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Abstract: This paper describes the dynamics of daily new cases arising from the
Covid-19 pandemic using a long-range dependent model. A new long memory
model, LFIGX (Log-linear zero-inflated generalized Poisson integer-valued Frac-
tionally Integrated GARCH process with eXogenous covariates), is proposed to
account for count time series data with a long-run dependent effect. It provides
a novel unified framework for integer-valued processes with serial and long-range
dependence (positive or negative), over-dispersion, zero-inflation, nonlinearity, and
exogenous variable effects. We adopt an adaptive Bayesian Markov Chain Monte
Carlo (MCMC) sampling scheme for parameter estimation. This new modeling is
applied to the daily new confirmed cases of the Covid-19 pandemic in six countries
including Japan, Vietnam, Italy, the United Kingdom, Brazil, and the United
States. The LFIGX model provides insightful interpretations of the impacts of
policy index and temperature and delivers good forecasting performance for the
dynamics of the daily new cases in different countries.
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1. Introduction

The Covid-19 pandemic has disastrously caused an enormous global human
health problem and economy disruption since December 2019. The World Health
Organization has reported more than 350 million Covid-19 confirmed cases in over
200 countries, including about 5.1 million deaths as of mid-January 2022. There
has been abundant literature studying the Covid-19 pandemic across multiple
disciplines since the outbreak; see, e.g., the macroeconomic and societal impact of
Covid-19 (Ludvigson, Ma and Ngj 2020; Atkeson, 2020; |(Chakraborty and Maity,
2020)), concerns and effects of the Covid variants (Vaidyanathan, |[2021; [Volz et al.,
2021} |[Faria et al. [2021), dynamic modeling of new cases, deaths, or infection rate
of Covid-19 (Lin, Hu and Zhou, 2020; |Jiang, Zhao and Shao|, 2023; |Agosto et al.,
2021; Roy and Karmakar, 2021} |Li and Linton [2021), and the effect of exogenous
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factors on the Covid-19 pandemic (Dandekar and Barbastathis, 2020; Chen et al.,
2021} |Chernozhukov, Kasahara and Schrimpf], [2021)). In particular, the effect of
containment policies on the transmission of the Covid-19 virus has been widely
studied, with mixed findings under various cultural and health conditions or in
different frameworks of modeling and covariates, see e.g., Hsiang et al.| (2020),
Chernozhukov, Kasahara and Schrimpf| (2021)), and |Chen et al.| (2021). Han et al.
(2022) and |Qiu, Chen and Shi (2020) argued that a country’s new case growth
of Covid-19 increases with higher temperatures due to the encouragement of
social activity and gatherings under warm weather. While Shi et al.| (2020) and
Mecenas et al.| (2020) have presented that cold weather leads to higher level of
incidences as such weather conditions potentiate the spread of the Covid-19 virus.
While these studies are insightful with mixed findings, they do not investigate the
long-range dependence of Covid-19 pandemic, or analyze the effects of multiple
factors simultaneously in a long-range dependent framework. In this paper,
we investigate the long-range dependence and the effects of multiple exogenous
covariates on daily new Covid-19 cases. We examine the temperature and policy
effectiveness in terms of both immediate impact, namely, in the following one
and two days, and intermediate impact after one and two weeks since the policy’s
initiation in a unified long memory framework. Furthermore, it is important to
capture the developing trend of newly confirmed Covid-19 cases, not only for short
terms (e.g., 1- or 2-day ahead) but also for the intermediate terms (e.g., 7- and
14-day ahead) . These features are useful for people’s activities and government
policy determination. Therefore, we conduct multiple steps ahead forecasting for
six countries across four continents.

The counts of daily new Covid-19 cases are discrete and integer-valued,
exhibiting features of over-dispersion and serial correlation and could also be
influenced by exogenous factors such as lockdown and wearing mask polices
simultaneously. Statistical analysis of count time series has been an active
research area, covering a broad range of studies and implementations from
the incidence of epidemiology and pandemics to criminal incidents, queue-
ing systems and insurance claims (Davis and Dunsmuir, [2016; Chen and Lee,
2016). Among others, Ferland, Latour and Oraichi (2006]) proposed the integer-
valued generalized autoregressive conditional heteroscedastic model with Poisson
deviates (P-INGARCH), which is commonly used model for the count time
series with overdispersion. The P-INGARCH models are further generalized
with, e.g., the log-linear P-INGARCH (Fokianos and Tjgstheim, 2011, [2012)
and generalized Poisson/negative binomial/zero-inflated Poisson-INGARCH(X)
models (Famoye and Singh, [2006; | Zhul,2011;|Chen and Lee, 2016} Xu et al., 2020).
A comprehensive methodological review of count time series modeling refers to
Davis et al. (2021) and the references therein. However, these works focus on
modeling count time series in a short-memory framework, which is unable to
achieve or produce long-memory process. The slow decay phenomenon in the
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sample autocorrelation is exhibited in the Covid-19 pandemic data, which may
be ascribed to the long-range dependence or a long-memory property.

The study of long-memory phenomenon dates back to [Hurst| (1951) in
explaining the long-range dependence in the record of the Nile River. |Granger
(1980) suggested that aggregation of short-memory processes could lead to a
long-memory time series. Fractionally integrated processes have frequently been
considered for their hyperbolically decaying shock propagation in the literature of
long memory. A typical example is the fractional integrated generalized autore-
gressive conditional heteroscedaticity (FIGARCH) model proposed by Baillie,
Bollerslev and Mikkelsen (1996), which displays better empirical performance
in modeling stock return volatility processes opposed to a standard GARCH
model. The autoregressive fractional integrated moving average (ARFIMA)
process (Granger and Joyeux, 1980; [Bhardwaj and Swanson|, 2006) has also
emerged as a prevalent model for long-range dependent time series, especially
in volatility process modeling. However, there is limited study on long memory
modeling for integer-valued time series. (Quoreshi (2014) proposed an integer-
valued ARFIMA model to capture the long-memory aspects of high-frequency
stock transaction numbers. Livsey et al.| (2018) extended the vector ARFIMA
model to bivariate integer-valued case with an application to the annual number
of major hurricanes, see also Darolles et al.| (2019) and |Quoreshi (2017)). As
for the extension of FIGARCH to count time series, Segnon and Stapper| (2019)
considered an integer-valued FIGARCH process with the Poisson distribution (P-
INFIGARCH). However, this model cannot capture the multiple features of count
time series, e.g., over /under-dispersion, nonlinearity and the effects of exogenous
covariates.

In this paper, we focus on a new synthetic methodology for modeling the
long-range dependence phenomenon with periodic behavior for the Covid-19
daily new cases series. We propose a log-linear zero-inflated generalized Poisson
integer-valued fractionally integrated GARCH model with exogenous covariates
(LFIGX) to capture multiple features of daily Covid-19 new cases in a long
memory framework. Existing INGARCH with Poisson or generalized Poisson
type models can only handle short memory features. Note that [Segnon and
Stapper| (2019) also considered the P-INFIGARCH model but without exogenous
variables, and it cannot handle over-dispersion, zero-inflation, and nonlinearity.
The question on the true source of long memory diagnosis still remains a question
(Chen, Hardle and Pigorsch, [2010), and the presence of structural breaks can
lead to misleading inference regarding long memory diagnosis (Diebold, [1986;
Lamoureux and Lastrapes, |[1990; Mikosch and Starical, 2004). Instead of using
short memory with breaks or time-varying models (Xu et al., |2020; |Chen and Lee,
2016), we consider long memory modeling for Covid-19 data, not only because
it is natural to introduce long-range dependence for the intensity for Covid-19
count series due to the aggregation of possible numerous latent Covid-19 infectors
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(Granger, |1980)), but also because it has practical implications for future policy
design and long-term prediction.

