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Abstract: Matrix-covariate is now frequently encountered in many biomedical re-

searches. It is common to fit conventional statistical models by vectorizing matrix-

covariate. This strategy results in a large number of parameters, while the available

sample size is relatively too small to have reliable analysis results. To overcome

the problem of high-dimensionality in hypothesis testing, a variance-component

test has been proposed with superior detection power, but it is not straightfor-

ward to provide estimates of effect size. In this work, we overcome the problem

of high-dimensionality by utilizing the inherent structure of the matrix-covariate.

One advantage of our method is that estimation and hypothesis testing can be con-

ducted simultaneously, as in the conventional case, while the estimation efficiency

and detection power can be largely improved. Another merit is that, unlike existing

methods, the proposed method avoids the problem of choosing identifiability con-

straints for the model parameters. Our method is applied to test the significance

of gene-gene interactions in the PSQI data, and to test the association between

electroencephalography and the alcoholic status in the EEG data.

Key words and phrases: High-dimensionality, hypothesis testing, low-rank, matrix-

covariate, tensor.

1. Introduction

Techniques of detecting the association between the candidate covariate and

the response variable are widely applied in many applications. Recently, matrix-

covariate is more frequently encountered in biomedical researches, wherein the

research interest focuses on the association between the response variable Y ∈ R
and the p× q matrix-covariate M ∈ Rp×q, possibly after adjusting for the effects

of certain confounding factors Z ∈ Rm. Using the Electroencephalography (EEG)

data as our motivating example, Y is the binary alcoholic status, and M is a

256 × 64 matrix with its (j, k)-th element M(j, k) being the voltage value of

the k-th electrode measured at the j-th time point. Figure 1 displays the voltage

valuesM of one randomly selected subject from both the alcoholic group (Y = 1)

and the control group (Y = 0). It can be seen that M |Y = 1 tends to be larger

https://doi.org/10.5705/ss.202016.0445


1026 HUNG AND JOU−−
Figure 1. The voltage values of 64 channels at 256 time points from two randomly
selected subjects. The left panel is from the alcoholic group (Y = 1), and the right panel
is from the control group (Y = 0).

than M |Y = 0 for some (j, k) values, indicating a strong association between

Y and M , and it is of interest to investigate this association in a quantitative

manner. Sometimes M is not directly observed but is induced from the original

covariates. The Pittsburgh Sleep Quality Index (PSQI) data collects for each

subject the PSQI score (Y ) and the multiple measurements of the genes ROR

(with 19 markers) and NR1D1 (with 4 markers). Past study has found that ROR

and NR1D1 cannot explain the variation of PSQI score well, and has suggested

fitting the PSQI score on the gene-gene interactions (G×G) between ROR and

NR1D1. Let G = (g1, . . . gp)
> denote the p-genetic markers (e.g., ROR) and let

E = (e1, . . . eq)
> denote another q-genetic markers (e.g., NR1D1). It is equivalent

to investigate if Y is associated with the pq products {gjek : 1 ≤ j ≤ p, 1 ≤
k ≤ q}, or equivalently, with the matrix-covariate M = GE> by noting that

M(j, k) = gjek, after adjusting for the effects of Z = (G>, E>)>. See Section 5

for more details of the EEG and PSQI data sets.

The research interests of these motivating examples all focus on the associ-

ation between Y and the matrix-covariate M , and two questions are commonly

raised by practitioners:

(Q1) Does Y associate with M?

(Q2) How does M affect Y ?

To answer (Q1), a commonly used method is to fit a GLM for Y on each element

of M separately, and then use the minimum p-value of the pq marginal tests

as the test statistic (denoted by min-test). The min-test, however, can produce
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biased results due to the ignorance of the joint effects of M . Joint inference is

thus preferable, which fits the GLM (McCullagh and Nelder (1989))

Y |(Z,M) ∼ Normal(E(Y |Z,M), σ2) (1.1)

for continuous Y with a common variance σ2, or

Y |(Z,M) ∼ Bernoulli(E(Y |Z,M)) (1.2)

for binary Y , and assumes that

g{E(Y |Z,M)} = γ + ξ>Z +
∑
j,k

ηjkM(j, k), (1.3)

where g is the link function, γ is the intercept term, ξ is the effect of Z, and ηjk is

the effect of M(j, k). Following convention, we adopt the identity link g(u) = u

for model (1.1), and the logit link g(u) = ln(u/(1− u)) for model (1.2). Based

on (1.3), answering (Q1)-(Q2) relies on estimating ηjk’s and testing the overall

hypothesis

H0 : ηjk = 0 ∀ (j, k). (1.4)

Although the joint method overcomes the problem of bias, it suffers from high-

dimensionality, since the number of parameters for ηjk’s, say pq, can be large

in comparison with the sample size n. In the EEG data, for example, there are

256×64 = 16,384 parameters for the ηjk’s, while the available sample size is 122.

To overcome this problem in testing (1.4), Lin et al. (2013) apply the variance-

component test (Lin (1997)) to propose GESAT. The authors extend model (1.3)

to the generalized linear mixed model (GLMM) by assuming that the ηjk’s inde-

pendently follow an arbitrary distribution with zero mean and a common vari-

ance τ2. As a result, testing (1.4) is equivalent to testing H0 : τ2 = 0 under the

GLMM, and the test statistic of GESAT is

Tgesat =

∥∥∥∥∥
n∑
i=1

(Yi − γ̃ − ξ̃>Zi)vec(Mi)

∥∥∥∥∥
2

, (1.5)

where {(Yi, Zi,Mi)}ni=1 is a random sample from (Y, Z,M), vec(Mi) is the pq-

vector from stacking the columns of Mi, and (γ̃, ξ̃) is the restricted MLE of

(γ, ξ) under (1.4). GESAT has the advantage of fast computation and is shown

to be locally most powerful (Goeman, van de Geer and van Houwelingen (2006)).

