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Abstract: This paper describes the dynamics of daily new cases arising from the

Covid-19 pandemic using a long-range dependent model. A new long memory

model, LFIGX (Log-linear zero-inflated generalized Poisson integer-valued Frac-

tionally Integrated GARCH process with eXogenous covariates), is proposed to

account for count time series data with a long-run dependent effect. It provides

a novel unified framework for integer-valued processes with serial and long-range

dependence (positive or negative), over-dispersion, zero-inflation, nonlinearity, and

exogenous variable effects. We adopt an adaptive Bayesian Markov Chain Monte

Carlo (MCMC) sampling scheme for parameter estimation. This new modeling is

applied to the daily new confirmed cases of the Covid-19 pandemic in six countries

including Japan, Vietnam, Italy, the United Kingdom, Brazil, and the United

States. The LFIGX model provides insightful interpretations of the impacts of

policy index and temperature and delivers good forecasting performance for the

dynamics of the daily new cases in different countries.

Key words and phrases: Count time series, Covid-19, fractionally integrated

INGARCHX, MCMC-based Bayesian, policy effects.

1. Introduction

The Covid-19 pandemic has disastrously caused an enormous global human

health problem and economy disruption since December 2019. The World Health

Organization has reported more than 350 million Covid-19 confirmed cases in over

200 countries, including about 5.1 million deaths as of mid-January 2022. There

has been abundant literature studying the Covid-19 pandemic across multiple

disciplines since the outbreak; see, e.g., the macroeconomic and societal impact of

Covid-19 (Ludvigson, Ma and Ng, 2020; Atkeson, 2020; Chakraborty and Maity,

2020), concerns and effects of the Covid variants (Vaidyanathan, 2021; Volz et al.,

2021; Faria et al., 2021), dynamic modeling of new cases, deaths, or infection rate

of Covid-19 (Lin, Hu and Zhou, 2020; Jiang, Zhao and Shao, 2023; Agosto et al.,

2021; Roy and Karmakar, 2021; Li and Linton, 2021), and the effect of exogenous
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factors on the Covid-19 pandemic (Dandekar and Barbastathis, 2020; Chen et al.,

2021; Chernozhukov, Kasahara and Schrimpf, 2021). In particular, the effect of

containment policies on the transmission of the Covid-19 virus has been widely

studied, with mixed findings under various cultural and health conditions or in

different frameworks of modeling and covariates, see e.g., Hsiang et al. (2020),

Chernozhukov, Kasahara and Schrimpf (2021), and Chen et al. (2021). Han et al.

(2022) and Qiu, Chen and Shi (2020) argued that a country’s new case growth

of Covid-19 increases with higher temperatures due to the encouragement of

social activity and gatherings under warm weather. While Shi et al. (2020) and

Mecenas et al. (2020) have presented that cold weather leads to higher level of

incidences as such weather conditions potentiate the spread of the Covid-19 virus.

While these studies are insightful with mixed findings, they do not investigate the

long-range dependence of Covid-19 pandemic, or analyze the effects of multiple

factors simultaneously in a long-range dependent framework. In this paper,

we investigate the long-range dependence and the effects of multiple exogenous

covariates on daily new Covid-19 cases. We examine the temperature and policy

effectiveness in terms of both immediate impact, namely, in the following one

and two days, and intermediate impact after one and two weeks since the policy’s

initiation in a unified long memory framework. Furthermore, it is important to

capture the developing trend of newly confirmed Covid-19 cases, not only for short

terms (e.g., 1- or 2-day ahead) but also for the intermediate terms (e.g., 7- and

14-day ahead) . These features are useful for people’s activities and government

policy determination. Therefore, we conduct multiple steps ahead forecasting for

six countries across four continents.

The counts of daily new Covid-19 cases are discrete and integer-valued,

exhibiting features of over-dispersion and serial correlation and could also be

influenced by exogenous factors such as lockdown and wearing mask polices

simultaneously. Statistical analysis of count time series has been an active

research area, covering a broad range of studies and implementations from

the incidence of epidemiology and pandemics to criminal incidents, queue-

ing systems and insurance claims (Davis and Dunsmuir, 2016; Chen and Lee,

2016). Among others, Ferland, Latour and Oraichi (2006) proposed the integer-

valued generalized autoregressive conditional heteroscedastic model with Poisson

deviates (P-INGARCH), which is commonly used model for the count time

series with overdispersion. The P-INGARCH models are further generalized

with, e.g., the log-linear P-INGARCH (Fokianos and Tjøstheim, 2011, 2012)

and generalized Poisson/negative binomial/zero-inflated Poisson-INGARCH(X)

models (Famoye and Singh, 2006; Zhu, 2011; Chen and Lee, 2016; Xu et al., 2020).

A comprehensive methodological review of count time series modeling refers to

Davis et al. (2021) and the references therein. However, these works focus on

modeling count time series in a short-memory framework, which is unable to

achieve or produce long-memory process. The slow decay phenomenon in the
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sample autocorrelation is exhibited in the Covid-19 pandemic data, which may

be ascribed to the long-range dependence or a long-memory property.