The proposed LFIGX model incorporates a long-memory integer-valued
FIGARCH model with exogenous covariates for the intensity of Covid-19 count
time series, and zero-inflated generalized Poisson distribution is applied to
allow for possible over-dispersion and zero-inflation features. Hence, the model
is flexible to describe the dynamics of daily new Covid-19 case series with
mixed features of serial dependence (positive or negative), over-dispersion, zero-
inflation, nonlinearity, exogenous covariates impact, and long-memory in a
unified framework. Bayesian method is adopted for parameter estimation based
on adaptive MCMC procedure. The Bayesian inference for LFIGX model is
advantageous because it provides a way of estimation and prediction taking
into account parameter uncertainty and prior knowledge of a stochastic process.
Bollerslev and Mikkelsen (1996 and |Baillie, Bollerslev and Mikkelsen| (1996)
have proved asymptotic consistency and normality properties of the quasi max-
imum likelihood estimators (qMLE) under sufficient nonnegativity conditions
of conditional variance for the FIGARCH process in the modeling of high-
frequent volatility process, and (Conrad and Haag) (2006)) extended these results of
nonnegativity parameter conditions to higher-order cases, which were adopted by
Segnon and Stapper| (2019) for estimation of the P-INFIGARCH model. Though
our paper adopts Bayesian method and involves a different distribution, the
numerical study demonstrates reasonably good estimation performance for the
LFIGX model. We apply the LFIGX model to the Covid-19 daily new cases
data from six countries across four continents and conduct a comprehensive
analysis to their dynamics and the effects of exogenous covariates. Our analysis
provides insightful interpretations on the short and intermediate term impacts of
policy index and temperature, and delivers good multiple step ahead forecasting
performance for the dynamics of Covid-19 daily new cases.

Our contributions include the following. (1) We propose a new synthetic
LFIGX model for the long-range dependent count time series, which enables us
to account for a number of features in a unified framework and simultaneously
incorporate the impact of multivariate exogenous covariates. In comparison,
existing works only consider a subset of the features and/or do so under a short
memory framework. (2) We demonstrate the application of Bayesian MCMC
sampling method for parameter estimation of FIGARCH type models for count
time series. The existing literature of integer-valued long memory modeling, e.g.,
INARFIMA model (Quoreshi, 2014) and P-INFIGARCH (Segnon and Stapper,
2019) all utilize the gMLE methods. (3) We provide an interpretable estimation
of the stochastic intensity of the Covid-19 daily new cases and the short/middle-
term impacts of multivariate environmental and policy variables.

The rest of this paper is organized as follows. Section 2 describes the
daily new Covid-19 cases data and the exogenous variables. Section 3 presents
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the LFIGX model and the parameter estimation procedure using the Bayesian
MCMC sampling technique. Section 4 investigates the finite sample performance
of the LFIGX model under various scenarios. In Section 5, we demonstrate the
real data analysis to the daily news cases of Covid-19 pandemic in six countries.
Section 6 concludes.

2. The Covid-19 Data

We consider daily new cases of Covid-19 in six countries with a wide spectrum
across four continents, respectively. Asian countries suffered the first outbreak of
the Covid-19 pandemic since December 2019, we consider two Asian countries:
Japan (JPN) and Vietnam (VNM) as illustrations. We also choose two American
countries: the United States (USA), which has the largest amount of accumulated
confirmed cases and deaths, and Brazil (BRA), which ranks third in terms
of total number of confirmed cases and deaths globally (till 4 January 2022).
Lastly, we select two countries from Europe: Italy (ITA), which suffers from the
first outbreak in Europe, and the United Kingdom (GBR), which has the most
accumulated cases among the European countries (till 4 January 2022).

The primary data sources include daily new Covid-19 cases, policy indicators,
and temperature. We collected the daily new cases data of six representative
countries from Our World in Data website maintained by the University of Oxford
(https://ourworldindata.org/covid-cases). We also obtain the containment
and health index as policy indicator variable from there. The policy index is
constructed from taking the weighted sum over a group of policy categories such
as school closures, workplace closures, face coverings and testing policy. The index
on any given day takes a value between 0 and 100 with a higher score indicating
a stricter government policy. We collect the daily mean temperature from the
National Oceanic and Atmospheric Administration (NOAA). The NOAA records
raw temperature data by several stations from various locations within each
country. We take the daily average of the temperatures that are completely
recorded from different stations in a country to use except USA. For USA, we
select four representative states: California, New Jersey, Texas, and Minnesota,
and take the average temperature of the four states to use, considering the large
lead is of USA. Meanwhile, to investigate the weekly seasonality of new Covid-
19 counts, especially the weekday and weekend effect, we add a dummy variable
D, =1 if the day is Saturday, or Sunday, and equals zero otherwise.

Table 1 reports the descriptive statistics of the daily new Covid-19 cases in
each country. It is obvious that these six series are all overdispersed with the
sample variance much larger than the mean, and ratio ranges from 7.42(x10%) to
4.49(x10*). The daily new cases at VNM has 19.09% of zeros which indicates the
feature of excess zeros, while for other five datasets, there are no or few number
of zeros. Meanwhile, the magnitude of counts series is much larger for ITA, GBR,
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Table 1. Description and summary statistics of daily new cases.

Dataset(Code) Period n  Min Max Mean Variance  Variance/Mean 0s %
Japan(JPN) 2020/1/23~2022/1/13 722 0 2.59(x10%) 2.50(x10%) 1.86(x107)  7.42(x10%) 1.38
Vietnam(VNM) 2020/1/23~2022/1/14 723 0 3.91(x10%) 2.75(x10%) 2.88(x107)  1.05(x10%)  19.09
Ttaly(ITA) 2020/2/21~2022/1/11 691 17 2.20(x10%) 1.13(x10%) 5.05(x108)  4.49(x10%) 0

United Kingdom(GBR) 2020/1/31~2022/1/4 705 0 2.21(x10%) 1.94(x10%) 6.93(x10%)  3.57(x10%)  1.41
United States(USA)  2020/1/23~2022/1/9 718 0 1.07(x10°) 8.40(x10%) 1.02(x101%)  1.21(x10%)  3.76
Brazil (BRA) 2020/2/26~2021/12/10 654 0 1.24(x10%) 3.38(x10%) 5.97(x10%)  1.76(x10%) 1.2

BRA, and USA than the values of two Asian countries.

Figures 1 and 2 display the time series plot and autocorrelation functions
(ACF) plot of the daily new cases of Covid-19, respectively. We can find different
dynamic patterns in, e.g., trend, intensity, duration, and frequency of waves,
as well as ACF decays of these countries. For example, both JPN and USA
suffer six waves from January 2020 to January 2022, while USA develops more
volatile intensity than JPN at last two waves. VNM shows only two waves and
remains stable at low level until June 2021 when a sharp increment occurs. The
data of BRA fluctuates seriously with largest volatility among 6 countries during
the whole period. In Figure 2, the ACF plots show the slower decay for VNM
and GBR, which may reveal a long-dependent feature of the data. JPN and
ITA decrease to be insignificant at around lag 40, while BRA monotonously
decreases but still exhibits significant ACF till lag 100. The weekly seasonality
is more obvious in BRA and USA. The values, dynamics, and ACFs of the
daily new Covid-19 case series vary from one country to another, which increases
the complexity of modeling in a unified framework. The multiple features and
complex dynamics in the empirical data require a comprehensive model that can
effectively handle the long-range or short-range dependence and over-dispersion
simultaneously.