GESAT, however, aims to answering (Q1), but is not straightforward to provide

estimates of the effect sizes of M , (Q2). A naive solution is to fit model (1.3) to

obtain the estimates of the ηjk’s, but this again suffers from high-dimensionality,

and there is no guarantee that the estimates coincide with the conclusion from
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GESAT.

Another set of methods overcome the problem of high-dimensionality by

utilizing the matrix structure of M . The main idea is to re-express (1.3) as

g{E(Y |Z,M)} = γ + ξ>Z + vec(η)>vec(M), (1.6)

where η is the p × q matrix with the (j, k)-th element being ηjk. Under (1.6),

answering (Q1)-(Q2) relies on estimating the matrix η and testing

H0 : η = 0p×q. (1.7)

Of course there is no difference between models (1.3) and (1.6), but model (1.6)

that preserves the matrix structure of M provides a way to more efficiently esti-

mate η, via utilizing the matrix structure of η. Hung and Wang (2013) propose

the matrix-variate logistic (MV-logistic) regression for binary Y , by fitting (1.6)

with the rank-1 constraint η = AB> for someA ∈ Rp andB ∈ Rq. Zhou, Li and

Zhu (2013) propose tensor regression by fitting (1.6) with the rank-r constraint

η = AB> for some A ∈ Rp×r, B ∈ Rq×r, and r ≥ 1. The main advantage of

these methods is that one only requires (p+ q)r parameters to model η instead

of pq, and an efficiency gain in estimating η is reasonably expected. Tensor re-

gression, however, has the drawback that (A,B) are not identifiable. This can

be seen from AB> = ACC−1B> for any nonsingular C ∈ Rr×r. To avoid this,

Hung and Wang (2013) and Zhou, Li and Zhu (2013) impose extra constraints on

(A,B) so that conventional MLE arguments can be applied to develop asymp-

totic properties. Since the identifiability constraints are not unique, different

choices of the constraints produce different analysis results, and this limits the

applicabilities of the methods. Without using a parsimonious parameterization

of η, Zhou and Li (2014) propose regularized matrix regression by estimating

η with the penalized MLE, where the imposed penalty function depends on η

only through its singular values. Although regularized matrix regression avoids

the problem of choosing identifiability constraints, it requires pq parameters to

model η, which can make the model fitting less efficient, especially for the case

of large (p, q). Moreover, the asymptotic properties of the resulting estimator

are difficult to derive. These methods all focus on the estimation of η, (Q2), and

extensions of these methods to testing (1.7), (Q1), are not discussed.

The aim of this study is to propose a unified inference procedure for (Q1)-

(Q2) that adapts to the high-dimensional setting, while overcoming these draw-

backs of existing methods. Our proposal follows tensor regression by considering

the joint model (1.6) with the rank-r constraint η = AB>. One contribution of

this work is the development of an asymptotic property that is invariant to the



A LOW RANK-BASED ESTIMATION-TESTING PROCEDURE 1029

choice of the identifiability constraint on (A,B), an essential difference to the

works of Hung and Wang (2013) and Zhou, Li and Zhu (2013). Based on this

asymptotic property, we propose a low rank-based test statistic for (1.7). The

test statistic is also invariant to the choice of the identifiability constraint and,

hence, is more applicable in applications. Comparing with GESAT, our method

cannot only improve the detection power by utilizing the matrix structure of η,

but can provide estimate of η at the same time.

Some notation is set out here for ease of reference. For any p × q matrix

M , vec(M) is the pq-vector achieved by stacking the columns of M , Kp,q is the

commutation matrix (Henderson and Searle (1979)) satisfying Kp,qvec(M) =

vec(M>), and ‖M‖F denotes the Frobenius norm of M . ⊗ stands for the

Kronecker product, and ‖ · ‖ stands for the Euclidean norm of a vector. α

denotes the significance level.

The rest of this paper is organized as follows. Our inference procedure for η

is developed in Section 2, based on which the test statistics for (1.7) are proposed

in Section 3. Section 4 conducts numerical studies to evaluate the performances

of our proposal, and Section 5 conducts analyses for the PSQI and EEG data

sets. The paper ends with a discussion in Section 6.

Remark 1. The idea of treating G × G as a matrix M = GE> is motivated

from Hung et al. (2016). The authors also develop asymptotic property that is

invariant to the choice of the identifiability constrain, but their result can only

be applied under the normal model (1.1). Our asymptotic property extends the

result of Hung et al. (2016) to the more general GLM that includes models (1.1)-

(1.2) as special cases. Moreover, we aim to develop test statistic for (1.7), and

this problem is not investigated in Hung et al. (2016)

