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Abstract: We examine statistical inference for genetic relatedness between binary

traits, based on individual-level genome-wide association data. Specifically, for

high-dimensional logistic regression models, we define parameters characterizing the

cross-trait genetic correlation, genetic covariance, and trait-specific genetic variance.

We develop a novel weighted debiasing method for the logistic Lasso estimator and

propose computationally efficient debiased estimators. Further more, we study the

rates of convergence for these estimators and establish their asymptotic normality

under mild conditions. Moreover, we construct confidence intervals and statistical

tests for these parameters, and provide theoretical justifications for the methods,

including the coverage probability and expected length of the confidence intervals,

and the size and power of the proposed tests. Numerical studies under both model-

generated data and simulated genetic data show the superiority of the proposed

methods. By analyzing a real data set on autoimmune diseases, we demonstrate

their ability to obtain novel insights about the shared genetic architecture between

10 pediatric autoimmune diseases.
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1. Introduction

Genome-wide association studies (GWAS) have identified thousands of

genetic variants or single nucleotide polymorphisms (SNPs) associated with

various complex phenotypes. Among them, many variants were found to be

associated with multiple complex traits, reflecting the pleiotropic action of genes

or the correlation between causal loci in two traits. Understanding the shared

genetic architecture among different traits can potentially lead to further insights

into the biological etiology of diseases and inform therapeutic interventions

(van Rheenen et al. (2019)).

Various definitions of genetic relatedness or correlation have been proposed

in different contexts to characterize quantitatively the shared genetic associations

between complex traits, based on GWAS data. Understanding the genetic
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relatedness between complex traits helps to identify new trait-associated variants

(Turley et al. (2018)), improve genetic risk prediction (Maier et al. (2015)),

and assist inference on causality (O’Connor and Price (2018)). Compared with

methods of traditional approaches from family studies, where measurements of

both traits are required for the same individuals, those based on GWAS enjoy

the advantages of increased sample sizes and a reduced risk of confounding or

ascertainment biases, and thus have greater potential for large-scale analyses

involving multiple traits (Zhang et al. (2020)).

Bivariate linear mixed-effects models have been widely applied to estimate

the genetic covariance and genetic correlation between two traits from individual-

level GWAS data (Lee et al. (2011, 2012); Vattikuti, Guo and Chow (2012); Lee

et al. (2013)). These models decompose the phenotypic variance into genetic

and residual variance components, and define the genetic correlation as that

between the two trait-specific random generic effects. However, the mixed-

effect model approach requires knowledge about the genetic relationship matrix,

which is commonly approximated by the genetic relationship across the set of

all genotyped variants (Yang et al. (2010)). Computationally efficient methods

have been developed based on the cross-trait linkage disequilibrium (LD) score

regression (Bulik-Sullivan et al. (2015); Ning, Pawitan and Shen (2020)) to

estimate a genetic correlation using GWAS summary statistics over a large set of

SNPs. This approach relies on the classical asymptotics, which do not consider

the high dimensionality of the SNPs relative to the sample sizes, resulting in

possibly inaccurate inference results (Zhao and Zhu (2019a)). Other approaches,

such as those of Shi et al. (2017), Lu et al. (2017), and Guo et al. (2021a), explore

differences in local genetic correlations between traits using genome partitioning

based on genomic annotations. Weissbrod, Flint and Rosset (2018) notes that

many existing methods are geared primarily toward quantitative traits. Thus,

applying them directly to data sets with binary outcomes may suffer from reduced

statistical power. They propose a mixed-effects model for estimating the genetic

correlation between binary traits.

In this study, we take a high-dimensional regression approach, with fixed

genetic effects to identify trait-associated genetic variants and quantify the

genetic relatedness between two traits. An important advantage of a multiple

regression over the simple univariate regression is its potential to identify more

trait-associated variants (Wu et al. (2009)). Existing studies on heritability or

co-heritability in a high-dimensional regression framework include, for example,

those of Bonnet, Gassiat and Lévy-Leduc (2015), Janson, Barber and Candes

(2017), Verzelen and Gassiat (2018), Guo et al. (2019), Zhao and Zhu (2019a),

Zhao and Zhu (2019b), and Guo et al. (2021c). Under the linear regression model,

Guo et al. (2019) propose bias-corrected estimators for the genetic covariance and

correlation parameters, based on individual-level GWAS data, and Zhao and Zhu

(2019a) propose consistent estimators for a polygenic risk score and a genetic
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correlation, based on GWAS summary statistics. However, these works focus on

the genetic relatedness between continuous traits, and do not provide inference

procedures such as statistical tests.

We address the following two questions concerning binary traits. How can

we define and study the genetic relatedness between two binary traits in a

high-dimensional regression framework? How can we perform a valid statistical

inference, such as testing hypotheses or constructing confidence intervals (CIs) for

the genetic-relatedness parameters? We address these questions in a principled

way with rigorous statistical justifications.

To that end, for a pair of binary traits (y, w) ∈ {0, 1}2, we consider the

following high-dimensional logistic regression models:

y|X ∼ Bernoulli(πy(X)), log

{
πy(X)

1− πy(X)

}
= α+X⊤β, (1.1)

w|X ∼ Bernoulli(πw(X)), log

{
πw(X)

1− πw(X)

}
= ζ +X⊤γ, (1.2)

where πy(X) = P (y = 1|X), πw(X) = P (w = 1|X), X ∈ Rp is a random vector

of p genetic variants with population covariance matrix Σ ∈ Rp×p, β, γ ∈ Rp

are the corresponding trait-specific regression coefficients, which are assumed to

be sparse vectors, and α, ζ ∈ R are the trait-specific intercepts. The genetic

covariance between two traits is defined as the covariance between the log-

odds ratios associated with the two traits, that is, genetic covariance(y, w) =

Cov (log {πy(X)/(1− πy(X))} , log {πw(X)/(1− πw(X))}) , which, by definition,

admits the following expressions: Cov(log {πy(X)/(1− πy(X))} , log{πw(X)/

(1− πw(X))}) = Cov(X⊤β,X⊤γ) = β⊤Σγ. Similarly, we define the genetic

variance of the binary trait y as the variance of its associated log-odds ratio,

that is, genetic variance(y) = Var (log {πy(X)/(1− πy(X))}) , which satisfies

Var (log {πy(X)/(1− πy(X))}) = Var(X⊤β) = β⊤Σβ. We define the genetic

variance of the trait w as Var (log {πw(X)(1− πw(X))}) = Var(X⊤γ) = γ⊤Σγ.

Whenever the genetic variances of y and w are both nonzero, we can define

the genetic correlation R(y, w) between the two traits as the correlation between

the associated log-odds ratios, that is, Corr(log {πy(X)/(1− πy(X))} , log{πw(X)

(1− πw(X))}) = β⊤Σγ/
√
β⊤Σβγ⊤Σγ, and set R(y, w) = 0 whenever β⊤Σβ ·

γ⊤Σγ = 0.