Figure 3 displays the time series plots of the two exogenous variables for JPN,
ITA, and USA, as illustration. The graphical demonstration of other countries
refers to Figure A in Supplementary Materials. The policy index reveals a sharp
increasing trend first and remains relatively stable after that in each country. The
strictness of government policy is strongest in ITA and weakest in JPN among
these three countries. The temperature series exhibit strong seasonality patterns
with higher values at corresponding summer seasons and lower values at winters.

3. Model and Methodology

In this section, we introduce the Log-linear zero-inflated generalized Pois-
son integer-valued Fractionally Integrated GARCH with eXogenous covariates
model with order p, ¢ and fractional parameter d (LFIGX(p,d,q)). The model is
flexible to handle the dynamics of the daily Covid-19 new case series with features
of autocorrelation, heteroscedasticity, over-dispersion, excess zero observations,
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Figure 1. Time series plots of the daily new cases of the Covid-19 pandemic at six
countries.
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Figure 2. The sample ACF plots of the daily new cases of the Covid-19 pandemic at six
countries.

and effects of exogenous covariates simultaneously in a long-range dependent
framework.

3.1. The LFIGX (p,d, q) model

A random variable Y follows a zero-inflated generalized Poisson (ZIGP)
distribution (Gupta, Gupta and Tripathi, |1996) with parameters A, p, and ¢
whose probability density function is given by
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Figure 3. The policy index and temperature at JPN, ITA, and USA.
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where A > 0, 0 < p < 1, max(—1,—-A\/m) < ¢ < 1, and m(> 4) is the largest
positive integer to satisfy A + ¢m > 0 when ¢ < 0. The distribution reduces to
the generalized Poisson distribution when p = 0, and to the Poisson distribution
when p = ¢ = 0. We refer to Xu et al|(2020) for more discussions of the ZIGP
distribution.

If a random variable Y ~ ZIGP(A, p, ), the conditional expectation and

variance are:

—p pA? A
E(Y) <,0)\7 and Var(Y) = (1 p){(l—go)Z + (1_@3}.
It is straightforward to find that variance of Y is greater than the mean (i.e. over-
dispersion) if 0 < ¢ < 1. When p = 0, the variance is equal or smaller than the
mean when ¢ = 0 or ¢ < 0 respectively.

Let {Y;; t = 1,...,n} denote a count series that is conditionally ZIGP
distributed with mean A;, such as the daily new cases of Covid-19 pandemic. Let
X; = (41,7 1) bethe K exogenous covariates. In our study, the exogenous
covariates include the policy index, temperature, and a weekend dummy. Let Y,
and X; denote all the past count and exogenous variables’ observations at time ¢,
respectively. The family of log-linear INGARCH(p, ¢) models for intensity A; has
been widely studied (see e.g., Fokianos and Tjgstheim| |2011), which is defined
as:
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q

log(\;) =w+ Z aplog(Y,_p+1)+ Z Br log( A1)

k=1 k=1

= w+ (L) log(Y; + 1) + B(L) log(\) (3.1)

w o*(L)
5 {1 T f e+
where L denotes the lag or backshift operator, i.e, L'x; = x; ;. Here a(L) =
b _aplF and 1 — B(L) = 1 —>"7_, BiL* are lag polynomials with the roots
assumed to lie outside the unit circle, and ®*(L) = 1 — S(L) — a(L). The log-
intensity log(\;) is adopted which relaxes the restriction that both sides should
be positive.

In many applied works of the GARCH(p, q) model, the estimated lag poly-
nomial ®*(x) = 0 has a root which is statistically indistinguishable from unity
(Bollerslev and Mikkelsen, (1996)). For example, we found that a; + 5; = 0.981
using INGARCH(1,1) model for the daily new Covid-19 cases in GBR. While
the formulation of model has geometric memory, which is only suitable
for the short-memory phenomena. Motivated by this empirical regularity, if

rearranging log(\;) =

the polynomial ®*(L) has a unit root and therefore it can be factored as
®*(L) = ®(L)(1— L), where (L) has all the roots outside the unit circle. Engle
and Bollerslev| (1986) proposed the so-called Integrated GARCH, or IGARCH
process, which exhibits infinite dependence on initial conditions, indicating
complete persistence of shocks to the intensity. While it is possible that shocks
to the intensity could be highly persistent, i.e., a slow hyperbolic decay, but
nevertheless transitory. For example, in Figure 2, the sample ACF of VNM
tends to decay more slowly than exponential rate. To cope with such long-range
dependence, Baillie, Bollerslev and Mikkelsen (1996) introduced the so-called
FIGARCH model, which replaces the first difference operator (1 — L) in ®*(L)
with the fractional differencing operator (1 — L)%, where d is a fraction 0 < d < 1.

Taking into account of these modeling properties and the unique features of
count time series, we propose to combine the ZIGP distribution and a nonlinear
structure to accommodate zero-inflation, over-dispersion and positive/negative
association as well as the effects of exogenous covariates in a long memory
framework. The proposed LFIGX(p, d, q) model is defined as

Yi|(FY), X-1) ~ ZIGP(X;, ¢, p),

1_ &(L)(1 — L) -
No= 1 los) =ut {1 - M}log@@ T+ WX
k=1

(3.2)

where 0 < p < 1, max(—1,—-A;/m) < ¢ < 1, m(> 4) is again the largest
positive integer for which A} + ¢m > 0 when ¢ < 0. Here, Ft("_’)1 is the o-fields
generated by previous observations {Y;_1,...,Y1}. We consider 0 < ¢ < 1 for
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the over-dispersion case. Note that Segnon and Stapper]| (2019) also considered
an INFIGARCH model for count time series, yet cannot handle possible over-
dispersion, zero-inflation and nonlinear dependence features by using Poisson
distribution and without exogenous variables as well.

Denote the lag polynomial ¥ (L) as

O(L)(1 - L)*

VN

= S LF (say),
k=1

we set 0 < d < 0.5 accounting for the finite variance of log(Y;+1) series (Taniguchi
and Kakizawa, 2000) and all the roots of ®(L) and 1 — B(L) lie outside the unit
circle. The fractional differencing operator (1 — L)¢ can be written in terms of
hypergeometric function:

o0

(1= L)' = F(=d.1,1;1) = §:Fk+1 }j@w

=0

where 640 = 1. It is noted that the dependence is driven by the coefficients in ¢(L)
in model , which allows for the investigation of the temporal dependence
of intensity and the memory of the process on the past observations. The lag
coefficients ¢(L) in the infinite ARCH representation are approximately v, ~
ck=471 where c is a positive constant (Kilig, [2011). Hence the log-intensity
can be expressed as the distributed lag of past observations with coefficients
decaying at a hyperbolic rate, which makes it distinctively different from the
short (geometric) memory models like the GARCH and IGARCH models.