2. The Low-Rank Inference Procedure for η

2.1. Model specification

The rationale behind our proposal is based on the assumption that most of

the row and/or column attributes of M play no role in explaining Y . In the EEG

data, it is common that only a small portion of probes (the column attribute of

M) are relevant to the alcoholic status. In the PSQI data, it is believed that

only a few elements of ROR and NR1D1 (the row and column attributes of M)

are influential to the PSQI score. This implies that most of the rows and/or

columns of η are zeros, η is a low-rank matrix. It is thus reasonable to consider

the rank-r GLM (Hung and Wang (2013); Zhou, Li and Zhu (2013)),
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g{E(Y |Z,M)} = γ + ξ>Z + vec(η)>vec(M) with η = AB>, (2.1)

where A ∈ Rp×r, B ∈ Rq×r, and 1 ≤ r ≤ min{p, q} such that rank(η) = r. Here

(A,B) are not identifiable. Without imposing extra constraints on (A,B), we

leave (A,B) arbitrary to develop our inference procedure for η. This is achievable

since we are interested in η instead of (A,B), and only the identifiability ofAB>

is required. We will see in Section 2.3 that the developed asymptotic properties

depend on (A,B) only through span(A) and span(B). As a result, we can use

the convenient parameterization η = AB> to make inference about η without

imposing any constraint on (A,B), which makes our method more applicable in

practice.

One advantage of model (2.1) is the parsimony of parameters. The con-

ventional model (1.3) requires 1 + m + pq parameters. Since one only requires

(p+ q− r)r parameters to specify a rank-r p× q matrix, the effective number of

parameters in model (2.1) is

sr = 1 +m+ (p+ q − r)r. (2.2)

Comparing sr with 1+m+pq, we expect an efficiency gain by fitting model (2.1)

when r is small. We note that the effective number of parameters sr is only

used to have insight about the advantage of model (2.1). The development of

the inference procedures for η is still based on the convenient parameterization

η = AB> without imposing any constraint on (A,B).

2.2. Estimation and implementation

Let the data {(Yi, Zi,Mi)}ni=1 be random copies of (Y,Z,M), and let the

vector of covariates be Xi = (1, Z>i , vec(Mi)
>)>. Let

θ = (γ, ξ>, vec(A)>, vec(B)>)> (2.3)

be the parameters of model (2.1), and take the induced parameters of interest to

be

β = β(θ) = (γ, ξ>, vec(AB>)>)>, (2.4)

consisting of the intercept, the effect of Z, and the effect of M .

The log-likelihood function of θ is (n/σ2)`(θ)− (n/2) ln(2πσ2), with

`(θ) = − 1

2n

n∑
i=1

{Yi − β(θ)>Xi}2 (2.5)

under the normal model (1.1), and is
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`(θ) =
1

n

n∑
i=1

Yi{β(θ)>Xi} − ln(1 + exp(β(θ)>Xi)) (2.6)

under the logistic model (1.2). To stabilize the estimation process, a widely

used strategy is to employ the penalized MLE. A natural choice of the penalty

is ‖AB>‖2F , but it may cause instability in implementation. Since ‖AB>‖F ≤
‖A‖F ‖B‖F , we propose to estimate θ by

θ̂ = argmax
θ

{
`(θ)− 1

2
λ‖A‖2F ‖B‖2F

}
, (2.7)

where λ ≥ 0 controls the effect of penalty. As will be shown in (2.9)-(2.10), the

merit of using ‖A‖2F ‖B‖2F is that (2.7) can be obtained by iteratively solving a

conventional L2-penalized MLE problem where existing algorithm can be directly

applied (Le Cessie and Van Houwelingen (1992)). With θ̂ being obtained, β is

estimated by

β̂ = β(θ̂) = (γ̂, ξ̂>, vec(η̂)>)> with η̂ = ÂB̂>. (2.8)

Obviously, the performance of β̂ depends on the values of (r, λ). A simple

idea is to select both (r, λ) by cross-validation. Here β̂ is a continuous function of

λ, but such continuity does not hold for the discrete parameter r. This indicates

that β̂ is more sensitive to the selection of r. We propose a more stable selection

criterion for r via the number of effective parameters sr. First observe that

an over-specification of r does not affect the consistency of β̂, while an under-

specification of r can make β̂ biased. This suggests that a large r should be

used to ensure the validity of β̂. On the other hand, we prefer a small r such

that the rank-r GLM can be well fitted with sample size n. Consequently, we

are motivated to select r as large as possible while keeping sr relatively smaller

than n (e.g., n/sr ≥ 3). We thus suggest selecting a large r so that the rank-r

GLM is more plausibly correct, while preserving the estimation efficiency of β̂

with limited sample size. With a fixed r, λ is selected by cross-validation.

To implement our method, we use the alternating method to solve (2.7).

Model (2.1) can be expressed as

g{E(Y |Z)} = γ + ξ>Z + vec(A)>vec(MB) (2.9)

= γ + ξ>Z + vec(B)>vec(M>A). (2.10)

Observe that (2.9) is the GLM with parameters (γ, ξ>, vec(A)>)> and data

(Y, Z,MB). Thus, when B is fixed, maximizing (2.7) is the conventional L2-

penalized MLE problem under (2.9) with penalty (1/2)λB for ‖A‖2F , where λB =

λ‖B‖2F . The case for fixed A is made similar by using the data (Y,Z,M>A)



1032 HUNG AND JOU

to fit model (2.10) with parameters (γ, ξ>, vec(B)>)> and penalty (1/2)λA for

‖B‖2F , where λA = λ‖A‖2F . We then iterate the roles of A and B until conver-

gence. The implementation algorithm is given below.