The study of long-memory phenomenon dates back to Hurst (1951) in

explaining the long-range dependence in the record of the Nile River. Granger

(1980) suggested that aggregation of short-memory processes could lead to a

long-memory time series. Fractionally integrated processes have frequently been

considered for their hyperbolically decaying shock propagation in the literature of

long memory. A typical example is the fractional integrated generalized autore-

gressive conditional heteroscedaticity (FIGARCH) model proposed by Baillie,

Bollerslev and Mikkelsen (1996), which displays better empirical performance

in modeling stock return volatility processes opposed to a standard GARCH

model. The autoregressive fractional integrated moving average (ARFIMA)

process (Granger and Joyeux, 1980; Bhardwaj and Swanson, 2006) has also

emerged as a prevalent model for long-range dependent time series, especially

in volatility process modeling. However, there is limited study on long memory

modeling for integer-valued time series. Quoreshi (2014) proposed an integer-

valued ARFIMA model to capture the long-memory aspects of high-frequency

stock transaction numbers. Livsey et al. (2018) extended the vector ARFIMA

model to bivariate integer-valued case with an application to the annual number

of major hurricanes, see also Darolles et al. (2019) and Quoreshi (2017). As

for the extension of FIGARCH to count time series, Segnon and Stapper (2019)

considered an integer-valued FIGARCH process with the Poisson distribution (P-

INFIGARCH). However, this model cannot capture the multiple features of count

time series, e.g., over/under-dispersion, nonlinearity and the effects of exogenous

covariates.

In this paper, we focus on a new synthetic methodology for modeling the

long-range dependence phenomenon with periodic behavior for the Covid-19

daily new cases series. We propose a log-linear zero-inflated generalized Poisson

integer-valued fractionally integrated GARCH model with exogenous covariates

(LFIGX) to capture multiple features of daily Covid-19 new cases in a long

memory framework. Existing INGARCH with Poisson or generalized Poisson

type models can only handle short memory features. Note that Segnon and

Stapper (2019) also considered the P-INFIGARCH model but without exogenous

variables, and it cannot handle over-dispersion, zero-inflation, and nonlinearity.

The question on the true source of long memory diagnosis still remains a question

(Chen, Härdle and Pigorsch, 2010), and the presence of structural breaks can

lead to misleading inference regarding long memory diagnosis (Diebold, 1986;

Lamoureux and Lastrapes, 1990; Mikosch and Stărică, 2004). Instead of using

short memory with breaks or time-varying models (Xu et al., 2020; Chen and Lee,

2016), we consider long memory modeling for Covid-19 data, not only because

it is natural to introduce long-range dependence for the intensity for Covid-19

count series due to the aggregation of possible numerous latent Covid-19 infectors
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(Granger, 1980), but also because it has practical implications for future policy

design and long-term prediction.

The proposed LFIGX model incorporates a long-memory integer-valued

FIGARCH model with exogenous covariates for the intensity of Covid-19 count

time series, and zero-inflated generalized Poisson distribution is applied to

allow for possible over-dispersion and zero-inflation features. Hence, the model

is flexible to describe the dynamics of daily new Covid-19 case series with

mixed features of serial dependence (positive or negative), over-dispersion, zero-

inflation, nonlinearity, exogenous covariates impact, and long-memory in a

unified framework. Bayesian method is adopted for parameter estimation based

on adaptive MCMC procedure. The Bayesian inference for LFIGX model is

advantageous because it provides a way of estimation and prediction taking

into account parameter uncertainty and prior knowledge of a stochastic process.

Bollerslev and Mikkelsen (1996) and Baillie, Bollerslev and Mikkelsen (1996)

have proved asymptotic consistency and normality properties of the quasi max-

imum likelihood estimators (qMLE) under sufficient nonnegativity conditions

of conditional variance for the FIGARCH process in the modeling of high-

frequent volatility process, and Conrad and Haag (2006) extended these results of

nonnegativity parameter conditions to higher-order cases, which were adopted by

Segnon and Stapper (2019) for estimation of the P-INFIGARCH model. Though

our paper adopts Bayesian method and involves a different distribution, the

numerical study demonstrates reasonably good estimation performance for the

LFIGX model. We apply the LFIGX model to the Covid-19 daily new cases

data from six countries across four continents and conduct a comprehensive

analysis to their dynamics and the effects of exogenous covariates. Our analysis

provides insightful interpretations on the short and intermediate term impacts of

policy index and temperature, and delivers good multiple step ahead forecasting

performance for the dynamics of Covid-19 daily new cases.

Our contributions include the following. (1) We propose a new synthetic

LFIGX model for the long-range dependent count time series, which enables us

to account for a number of features in a unified framework and simultaneously

incorporate the impact of multivariate exogenous covariates. In comparison,

existing works only consider a subset of the features and/or do so under a short

memory framework. (2) We demonstrate the application of Bayesian MCMC

sampling method for parameter estimation of FIGARCH type models for count

time series. The existing literature of integer-valued long memory modeling, e.g.,

INARFIMA model (Quoreshi, 2014) and P-INFIGARCH (Segnon and Stapper,

2019) all utilize the qMLE methods. (3) We provide an interpretable estimation

of the stochastic intensity of the Covid-19 daily new cases and the short/middle-

term impacts of multivariate environmental and policy variables.

The rest of this paper is organized as follows. Section 2 describes the

daily new Covid-19 cases data and the exogenous variables. Section 3 presents
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the LFIGX model and the parameter estimation procedure using the Bayesian

MCMC sampling technique. Section 4 investigates the finite sample performance

of the LFIGX model under various scenarios. In Section 5, we demonstrate the

real data analysis to the daily news cases of Covid-19 pandemic in six countries.

Section 6 concludes.

2. The Covid-19 Data

We consider daily new cases of Covid-19 in six countries with a wide spectrum

across four continents, respectively. Asian countries suffered the first outbreak of

the Covid-19 pandemic since December 2019, we consider two Asian countries:

Japan (JPN) and Vietnam (VNM) as illustrations. We also choose two American

countries: the United States (USA), which has the largest amount of accumulated

confirmed cases and deaths, and Brazil (BRA), which ranks third in terms

of total number of confirmed cases and deaths globally (till 4 January 2022).

Lastly, we select two countries from Europe: Italy (ITA), which suffers from the

first outbreak in Europe, and the United Kingdom (GBR), which has the most

accumulated cases among the European countries (till 4 January 2022).