We intensively discuss the derivation and estimation of LFIGX(1,d, 1) model,
since the FIGARCH(1, d, 1) model is definitely the most often used specification
and appears to be particularly useful in empirical applications. To be specific,
the LFIGX(1,d, 1) model is defined as

}/t’(Ft 1aXt 1)NZIGP(>\t,QD,p),
L—¢
- p)\t, (3.3)

(1—¢L)(1—L)*
1 BiL P%(

Al =

K
Yi+1)+ Z’YkXt—Lk-
k=1

log(A\t) =n+ {1 —

Equating autoregression coefficients of the lag operator ¥ (L) in model (3.3]), we
have

Py = ¢ — B +d,
1—-d
A - ¢1>5d,k17 for all k > 2.

Y = Brp—1 + <k__
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The unknown parameters in model include @ = (n, B1, 1,0, 0, dy Y1,y - - - s
vx). |Conrad and Haag (2006) derived the nonnegativity conditions for the
conditional variance in the FIGARCH(p, d, ¢) model of the order p < 2 under a
linear framework, while the stationarity condition for general FIGARCH process
is still an open question. In our nonlinear LFIGX(1,d, 1) model, the parameters
do not need to satisfy any nonnegativity constraints to make the model well-
defined.

The estimation for the fractionally integrated models necessitates the trunca-
tion of the infinite distributed lags in model (3.3). In the estimation, we consider
the coefficients with the truncating R number of lag polynomial, that is

va(r) =1~ 15 (’fl_L B3I Zw L*. (34)

Because the fractional differencing operator is designed to model the long-memory
features of the series, a too low truncation at a lag may loss important long-run
dependencies information (Baillie, Bollerslev and Mikkelsen, |1996]). Our Covid-
19 dataset has small sample size (around 700), so we set R = 200 as an illustration
in real data analysis and investigate the effect of R in the numerical analysis.

3.2. Bayesian approach and parameter estimation

Bayesian methods have been increasingly applied to diverse research areas,
which are considered as a staple in modern statistical analysis. We tackle the
estimation problem only for LFIGX(1,d, 1) model with the Bayesian method as
an illustration. The Markov Chain Monte Carlo (MCMC) procedure is adopted
to produce a powerful analysis for the proposed models, which is advantageous
to incorporate the parameter constraints via a prior density.

For notational simplicity, let ¥ = (9, 1,¢1) and I' = (71,...,7k). Let 6,
denotes certain parameter group in 8, i.e., ¥, p, ¢, d, and T', respectively for
¢=1,...,5, and 7(0,) is its prior density. Let 8., be the parameter vector of
0 excluding the element 6,. Given the series of counts Y, up to time ¢ and the
covariates X;_; up to time ¢ — 1, the LFIGX(1,d, 1) model with parameter
6 has the conditional likelihood function:

L(Yt|Xt_1,'l9) -

ar AL+ oY) -
[T {p+0-pe} [T {-p =t ol cromant )
Y,=0 Y, >0 8°

where A% is computed recursively by

K

iexp {77 +¢Yr(L)log(Ys + 1) + Z%Xs—uc} , for R<s<t. (3.6)

k=1

AL = —
1—
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To ensure the required constraints, for first group 1, since it is still an open
question for the stationarity conditions of 19, we consider setting restrictions to
¥ such that all the roots of ®(L) and 1 — (L) lie outside the unit circle. That
is, ¢ € [—1,1] while not equal to ;, and 8; € [—1,1]. We adopt a constrained
uniform prior defined by indicator I(A;), where A; is the set of ¥ satisfying the
restrictions above. This uniform prior generates a flat prior on the parameters in
¥ restricted by the indicator that is non-zero inside A; and zero outside. We also
adopt constrained uniform priors on the parameters (groups) p, ¢ and d defined
by indicators I(A;), j = 2,...,4, where A; is the set of corresponding parameter
satisfying 0 < p < 1,0 < p < 1, and 0 < d < 0.5, respectively. We again adopt a
flat prior on the components of I' = (74, ...,7k), denoted by I(As). The choices
of priors are similar in |(Chen and Lee (2016]) and Xu et al.| (2020), which are not
the only ones possible, but are instead chosen to be non-informative.

We use the likelihood and the priors that were described above to give the
conditional posterior kernels for each parameter group as follows. For notational
convenience, let f denote the target density given by

p(@dYt, X1, 9#) X p(Yt‘Xt—h 9)77(0€|975€) (3-7)
< IT {o+ = pe } TT {1 = NI + ) el 0o b (ay)
Y,=0 Y>>0

Details of the MH steps for 8, are as follows.

Step 1: At iteration i, generate a point ; = 0;71] + N(0,¢,%,), where ¢, is
the scaling parameter of the normal proposal, which could be adjusted
by controlling the acceptance rate of the posterior samples (Gelman,
Roberts and Gilks, 1996), and ¥, is covariance matrix in the random
walks of 8,. The stability condition of 8, would be imposed through an
accept-rejection MH sampling procedure.

Step 2: Accept 0] as 03] with probability

mn{lm}

where 0?1 is the ith iterate of 6,. Otherwise, set 91[;'] = 0}”‘”.
Usually a suitable value of ¢, with good convergence properties can be chosen by
setting an acceptance probability of 25% to 50% (Chen and So, |2006).

Finally we construct the estimate of intensity A; from the mean of the
posterior distribution via the MCMC sampling scheme by
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where Al is the i-th iteration of A, recursively constructed using 90, plil, lil,
d¥, and T'¥. N is the total number of iterates, and M is the number of burn-
in iterates. In the following sections we set N = 15000 for the simulation study
and N = 20000 for real data analysis. We drop the first M = 3000 iterations as
a burn-in sample.

4. Simulation

In this section, we examine the finite-sample performance of the LFIGX
model. We investigate the estimation performance and compare it with several
alternative models under different data generating processes. Moreover, we
conduct robustness analysis on the choice of priors in the MCMC procedure,
the effect of truncating number R of the lag polynomial, and the estimation
performance under misspecified number of the exogenous variables. Source
code for simulation replication and reproducibility is available online at https:
//github.com/Xiaofei-Xu/LFIGX-project.

4.1. Estimation analysis

In this section, we examine the performance of the LFIGX model in inference
under a known data generating process with two exogenous covariates. We also
provide a detailed comparison with several alternative methods.

To investigate the estimation performance, we generate count series in
a homogeneous scenario with a set of globally constant parameters. We
consider three scenarios for data generation: LFIGX(1,d,1) (denoted as DS-
default), LFIG(1,d,1) (i.e., without exogenous covariates, denoted as DS-X),
and LFIGX(0,d,1) (i.e.,, ¢1 = 0, denoted as DS-¢). We use sample sizes of
n = 400,900, and 1300, and start the estimation from time ¢ = 201,601, and
1001, respectively, until the end for each scenario. For n = 400, we set R = 200
to mimic the real data situation with small sample size and R value. For n = 900
and 1300, we set R = 600 and 1000, respectively, considering the larger sample
size. The parameter sets of 8 in each design are reported in Table 2. We generate
a total of 200 replications for each design. The two exogenous covariates, x; and
To, are generated from the standard normal distribution.