Alternating Algorithm

1. Given an initial value B(0), k = 0, 1, 2, . . . , do Steps 2-4.

2. Given B(k), obtain the L2-penalized MLE (γ∗(k+1), ξ
∗
(k+1),A(k+1)) from fit-

ting (2.9) on the data {(Yi, Zi,MiB(k))}ni=1 with the penalty (1/2)λB(k)
for

‖A‖2F .

3. GivenA(k+1), obtain the L2-penalized MLE (γ(k+1), ξ(k+1),B(k+1)) from fit-

ting (2.10) on the data {(Yi, Zi,M>
i A(k+1))}ni=1 with the penalty (1/2)λA(k+1)

for ‖B‖2F .

4. Let θ(k+1) = (γ(k+1), ξ
>
(k+1), vec(A(k+1))

>, vec(B(k+1))
>)>. Repeat the pro-

cedure until the convergence of β(θ(k+1)). Output β̂ = β(θ(∞)) and θ̂ =

θ(∞).

For each iteration, the maximum log-likelihood attained in either Step 2 or Step 3

of Alternating Algorithm cannot decrease. To see this, let f(γ, ξ,A,B) = `(θ)−
(λ2 )‖A‖2F ‖B‖2F be the objective function being maximized. We must have

f(γ(k), ξ(k),A(k),B(k))
Step 2
≤ f(γ∗(k+1), ξ

∗
(k+1),A(k+1),B(k))

Step 3
≤ f(γ(k+1), ξ(k+1),A(k+1),B(k+1)).

Since f is bounded by 0, the algorithm must converge to a local maximum. The

algorithm depends on the selection of an initial value B(0) and suggest choosing

B(0) as the leading r right singular vectors of η̃, where η̃ is the L2-penalized

MLE of η under the conventional model (1.6). We also suggest using multiple

random initial values to find the global maximum.

2.3. Asymptotic property

We now proceed to derive the asymptotic property of β̂. Let β0 = (γ0, ξ
>
0 ,

vec(η0)
>)> be the true value of β under model (2.1), and assume the existence

of a regular point (Shapiro (1986)) θ0 in the parameter space of θ such that

β0 = β(θ0). Take

∆(θ) =
∂β(θ)

∂θ
=

[
Im+1 0 0

0 (B ⊗ Ip) (Iq ⊗A)Kq,r

]
(2.11)
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and let ∆0 = ∆(θ0). We state asymptotic property of β̂, its proof is deferred to

the Supplementary Materials.

Theorem 1. Assume the validity of model (2.1) with β0 = β(θ0) and rank(∆0) =

sr. If λ = op(n
−1/2), then, with fixed (p, q) and as n → ∞,

√
n(β̂ − β0)

d→
N(0,Σ0) with the asymptotic covariance matrix Σ0 = ∆0(∆

>
0 V0∆0)

+∆>0 , where

(a) V0 = σ−2E(XiX
>
i ) for the normal model (1.1),

(b) V0 = E(νi(θ0)XiX
>
i ) with νi(θ) = exp(β(θ)>Xi)/{1 + exp(β(θ)>Xi)}2 for

the logistic model (1.2).

The asymptotic property of β̂ is the core for developing our test statistics in

Section 3. We propose estimating the asymptotic covariance matrix Σ0 by the

sandwich-type estimator

Σ̂ = ∆̂
{

∆̂>(V̂ + λD)∆̂
}+

∆̂>V̂ ∆̂
{

∆̂>(V̂ + λD)∆̂
}+

∆̂>, (2.12)

where ∆̂ = ∆(θ̂), V̂ = σ̂−2 ·(1/n)
∑n

i=1XiX
>
i with σ̂2 = {1/(n− sr)}

∑n
i=1(Yi−

β̂>Xi)
2 for the case of (1.1) and V̂ = (1/n)

∑n
i=1 νi(θ̂)XiX

>
i for the case of (1.2).

HereD is a block-diagonal matrix with diagonal elements (01+m, ‖B̂‖2F Ipr, ‖Â‖2F
Iqr).

3. Detecting the Significance of η

3.1. The low rank-based test statistic

This section develops test statistics for the null hypothesis (1.7). A natural

strategy for testing (1.7) via model (2.1) is to use the Wald-test statistic

Twald = vec(η̂)>
{

[Σ̂]η/n
}+

vec(η̂), (3.1)

where [Σ̂]η is the sub-matrix of Σ̂ that corresponds to the asymptotic covari-

ance matrix of vec(η̂) in Theorem 1. Here [Σ̂]η is singular due to the over-

parameterization of η = AB>, and the Moore-Penrose generalized inverse is

used. Observe that Twald is a weighted sum over the differences (η̂ − 0). Thus,

Twald can be less powerful in testing (1.7) when η is sparse, as the contribution of

differences can be averaged out during summation. A better strategy for testing

(1.7) with sparse η is to use the test statistic

Tmax = max
l∈{m+2,...,1+m+pq}

β̂2l

[Σ̂]βl
/n
, (3.2)

where the maximum is taken over the estimates of η. Tmax is a generalization
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of the min-test, in the sense that Tmax further considers the joint effects among

M . As opposed to (Twald, Tmax) that utilize the low-rank structure of η, Tgesat
uses the technique of variance-component test to overcome the problem of high-

dimensionality. It is known that Tgesat is locally most powerful, and Tgesat is thus

expected to have superior performance when η has weak effect. However, there is

no guarantee for its performance otherwise, and ignoring the low-rank structure

of η, plausibly true in many applications, may also decrease the detection power

of Tgesat.