The primary data sources include daily new Covid-19 cases, policy indicators,

and temperature. We collected the daily new cases data of six representative

countries from Our World in Data website maintained by the University of Oxford

(https://ourworldindata.org/covid-cases). We also obtain the containment

and health index as policy indicator variable from there. The policy index is

constructed from taking the weighted sum over a group of policy categories such

as school closures, workplace closures, face coverings and testing policy. The index

on any given day takes a value between 0 and 100 with a higher score indicating

a stricter government policy. We collect the daily mean temperature from the

National Oceanic and Atmospheric Administration (NOAA). The NOAA records

raw temperature data by several stations from various locations within each

country. We take the daily average of the temperatures that are completely

recorded from different stations in a country to use except USA. For USA, we

select four representative states: California, New Jersey, Texas, and Minnesota,

and take the average temperature of the four states to use, considering the large

lead is of USA. Meanwhile, to investigate the weekly seasonality of new Covid-

19 counts, especially the weekday and weekend effect, we add a dummy variable

Dt = 1 if the day is Saturday, or Sunday, and equals zero otherwise.

Table 1 reports the descriptive statistics of the daily new Covid-19 cases in

each country. It is obvious that these six series are all overdispersed with the

sample variance much larger than the mean, and ratio ranges from 7.42(×103) to

4.49(×104). The daily new cases at VNM has 19.09% of zeros which indicates the

feature of excess zeros, while for other five datasets, there are no or few number

of zeros. Meanwhile, the magnitude of counts series is much larger for ITA, GBR,

https://ourworldindata.org/covid-cases
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Table 1. Description and summary statistics of daily new cases.

Dataset(Code) Period n Min Max Mean Variance Variance/Mean 0s %

Japan(JPN) 2020/1/23∼2022/1/13 722 0 2.59(×104) 2.50(×103) 1.86(×107) 7.42(×103) 1.38

Vietnam(VNM) 2020/1/23∼2022/1/14 723 0 3.91(×104) 2.75(×103) 2.88(×107) 1.05(×104) 19.09

Italy(ITA) 2020/2/21∼2022/1/11 691 17 2.20(×105) 1.13(×104) 5.05(×108) 4.49(×104) 0

United Kingdom(GBR) 2020/1/31∼2022/1/4 705 0 2.21(×105) 1.94(×104) 6.93(×108) 3.57(×104) 1.41

United States(USA) 2020/1/23∼2022/1/9 718 0 1.07(×106) 8.40(×104) 1.02(×1010) 1.21(×104) 3.76

Brazil (BRA) 2020/2/26∼2021/12/10 654 0 1.24(×105) 3.38(×104) 5.97(×108) 1.76(×104) 1.2

BRA, and USA than the values of two Asian countries.

Figures 1 and 2 display the time series plot and autocorrelation functions

(ACF) plot of the daily new cases of Covid-19, respectively. We can find different

dynamic patterns in, e.g., trend, intensity, duration, and frequency of waves,

as well as ACF decays of these countries. For example, both JPN and USA

suffer six waves from January 2020 to January 2022, while USA develops more

volatile intensity than JPN at last two waves. VNM shows only two waves and

remains stable at low level until June 2021 when a sharp increment occurs. The

data of BRA fluctuates seriously with largest volatility among 6 countries during

the whole period. In Figure 2, the ACF plots show the slower decay for VNM

and GBR, which may reveal a long-dependent feature of the data. JPN and

ITA decrease to be insignificant at around lag 40, while BRA monotonously

decreases but still exhibits significant ACF till lag 100. The weekly seasonality

is more obvious in BRA and USA. The values, dynamics, and ACFs of the

daily new Covid-19 case series vary from one country to another, which increases

the complexity of modeling in a unified framework. The multiple features and

complex dynamics in the empirical data require a comprehensive model that can

effectively handle the long-range or short-range dependence and over-dispersion

simultaneously.

Figure 3 displays the time series plots of the two exogenous variables for JPN,

ITA, and USA, as illustration. The graphical demonstration of other countries

refers to Figure A in Supplementary Materials. The policy index reveals a sharp

increasing trend first and remains relatively stable after that in each country. The

strictness of government policy is strongest in ITA and weakest in JPN among

these three countries. The temperature series exhibit strong seasonality patterns

with higher values at corresponding summer seasons and lower values at winters.

3. Model and Methodology

In this section, we introduce the Log-linear zero-inflated generalized Pois-

son integer-valued Fractionally Integrated GARCH with eXogenous covariates

model with order p, q and fractional parameter d (LFIGX(p, d, q)). The model is

flexible to handle the dynamics of the daily Covid-19 new case series with features

of autocorrelation, heteroscedasticity, over-dispersion, excess zero observations,
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Figure 1. Time series plots of the daily new cases of the Covid-19 pandemic at six
countries.

Figure 2. The sample ACF plots of the daily new cases of the Covid-19 pandemic at six
countries.

and effects of exogenous covariates simultaneously in a long-range dependent

framework.

3.1. The LFIGX (p, d, q) model

A random variable Y follows a zero-inflated generalized Poisson (ZIGP)

distribution (Gupta, Gupta and Tripathi, 1996) with parameters λ, ρ, and φ

whose probability density function is given by
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Figure 3. The policy index and temperature at JPN, ITA, and USA.

P (Y = y) =


ρ+ (1− ρ)e−λ if y = 0

(1− ρ)λ(λ+ φy)y−1e−(λ+φy)/y! if y = 1, 2, . . .

0 for y > m if φ < 0,

where λ > 0, 0 ≤ ρ < 1, max(−1,−λ/m) < φ < 1, and m(≥ 4) is the largest

positive integer to satisfy λ + φm > 0 when φ < 0. The distribution reduces to

the generalized Poisson distribution when ρ = 0, and to the Poisson distribution

when ρ = φ = 0. We refer to Xu et al. (2020) for more discussions of the ZIGP

distribution.