Table 2 reports the parameter estimation and standard deviations for the
three scenarios with n = 400. Since we find that direct estimation of the
parameter d poses a challenge, hence, we suggest selecting the value of d based on
the likelihood results of a few candidates, and we also compute the AIC and BIC
results with d varying for d estimation. To achieve this, we obtained five sets of
parameter estimates while keeping d fixed at 0.1,0.2, 0.3, 0.4, and 0.5, respectively.
The results reveal that the correct guess, d = 0.2, yields the best fitting results
of likelihood, AIC and BIC(rows with bold values), as expected, across all three
designs. For each design, the parameter estimates are quite accurate where the
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Table 2. Estimation and corresponding standard deviation (in parentheses) of the
parameters using LFIGX modelling under n = 400. The in-sample log-likelihood, AIC,
and BIC are also reported.

Scenario LogLik AIC BIC n b1 B1 P [ d Y Y2
True value 0.600 0.700  0.400 0.200 0.400 0.200 0.500  -0.300
d=0.1 -586.75 1,215.88 1,189.50 0.732 0.745 0.349 0.204 0.396 0.100 0.500 -0.297
(0.086) (0.040) (0.054) (0.031) (0.038) (0.028) (0.033)
d=0.2 -586.51 1,215.40 1,189.01 0.602 0.683 0.384 0.204 0.395 0.200 0.500 -0.297
(0.068) (0.054) (0.066) (0.031) (0.037) (0.028) (0.033)
DS-default d =0.3 -587.15 1,216.68 1,190.29 0.495 0.604 0.399 0.203 0.396 0.300 0.501 -0.297
(0.057) (0.080) (0.089) (0.031) (0.037) (0.029) (0.034)
d=0.4 -589.21 1,220.81 1,194.43 0.414 0420 0.308 0.202 0.403 0.400 0.501 -0.297
(0.049) (0.160) (0.154) (0.032) (0.038) (0.031) (0.036)
d=0.5 -592.00 1,226.39 1,200.00 0.340 0.102 0.092 0.200 0.408 0.500 0.503 -0.298
(0.045) (0.233) (0.226) (0.032) (0.040) (0.033) (0.037)
True value 0.600 0.700  0.400 0.200 0.400 0.200 0.000  0.000
d=0.1 -587.41 1,217.20 1,190.81 0.721 0.743 0.342 0.204 0.394 0.100 -0.001  -0.002
(0.090) (0.045) (0.069) (0.030) (0.039) (0.030) (0.035)
d=0.2 -587.37 1,217.12 1,190.74 0.595 0.677 0.371 0.204 0.394 0.200 -0.001 -0.003
(0.071) (0.063) (0.081) (0.030) (0.039) (0.030) (0.035)
DS-X d=0.3 -588.50 1,219.38 1,192.99 0.491 0.587 0.373 0.202 0.397 0.300 -0.001 -0.002
(0.059) (0.104) (0.115) (0.030) (0.039) (0.030) (0.036)
d=04 -589.96 1,222.30 1,19591 0.412 0.389 0.267 0.201 0.401 0.400 -0.002 -0.003
(0.051) (0.171) (0.163) (0.031) (0.038) (0.031) (0.037)
d=0.5 -591.64 1,225.67 1,199.28 0.342 0.097 0.074 0.199 0.404 0.500 -0.002 -0.003
(0.044) (0.221) (0.212) (0.030) (0.038) (0.032) (0.038)
True value 0.600  0.000 0.400 0.200 0.400 0.200 0.500 -0.300
d=0.1 -453.98 950.35 923.96 0.930 -0.081 0.221 0.194 0.393 0.100 0.493 -0.295
(0.122) (0.153) (0.145) (0.040) (0.048) (0.061) (0.067)
d=0.2 -453.84 950.07 923.68 0.605 -0.022 0.379 0.195 0.393 0.200 0.494 -0.296
(0.104) (0.144) (0.130) (0.039) (0.049) (0.060) (0.068)
DS-¢ d=0.3 -454.06  950.50 924.12 0.397 0.012 0.509 0.195 0.393 0.300 0.495 -0.296
(0.091) (0.134) (0.112) (0.039) (0.048) (0.061) (0.067)
d=0.4 -454.50  951.39 925.00 0.258 0.018 0.608 0.194 0.395 0.400 0.495 -0.295
(0.079) (0.118) (0.095) (0.039) (0.047) (0.061) (0.068)
d=0.5 -454.94  952.28 925.89 0.168 0.008 0.694 0.193 0.397 0.500 0.495 -0.296
(0.069) (0.102) (0.077) (0.039) (0.047) (0.061) (0.069)

The row labeled by “True value” indicates the true value of parameters in each design. Each experiment
is replicated 200 times. The best performance is marked in bold.

estimated coefficients are close to the true value, with relatively small standard
deviations as well, under the correct estimated value of d. This reflects that it is
feasible to conduct estimation of d with likelihood and AIC/BIC and the Bayesian
estimation provides reasonable estimates of parameters in LFIGX modeling.
Table 3 reports the estimated parameters and their standard deviations for
the three scenarios with sample sizes of 900 and 1300. We only present the
results with fixed d = 0.2 which is selected with maximum likelihood value among
five candidates. It shows that the LFIGX model exhibits accurate and stable
estimation among different data generation processes and sample sizes, with the
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Table 3. Estimation and corresponding standard deviation (SD) of the parameters using
LFIGX modeling under n = 900 and 1300. The symbol “—” refers that d = 0.2 is fixed
during estimation.

n =900
Scenario n o1 B1 P P d 71 72

True 0.600 0.700 0.400 0.200 0.400  0.200  0.500 -0.300

DS-default Estimate  0.597 0.696 0.398 0.203 0.405 — 0.499  -0.302
SD (0.051) (0.032) (0.043) (0.026) (0.031) — (0.020) (0.022)

True 0.600 0.700 0.400 0.200 0.400  0.200  0.000 0.000

DS-X Estimate 0.594 0.692 0.388 0.202 0.395 — 0.001 0.000
SD (0.056) (0.045) (0.057) (0.024) (0.030) — (0.024) (0.024)

True 0.600 0.000 0.400 0.200 0.400 0.200 0.500 -0.300

DS-¢ Estimate  0.596 0.003 0.398 0.202 0.401 — 0.498 -0.304
SD (0.070)  (0.107) (0.091) (0.029) (0.034) —  (0.046) (0.041)

n = 1300

True 0.600 0.700 0.400 0.200 0.400 0.200 0.500 -0.300

DS-default Estimate 0.597 0.695 0.395 0.202 0.399 — 0.500 -0.300
SD (0.047)  (0.035) (0.045) (0.024) (0.028) — (0.020)  (0.020)

True 0.600 0.700 0.400 0.200 0.400  0.200  0.000 0.000

DS-X Estimate  0.596 0.695 0.397 0.203 0.397 — -0.002 0.002
SD (0.054) (0.042) (0.055) (0.024) (0.034) —  (0.022) (0.024)

True 0.600 0.000 0.400 0.200 0.400  0.200  0.500 -0.300

DS-¢ Estimate  0.595  -0.021 0.379 0.197 0.397 — 0.498  -0.302
SD (0.067) (0.099) (0.086) (0.028) (0.036) — (0.046)  (0.041)

estimated parameters close to the true values for each case, and the standard
deviations of almost all parameters are relatively small and decrease as the sample
size increases.