The concept of covariance or correlation between two log-odds ratios is both

statistically and empirically meaningful. It is used by Wei and Higgins (2013)

to account for correlated outcomes in meta-analysis, and by Bagos (2012) when

the data take the form of contingency tables. In our context, as parameters

or functionals quantifying the conditional co-occurrence risk of two traits, the

genetic covariance and correlation defined above characterize the shared effect

size of the genetic variants by considering the true covariance structure of the
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variants.

We examine the problem of statistical inference for these genetic relatedness

functionals, based on individual-level GWAS data with binary outcomes. By

carefully analyzing the logistic Lasso estimator, we develop a novel weighted

debiasing method and propose computationally efficient debiased estimators for

these functionals. We further study their rates of convergence and obtain their

asymptotic normality under mild theoretical conditions. Moreover, confidence

intervals and statistical tests for these functionals are constructed. We provide

theoretical justifications for the methods, including the coverage probability and

expected length of the CIs, and the size and power of the proposed tests. Our

results provide a rigorous statistical inference framework for studying the genetic

relatedness between binary traits.

Throughout, for a symmetric matrix A ∈ Rp×p, λi(A) denotes its ith largest

eigenvalue and λmax(A) = λ1(A) and λmin(A) = λp(A). For a smooth function

f(x) defined on R, we denote ḟ(x) = df(x)/dx and f̈(x) = d2f(x)/dx2. For

sequences {an} and {bn}, we write an = o(bn), an ≪ bn or bn ≫ an if limn an/bn =

0, and write an = O(bn), an ≲ bn or bn ≳ an if there exists a constant C such

that an ≤ Cbn for all n. We write an ≍ bn if an ≲ bn and an ≳ bn.

2. Estimation of Genetic Relatedness

2.1. Genetic relatedness under various settings of data availability

We consider two types of data collection scenarios commonly used to study

the genetic relatedness between two traits based on individual-level GWAS data.

Data sets obtained from these two scenarios are widely available in current genetic

research. In the first scenario, measurements of two traits, along with the subject

genotypes, are obtained from different groups of unrelated individuals. In other

words, there are two independent data sets, each containing measurements of a

single trait and genotypes for a group of unrelated individuals. This scenario is

common in cross-trait analyses based on multiple independent GWAS data. In

the second scenario, measurements of multiple traits of interest, along with the

subject genotypes, may be obtained from the same group of unrelated individuals.

This type of data set is also widely available by virtue of many large-scale studies,

such as UK Biobank (Sudlow et al. (2015)). The above two scenarios are formally

defined as follows.

Scenario (I): Data from independent samples. The observations are

{(yi, Xi·)}n1

i=1 and {(wi, Zi·)}n2

i=1, where Xi· and Zi· are drawn independently from

some probability measure Pθ on Rp with covariance matrix Σ, and yi and wi are

generated based on (1.1) and (1.2), respectively.

Scenario (II): Data from overlapped samples. The observations are

{(yi, Xi·)}n1

i=1 and {(wi, Zi·)}n2

i=1, where Zi· = Xi·, for i ∈ {1, 2, . . . ,m}, 1 ≤ m ≤
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min{n1, n2}. The samples in {Zi·}mi=1, {Xi·}n1

i=m+1 and {Zi·}n2

i=m+1 are drawn

independently from some probability measure Pθ on Rp with covariance matrix

Σ, and yi and wi are generated from (1.1) and (1.2), respectively.

Note that Scenario (I) corresponds to Scenario (II) with m = 0. In what

follows, we introduce our main results by focusing on Scenario (I) to avoid

unnecessary complications in the notation. A discussion of Scenario II is provided

in Section S5 of the Supplementary Material (Ma et al. (2021)), because our

methods and results in this case are very similar.

2.2. Weighted bias correction and the proposed estimators

Estimating the genetic correlation R can be reduced to estimating the genetic

covariance functional β⊤Σγ and the genetic variance functionals β⊤Σβ and

γ⊤Σγ. The novel bias-correction method proposed here yields nearly unbiased

estimators of these functionals of interest. We construct the estimators using

the following two-step procedure. In the first step, we obtain an initial plug-

in estimator of the functional based on the pooled sample covariance matrix

Σ̂ = 1/(n1 + n2)
[∑n1

i=1 Xi·X
⊤
i· +

∑n2

i=1 Zi·Z
⊤
i·
]
, and the logistic Lasso estimators

(α̂, β̂) = argmin
α,β

[
1

n1

n1∑
i=1

{
− yi(α+ β⊤Xi·)+ log(1 + eα+β⊤Xi·)

}
+ λ(∥β∥1 + |α|)

]
,

(ζ̂ , γ̂) = argmin
ζ,γ

[
1

n2

n2∑
i=1

{
− wi(ζ + γ⊤Zi·) + log(1 + eζ+γ⊤Zi·)

}
+ λ(∥γ∥1 + |ζ|)

]
,

(2.1)

with λ = C
√
log p/n for some constant C > 0. In the second step, we obtain

the final estimator by modifying the initial estimator using a carefully designed

bias-correction term.

We begin with the genetic covariance functional β⊤Σγ. With the logistic

Lasso estimators (2.1) and Σ̂, the corresponding plug-in estimator is defined as

β̂⊤Σ̂γ̂, the error of which can be decomposed as β̂⊤Σ̂γ̂ − β⊤Σγ = γ̂⊤Σ(β̂ −
β) + β̂⊤Σ(γ̂ − γ) − (β̂ − β)⊤Σ(γ̂ − γ) + β̂⊤(Σ̂ − Σ)γ̂. It turns out that the term

β̂⊤(Σ̂− Σ)γ̂ contributes only to the variance of the plug-in estimator, the terms

γ̂⊤Σ(β̂ − β) and β̂⊤Σ(γ̂ − γ) contribute to the leading-order bias of the plug-in

estimator,and the contribution from (β̂−β)⊤Σ(γ̂−γ) is negligible. Therefore, the

bias of the plug-in estimator can be further reduced by estimating γ̂⊤Σ(β̂−β) and

β̂⊤Σ(γ̂−γ) directly. To accomplish this, set h(u) = eu/(1 + eu). Then by Taylor’s

expansion, h(α̂ + X⊤
i· β̂) − h(α + X⊤

i· β) = eα̂+X⊤
i· β̂X⊤

i· (β̂ − β)/(1 + eα̂+X⊤
i· β̂)2 +

eα̂+X⊤
i· β̂ (α̂− α)/(1 + eα̂+X⊤

i· β̂)2+∆i, where ∆i = ḧ[X ′
i·
⊤{tβ′+(1−t)β̂′}]{X ′

i·
⊤(β̂′−

β′)}2, for some t ∈ (0, 1), β′ = (α, β⊤)⊤, β̂′ = (α̂, β̂⊤)⊤, and X ′
i· = (1, X⊤

i· )
⊤.