If a random variable Y ∼ ZIGP(λ, ρ, φ), the conditional expectation and

variance are:

E(Y ) =
1− ρ

1− φ
λ, and Var(Y ) = (1− ρ)

{
ρλ2

(1− φ)2
+

λ

(1− φ)3

}
.

It is straightforward to find that variance of Y is greater than the mean (i.e. over-

dispersion) if 0 ≤ φ < 1. When ρ = 0, the variance is equal or smaller than the

mean when φ = 0 or φ < 0 respectively.

Let {Yt; t = 1, . . . , n} denote a count series that is conditionally ZIGP

distributed with mean λt, such as the daily new cases of Covid-19 pandemic. Let

Xt = (xt,1, . . . , xt,K)
⊤ be theK exogenous covariates. In our study, the exogenous

covariates include the policy index, temperature, and a weekend dummy. Let Yt

and Xt denote all the past count and exogenous variables’ observations at time t,

respectively. The family of log-linear INGARCH(p, q) models for intensity λt has

been widely studied (see e.g., Fokianos and Tjøstheim, 2011), which is defined

as:
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log(λt) = ω +
p∑

k=1

αk log(Yt−k + 1) +
q∑

k=1

βk log(λt−k)

= ω + α(L) log(Yt + 1) + β(L) log(λt)

rearranging log(λt) =
ω

1− β(1)
+

{
1− Φ∗(L)

1− β(L)

}
log(Yt + 1),

(3.1)

where L denotes the lag or backshift operator, i.e, Lixt ≡ xt−i. Here α(L) =∑p
k=1 αkL

k and 1 − β(L) = 1 −
∑q

k=1 βkL
k are lag polynomials with the roots

assumed to lie outside the unit circle, and Φ∗(L) = 1 − β(L) − α(L). The log-

intensity log(λt) is adopted which relaxes the restriction that both sides should

be positive.

In many applied works of the GARCH(p, q) model, the estimated lag poly-

nomial Φ∗(x) = 0 has a root which is statistically indistinguishable from unity

(Bollerslev and Mikkelsen, 1996). For example, we found that α1 + β1 = 0.981

using INGARCH(1,1) model for the daily new Covid-19 cases in GBR. While

the formulation of model (3.1) has geometric memory, which is only suitable

for the short-memory phenomena. Motivated by this empirical regularity, if

the polynomial Φ∗(L) has a unit root and therefore it can be factored as

Φ∗(L) = Φ(L)(1−L), where Φ(L) has all the roots outside the unit circle. Engle

and Bollerslev (1986) proposed the so-called Integrated GARCH, or IGARCH

process, which exhibits infinite dependence on initial conditions, indicating

complete persistence of shocks to the intensity. While it is possible that shocks

to the intensity could be highly persistent, i.e., a slow hyperbolic decay, but

nevertheless transitory. For example, in Figure 2, the sample ACF of VNM

tends to decay more slowly than exponential rate. To cope with such long-range

dependence, Baillie, Bollerslev and Mikkelsen (1996) introduced the so-called

FIGARCH model, which replaces the first difference operator (1 − L) in Φ∗(L)

with the fractional differencing operator (1−L)d, where d is a fraction 0 < d < 1.

Taking into account of these modeling properties and the unique features of

count time series, we propose to combine the ZIGP distribution and a nonlinear

structure to accommodate zero-inflation, over-dispersion and positive/negative

association as well as the effects of exogenous covariates in a long memory

framework. The proposed LFIGX(p, d, q) model is defined as

Yt|(F (y)
t−1,Xt−1) ∼ ZIGP(λ∗

t , φ, ρ),

λ∗
t =

1− φ

1− ρ
λt, log(λt) = η +

{
1− Φ(L)(1− L)d

1− β(L)

}
log(Yt + 1) +

K∑
k=1

γkXt−1,k,

(3.2)

where 0 ≤ ρ < 1, max(−1,−λ∗
t/m) < φ < 1, m(≥ 4) is again the largest

positive integer for which λ∗
t + φm > 0 when φ < 0. Here, F

(y)
t−1 is the σ-fields

generated by previous observations {Yt−1, . . . , Y1}. We consider 0 ≤ φ < 1 for
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the over-dispersion case. Note that Segnon and Stapper (2019) also considered

an INFIGARCH model for count time series, yet cannot handle possible over-

dispersion, zero-inflation and nonlinear dependence features by using Poisson

distribution and without exogenous variables as well.

Denote the lag polynomial ψ(L) as

ψ(L) = 1− Φ(L)(1− L)d

1− β(L)
=

∞∑
k=1

ψkL
k (say),

we set 0 < d ≤ 0.5 accounting for the finite variance of log(Yt+1) series (Taniguchi

and Kakizawa, 2000) and all the roots of Φ(L) and 1− β(L) lie outside the unit

circle. The fractional differencing operator (1 − L)d can be written in terms of

hypergeometric function:

(1− L)d = F (−d, 1, 1;L) =
∞∑
k=0

Γ(k − d)

Γ(k + 1)Γ(−d)
Lk :=

∞∑
k=0

δd,kL
k,

where δd,0 = 1. It is noted that the dependence is driven by the coefficients in ψ(L)

in model (3.2), which allows for the investigation of the temporal dependence

of intensity and the memory of the process on the past observations. The lag

coefficients ψ(L) in the infinite ARCH representation are approximately ψk ∼
ck−d−1, where c is a positive constant (Kılıç, 2011). Hence the log-intensity

can be expressed as the distributed lag of past observations with coefficients

decaying at a hyperbolic rate, which makes it distinctively different from the

short (geometric) memory models like the GARCH and IGARCH models.