To compare estimation accuracy, we consider four prevalent short memory
models over the same estimation period: the P-INGARCH, log-linear GP-
INGARCHX, log-linear ZIGP-INGARCH, and log-linear ZIGP-INGARCHX
models. The P-INGARCH model (Ferland, Latour and Oraichi, 2006) is widely
used for count time series with overdispersion. The log-linear GP-INGARCHX
(Chen and Lee, 2017)) is also a popular count time modeling which could account
for both overdispersion and underdispersion and also enable to include exogenous
covariates in a straightforward manner. The other two models have been well
studied for the log-linear zero-inflated over-dispersed counts with/without the
effect of exogenous covariates (Lee, Lee and Chen, 2016; | Xu et al., 2020). Table
4 summarizes the root mean squared error (RMSE) and mean absolute deviation
(MAD) of the estimated intensity A, of the five models. The LFIGX model
outperforms the other four short memory models with better accuracy in terms
of RMSE and MAD by accounting for the long-range dependence involved in the
count time series.
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Table 4. RMSE and MAD of the A; estimation of three designs using LFIGX model
compared with P-INGARCH, GP-INGARCHX, ZIGP-INGARCH, ZIGP-INGARCHX
models under different sample sizes. The best accuracy is highlighted in bold.

Model P-INGARCH GP-INGARCHX ZIGP-INGARCH ZIGP-INGARCHX LFIGX
n=400 RMSE MAD RMSE MAD RMSE MAD RMSE MAD RMSE MAD
DS-default 16.771  9.056 13.805 7.830 15.773 8.719  4.846 2.603 1.925 1.052
DS-X 2103 1438 5.512 4.042  1.349 0.952  1.462 0.997 1.228 0.859
DS-¢ 2.754 1.980 1.095 0.716  2.747 1.963  0.847 0.559 0.666 0.447
n=900
DS-default 23.962 11.889 26.689 17.465 22.437 11.488  6.962 3.383 0.741 0.385
DS-X 2562 1.702 9.461 8.544  1.510 1.044  1.608 1.071 1.188 0.813
DS-¢  4.521 4.322  1.582 1.250 3.371 2.383 0917 0.603 0.593 0.387
n=1300
DS-default 25.557 12.993 23.750 13.122  23.887 12.533  7.333 3.673 2.032 1.063
DS-X 2827 1873 8.979 6.605  1.716 1.184  1.727 1.144 1.300 0.886
DS-¢  3.751 2.694  1.417 0.935  3.742 2.682  0.982 0.650 0.629 0.419

4.2. Robustness checking

We investigate the sensitivity of the LFIGX model to various hyperparam-
eters, including the choice of priors in the MCMC procedure, truncating value
R. We also study the effect of misspecified exogenous covariates as pointed by
one referee. To demonstrate the robustness of the model, we consider the design
DS-default with (n, ¢1, 51, p, ©, d, 11, 72)=(0.6, 0.7, 0.4, 0.2, 0.4, 0.2, 0.5, -0.3),
R = 600, and n = 900. For each robustness experiment, we apply alternative
priors, R, and different exogenous covariates, redo the estimation, and compare
the estimation performance with the default setup.

We begin by exploring the impact of different priors on the MCMC sampling
procedure. The default choice is non-informative (uniform/flat) priors for all
parameters, but this is not the only possibility. As an illustration, we consider
setting the beta distribution as the priors for parameter p and ¢ (Chen and Lee,
2016), and the normal distribution for I". In specific, the following priors are
applied: Prior 1: p ~ Beta(2, 8), ¢ ~ Uniform(0,1), v, ~ N(0,0.5),k = 1,2;
Prior 2: p ~ Beta(10, 90), ¢ ~ Beta(6, 4), 7%+ ~ N(0,0.5),k = 1,2; Prior 3:
p ~ Uniform(0,1), ¢ ~ Beta(60, 40), v. ~ N(0,0.5),k = 1,2. We conduct
estimation for the DS-default design using these alternative priors and compare
their estimation performance.

As the fractional differencing operator ¢ (L) is designed to capture the long-
memory features of the process, truncating at a too low lag may result in the
loss of important long-run dependencies. In the DS-default design, the process
is restricted with R = 600. To examine the sensitivity of the estimation results
to the truncating value, we consider two alternative settings with R = 200 and
R = 700, denoted as “R1” and “R2”, respectively. Lastly, we investigate the
impact of effective covariates by conducting a robustness check on misspecified
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Table 5. Robustness checking.

Ul o1 b1 p 7 d " 2 ~vs  Loglik AIC BIC
True 06 07 04 02 04 02 05 -03 00
Default 0.597 0.696 0.398 0.203 0.405 0.200 0.499 -0.302 —  -914.009 1,873.648 1,844.018

Priorl  0.599 0.696 0.398 0.201 0.404 0.200 0.499 -0.302
Prior2 0.631 0.696 0.397 0.174 0.413 0.200 0.499 -0.302

-913.996 1,873.622 1,843.992
-914.823 1,875.277 1,845.646

Priord 0.611 0.691 0.395 0.202 0.459 0.200 0.497 -0.301 —  -914.796 1,875.222 1,845.592
R1 0.669 0.697 0.399 0.201 0.405 0.200 0.496 -0.298 —  -916.311 1,878.252 1,848.622
R2 0.583 0.693 0.392 0.204 0.402 0.200 0.505 -0.302 —  -908.221 1,862.073 1,832.443
3X 0.597 0.696 0.399 0.204 0.404 0.200 0.498 -0.302 -0.006 -913.458 1,878.251 1,844.917
1X 0.717 0.658 0.381 0.195 0.595 0.200 0.479  — —  -987.382 2,014.691 1,988.765

“Default” refers to the results under default setup. “Priorl” to “Prior3” refer to the results under 3
alternative priors. “R1” and “R2” refer to two different truncating number R = 200 and 700 in the
estimation, respectively. “3X” and “1X” refers to the misspecified model with one additional covariate
or only with the first covariate, respectively. The symbol “—” means the model/estimation does not
involve this parameter.

models by missing effective covariates or including unrelated covariates in the
model. In each robustness experiment, we keep all remaining settings the same
as in the default case, except for the hyper-parameters under investigation.

Table 5 reports the robustness checking results under alternative priors, R
values, and misspecified models (wrong exogenous covariates). It shows that
the parameter estimation is not sensitive to the selection of priors (p, ¢, I') by
delivering similar results to the default. Regarding the choice of R, as stated
before, using a too small value may lead to information loss; it does induce some
bias in the parameter estimation, especailly for 7, while the other parameters seem
to be less affected. The results are consistent to the experiments results in [Segnon
and Stapper] (2019)) for R’s influence study. The improvement of estimation is not
significant by using a larger value of R. Lastly, adding unrelated covariates to the
model does not cause any issues for the estimation of other parameters, where
the estimated coefficient of the unrelated covariates is almost zero. While when
some of the effective covariates are missing, there exists influence in parameter
estimation, especially for n and over-dispersion parameter ¢, while notably, there
is no significant effect for the estimating of ~y;, the coefficient of the remaining
covariate, though missing certain effective covariates.