Furthermore, if we define ϵi = yi − h(α+X⊤
i· β), then
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{h(α̂+X⊤
i· β̂)− yi}Xi·

=

{
eα̂+X⊤

i· β̂

(1 + eα̂+X⊤
i· β̂)2

X⊤
i· (β̂ − β) +

eα̂+X⊤
i· β̂

(1 + eα̂+X⊤
i· β̂)2

(α̂− α) + ∆i − ϵi

}
Xi·

=
eα̂+X⊤

i· β̂

(1 + eα̂+X⊤
i· β̂)2

Xi·X
⊤
i· (β̂ − β) + (∆i − ϵi)Xi· +

eα̂+X⊤
i· β̂

(1 + eα̂+X⊤
i· β̂)2

(α̂− α)Xi·.

In order to construct a good estimator of Σ(β̂ − β), we rescale each item {h(α̂+

X⊤
i· β̂)− yi}Xi· by a sample-specific weight (1 + eα̂+X⊤

i· β̂)2/eα̂+X⊤
i· β̂ so that

n1∑
i=1

(1 + eα̂+X⊤
i· β̂)2

eα̂+X⊤
i· β̂

{h(α̂+X⊤
i· β̂)− yi}Xi·

=

(
n1∑
i=1

Xi·X
⊤
i·

)
(β̂ − β) +

n1∑
i=1

(1 + eα̂+X⊤
i· β̂)2

eα̂+X⊤
i· β̂

(∆i − ϵi)Xi· + (α̂− α)
n1∑
i=1

Xi·.

Consequently, as long as the last two terms in the above equation are negligible

relative to the leading term
(∑n1

i=1 Xi·X
⊤
i·
)
(β̂−β), we can construct an estimator

of γ̂⊤Σ(β̂ − β) as

γ̂⊤ 1

n1

n1∑
i=1

(1 + eα̂+X⊤
i· β̂)2

eα̂+X⊤
i· β̂

{h(α̂+X⊤
i· β̂)− yi}Xi·. (2.2)

Similarly, we can estimate the error term β̂⊤Σ(γ̂ − γ) using

β̂⊤ 1

n2

n2∑
i=1

(1 + eζ̂+Z⊤
i· γ̂)2

eζ̂+Z⊤
i· γ̂

{h(ζ̂ + Z⊤
i· γ̂)− wi}Zi·. (2.3)

As a result, in light of the error decomposition, a bias-corrected estimator for

β⊤Σγ is defined as

β̂⊤Σγ = β̂⊤Σ̂γ̂ − γ̂⊤ 1

n1

n1∑
i=1

(1 + eα̂+X⊤
i· β̂)2

eα̂+X⊤
i· β̂

{h(α̂+X⊤
i· β̂)− yi}Xi·

− β̂⊤ 1

n2

n2∑
i=1

(1 + eζ̂+Z⊤
i· γ̂)2

eζ̂+Z⊤
i· γ̂

{h(ζ̂ + Z⊤
i· γ̂)− wi}Zi·.

(2.4)

The above estimator modifies the simple plug-in estimator by adding a carefully

constructed bias-correction term that accounts for the leading-order bias of

the plug-in estimator. The bias-correction terms (2.2) and (2.3) are weighted

averages, where the weights, from the nonlinearity of the link function, reflect

each sample’s contribution to the overall bias.
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In the same vein of our construction of the estimator β̂⊤Σγ, bias-corrected

estimators for the genetic variances can be defined similarly as

β̂⊤Σβ = β⊤Σβ − 2β⊤ 1

n1

n1
i=1

(1 + eα̂+X⊤
i· β̂)2

eα̂+X⊤
i· β̂

{h(α+X⊤
i·
β)− yi}Xi·, (2.5)

γ̂⊤Σγ = γ⊤Σγ − 2γ⊤ 1

n2

n2
i=1

(1 + eζ̂+Z⊤
i· γ̂)2

eζ̂+Z⊤
i· γ̂

{h(ζ + Z⊤
i· γ)− wi}Zi· (2.6)

Based on the above genetic variance and covariance estimators, a natural

estimator of the genetic correlation is R̄ = β̂⊤Σγ/


β̂⊤Σβγ̂⊤Σγ. Taking into

account the actual range of R, we propose its final estimator as

R =





R̄, if (β̂⊤Σγ)2 < β̂⊤Σβγ̂⊤Σγ

0, if β̂⊤Σβγ̂⊤Σγ = 0

sign(R̄), otherwise

. (2.7)

Compared with existing methods for constructing debiased estimators in high-

dimensional regression (Zhang and Zhang (2014); Javanmard and Montanari

(2014a,b); van de Geer et al. (2014); Cai and Guo (2017); Guo et al. (2019);

Ma, Cai and Li (2020); Cai and Guo (2020); Cai, Guo and Ma (2023); Guo et al.

(2021b)), our proposed method has two distinct advantages. First, the proposed

estimators can be obtained directly from their explicit expressions, as in (2.4) to

(2.7), which rely only on the initial logistic Lasso estimator, and simple plug-in

procedures. Its main computational task is to solve for the initial Lasso estimator,

which can be achieved efficiently using a standard tuning process (Section 5), and

therefore is more scalable to the large data sets in genetic studies. In contrast,

existing methods involve solving other high-dimensional optimization problems,

in addition to the initial estimator, for bias correction. These additional problems

are computationally challenging, time-consuming, and subject to difficult tuning

processes. Second, by using our carefully constructed weighted bias-correction

method, we can avoid many commonly used, but stringent technical conditions.

This significantly expands the range of applicability of our proposed methods;

see also the discussions after Theorems 1 and 5.

3. CIs and Statistical Tests

As an important consequence, it can be shown that each of the above

proposed estimators is asymptotically normally distributed. This can be used

to construct CIs and statistical tests for the functionals.