In all, (Twald, Tmax, Tgesat) have their own merits in testing (1.7), depending

on the underlying characteristic of η: Twald is preferred when η has dense effect,

Tmax is preferred when η has sparse effect, and Tgesat is preferred when η has weak

effect. Ideally, one should choose the test statistic according to the alternative

hypothesis, which is rarely known a priori. A reasonable strategy then is to

combine (Twald, Tmax, Tgesat) to adapt to various situations. There exist many

combination methods based on the p-values, but they do not apply in our case

since the limiting distribution of Tmax is not easy to derive. Alternatively, we

propose to use the product

T = Twald · Tmax · Tgesat (3.3)

as the test statistic, where a large value of T indicates a rejection of (1.7). The

advantage of the multiplicative combination is that T is less affected by the

scales of (Twald, Tmax, Tgesat). We emphasize that T is developed based on the

asymptotic property in Theorem 1 and, hence, is also invariant to the choice of

the identifiability constraint of (A,B).

Remark 2. Besides the overall hypothesis (1.7), one can also identify the sig-

nificant covariates M(j, k)’s by considering the pq individual hypotheses

H
(jk)
0 : ηjk = 0, 1 ≤ j ≤ p, 1 ≤ k ≤ q. (3.4)

Let ρjk be the p-value of β̂2l /([Σ̂]βl
/n), where l is such that βl = ηjk. The

identified significant covariates are {M(j, k) : ρjk < α/(pq), 1 ≤ j ≤ p, 1 ≤ k ≤
q} with the family-wise error rate being controlled at α by Bonferroni correction.

3.2. Calculation of p-value

Since the null distribution of T is not straightforward to derive, we propose

to use parametric bootstrap to obtain its p-value. The idea of the parametric

bootstrap, as summarized below, is to generate the null data from model (2.1)

given (γ, ξ,η) = (γ̃, ξ̃, 0), where (γ̃, ξ̃) are the restricted MLE of (γ, ξ) under H0
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(Bůžková, Lumely and Rice (2011)).

Parametric bootstrap test

1. Conditional on (Zi,Mi), generate Y
(b)
i from model (2.1) with (γ, ξ,η) =

(γ̃, ξ̃, 0) (and with σ2 = [1/{n− (m+ 1)}]
∑n

i=1(Yi− γ̃− ξ̃>Zi)2 for normal

model). Obtain the test statistic T (b) by fitting model (2.1) using
{

(Y
(b)
i , Zi,

Mi)
}n
i=1

.

2. Obtain the p-value of T as (1/b′)
∑b′

b=1 I(T (b) > T ) for a large number b′.

Although the parametric bootstrap procedure can be applied in various sit-

uations, its performance depends on the randomness of (γ̃, ξ̃). As a result, using

the parametric bootstrap can only control the type-I error asymptotically. Al-

ternatively, an exact test can be constructed when model (2.1) reduces to

g{E(Y |M)} = γ + vec(η)>vec(M) with η = AB>. (3.5)

In this situation, the null data can be generated simply by randomly permuting

Yi to destroy its connection with Mi.

Permutation test

1. Generate {Y (b)
i }ni=1 by randomly permutating {Yi}ni=1. Obtain the test

statistic T (b) by fitting model (3.5) using {(Y (b)
i ,Mi)}ni=1.

2. Obtain the p-value of T as (1/b′)
∑b′

b=1 I(T (b) > T ) for a large number b′.

The permutation test cannot be applied in the presence of Z, as permuting Y

destroys not only its connection with M but also its connection with Z, which

makes the resulting p-value biased. Both re-sampling procedures are suggested

to obtain the p-values, according to the underlying data structure. Moreover,

these procedures can also be used to obtain the p-values of (Twald, Tmax), and the

p-values ρjk’s of the individual tests discussed in Remark 2.

4. Simulation Studies

4.1. Simulation settings

Simulation studies were conducted to evaluate our method, where we used

the PSQI and EEG data sets to generate the simulation data:
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(PSQI) Let Z = (G>, E>)> and M = GE>, where G ∈ R15 and E ∈ R7

randomly generated from ROR and NR1D1 of the PSQI data with n =

400. Given (Z,M), Y was generated from the normal model (1.1) and

(2.1) with γ = 10.

(EEG) The matrix M ∈ R6×6 was generated by randomly selecting six rows

and six columns of the EEG signals with n = 150. Given M , Y was

generated from the logistic model (1.2) and (3.5) with γ = 0.

We considered three simulations with different specifications of (ξ,η). The first

study evaluated the asymptotic property of β̂ established in Theorem 1, the

second evaluated the performance of the proposed test method T , and the third

evaluated the performance of T with larger rank(η) or (p, q) values. Simulation

results from fitting the rank-r GLM with r = 3 are reported with 500 replicates.

4.2. Evaluation of β̂

In this simulation study we set

η =

[
η11 02×(q−1)

0(p−2)×1 0(p−2)×(q−1)

]
with η11 =

1√
2
· 12,

and set ξ = (ξ>G ,0
>
p−5, ξ

>
E ,0

>
q−3)

> with ξG = (1/(10
√

5))15 and ξE = (1/(10
√

3))

13 for the PSQI-simulation. Simulation results are reported in Table 1, which

provides the means and standard deviations (SD) of β̂, the standard errors (SE)

from the means of the diagonal elements of Σ̂ corresponding to (γ, ξG, ξE ,η11),

and the averaged mean squared error AMSEβ = E‖β̂−β‖2/(1+m+pq). We also

report the averaged mean squared errors AMSEξ = E‖ξ̂− ξ‖2/m and AMSEη =

E‖η̂ − η‖2/(pq) to summarize the performance of β̂ corresponding to the vector

and matrix parameters (ξ,η).