In summary, the simulation study shows stable and accurate performances
of the LFIGX model under different scenarios with accurate estimation of
parameters with truly selected d. The adaptive Bayesian estimation is robust to
the choice of priors. A too small value of R does show some influence in parameter
estimation, especially for 7, and larger value of R has little improvement in
estimation accuracy. Excluding some covariates leads to variations in the
estimates of 7, while the estimation of the coefficients for the remaining covariates
is still stable and accurate.
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5. Real Data Analysis

In this section, we apply the LFIGX(1, d, 1) model to investigate the dynamic
evolution of the daily new Covid-19 case time series of the six countries. We
initialize the first 500 observations for in-sample analysis and conduct the
forecasting from the 501th day till the ending of each dataset. The exogenous
covariates X; includes 3 variables: policy index, temperature, and a weekend
dummy. The detailed description of datasets is in Section 2.

5.1. Interpretation

We investigate the long memory property and the effect of exogenous
covariates through the in-sample analysis using the proposed LFIGX(1,d, 1)
model. To evaluate the immediate- and longer-period effect of the policy after
its implementation, we consider using the lag—h policy index variable, denoted
as Policy,_,, and the lag—h temperature variable, denoted by Temperature,_,,
while the weekend dummy variable at current time, i.e. Dy, is used since D; is
always available according to the Gregorian calendar. The model is as follows.

}/t|(Ft(fy)1a thh) ~ ZIGP(A:7 @,P),
2

_?p ts

log(\;) = n+ ¥r(L)log(Y; + 1) + v, Policy,_, + v Temperature, , + v3 D,

Al (5.1)

where X,_), is the o-field generated by {Policy,_,, ..., Policy,, Temperature,_,,
..., Temperature,, Dy, ..., D;} representing all available past information of ex-
ogenous variables policy and temperature till time ¢ — h, and weekend dummy
variable till time ¢. We consider h = 1, 2, 7, and 14 in the empirical study
to evaluate the immediate policy impact in the following one and two days
after implementation, and middle-term delayed effect after 1 and 2 weeks of
implementation.

Table 6 reports the estimated parameters of the LFIGX(1,d, 1) model using
the first 500 observations with R = 200 under h = 1 for Policy,_; and
Temperature, ,. The LFIGX model delivers different features of the daily
new Covid-19 cases among six countries with different levels of persistence,
dependence, and impact of exogenous variables. For example, the coefficient
¢1 is 0.916 and 0.708 for ITA and GBR, respectively, and the magnitude is much
stronger than other countries, indicating a significant and positive neighborhood
effect for the two European countries, while the effect is weaker for the Asian
and American countries. It also shows that the daily new cases series is likely
to be modeled by a long-memory process with nonzero estimate of d. For ITA,
d = 0.0144, which is the smallest among the six countries, indicating moderate
persistence in the counting process. This is consistent to the feature displayed in
Figure 2 where the ACF of ITA decays fast and becomes insignificant after lag
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Table 6. The estimates of the parameters in LFIGX(1,d, 1) model using the first 500
observations. The estimated coefficients are obtained using the model with h = 1 for
Policy;_, and Temperature;_j,.

Country n o1 B p ¢ d Policy (y1) Temp. (72) W.D. (13)
JPN 1.098 0.275 -0.130 0.004 0.909 0.482 -0.014 -0.002 -0.194
VNM 0.930 -0.287 -0.022 0.010 0.804 0.446 0.001 -0.002 -0.076
ITA 1.108 0.916 0.361 0.026 0.958 0.144 -0.008 0.001 -0.063
GBR 0.739  0.708 -0.065 0.009 0.956 0.267 -0.001 -0.001 -0.134
USA 0.841  0.459 -0.009 0.006 0.986 0.315 0.002 0.000 -0.124
BRA 0.157 -0.115 -0.530 0.021 0.985 0.303 0.006 0.010 -0.118

order of 40. For JPN and VNM, d = 0.482 and 0.446, respectively, indicating
higher persistence in Covid-19 count series at these two Asian countries. For the
ZIGP distribution variables, the over-dispersion parameter ¢ is greater than 0.8
for all counties which is consistent to the significant over-dispersion feature of the
series. The zero-inflation parameter p is smaller than 0.1, which is also consistent
to the fact that zero percentage is quite low for all the datasets except for VNM.

The long memory dependence of Covid-19 pandemic could be caused by the
effect of exogenous variables such as policy and temperature, which could affect
the latent intensity process A; in a long-range pattern. Figure 4 displays the
estimated coefficients and corresponding 95% credible intervals for policy index
and temperature with h = 1,2,7 and 14 respectively. It shows that the policy
effect changes with different time period after policy implementation. There is
only weak immediate policy impact with small magnitude of coefficient at h =1,
while it presents a stronger negative intermediate impact after 7 and 14 days
with much greater magnitude. For example, when h = 1, the coefficient of
policy is close to zero for all countries except JPN, while when h increases to
14, the negative coefficient’s magnitude becomes larger for all countries except
USA, which means that the policy effect becomes more significant after 2 weeks’
introduction. The findings indicate that there exists a delay in the impact
of policy after implementation; it is hard to obtain immediate policy impact,
while the policy impact in reducing the daily new Covid-19 cases becomes more
significant after 2 weeks.

Temperature shows positive effect with a stronger magnitude when h is larger,
indicating that after a longer period of policy introduction (14 days), a higher
level of the daily new cases of Covid-19 is likely to occur as a result of warmer
temperatures. While if a strict policy is implemented at previous day, the hot
temperature effect to new cases at following two days is less significant. For
example, for the two European countries, the immediate temperature effect (i.e.,
h = 1) is 0.001 and -0.001 in ITA and GBR, respectively, while the impact
increases to 0.009 and 0.030, respectively when h = 14. This is possibly due to
the fact that after observing a drop of the daily new cases and after a certain
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Figure 4. The estimated coefficients for policy index (top two rows) and temperature
variable (bottom two rows) with h = 1, 2, 7 and 14 for the six countries. The solid
line is the estimated parameter and dashed lines refer to the corresponding 95% credible
interval.

period time of strict policy introduction, e.g., two weeks, people may get tired
of tight regulations and start to increase social activity and retaliatory gathering
under warm weather, which, in turn, could expand the possibility of infection.
This result is consistent with |[Han et al.| (2022) and|Qiu, Chen and Shil (2020)), who
documented that cold weather tends to discourage social activity and decrease
Covid-19 virus transmission. The feature of warm temperature effect is more
obvious for ITA, GBR and VNM than JPN and USA. Moreover, there exhibits
negative coefficient for the weekend dummy variable, indicating smaller new cases
at weekend than weekdays. While this is possibly because of the test number
difference at a weekday and weekend.
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5.2. Out-of-sample forecasting

We conduct a set of multi-period ahead forecasting experiments to the daily
new Covid-19 cases of the six countries. In addition to the conventional 1-day
ahead forecasts, we consider h = 2, 7 and 14, covering 1- and 2-day, 1- and 2-week
ahead forecasts. We start the forecasting from the 501th observation to the end
of each dataset. The ZIGP-INGARCH(1,1) model is considered as a comparative
short memory model.

We directly predict counts at time ¢ + h with the observations at time ¢,
which is more robust than the iterated forecast under model misspecification
(Marcellino, Stock and Watson, 2006). Especially, we compute the h-day ahead
forecast as follows.

Kt+h|(Ft(y) ) Xt) ~ ZIGP()\:M: Ciths Prsh)s

I — @i
)\* - 7A 1)
t+h 1— Dish t+h
R
log(Aeyn) =M + > ¥peLFlog(Y; + 1) + 1 Policy, + . Temperature, + 73Dy,
k=0

where the definition of X, is similar as . Since the daily new cases of Covid-19
exhibit non-stationary pattern, at each time point ¢, instead of using all the past
observations to conduct Bayesian estimation, we apply rolling window technique
using subsamples within the interval I; = [t —m, t] for parameter estimation. We
consider a rolling window size of m = 30 days. That is, we move forward one day
at a time to re-do the estimation using the past 30 days data up to that point
and conduct forecast until reaching the end of the sample.