Specifically, it can be shown that the estimator β̂⊤Σγ has variance v2 =

(n1 + n2)/n1E{η(X)
i (γ⊤Xi·)

2}+((n1 + n2)/n2)E{η(Z)
i (β⊤Zi·)

2}+E
β⊤(Xi·X

⊤
i· −

Σ)γ2
, where η

(X)
i = (1 + eα̂+X⊤

i· β̂)4eα+X⊤
i· β/((1 + eα+X⊤

i· β)2e2α̂+2X⊤
i· β̂) and
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η
(Z)
i = (1 + eζ̂+Z⊤

i· γ̂)4eζ+Z⊤
i· γ/((1 + eζ+Z⊤

i· γ)2e2ζ̂+2Z⊤
i· γ̂). Intuitively, the parameters

β and γ in the above expressions can be estimated using their initial Lasso

estimators. Thus, we can define a moment estimator of the asymptotic variance as

v̂2 = ((n1 + n2)/n
2
1)

∑n1

i=1((1 + eα̂+X⊤
i· β̂)2/eα̂+X⊤

i· β̂)(γ̂⊤Xi·)
2 + ((n1 + n2)/n

2
2)∑n2

i=1((1 + eη̂+Z⊤
i· γ̂)2/eη̂+Z⊤

i· γ̂)(β̂⊤Zi·)
2 +(1/(n1 + n2))

{∑n1

i=1(β̂Xi·X
⊤
i· γ̂− β̂Σ̂γ̂)2 +∑n2

i=1(β̂Zi·Z
⊤
i· γ̂ − β̂Σ̂γ̂)2

}
. Hence, a (1 − α)-level CI for the genetic covariance is

CIα(β
⊤Σγ,D) =

[β⊤Σγ − ρ̂, β⊤Σγ + ρ̂
]
, where ρ̂ = zα/2v̂/

√
n1 + n2, and zα/2 =

Φ−1(1−α/2) is the upper α/2-quantile of the standard normal distribution. Sim-

ilarly, the asymptotic variance of the genetic variance estimator β⊤Σβ can be de-

rived as v2β = (4(n1 + n2)/n1)E{η(X)
i (β̂⊤Xi·)

2}+E{β̂⊤(Xi·X
⊤
i· −Σ)β̂}2, which can

be estimated using v̂2β = (4(n1 + n2)/n
2
1)

∑n1

i=1((1 + eα̂+X⊤
i· β̂)2/eα̂+X⊤

i· β̂)(β̂⊤Xi·)
2+

(1/(n1 + n2)){
∑n1

i=1(β̂Xi·X
⊤
i· β̂ − β̂Σ̂β̂)2 +

∑n2

i=1(β̂Zi·Z
⊤
i· β̂ − β̂Σ̂β̂)2}. Then, a

(1 − α)-level CI for β⊤Σβ is CIα(β
⊤Σβ,D) =

[β⊤Σβ − ρ̂β, β⊤Σβ + ρ̂β
]
, where

ρ̂β = zα/2v̂β/
√
n1 + n2; CIα(γ

⊤Σγ,D) can be obtained by symmetry.

The CI for the genetic correlation R is a direct consequence of Slutsky’s theo-

rem. Specifically, for the estimator R̂ defined in (2.7), whenever β⊤Σβγ⊤Σγ ̸= 0,

we can estimate its asymptotic variance by v̂2R = v̂2/(β⊤Σβγ⊤Σγ), and define the

corresponding (1− α)-level CI as CIα(R,D) =
[
R̂− ρ̂R, R̂+ ρ̂R

]
∩ [−1, 1], where

ρ̂R = zα/2v̂R/
√
n1 + n2.

Converting the above CIs, we obtain statistical tests for each of the null

hypotheses, H0,1 : β⊤Σγ = B0, H0,2 : β⊤Σβ = Q0, and H0,3 : R = R0,

for some B0 ∈ R, Q0 ≥ 0 and R0 ∈ [−1, 1]. Specifically, we define test

statistics T1 =
√
n1 + n2(β⊤Σγ −B0)/v̂, T2 =

√
n1 + n2(β⊤Σβ −Q0)/v̂β, and

T3 =
√
n1 + n2(R̂−R0)/v̂R, so that for each ℓ ∈ {1, 2, 3}, to obtain an α-level

test, we reject the null hypothesis H0,ℓ whenever |Tℓ| > zα/2.

4. Theoretical Properties

4.1. Rates of convergence and optimality

The random covariates are characterized by the following conditions.

(A1) For each 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2, Xi· and Zj· are centered independent

and identically distributed i.i.d. sub-Gaussian random vectors, where Σ =

E(Xi·X
⊤
i· ) ∈ Rp×p satisfies M−1 ≤ λmin(Σ) ≤ λmax(Σ) ≤ M , for some

constant M > 1.

(A2) There exists a positive constant c0 such that E(β⊤Xi·X
⊤
i· γ/(β

⊤Σγ)− 1)2 >

c0.

For the regression coefficients, we denote k = max{∥β∥0, ∥γ∥0}, U(β, γ) =

max{∥β∥2, ∥γ∥2}, and L(β, γ) = min{∥β∥2, ∥γ∥2}. We assume

(A3) max{|α|, |ζ|} ≤ C and U(β, γ) ≤ C, for some constant C > 0.
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Intuitively, assumptions (A1) and (A3) imply that the marginal case

probabilities P (yi = 1) and P (wi = 1) are balanced, or bounded away from zero

and one, whereas (A2) ensures that the asymptotic variances do not diminish.

For technical reasons, for each trait, we split the corresponding samples into

halves, so that the initial Lasso estimation step and the other steps, such as the

covariance estimation and bias-correction, are conducted on independent data

sets. Without loss of generality, we assume under Scenario I that there are

2(n1 + n2) samples in D, divided into two disjoint subsets, D1 and D2, each

containing n1 + n2 independent samples, with n1 samples corresponding to trait

yi, and n2 samples corresponding to trait wi. The initial Lasso estimators are

obtained from D1; the sample covariance, bias-correction terms, and asymptotic

variance estimators are based on D2 and the initial Lasso estimators. Note that

the sample-splitting procedure is only used to facilitate the theoretical analysis,

and is not needed in practice. We demonstrate this point numerically in Section

5; see also Section 7.

The following theorem concerns the rate of convergence of the bias-corrected

estimators β̂⊤Σγ and β̂⊤Σβ; the results for γ̂⊤Σγ are similar.

Theorem 1 (Rates of Convergence). Suppose (A1) and (A3) hold, n1 ≍ n2 ≍
n, and k ≲ n/(log plog n). Then, for sufficiently large (n, p) and any t > 0,

|β̂⊤Σγ − β⊤Σγ| ≲ tU(β, γ)√
n

+ {1 + U(β, γ)
√
log n}k log p

n
, (4.1)

|β̂⊤Σβ − β⊤Σβ| ≲ t∥β∥2√
n

+ (1 + ∥β∥2
√
log n)

k log p

n
, (4.2)

with probability at least 1− p−c − n−c − t−2, for some constant c > 0.

In Theorem 1, in addition to the mild sparsity condition, the consistency of

the proposed estimators requires only the balanced marginal case probabilities

from (A1) and (A3), and the general sub-Gaussian design with a regular

covariance matrix, which includes many important cases, such as Gaussian,

bounded, and binary designs, or any combinations of them. Thus the proposed

methods are widely applicable to various practical settings.