Biases of β̂ arise under both PSQI and EEG settings, but they are relatively

small in comparison with the corresponding SDs. This, together with the small

values of AMSEβ, AMSEξ, and AMSEη, suggests that β̂ is a consistent estimator.

Moreover, the similar values of SDs and SEs support the validity of Σ̂. In this

simulation, the true rank of η is 1, but the specified rank of model (2.1) is 3,

indicating that over-specification of the rank parameter r does not affect the

validity of Theorem 1. Recall that it only requires sr parameters in model (2.1),

instead of 1 +m+ pq parameters in the conventional model (1.6). Consequently,

the asymptotic results of Theorem 1 are more plausibly true even with limited

sample size, as shown in Table 1. In summary, our simulation studies demonstrate
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Table 1. The means (Mean) and standard deviations (SD) of β̂, and the standard errors

(SE) from the diagonal elements of Σ̂. The last three rows give the means and standard
deviations of AMSEβ , AMSEξ, and AMSEη.

PSQI EEG
True Mean SD SE True Mean SD SE

γ 10.000 10.003 0.063 0.059 0.000 −0.023 0.202 0.201
ξG 0.045 0.038 0.110 0.102

0.045 0.039 0.107 0.101
0.045 0.044 0.107 0.101
0.045 0.045 0.101 0.101
0.045 0.043 0.109 0.099

ξE 0.058 0.053 0.089 0.081
0.058 0.060 0.085 0.080
0.058 0.057 0.086 0.079

η11 0.707 0.635 0.119 0.109 0.707 0.604 0.220 0.202
0.707 0.639 0.121 0.108 0.707 0.555 0.223 0.207

AMSEβ 0.008 0.002 0.030 0.010
AMSEξ 0.010 0.005
AMSEη 0.007 0.002 0.030 0.010

the validity and applicability of the proposed (β̂, Σ̂).

4.3. Evaluation of T

This section evaluates the performance of T in testing (1.7). To make the

comparisons more informative, we considered two types of η with different effect

sizes c.

(S1) η has zero effects except for 2 randomly selected elements, with values given

by cU with U ∈ R2 generated from the unit sphere.

(S2) η has zero effects except for a 5× 2 sub-matrix, where values are given by

cU with U ∈ R10 generated from the unit sphere.

These settings give rank(η) = 2. We set ξ = (ξ>G ,0
>
p−5, ξ

>
E ,0

>
q−3)

> with ξG =

(c/(10
√

5))15 and ξE = (c/(10
√

3))13 for the PSQI-simulation. To implement

T , we used 10-fold cross-validation to select λ ∈ {((p+ q − r)r)/(
√
n log(n)),

((p+ q − r)r)/n, ((p+ q − r)r)/n3/2} such that the condition λ = op(n
−1/2) is

satisfied, where (p+ q − r)r is the number of parameters used to specify η with

rank r. Besides T , we also implemented (Twald, Tmax, Tgesat) for comparisons.

Here (Twald, Tmax) were constructed from the rank-r GLM solely, while Tgesat
was from the variance-component test without using the matrix structure of η.
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Figure 2. The power functions of T , Twald, Tmax, and Tgesat under the sparse η (S1) and
the low-rank η (S2) at different effect sizes c. (a) The case of PSQI under (S1). (b) The
case of PSQI under (S2). (c) The case of EEG under (S1). (d) The case of EEG under
(S2).

Comparing T with (Twald, Tmax, Tgesat) can reveal possible drawbacks of different

methods. For fair comparisons, we used the same re-sampling scheme to obtain

the p-values of all methods, and their power functions at the significance level

0.05 over different effect sizes c are reported in Figur 2.

At c = 0, all methods control the type-I errors at 0.05, approximately, which

suggests the validity of the re-sampling schemes (parametric bootstrap or per-

mutation) to obtain valid p-values.

We next compared the detection powers of (Twald, Tmax, Tgesat) at c > 0. For

the case of small effect size c, Tgesat was detected to have better performance than

(Twald, Tmax). This is reasonable since Tgesat is the locally most powerful test. For

the case of moderate effect size c, Twald outperformed Tgesat in all settings, in-
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dicating gain from considering the low-rank structure of η. As Tmax is designed

to test (1.7) with sparse η, we detected a better performance of Tmax under (S1)

than under (S2). These observations reflect the fact that (Twald, Tmax, Tgesat) have

their own merits in testing (1.7), depending on the underlying characteristic of η.

Combing these methods, T showed the best performer in all situations. In par-

ticular, T had detection powers comparable to Tgesat for small c, and had higher

detection powers than (Twald, Tmax) when c is moderate to large. In summary,

our simulation results demonstrate the applicability of T regardless of the form

of η.

4.4. Evaluation of T with larger rank(η) or (p, q)

We considered two extensions of the simulation studies to evaluate the per-

formance of T .