We intensively discuss the derivation and estimation of LFIGX(1, d, 1) model,

since the FIGARCH(1, d, 1) model is definitely the most often used specification

and appears to be particularly useful in empirical applications. To be specific,

the LFIGX(1, d, 1) model is defined as

Yt|(F (y)
t−1,Xt−1) ∼ ZIGP(λ∗

t , φ, ρ),

λ∗
t =

1− φ

1− ρ
λt, (3.3)

log(λt) = η +

{
1− (1− ϕ1L)(1− L)d

1− β1L

}
log(Yt + 1) +

K∑
k=1

γkXt−1,k.

Equating autoregression coefficients of the lag operator ψ(L) in model (3.3), we

have
ψ1 = ϕ1 − β1 + d,

ψk = β1ψk−1 +

(
k − 1− d

k
− ϕ1

)
δd,k−1, for all k ≥ 2.
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The unknown parameters in model (3.3) include θ = (η, β1, ϕ1, ρ, φ, d, γ1, . . . ,

γK). Conrad and Haag (2006) derived the nonnegativity conditions for the

conditional variance in the FIGARCH(p, d, q) model of the order p ≤ 2 under a

linear framework, while the stationarity condition for general FIGARCH process

is still an open question. In our nonlinear LFIGX(1, d, 1) model, the parameters

do not need to satisfy any nonnegativity constraints to make the model well-

defined.

The estimation for the fractionally integrated models necessitates the trunca-

tion of the infinite distributed lags in model (3.3). In the estimation, we consider

the coefficients with the truncating R number of lag polynomial, that is

ψR(L) = 1− (1− ϕ1L)(1− L)d

1− β1L
=

R∑
k=1

ψkL
k. (3.4)

Because the fractional differencing operator is designed to model the long-memory

features of the series, a too low truncation at a lag may loss important long-run

dependencies information (Baillie, Bollerslev and Mikkelsen, 1996). Our Covid-

19 dataset has small sample size (around 700), so we set R = 200 as an illustration

in real data analysis and investigate the effect of R in the numerical analysis.

3.2. Bayesian approach and parameter estimation

Bayesian methods have been increasingly applied to diverse research areas,

which are considered as a staple in modern statistical analysis. We tackle the

estimation problem only for LFIGX(1, d, 1) model with the Bayesian method as

an illustration. The Markov Chain Monte Carlo (MCMC) procedure is adopted

to produce a powerful analysis for the proposed models, which is advantageous

to incorporate the parameter constraints via a prior density.

For notational simplicity, let ϑ = (η, β1, ϕ1) and Γ = (γ1, . . . , γK). Let θℓ

denotes certain parameter group in θ, i.e., ϑ, ρ, φ, d, and Γ, respectively for

ℓ = 1, . . . , 5, and π(θℓ) is its prior density. Let θ̸=ℓ be the parameter vector of

θ excluding the element θℓ. Given the series of counts Yt up to time t and the

covariates Xt−1 up to time t− 1, the LFIGX(1, d, 1) model (3.3) with parameter

θ has the conditional likelihood function:

L(Yt|Xt−1,ϑ) =∏
Ys=0

{
ρ+ (1− ρ)e−λ∗

s

} ∏
Ys>0

{
(1− ρ)

λ∗
s(λ

∗
s + φYs)

Ys−1

Ys!
e{−(λ∗

s+φYs)}
}
, (3.5)

where λ∗
s is computed recursively by

λ∗
s =

1− φ

1− ρ
exp

{
η + ψR(L) log(Ys + 1) +

K∑
k=1

γkXs−1,k

}
, for R ≤ s ≤ t. (3.6)
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To ensure the required constraints, for first group ϑ, since it is still an open

question for the stationarity conditions of ϑ, we consider setting restrictions to

ϑ such that all the roots of Φ(L) and 1 − β(L) lie outside the unit circle. That

is, ϕ1 ∈ [−1, 1] while not equal to β1, and β1 ∈ [−1, 1]. We adopt a constrained

uniform prior defined by indicator I(A1), where A1 is the set of ϑ satisfying the

restrictions above. This uniform prior generates a flat prior on the parameters in

ϑ restricted by the indicator that is non-zero inside A1 and zero outside. We also

adopt constrained uniform priors on the parameters (groups) ρ, φ and d defined

by indicators I(Aj), j = 2, . . . , 4, where Aj is the set of corresponding parameter

satisfying 0 ⩽ ρ < 1, 0 ⩽ φ < 1, and 0 < d ≤ 0.5, respectively. We again adopt a

flat prior on the components of Γ = (γ1, . . . , γK), denoted by I(A5). The choices

of priors are similar in Chen and Lee (2016) and Xu et al. (2020), which are not

the only ones possible, but are instead chosen to be non-informative.

We use the likelihood and the priors that were described above to give the

conditional posterior kernels for each parameter group as follows. For notational

convenience, let f denote the target density given by

p(θℓ|Yt,Xt−1,θ ̸=ℓ) ∝ p(Yt|Xt−1,θ)π(θℓ|θ ̸=ℓ) (3.7)

∝
∏
Ys=0

{
ρ+ (1− ρ)e−λ∗

s

} ∏
Ys>0

{
(1− ρ){λ∗

s(λ
∗
s + φYs)

Ys−1}e{−(λ∗
s+φYs)}

}
I(Aℓ)

Details of the MH steps for θℓ are as follows.

Step 1: At iteration i, generate a point θ∗
ℓ = θ

[i−1]
ℓ + N(0, cℓΣℓ), where cℓ is

the scaling parameter of the normal proposal, which could be adjusted

by controlling the acceptance rate of the posterior samples (Gelman,

Roberts and Gilks, 1996), and Σℓ is covariance matrix in the random

walks of θℓ. The stability condition of θℓ would be imposed through an

accept-rejection MH sampling procedure.

Step 2: Accept θ∗
ℓ as θ

[i]
ℓ with probability

min

{
1,

f(θ∗
ℓ

)
f
(
θ
[i−1]
ℓ )

}
,

where θ
[i]
ℓ is the ith iterate of θℓ. Otherwise, set θ

[i]
ℓ = θ

[i−1]
ℓ .