To establish the optimality of the proposed genetic covariance estimator, our

next result concerns the minimax lower bound for estimating β⊤Σγ. To this end,

we define the parameter space for θ = (β, γ,Σ) as

Θ(k, Ln) =

{
(β, γ,Σ) :

max{∥β∥0, ∥γ∥0} ≤ k, U(β, γ) ≤ Ln

M−1 ≤ λmin(Σ) ≤ λmax(Σ) ≤ M

}
,

for some constant M > 1, and denote ξ = β⊤Σγ.
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Theorem 2 (Minimax Lower Bound). Suppose Xi and Zi
i.i.d.∼ N(0,Σ), for

i = 1, . . . , n, and k ≲ min
{
pν , n/log p

}
, for some 0 < ν < 1/2. Then,

inf
ξ̂

sup
θ∈Θ(k,Ln)

Pθ

(
|ξ̂ − ξ| ≳ L2

n√
n
+min

{
Ln√
n
+ k

log p

n
, L2

n

})
≥ c, (4.3)

for some constant c > 0.

By Theorem 1, a uniform upper bound over the parameter space Θ(k, Ln)

can be obtained as supθ∈Θ(k,Ln)
Pθ

(
|β̂⊤Σγ − β⊤Σγ| ≲ tLn/

√
n + (1 + Ln

√
log n)

k log p/n
)
≥ 1 − p−c − n−c − t−2. Combining this with the lower bound from

Theorem 2, we conclude that, for all k ≲ min{n/(log p log n), pν}, with any ν ∈
(0, 1/2), and

√
k log p/n ≲ Ln ≲ 1, our genetic covariance estimator β̂⊤Σγ is

minimax rate-optimal over Θ(k, Ln), up to a
√
log n factor. In particular, in

this case, the exact rate optimality of β̂⊤Σγ is guaranteed over the ultra-sparse

region k ≲
√
n/log p

√
log n, or the weak signal regime Ln ≲ (logn)−1/2, over

which the minimax rate is Ln/
√
n + k log p/n. Moreover, this suggests that the

uncertainty due to the covariance estimation β̂⊤(Σ̂−Σ)γ̂ in the plug-in estimator

is fundamental and may not be removed, as for the leading-order biases.

Theorem 3 (Rate of Convergence). Suppose (A1), (A2), and (A3) hold, n1 ≍
n2 ≍ n, k ≪ n/(log p log n), and L(β, γ) ≫

√
k log p/n. Then, |R̂ − R| → 0 in

probability. In particular, for sufficiently large (n, p) and any constant t >
√
2,

with probability at least 1− 2t−2, it holds that

|R̂−R| ≲ t{U(β, γ) + U 2(β, γ)}
L2(β, γ)

√
n

+
1 + U(β, γ)

√
log n

L2(β, γ)
· k log p

n
. (4.4)

Compared with Theorem 1, the consistency of R̂ requires an additional

condition (A2) and a lower bound on the minimal effect size. These conditions

are necessary to ensure that the true genetic variances are bounded away from

zero and the genetic correlation is well defined.

4.2. Theoretical properties of the inference procedures

We establish the asymptotic normality of the proposed bias-corrected

estimators and provide theoretical justifications for the CIs and statistical tests.

We start with a theorem that provides a refined analysis of the estimation errors,

and consequently, the asymptotic normality of the estimators.

Theorem 4 (Asymptotic Normality). Suppose (A1), (A2), and (A3) hold,

n1 ≍ n2 ≍ n, k ≲ n/(log plog n), and L(β, γ) ≫
√
k log p/n. Then, we have the

following:

1. It holds that β̂⊤Σγ − β⊤Σγ = An + Bn, where P
{
An ≲ {U(β, γ)

√
log n +

1}k log p/n
}

≥ 1 − p−c − n−c, and (
√
n1 + n2Bn/v)

∣∣D1 →d N(0, 1) as
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(n, p) → ∞. Additionally, if k ≪ U(β, γ)
√
n/({1 + U(β, γ)

√
log n} log p),

we establish the asymptotic normality
√
n1 + n2(β̂⊤Σγ − β⊤Σγ)/v

∣∣D1 →d

N(0, 1).

2. It holds that β̂⊤Σβ − β⊤Σβ = A′
n + B′

n, where P
{
A′

n ≲ (∥β∥2
√
log n +

1)k log p/n
}

≥ 1 − p−c − n−c, and (
√
n1 + n2B

′
n/vβ)

∣∣D1 →d N(0, 1) as

(n, p) → ∞. Additionally, if k ≪ ∥β∥2
√
n/([1 + ∥β∥2

√
log n] log p), we

establish the asymptotic normality (
√
n1 + n2(β̂⊤Σβ − β⊤Σβ)/vβ)

∣∣D1 →d

N(0, 1).

The second part of the theorem applies to the estimator γ̂⊤Σγ, by symmetry.

A direct consequence of Theorems 1 and 4, in combination with Slutsky’s

theorem, is the following theorem concerning the asymptotic normality of the

genetic correlation estimator R̄ in Section 2.2.

Theorem 5 (Asymptotic Normality). Under the conditions of Theorem

4, if k ≪ min{n/(log p log n), U(β, γ)
√
n/({1 + U(β, γ)

√
log n} log p)}, we have

(
√
n1 + n2(R̄−R)/vR)

∣∣D1 →d N(0, 1) as (n, p) → ∞.

Some remarks about the technical innovations leading to the above theorems

are in order. First, in contrast to existing works on statistical inference in high-

dimensional logistic regression, the proposed methods do not require several

commonly assumed, but stringent theoretical conditions, such as the bounded

individual probability condition (van de Geer (2008); van de Geer et al. (2014);

Ning and Liu (2017); Ma, Cai and Li (2020); Guo et al. (2021b)), where

P (yi = 1|Xi·) ∈ (δ, 1 − δ), for all 1 ≤ i ≤ n and some δ ∈ (0, 1/2), the

sparse inverse population Hessian condition (van de Geer et al. (2014); Belloni,

Chernozhukov and Wei (2016); Ning and Liu (2017); Janková and van de Geer

(2018)), and the sparse precision condition (Ma, Cai and Li (2020)). Second, from

a practical viewpoint, removing these technical assumptions significantly expands

the range of applicability of the proposed methods. For example, as argued by

Cai, Guo and Ma (2023) and Xia, Nan and Li (2020), in practice, the bounded

individual probability and the sparse inverse population Hessian conditions are

seldom satisfied or verifiable from the data. In contrast, the balanced marginal

case probability condition holds easily, and can be checked based on the observed

outcomes.

Using Theorems 4 and 5, we obtain theoretical justifications, such as the

asymptotic coverage probability and the expected length of the proposed CIs,

namely, CIα(β
⊤Σγ,D), CIα(β

⊤Σβ,D), and CIα(R,D).

Theorem 6 (CIs). Under the conditions of Theorem 4, for any constant 0 <

α < 1, if k ≪ min{n/(log p log n), U(β, γ)
√
n/({1 + U(β, γ)

√
log n} log p}), then,

we have the following:
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1. (Coverage) limn,p→∞Pθ{β⊤Σγ ∈ CIα(β
⊤Σγ,D)} ≥ 1 − α, limn,p→∞

Pθ{β⊤Σβ ∈ CIα(β
⊤Σβ,D)} ≥ 1 − α, and limn,p→∞Pθ{R ∈ CIα(R,D)} ≥

1− α;

2. (Length) if we denote L{CIα(·,D)} as the length of CIα(·,D), then with

probability at least 1 − p−c, we have L{CIα(β⊤Σγ,D)} ≍ U(β, γ)/
√
n,

L{CIα(β⊤Σβ,D)} ≍ ∥β∥2/
√
n., and L{CIα(R,D)} ≍ 1/(L(β, γ)

√
n).

