting the methods of Evans et al. (2018).

Second, for scenarios 2 and 3 ,the likelihood functions involve estimating

the joint density of (E,M,X), which is challenging for continuous variables

bacause our method requires all unique values of (E,X) or (M,X) observed in

all individual-level data sets. Our approach of discretizing continuous variables

can produce biased results and a loss of efficiency. One solution is to build on

ideas for handling expensive continuous variables in two-phase studies (e.g., Zeng

and Lin (2014)). In future work, we plan to use kernel functions to model the

joint distribution of (E,M,X), as outlined for scenarios one and two. Despite

these limitations, our proposed methods are practically important novel tools for

mediation analysis with partially observed data.

Supplementary Material

The online Supplementary Material contains appendices, tables and figures

referenced in Sections 2, 3.2, and 4.
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