Usually a suitable value of cℓ with good convergence properties can be chosen by

setting an acceptance probability of 25% to 50% (Chen and So, 2006).

Finally we construct the estimate of intensity λt from the mean of the

posterior distribution via the MCMC sampling scheme by

λ̂t =
1

N −M

N∑
i=M+1

λ
[i]
t ,
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where λ
[i]
t is the i-th iteration of λt recursively constructed using ϑ[i], ρ[i], φ[i],

d[i], and Γ[i]. N is the total number of iterates, and M is the number of burn-

in iterates. In the following sections we set N = 15000 for the simulation study

and N = 20000 for real data analysis. We drop the first M = 3000 iterations as

a burn-in sample.

4. Simulation

In this section, we examine the finite-sample performance of the LFIGX

model. We investigate the estimation performance and compare it with several

alternative models under different data generating processes. Moreover, we

conduct robustness analysis on the choice of priors in the MCMC procedure,

the effect of truncating number R of the lag polynomial, and the estimation

performance under misspecified number of the exogenous variables. Source

code for simulation replication and reproducibility is available online at https:

//github.com/Xiaofei-Xu/LFIGX-project.

4.1. Estimation analysis

In this section, we examine the performance of the LFIGX model in inference

under a known data generating process with two exogenous covariates. We also

provide a detailed comparison with several alternative methods.

To investigate the estimation performance, we generate count series in

a homogeneous scenario with a set of globally constant parameters. We

consider three scenarios for data generation: LFIGX(1, d, 1) (denoted as DS-

default), LFIG(1, d, 1) (i.e., without exogenous covariates, denoted as DS-X),

and LFIGX(0, d, 1) (i.e., ϕ1 = 0, denoted as DS-ϕ). We use sample sizes of

n = 400, 900, and 1300, and start the estimation from time t = 201, 601, and

1001, respectively, until the end for each scenario. For n = 400, we set R = 200

to mimic the real data situation with small sample size and R value. For n = 900

and 1300, we set R = 600 and 1000, respectively, considering the larger sample

size. The parameter sets of θ in each design are reported in Table 2. We generate

a total of 200 replications for each design. The two exogenous covariates, x1 and

x2, are generated from the standard normal distribution.

Table 2 reports the parameter estimation and standard deviations for the

three scenarios with n = 400. Since we find that direct estimation of the

parameter d poses a challenge, hence, we suggest selecting the value of d based on

the likelihood results of a few candidates, and we also compute the AIC and BIC

results with d varying for d estimation. To achieve this, we obtained five sets of

parameter estimates while keeping d fixed at 0.1, 0.2, 0.3, 0.4, and 0.5, respectively.

The results reveal that the correct guess, d = 0.2, yields the best fitting results

of likelihood, AIC and BIC(rows with bold values), as expected, across all three

designs. For each design, the parameter estimates are quite accurate where the

https://github.com/Xiaofei-Xu/LFIGX-project
https://github.com/Xiaofei-Xu/LFIGX-project
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Table 2. Estimation and corresponding standard deviation (in parentheses) of the
parameters using LFIGX modelling under n = 400. The in-sample log-likelihood, AIC,
and BIC are also reported.

Scenario LogLik AIC BIC η ϕ1 β1 ρ φ d γ1 γ2

True value 0.600 0.700 0.400 0.200 0.400 0.200 0.500 -0.300

d = 0.1 -586.75 1,215.88 1,189.50 0.732 0.745 0.349 0.204 0.396 0.100 0.500 -0.297

(0.086) (0.040) (0.054) (0.031) (0.038) (0.028) (0.033)

d = 0.2 -586.51 1,215.40 1,189.01 0.602 0.683 0.384 0.204 0.395 0.200 0.500 -0.297

(0.068) (0.054) (0.066) (0.031) (0.037) (0.028) (0.033)

DS-default d = 0.3 -587.15 1,216.68 1,190.29 0.495 0.604 0.399 0.203 0.396 0.300 0.501 -0.297

(0.057) (0.080) (0.089) (0.031) (0.037) (0.029) (0.034)

d = 0.4 -589.21 1,220.81 1,194.43 0.414 0.420 0.308 0.202 0.403 0.400 0.501 -0.297

(0.049) (0.160) (0.154) (0.032) (0.038) (0.031) (0.036)

d = 0.5 -592.00 1,226.39 1,200.00 0.340 0.102 0.092 0.200 0.408 0.500 0.503 -0.298

(0.045) (0.233) (0.226) (0.032) (0.040) (0.033) (0.037)

True value 0.600 0.700 0.400 0.200 0.400 0.200 0.000 0.000

d = 0.1 -587.41 1,217.20 1,190.81 0.721 0.743 0.342 0.204 0.394 0.100 -0.001 -0.002

(0.090) (0.045) (0.069) (0.030) (0.039) (0.030) (0.035)

d = 0.2 -587.37 1,217.12 1,190.74 0.595 0.677 0.371 0.204 0.394 0.200 -0.001 -0.003

(0.071) (0.063) (0.081) (0.030) (0.039) (0.030) (0.035)

DS-X d = 0.3 -588.50 1,219.38 1,192.99 0.491 0.587 0.373 0.202 0.397 0.300 -0.001 -0.002

(0.059) (0.104) (0.115) (0.030) (0.039) (0.030) (0.036)

d = 0.4 -589.96 1,222.30 1,195.91 0.412 0.389 0.267 0.201 0.401 0.400 -0.002 -0.003

(0.051) (0.171) (0.163) (0.031) (0.038) (0.031) (0.037)

d = 0.5 -591.64 1,225.67 1,199.28 0.342 0.097 0.074 0.199 0.404 0.500 -0.002 -0.003