In the first extension, we used the setting of (S2) in Section 4.3 except that

the non-zero sub-matrix of η was of size 5 × 3 with rank(η) = 3 or 5 × 4 with

rank(η) = 4. For the case of rank(η) = 4, the fitted rank-3 GLM is not a correct

model. Simulation results from both the PSQI and EEG data sets are placed

in Figure 3. It can be seen that Tmax and Tgesat have similar performances with

the results of (S2) in Figure 2, while Tmax is more sensitive to the increase of

rank(η). This is reasonable since Tmax is specifically designed for the case of

sparse η. Despite the adverse influence of Tmax, the combined test statistic T

is still found to be the best performer with the highest detection powers, even

when the model rank is under-specified. This extended simulation demonstrates

that T is able to adapt to various situations of η.

In the second extension, we used the same setting with PSQI-simulation in

Section 4.3, except that G = (G>1 , G
>
2 )> and E = (E>1 , E

>
2 )>, where G1 ∈ R15

and E1 ∈ R7 were randomly generated from ROR and NR1D1 of the PSQI data,

and G2 ∈ R15 and E2 ∈ R8 were randomly generated as multivariate normal

with zero mean and identity covariance matrix. In this case, the number of

parameters for η in the conventional model (1.6) is 30 × 15 = 450, with the

sample size 400. Simulation results from fitting the rank-3 GLM are placed in

Figure 4. Generally, a similar conclusion as Section 4.3 can be made for the

good performance of T . For c = 0, the type-I errors of all methods are well

controlled at 0.05. We next compared the detection powers at c > 0. Here Tgesat
is found to have the lowest detection powers under both (S1)-(S2), indicating

that the performance of Tgesat can be questionable when pq > n. On the other

hand, T still outperforms (Twald, Tmax, Tgesat) with the highest detection powers
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Figure 3. The power functions of T , Twald, Tmax, and Tgesat under the low-rank η (S2)
at different effect sizes c. (a) The case of PSQI with rank(η) = 3. (b) The case of PSQI
with rank(η) = 4. (c) The case of EEG with rank(η) = 3. (d) The case of EEG with
rank(η) = 4.

for all settings. This suggests that T is less affected by the problem of high-

dimensionality, and is applicable even in the case of pq > n.

5. Data Analyses

5.1. The PSQI data

The Pittsburgh Sleep Quality Index (PSQI) data set (Lai et al. (2014)) in-

cludes 359 subjects with an average age of 41, range from 18 to 69. The par-

ticipants consisted of 214 females and 145 males. For each subject, markers on

2 genes were collected: ROR with 19 markers (G) and NR1D1 with 4 markers

(E). Also collected for each subject were the assessments of sleep quantity from

Buysse, Reynolds and Monk. (1989), which consists of seven sores of PSQI: sleep
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Figure 4. The power functions of T , Twald , Tmax, and Tgesat under the sparse η (S1)
and the low-rank η (S2) with (p, q) = (30, 15) at different effect sizes c. (a) The case of
PSQI under (S1). (b) The case of PSQI under (S2).

quality, sleep latency, sleep duration, habitual sleep efficiency, sleep disturbance,

use of sleeping medication, and daytime dysfunction.

In our analysis, we considered the response Y to be the log-transformation

of the sum of all PSQI scores (plus one to avoid taking logarithm of 0). Let

M = GE> denote the 19 × 4 matrix of the interactions ROR×NR1D1, and let

Z consist of ROR, NR1D1, Age, and Gender as possible confounding factors.

Past study has found that ROR and NR1D1 cannot explain the variation of

PSQI score well, and our interest focuses on whether the PSQI score is associ-

ated with ROR×NR1D1, after adjusting for the effects of Z. Fitting the normal

model (2.1) with r = 3 gave the p-value (from the parametric bootstrap test) of

T to be 0.008, while the p-value of Tgesat is 0.178. Thus, only the proposed low

rank-based test method declares that ROR×NR1D1 is influential to the PSQI

score. We further found that the p-value of Tmax was smaller than 10−3, while

the p-value of Twald was 0.145. This indicates that a sparse ROR×NR1D1 ef-

fect can be expected. The estimated effect sizes of ROR×NR1D1 are reported

in Table 2, where the significant effects identified by individual tests (3.4) at

the family-wise error rate 0.05 are marked in bold. In particular, the interac-

tions rs11144047×rs12941497 and rs1327836×rs12941497 are identified, which

confirms the spare effect of ROR×NR1D1. We note that rs11144047, rs1327836,

and the interaction rs1327836×rs12941497 have been found to associate with

bipolar disorder (Lai et al. (2015)), and bipolar disorder is known to associate

with the PSQI score. Our analysis results not only support these findings in

the literature, but also suggest that rs11144047 × rs12941497 is an influential
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Table 2. The estimated effect sizes of ROR × NR1D1. The significant covariates iden-
tified by the individual tests (3.4) at the family-wise error rate 0.05 are marked in bold.

NR1D1
rs2314339 rs2071427 rs2269457 rs12941497

RORA rs809736 −0.007 −0.026 −0.019 0.047
rs4774388 0.001 0.014 0.016 −0.034

RORB rs10491929 0.002 0.004 0.002 −0.005
rs17611535 0.001 0.015 0.017 −0.036
rs10217594 −0.004 0.007 0.016 −0.030
rs7037043 −0.008 −0.023 −0.014 0.036
rs2025882 −0.001 −0.004 −0.003 0.006
rs7022435 −0.001 −0.005 −0.004 0.010
rs3750420 0.001 0.001 0.000 −0.001
rs1013078 −0.004 −0.027 −0.026 0.059
rs2273975 −0.004 0.012 0.023 −0.044
rs3903529 0.003 −0.004 −0.011 0.020
rs11144041 0.004 0.006 0.000 −0.003
rs7021908 −0.002 0.000 0.004 −0.006
rs7865407 −0.003 −0.012 −0.009 0.022
rs11144047 −0.007 −0.040 −0.036 0.083
rs1327836 0.005 0.054 0.058 −0.125
rs11144064 −0.001 −0.005 −0.004 0.010
rs4098048 0.003 0.000 −0.005 0.008

interaction to bipolar disorder that is missed by the conventional analysis.