This theorem implies that the statistical tests proposed in Section 3 have

the following theoretical properties related to their size and power under certain

local alternatives.

Corollary 1 (Hypothesis Testing). Under the conditions of Theorem 6, we

have the following:

1. (Size) for each ℓ ∈ {1, 2, 3}, for any constant 0 < α < 1, under the null

hypothesis H0,ℓ, we have limn,p→∞ Pθ(|Tℓ| > zα/2) ≤ α;

2. (Power) for any 0 < δ < 1, there exists some c > 0 such that, for any

|β⊤Σγ − B0| ≥ cU(β, γ)n−1/2, limn,p→∞ Pθ(|T1| > zα/2) ≥ 1 − δ; for any

|β⊤Σβ − Q0| ≥ c∥β∥2n−1/2, limn,p→∞ Pθ(|T2| > zα/2) ≥ 1 − δ; and for any

|R−R0| ≥ cL−1(β, γ)n−1/2, limn,p→∞ Pθ(|T3| > zα/2) ≥ 1− δ.

5. Simulations

5.1. Evaluations based on simulated genetic data

To justify our proposed methods for analyzing real genetic data sets, we

carried out numerical experiments under settings in which the covariates are

simulated genotypes with possible LD structures that resemble those of the

human genome, and inferences are made at a chromosomal basis. Specifically,

focusing on Scenario I with n1 = n2 = n, for given choices of p and n, using

the R package sim1000G (Dimitromanolakis et al. (2019)), we generate genotypes

of 2n unrelated individuals containing p SNPs, based on the sequencing data

over a region (GrCH37: bp 40,900 to bp 2,000,000) on chromosome 9 of 503

European samples from the 1000 Genomes Project Phase 3 (1000 Genomes

Project Consortium (2015)). We also generate a comprehensive haplotype map

integrated over 1,184 reference individuals (International HapMap 3 Consortium

(2010)); see Section S4 of the Supplementary Material for the resulting correlation

matrix among the generated SNPs. The true effect sizes for the two binary traits

were generated such that for each trait there are 25 associated SNPs, with 12 of

them shared by both traits. The effect sizes of the associated SNPs are drawn

uniformly from [−1, 1]. For reasons of practical interest, we focus mainly on the

estimation, CIs and hypothesis testing about the genetic correlation parameter.

The results for the genetic covariance and variance can be found in Section 5.2

below and Section S4 of the Supplementary Material.
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For the parameter estimation, in addition to our proposed estimators

(“pro”), we also considered (i) the simple plug-in (“plg”) estimators β̂⊤Σ̂γ̂,

β̂⊤Σ̂β̂, and R̂plg = β̂⊤Σ̂γ̂/

√
β̂⊤Σ̂β̂γ̂⊤Σ̂γ̂; (ii) the component-wise projected

Lasso (“lpj”) estimators β̆⊤Σ̂γ̆, β̆⊤Σ̂β̆, and R̂lpj = β̆⊤Σ̂γ̆/
√
β̆⊤Σ̂β̆γ̆⊤Σ̂γ̆, where

each component of β̆ and γ̆ is the debiased Lasso estimator implemented by

the function lasso.proj in the R package hdi using the default settings; and

(iii) the component-wise projected Ridge (“rpj”) estimators β̌⊤Σ̂γ̌, β̌⊤Σ̂β̌, and

R̂rpj = β̌⊤Σ̂γ̌/
√
β̌⊤Σ̂β̌γ̌⊤Σ̂γ̌, where each component of β̌ and γ̌ is obtained from

the function ridge.proj in the R package hdi using the default settings. For the

proposed method, we use cross-validation to determine the tuning parameter (see

Section S4.1 for details). Table 1 contains the empirical estimation errors (square

roots of the empirical mean-squared errors) for the genetic correlation estimators,

which demonstrate the superior performance of the proposed method.

For the CIs, we compare our proposed CIs (“pro”) with alternative bootstrap

CIs. Specifically, the bootstrap CIs are based on the plg estimators calculated

from 100 observations sampled from the original data set, so that the final

CIs are constructed based on the empirical distributions of 500 bootstrap

estimators. Table 2 contains the averaged coverage probabilities and lengths

of the proposed and the plg-based bootstrap CIs, denoted as “boot,” with 500

rounds of simulation for each setting. Our results suggest the desirable coverage

and shorter length of the proposed CIs. Finally, for hypothesis testing, we

evaluate the empirical type-I errors and statistical power of the proposed tests

and the plg-based bootstrap tests in a setup in which the effect sizes are generated

using an additional constraint |β⊤Σγ| > 3. Table 3 shows the empirical type-I

errors and statistical power of the proposed tests over different settings, each

based on 500 rounds of simulations. Our results suggest that the proposed test

is empirically valid and has advantages over the bootstrap tests. In Tables 2

and 3, the proposed method becomes a little conservative when n increases from

200 to 400, likely because of the limitation of our empirically determined tuning

parameter. Nevertheless, we still observe greater power for the test and shorter

lengths for the CIs with larger n, and in both cases, the advantage over the

alternative methods. For additional simulations under a slightly different setting

of the association structure, see Section S4.5 of the Supplementary Material

(Table S8).

5.2. Evaluation based on model-generated data

We consider the high-dimensional setting p > n, and set the sparsity level

as k = 25. For the true regression coefficients, given the support S such that

|S| = k, we generate βj and γj uniformly from [−1, 1], for all j ∈ S. For the

design covariates, we focus on Scenario I, where n1 = n2 = n. The covariates
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Table 1. Estimation errors for the genetic correlation under simulated genetic data with
k = 25. pro: proposed estimators; plg: simple plug-in estimators; lpj: component-wise
projected Lasso estimators; rpj: the component-wise projected Ridge estimators.

p
n = 200 300 400

pro plg lpj rpj pro plg lpj rpj pro plg lpj rpj

700 0.09 0.12 0.15 0.16 0.09 0.11 0.14 0.13 0.08 0.11 0.13 0.12

800 0.08 0.10 0.15 0.14 0.08 0.11 0.15 0.11 0.09 0.11 0.15 0.12

900 0.09 0.13 0.16 0.15 0.11 0.12 0.15 0.13 0.07 0.11 0.14 0.11

1,000 0.10 0.12 0.14 0.15 0.09 0.11 0.14 0.12 0.08 0.09 0.14 0.09

Table 2. Coverage and length of the CIs for the genetic correlation under simulated
genetic data with α = 0.05.