(0.044) (0.221) (0.212) (0.030) (0.038) (0.032) (0.038)

True value 0.600 0.000 0.400 0.200 0.400 0.200 0.500 -0.300

d = 0.1 -453.98 950.35 923.96 0.930 -0.081 0.221 0.194 0.393 0.100 0.493 -0.295

(0.122) (0.153) (0.145) (0.040) (0.048) (0.061) (0.067)

d = 0.2 -453.84 950.07 923.68 0.605 -0.022 0.379 0.195 0.393 0.200 0.494 -0.296

(0.104) (0.144) (0.130) (0.039) (0.049) (0.060) (0.068)

DS-ϕ d = 0.3 -454.06 950.50 924.12 0.397 0.012 0.509 0.195 0.393 0.300 0.495 -0.296

(0.091) (0.134) (0.112) (0.039) (0.048) (0.061) (0.067)

d = 0.4 -454.50 951.39 925.00 0.258 0.018 0.608 0.194 0.395 0.400 0.495 -0.295

(0.079) (0.118) (0.095) (0.039) (0.047) (0.061) (0.068)

d = 0.5 -454.94 952.28 925.89 0.168 0.008 0.694 0.193 0.397 0.500 0.495 -0.296

(0.069) (0.102) (0.077) (0.039) (0.047) (0.061) (0.069)

The row labeled by “True value” indicates the true value of parameters in each design. Each experiment
is replicated 200 times. The best performance is marked in bold.

estimated coefficients are close to the true value, with relatively small standard

deviations as well, under the correct estimated value of d. This reflects that it is

feasible to conduct estimation of d with likelihood and AIC/BIC and the Bayesian

estimation provides reasonable estimates of parameters in LFIGX modeling.

Table 3 reports the estimated parameters and their standard deviations for

the three scenarios with sample sizes of 900 and 1300. We only present the

results with fixed d = 0.2 which is selected with maximum likelihood value among

five candidates. It shows that the LFIGX model exhibits accurate and stable

estimation among different data generation processes and sample sizes, with the
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Table 3. Estimation and corresponding standard deviation (SD) of the parameters using
LFIGX modeling under n = 900 and 1300. The symbol “−” refers that d = 0.2 is fixed
during estimation.

n = 900

Scenario η ϕ1 β1 ρ φ d γ1 γ2

True 0.600 0.700 0.400 0.200 0.400 0.200 0.500 -0.300

DS-default Estimate 0.597 0.696 0.398 0.203 0.405 − 0.499 -0.302

SD (0.051) (0.032) (0.043) (0.026) (0.031) − (0.020) (0.022)

True 0.600 0.700 0.400 0.200 0.400 0.200 0.000 0.000

DS-X Estimate 0.594 0.692 0.388 0.202 0.395 − 0.001 0.000

SD (0.056) (0.045) (0.057) (0.024) (0.030) − (0.024) (0.024)

True 0.600 0.000 0.400 0.200 0.400 0.200 0.500 -0.300

DS-ϕ Estimate 0.596 0.003 0.398 0.202 0.401 − 0.498 -0.304

SD (0.070) (0.107) (0.091) (0.029) (0.034) − (0.046) (0.041)

n = 1300

True 0.600 0.700 0.400 0.200 0.400 0.200 0.500 -0.300

DS-default Estimate 0.597 0.695 0.395 0.202 0.399 − 0.500 -0.300

SD (0.047) (0.035) (0.045) (0.024) (0.028) − (0.020) (0.020)

True 0.600 0.700 0.400 0.200 0.400 0.200 0.000 0.000

DS-X Estimate 0.596 0.695 0.397 0.203 0.397 − -0.002 0.002

SD (0.054) (0.042) (0.055) (0.024) (0.034) − (0.022) (0.024)

True 0.600 0.000 0.400 0.200 0.400 0.200 0.500 -0.300

DS-ϕ Estimate 0.595 -0.021 0.379 0.197 0.397 − 0.498 -0.302

SD (0.067) (0.099) (0.086) (0.028) (0.036) − (0.046) (0.041)

estimated parameters close to the true values for each case, and the standard

deviations of almost all parameters are relatively small and decrease as the sample

size increases.

To compare estimation accuracy, we consider four prevalent short memory

models over the same estimation period: the P-INGARCH, log-linear GP-

INGARCHX, log-linear ZIGP-INGARCH, and log-linear ZIGP-INGARCHX

models. The P-INGARCH model (Ferland, Latour and Oraichi, 2006) is widely

used for count time series with overdispersion. The log-linear GP-INGARCHX

(Chen and Lee, 2017) is also a popular count time modeling which could account

for both overdispersion and underdispersion and also enable to include exogenous

covariates in a straightforward manner. The other two models have been well

studied for the log-linear zero-inflated over-dispersed counts with/without the

effect of exogenous covariates (Lee, Lee and Chen, 2016; Xu et al., 2020). Table

4 summarizes the root mean squared error (RMSE) and mean absolute deviation

(MAD) of the estimated intensity λt of the five models. The LFIGX model

outperforms the other four short memory models with better accuracy in terms

of RMSE and MAD by accounting for the long-range dependence involved in the

count time series.
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Table 4. RMSE and MAD of the λt estimation of three designs using LFIGX model
compared with P-INGARCH, GP-INGARCHX, ZIGP-INGARCH, ZIGP-INGARCHX
models under different sample sizes. The best accuracy is highlighted in bold.