5.2. The EEG data

The EEG data can be obtained from the UCI Machine Learning Repository.

There were 77 subjects in alcoholic group (Y = 1) and 45 subjects in control

group (Y = 0). The voltage values of 64 channels at 256 time points were also

collected for multiple trials, and we followed Hung and Wang (2013) in using the

means over all trials to summarize the data. This gives, for each of 122 subjects,

64 × 256 measurements. The EEG data has been analyzed by Hung and Wang

(2013) and Zhou and Li (2014), and they report the effects of the EEG signals.

They also report the classification accuracies from their models to support a

close connection between the EEG signals and alcoholic status. Hung and Wang

(2013) and Zhou and Li (2014) do not test whether the EEG signals are truly

associated with the alcoholic status via the overall hypothesis (1.7), nor did they

identify the significant covariates via the individual hypothesis (3.4). The aim of

our analysis is to answer these questions via the proposed test method.

In our analysis, we pre-processed the original covariates by averaging the
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Table 3. The significant covariates of the EEG signals identified by the individual tests
(3.4) at the family-wise error rate 0.05.

Region Channel Time Effect Size
Parietal 20 (CP6) 11 −0.039

20 (CP6) 18 0.033
22 (CP2) 11 −0.027
50 (CP4) 11 −0.027
24 (P4) 11 −0.039
26 (P8) 11 −0.036
27 (P7) 11 −0.034
27 (P7) 12 −0.022
51 (P5) 11 −0.029
52 (P6) 11 −0.032

Occipital 28 (PO2) 11 −0.024
55 (PO7) 11 −0.030
56 (PO8) 11 −0.029
31 (O1) 11 −0.026

Central 42 (C6) 11 −0.024
Temporal 46 (TP8) 11 −0.027

voltage values for every eight time points. They gave, for each subject, a 32× 64

matrix-covariate M (after component-wisely standardization such that M(j, k)

has mean 0 and variance 1), where M(j, k) represents the average voltage value

of the k-th channel over the time period [8(j − 1) + 1, 8j]. By fitting the logistic

model (2.1) with r = 1 on (Y,M), we found the p-value of T (from permutation

test) to be smaller than 10−3, indicating a strong association between the EEG

signals and the alcoholic status. The significant covariates in M identified by

the individual tests (3.4) at the family-wise error rate 0.05 are listed in Table 3.

One can see that the regions Parietal and Occipital, which control the functions

of sensation and vision, respectively, play important roles as to alcoholic status.

Moreover, most of the identified channels have significant influence at the 11-th

time period, indicating an early reaction of the brain to the stimuli. Our analysis

not only provides evidence to support the conclusions of Hung and Wang (2013)

and Zhou and Li (2014), but also suggests possible brain regions and reaction

time periods for further investigations. Our result was obtained without imposing

any identifiability constraint.

6. Conclusion

We propose novel methods to test the significance of matrix-covariate, and
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to identify the significant covariates of matrix-covariate. The rationale of our

proposal is to utilize the matrix structure of η to achieve a parsimonious param-

eterization and, hence, a higher detection power than conventional methods. Our

proposal differs from existing methods as no identifiability constraint is required

when making inference about η, and our method can provide estimates of η at

the same time.

We discuss some extensions and limitations of this work.

1. We have developed our method under the normal model and logistic model,

due to the data structures of our motivating examples (binary Y in the EEG

data and continuous Y in the PSQI data). Our method can be extended to

Poisson regression for count Y : Y |(Z,M) ∼ Poisson(E(Y |Z,M)) with the

link function g(u) = lnu. In this case, Theorem 1 is still valid with V0 =

E(exp(β(θ0)
>Xi)XiX

>
i ), and the testing procedures for (1.7) and (3.4) can

be directly applied.

2. The matrix-covariate discussed in this work is an order-two tensor, which

motivates the matrix structure of the parameter η. Tensor-covariate can

now be found in many applications. For example, p covariates measured at q

time points under k environments corresponds to an order-three tensor (with

dimension p × q × k) for each subject. Statistical inference procedures for

GLM with tensor-covariate have been developed in Zhou, Li and Zhu (2013),

with the focus on the estimation of the effect size of the corresponding tensor

parameter. When the research aim is to test the existence of an association

between the response and tensor-covariate, our low rank-based test methods

can be extended, provided that a version of Theorem 1 is developed for

tensor-covariate. Another issue is the “low-rank parameterization” for the

tensor parameter. For the case of order-two tensor, the representation is

unique, but is not for higher order tensors. It is of interest to study the

effects of different low-rank parameterizations to detection power.

3. In Theorem 1, we have established the asymptotic property of β̂ with fixed

(p, q) and diverging n. A similar result can be problematic when both (p, q)

are larger than n. It is thus of interest to extend Theorem 1 to the case of

diverging (n, p, q). This issue is beyond the scope of this work.

Supplementary Materials

The online supplementary material contains the proof of Theorem 1.
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