p

n = 200 300 400

coverage length coverage length coverage length

pro boot pro boot pro boot pro boot pro boot pro boot

700 96.4 82.4 0.30 0.37 97.6 85.8 0.26 0.39 97.0 82.6 0.27 0.41

800 97.0 85.4 0.29 0.37 98.0 82.5 0.27 0.39 98.2 85.2 0.26 0.39

900 96.6 84.2 0.31 0.36 96.8 86.2 0.26 0.38 97.6 84.0 0.25 0.39

1,000 97.5 86.0 0.30 0.34 97.6 80.0 0.26 0.36 97.8 84.9 0.26 0.41

Table 3. Type-I errors and power when testing the genetic correlation under simulated
genetic data with α = 0.05.

p

n = 200 300 400

type I error power type I error power type I error power

pro boot pro boot pro boot pro boot pro boot pro boot

700 0.04 0.41 0.47 0.72 0.04 0.35 0.63 0.68 0.02 0.34 0.69 0.65

800 0.04 0.42 0.46 0.74 0.03 0.37 0.59 0.71 0.03 0.34 0.70 0.66

900 0.04 0.42 0.45 0.70 0.03 0.35 0.64 0.66 0.02 0.32 0.69 0.73

1,000 0.06 0.41 0.42 0.71 0.02 0.36 0.63 0.70 0.02 0.36 0.68 0.70

are generated from a multivariate Gaussian distribution with covariance matrix

as either Σ = ΣB, where ΣB is a p× p blockwise-diagonal matrix of 10 identical

unit-diagonal Toeplitz matrices, with off-diagonal entries that descend from 0.3

to 0 (see Section S4.1 of the Supplementary Materia for its explicit form), or

Σ = ΣE, where ΣE is an exchangeable covariance matrix with unit diagonals and

off-diagonals equal to 0.2. The numerical result for each setting is based on 500

rounds of simulations.

For the parameter estimation, we evaluate the proposed method and the three

alternative methods defined in the previous section. The results are provided

in Section S4.2 of the Supplementary Material (Tables S1, S2), which show the

superiority of each of the proposed estimators over the alternatives. For the same

simulation setups, we evaluate and compare various methods for constructing 95%

CIs for the parameters. Specifically, we compare our proposed CIs (“pro”) with
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two alternative bootstrap CIs, based on 500 plg estimators or rpj estimators,

calculated from 100 observations sampled from the original data set. Table 4

contains the averaged coverage probabilities and lengths of the proposed and the

plg-based bootstrap CIs (“boot”) under the blockwise-diagonal covariant matrix.

In general, the coverage of the rpj-based bootstrap CIs is poorer than that of

the plg-based CIs for β⊤Σγ and β⊤Σβ, and only slightly better than that of the

plg-based CIs for R; these results and those under the exchangeable covariance are

provided in Supplementary Material Section S4.3 (Tables S3 - S5). In general, our

proposed CIs achieve the 95% nominal confidence levels, whereas the bootstrap

CIs are off target or biased. In particular, for the genetic correlation R, the

proposed CI has better coverage and a smaller length. In addition, our proposed

methods are computationally more efficient than the bootstrap CIs, because the

averaged running time (MacBook Pro, with 2.2 GHz 6-Core Intel Core i7) for

the proposed CIs is only about 1 second, whereas the bootstrap CIs take more

than 1.6 minutes for the plg-based CIs, and 1 hour for the rpj-based CIs. When

the sample size increases from 300 to 500, the empirical coverage of the proposed

CIs for β⊤Σγ and R seems to inflate slightly, which is again likely due to our

empirically determined tuning parameter. Nevertheless, the proposed CIs have a

shorter length for larger n, and the advantage of the proposed method over the

alternative methods is evident.

For the hypothesis testing, we also compare the empirical Type-I errors

and statistical power of our proposed tests and the plg-based bootstrap tests,

demonstrating the empirical superiority of the proposed method; these results

are provided in Section S4.4 (Tables S6 and S7) of the Supplementary Material.

6. Analysis of 10 Pediatric Autoimmune Diseases

We investigate the genetic correlations between each pair of 10 pediatric au-

toimmune diseases, including autoimmune thyroiditis (THY), psoriasis (PSOR),

juvenile idiopathic arthritis (JIA), ankylosing spondylitis (AS), common variable

immunodeficiency (CVID), celiac disease (CEL), Crohn’s disease (CD), ulcerative

colitis (UC), type 1 diabetes (T1D) and systemic lupus erythematosus (SLE). We

identified the subjects with a disease and controls either directly from previous

studies, or from de-identified samples and associated electronic medical records

in the genomics biorepository at The Children’s Hospital of Philadelphia (Li

et al. (2015)). The data set includes 10,718 normal controls, 97 THY cases,

107 AS cases, 100 PSOR cases, 173 CEL cases, 254 SLE cases, 308 CVID

cases, 865 UC cases, 1086 T1D cases, 1123 JIA cases, and 1922 CD cases.

Specifically, for each pair of the 10 diseases, we evaluate their chromosome-

specific genetic relatedness by estimating and performing hypothesis testing on

the genetic correlation parameter for each of the 22 autosomes. By focusing

on the chromosome-specific genetic correlations, we can make a better inference
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Table 4. Coverage and length of the CIs with Σ = ΣB , α = 0.05, and sparsity k = 25.
pro: proposed estimators; boot: the plg-based bootstrap CIs.

p

β⊤Σγ β⊤Σβ R

pro boot pro boot pro boot

cov len cov len cov len cov len cov len cov len

n = 300

700 94.8 6.24 46.4 2.05 94.4 7.61 13.5 2.42 96.6 0.35 76.0 0.37

800 97.4 7.72 47.8 1.91 92.4 7.89 13.2 2.30 95.0 0.37 76.4 0.36

900 93.6 5.59 50.2 1.85 93.8 6.71 14.6 2.27 96.4 0.34 73.6 0.35

1,000 93.2 5.85 42.6 1.93 92.6 7.88 7.2 2.39 93.0 0.32 76.4 0.36

n = 400

700 96.0 6.11 56.6 2.30 92.0 7.85 30.0 2.96 96.6 0.32 76.6 0.37

800 97.4 5.91 55.4 2.20 92.4 7.47 22.8 2.63 96.2 0.32 74.4 0.37

900 96.6 5.81 51.0 2.19 90.6 7.32 21.6 2.69 96.6 0.31 73.0 0.37

1,000 93.8 5.65 47.8 2.07 90.4 7.11 19.8 2.58 93.4 0.31 72.6 0.36

n = 500

700 99.0 5.71 61.0 2.40 95.2 6.93 43.2 2.92 98.6 0.30 73.4 0.37

800 98.6 5.70 60.6 2.38 93.4 7.07 41.2 2.83 97.2 0.29 78.0 0.37

900 99.2 5.92 58.0 2.32 92.6 7.36 31.2 2.88 98.4 0.30 76.6 0.36

1,000 98.6 5.44 57.8 2.18 90.4 6.70 30.0 2.73 98.2 0.29 76.6 0.36

from a limited sample size for many diseases, and obtain insights on the genomic

regions that relate the two diseases of interest.