As the intensity A; is the conditional expectation of observed counts which
represents the essential feature of the data, we thus consider evaluating the

prediction performance by the mean squared error (MSE) of the Pearson residuals
defined by

1 T—h

T—t—h

MSE = }/;.*f’h - 5\t+h

St | Var(Vil (B, %)

where t, + 1 indicates the starting time point of forecasting.

Table 7 reports the MSE using the LFIGX(1,d,1) model and the ZIGP-
INGARCH(1,1) model for out-of-sample h-day ahead forecasting of the six
datasets. It shows that LFIGX model presents better forecasting performance
with smaller MSE than short memory ZIGP-INGARCH(1,1) model among
various forecasting horizons and countries. For example, when h = 1, the LFIGX
model outperforms the ZIGP-INGARCH(1,1) at all countries with smaller MSE.
For h = 2, 7, and 14, the LFIGX is also better than short memory model at 5
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Table 7. The MSE of forecasting using the LFIGX(1,d, 1) and the ZIGP-INGARCH(1,1)
model with rolling window size of 30. The best forecast is marked in boldface.

Model JPN VNM ITA GBR USA BRA
h=1

LFIGX(1,d,1) 2.402 2.929 3.034 0.443 11.033 3.849
ZIGP-INGARCH(1,1) 2.575 3.879 3.513 0.608  14.887  5.512
h =2

LFIGX(1,d,1) 6.370 3.442 6.981 0.819 8.970 4.971
ZIGP-INGARCH(1,1) 7.616 4.440 6.743 1.021  14.158 8.126
h=17

LFIGX(1,d,1) 54.183 8.088 8.010 2.328 5.255  3.962
ZIGP-INGARCH(1,1) 103.572  11.970  18.600  2.780 5.745 3.564
h =14

LFIGX(1,d,1) 394.593 43.314 53.047 5.602 15.446 2.705
ZIGP-INGARCH(1,1) 592.102  72.805 53.380 5.176  16.102  2.850

out of 6 countries.

As illustration, Figures 5 to 7 display the h-day ahead forecasting with h = 1,
2, 7 and 14 using the LFIGX(1, d, 1) model for JPN, GBR and BRA, respectively.
See Figures B, C and D in the Supplementary Material for the results of VNM,
ITA, and USA, respectively. For short period ahead forecasts at h = 1 and 2, the
LFIGX(1,d, 1) model delivers accurate forecasting performance to all datasets,
although the forecast gets worse slightly along with the forecast horizons. The
forecast of intensity process A; enables us to capture the dynamics of the daily
new cases of Covid-19 series very well, and it presents a narrow 95% credible
interval for the prediction, indicating that forecasting is not very dispersed but
does exhibit dynamic changes. Even for the longer period forecasts of h = 7 and
14 days, the LFIGX(1,d, 1) model still captures the dynamics of daily new cases
series well with good prediction in GBR and BRA. For JPN, the LFIGX(1,d, 1) is
also able to capture the true dynamic pattern in general, while exhibiting certain
delay in the prediction of the wave peak at around August to September 2021. It
is not surprised that 14-day ahead forecast is worse than shorter horizons given
the non-stationarity of datasets and the larger difficulty in long period ahead
forecasting.

6. Conclusion

In this paper, the LFIGX model (log-linear zero-inflated generalized Poisson
integer-valued fractionally integrated GARCH model with exogenous covariates)
is proposed for modeling the dynamics of the daily new Covid-19 cases. It is a
novel long memory integer-valued modeling which accounts for multiple features
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Figure 5. The h-day ahead forecasting using the LFIGX(1,d, 1) model with h =1, 2, 7
and 14 for JPN.
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Figure 6. The h-day ahead forecasting using the LFIGX(1,d, 1) model with h = 1,2, 7
and 14 for GBR.

including serial dependence (positive or negative), over-dispersion, zero-inflation,
nonlinearity, and the effect of exogenous covariates in a unified framework. The
parameters are estimated by an adaptive Bayesian Markov chain Monte Carlo
(MCMC) sampling scheme, which is quite new in the literature of long memory
modeling to count time series. The LFIGX model delivers good interpretation
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Figure 7. The h-day ahead forecasting using the LFIGX(1,d, 1) model with h = 1,2,7
and 14 for BRA.

and forecasting performance to the daily new Covid-19 cases for six countries
across four continents: JPN, VNM, ITA, GBR, BRA and USA. We find that the
effects of policies and temperature vary depending on the time period following
their implementation. We observe a weak immediate policy impact (e.g., 1 and
2 days) but a strong negative intermediate impact (e.g., 14 days) after policy
implementation. Furthermore, we find that higher-level daily new Covid-19 cases
tend to occur as a result of warmer temperatures 14 days after policy introduction.
This is possibly due to increased social activities in warm weather and a decrease
in compliance with strict regulations after a certain period of policy introduction.
For out-of-sample forecasting, the LFIGX model also delivers better forecasting
accuracy than the comparative short memory model for most countries and
forecast horizons.

Several extensions could be considered as future research. Firstly, it would
be beneficial to investigate the theoretical properties for parameter estimation
such as MCMC convergence rate and the central limit theorem of the LFIGX
estimator. provided a good review of theoretical study for Bayesian
based MCMC technique. The theoretical derivation of Bayesian method in the
long memory model would be an exciting direction for the count time series. It
is also interesting to extend the LFIGX model to a multivariate framework for
modeling multiple or even high-dimensional count time series simultaneously, or
adopting spatial temporal models cooperated with long memory structure for
Covid-19 data study, given that the change of policy or the new cases in one
country may affect the Covid situation in other countries. This could possibly
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deliver new findings to capture principal features in the dynamics and effects
of exogenous covariates on Covid-19. The multivariate INGARCH-models have
been studied by Fokianos et al. (2020) and (Cui, Li and Zhu (2020). Han et al.
(2022)) and Celani and Giudici| (2022) investigated the policy effectiveness on the
Covid-19 pandemic by means of a spatio-temporal approach, allowing for spatial
and serial dependence. While there are few studies on the extension of these types
of models to count time series in a long memory framework. Lastly, the proposed
model provides a novel approach to handle multiple features, especially the long-
range dependence phenomenon, in count time series. However, it is worth noting
that the underlying source of long memory in the daily new cases of Covid-19
series still requires further investigation. In practice, dominant, universal and
core factors such as policies, temperature, vaccines, and variants of Covid-19
virus could contribute to the long-range patterns of the latent intensity process.
Additionally, different waves of the pandemic which occur as clusters could be
another possible cause of slowly decaying autocorrelation, as suggested by one
referee. Exploring the essential cause of long-range dependence phenomenon
and considering dynamic non-stationary models with time-varying parameters
for infectious disease analysis could be promising avenues for further research on
the study of Covid-19 data.

Supplementary Material

The online Supplementary Material provides some additional figures for the
exogenous variables and forecasting performance of the LFIGX model in real data
analysis as well as some empirical results of state-level study of USA considering
the large land area of this country.
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