For each subject, after removing the SNPs with a minor allele frequency less

than 0.05, we have a total of 475,324 SNPs were obtained across 22 autosomes

(see Supplementary Material for details). To apply our proposed methods, for

each pair of diseases, we randomly split the controls into two groups of equal

size, combine them with each of the cases, and fit two high-dimensional logistic

regressions between the disease outcomes and the SNPs to obtain the initial

logistic Lasso estimators for each disease. Then we obtain the bias-corrected

estimators, where the sample covariance matrix is calculated based on all samples.

Moreover, using our proposed method, we test the individual null hypothesis that

the chromosome-specific genetic correlation is zero between each pair of diseases

in order to identify i) diseases that are genetically associated; and ii) specific

chromosomes in which diseases have a shared genetic architecture.

The results are summarized in Figure 1. The top panel shows the estimated

chromosome-specific genetic correlations between each pair of diseases, where the

disease pairs with larger absolute values are annotated. The bottom panel shows

the negative log-transformed p-values for each pair of diseases. Our tests suggest

strong genetic sharing between UC and CD on chromosomes 1, 12, 17, 20, and

21, between CVID and JIA on chromosome 8, and between CD and PSOR on

chromosome 13. Many pairs of these diseases showed genetic relatedness at the
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Figure 1. Analysis of genetic sharing between 10 autoimmune diseases. Top panel:
estimated genetic correlations between each pair of diseases on each autosome. Bottom
panel: negative log-transformed p-values for each pair of diseases, based on the proposed
method. The red and blue dashed lines represent the original and Bonferroni-adjusted
significance levels, respectively, at 0.05.

nominal p-value of 0.05. However, however, because of the small sample sizes,

they do not reach the statistical significance after the Bonferroni adjustment of

multiple comparisons. Note that the pairs UC and CD, and CVID and JIA

were also found to be statistically significant by Li et al. (2015) using different

measures of genetic sharing. However, our proposed methods also locate genetic

sharing with specific chromosomes and provide theoretically valid uncertainty

quantifications.

7. Discussion

In this paper, we propose a statistical inference framework for studying

the genetic relatedness between two binary traits in high-dimensional logistic

regression models. Our model allows the number of SNPs to far exceed the
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sample size while producing efficient and valid statistical inferences under mild

conditions on the sparsity andthe effect size of the true associations, and on the

covariance structure or linkage disequilibrium of the variants. Many works have

tried to improve the speed of optimization and operation for genome-scale and

ultrahigh-dimensional data sets. For example, Qian et al. (2019) propose a new

computational framework in which scalable Lasso solutions can be obtained for

a very large Biobank data set involving about 300,000 individuals and 800,000

genetic variants. We expect that these new computational methods will increase

the utility of the proposed methods in genetic correlation analysis at a whole-

genome sequencing scale.

Supplementary Material

The Supplementary Material includes proofs of the main theorems and the

technical lemmas, additional simulation results, supplementary notes, figures and

tables.

References

1000 Genomes Project Consortium (2015). A global reference for human genetic variation.

Nature 526, 68–74.

Bagos, P. G. (2012). On the covariance of two correlated log-odds ratios. Statistics in Medicine

31, 1418–1431.

Belloni, A., Chernozhukov, V. and Wei, Y. (2016). Post-selection inference for generalized linear

models with many controls. Journal of Business & Economic Statistics 34, 606–619.
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van de Geer, S., Bühlmann, P., Ritov, Y. and Dezeure, R. (2014). On asymptotically

optimal confidence regions and tests for high-dimensional models. The Annals of

Statistics 42, 1166–1202.

van Rheenen, W., Peyrot, W. J., Schork, A. J. and Wray, N. R. (2019). Genetic correlations of

polygenic disease traits: From theory to practice. Nature Reviews Genetics 20, 567–581.

Vattikuti, S., Guo, J. and Chow, C. C. (2012). Heritability and genetic correlations explained

by common SNPs for metabolic syndrome traits. PLoS Genetics 8, e1002637.

Verzelen, N. and Gassiat, E. (2018). Adaptive estimation of high-dimensional signal-to-noise

ratios. Bernoulli 24, 3683–3710.

Wei, Y. and Higgins, J. P. (2013). Estimating within-study covariances in multivariate meta-

analysis with multiple outcomes. Statistics in Medicine 32, 1191–1205.

Weissbrod, O., Flint, J. and Rosset, S. (2018). Estimating SNP-based heritability and genetic

correlation in case-control studies directly and with summary statistics. American Journal

of Human Genetics 103, 89–99.

Wu, T. T., Chen, Y. F., Hastie, T., Sobel, E. and Lange, K. (2009). Genome-wide association

analysis by Lasso penalized logistic regression. Bioinformatics 25, 714–721.

Xia, L., Nan, B. and Li, Y. (2020). A revisit to de-biased Lasso for generalized linear models.

arXiv:2006.12778.

Yang, J., Benyamin, B., McEvoy, B. P., Gordon, S., Henders, A. K., Nyholt, D. R. et al. (2010).

Common SNPs explain a large proportion of the heritability for human height. Nature

Genetics 42, 565–569.

Zhang, C.-H. and Zhang, S. S. (2014). Confidence intervals for low dimensional parameters

in high dimensional linear models. Journal of the Royal Statistical Society. Series B.

(Statistical Methodology) 76, 217–242.

Zhang, Y., Cheng, Y., Ye, Y., Jiang, W., Lu, Q. and Zhao, H. (2020). Comparison of methods

for estimating genetic correlation between complex traits using GWAS summary statistics.

Briefings in Bioinformatics 22, bbaa442.

Zhao, B. and Zhu, H. (2019a). Cross-trait prediction accuracy of high-dimensional ridge-type

estimators in genome-wide association studies. arXiv:1911.10142.

Zhao, B. and Zhu, H. (2019b). On genetic correlation estimation with summary statistics from

genome-wide association studies. arXiv:1903.01301.



INFERENCE ON GENETIC RELATEDNESS 1043

Rong Ma

Department of Statistics, Stanford University, Stanford, CA 02135, USA.

E-mail: rongm@stanford.edu

Zijian Guo

Department of Statistics, Rutgers University, Piscataway, NJ 08854, USA.

E-mail: zijguo@stat.rutgers.edu

T. Tony Cai

Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, PA 19104,

USA.

E-mail: tcai@wharton.upenn.edu

Hongzhe Li

Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine,

University of Pennsylvania, Philadelphia, PA 19104, USA.

E-mail: hongzhe@upenn.edu

(Received November 2021; accepted September 2022)