Model P-INGARCH GP-INGARCHX ZIGP-INGARCH ZIGP-INGARCHX LFIGX

n=400 RMSE MAD RMSE MAD RMSE MAD RMSE MAD RMSE MAD

DS-default 16.771 9.056 13.805 7.830 15.773 8.719 4.846 2.603 1.925 1.052

DS-X 2.103 1.438 5.512 4.042 1.349 0.952 1.462 0.997 1.228 0.859

DS-ϕ 2.754 1.980 1.095 0.716 2.747 1.963 0.847 0.559 0.666 0.447

n=900

DS-default 23.962 11.889 26.689 17.465 22.437 11.488 6.962 3.383 0.741 0.385

DS-X 2.562 1.702 9.461 8.544 1.510 1.044 1.608 1.071 1.188 0.813

DS-ϕ 4.521 4.322 1.582 1.250 3.371 2.383 0.917 0.603 0.593 0.387

n=1300

DS-default 25.557 12.993 23.750 13.122 23.887 12.533 7.333 3.673 2.032 1.063

DS-X 2.827 1.873 8.979 6.605 1.716 1.184 1.727 1.144 1.300 0.886

DS-ϕ 3.751 2.694 1.417 0.935 3.742 2.682 0.982 0.650 0.629 0.419

4.2. Robustness checking

We investigate the sensitivity of the LFIGX model to various hyperparam-

eters, including the choice of priors in the MCMC procedure, truncating value

R. We also study the effect of misspecified exogenous covariates as pointed by

one referee. To demonstrate the robustness of the model, we consider the design

DS-default with (η, ϕ1, β1, ρ, φ, d, γ1, γ2)=(0.6, 0.7, 0.4, 0.2, 0.4, 0.2, 0.5, -0.3),

R = 600, and n = 900. For each robustness experiment, we apply alternative

priors, R, and different exogenous covariates, redo the estimation, and compare

the estimation performance with the default setup.

We begin by exploring the impact of different priors on the MCMC sampling

procedure. The default choice is non-informative (uniform/flat) priors for all

parameters, but this is not the only possibility. As an illustration, we consider

setting the beta distribution as the priors for parameter ρ and φ (Chen and Lee,

2016), and the normal distribution for Γ. In specific, the following priors are

applied: Prior 1: ρ ∼ Beta(2, 8), φ ∼ Uniform(0, 1), γk ∼ N(0, 0.5), k = 1, 2;

Prior 2: ρ ∼ Beta(10, 90), φ ∼ Beta(6, 4), γk ∼ N(0, 0.5), k = 1, 2; Prior 3:

ρ ∼ Uniform(0,1), φ ∼ Beta(60, 40), γk ∼ N(0, 0.5), k = 1, 2. We conduct

estimation for the DS-default design using these alternative priors and compare

their estimation performance.

As the fractional differencing operator ψ(L) is designed to capture the long-

memory features of the process, truncating at a too low lag may result in the

loss of important long-run dependencies. In the DS-default design, the process

is restricted with R = 600. To examine the sensitivity of the estimation results

to the truncating value, we consider two alternative settings with R = 200 and

R = 700, denoted as “R1” and “R2”, respectively. Lastly, we investigate the

impact of effective covariates by conducting a robustness check on misspecified
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Table 5. Robustness checking.

η ϕ1 β1 ρ φ d γ1 γ2 γ3 Loglik AIC BIC

True 0.6 0.7 0.4 0.2 0.4 0.2 0.5 -0.3 0.0

Default 0.597 0.696 0.398 0.203 0.405 0.200 0.499 -0.302 − -914.009 1,873.648 1,844.018

Prior1 0.599 0.696 0.398 0.201 0.404 0.200 0.499 -0.302 − -913.996 1,873.622 1,843.992

Prior2 0.631 0.696 0.397 0.174 0.413 0.200 0.499 -0.302 − -914.823 1,875.277 1,845.646

Prior3 0.611 0.691 0.395 0.202 0.459 0.200 0.497 -0.301 − -914.796 1,875.222 1,845.592

R1 0.669 0.697 0.399 0.201 0.405 0.200 0.496 -0.298 − -916.311 1,878.252 1,848.622

R2 0.583 0.693 0.392 0.204 0.402 0.200 0.505 -0.302 − -908.221 1,862.073 1,832.443

3X 0.597 0.696 0.399 0.204 0.404 0.200 0.498 -0.302 -0.006 -913.458 1,878.251 1,844.917

1X 0.717 0.658 0.381 0.195 0.595 0.200 0.479 − − -987.382 2,014.691 1,988.765

“Default” refers to the results under default setup. “Prior1” to “Prior3” refer to the results under 3
alternative priors. “R1” and “R2” refer to two different truncating number R = 200 and 700 in the
estimation, respectively. “3X” and “1X” refers to the misspecified model with one additional covariate
or only with the first covariate, respectively. The symbol “−” means the model/estimation does not
involve this parameter.

models by missing effective covariates or including unrelated covariates in the

model. In each robustness experiment, we keep all remaining settings the same

as in the default case, except for the hyper-parameters under investigation.

Table 5 reports the robustness checking results under alternative priors, R

values, and misspecified models (wrong exogenous covariates). It shows that

the parameter estimation is not sensitive to the selection of priors (ρ, φ, Γ) by

delivering similar results to the default. Regarding the choice of R, as stated

before, using a too small value may lead to information loss; it does induce some

bias in the parameter estimation, especailly for η, while the other parameters seem

to be less affected. The results are consistent to the experiments results in Segnon

and Stapper (2019) for R’s influence study. The improvement of estimation is not

significant by using a larger value of R. Lastly, adding unrelated covariates to the

model does not cause any issues for the estimation of other parameters, where

the estimated coefficient of the unrelated covariates is almost zero. While when

some of the effective covariates are missing, there exists influence in parameter

estimation, especially for η and over-dispersion parameter φ, while notably, there

is no significant effect for the estimating of γ1, the coefficient of the remaining

covariate, though missing certain effective covariates.

In summary, the simulation study shows stable and accurate performances

of the LFIGX model under different scenarios with accurate estimation of

parameters with truly selected d. The adaptive Bayesian estimation is robust to

the choice of priors. A too small value of R does show some influence in parameter

estimation, especially for η, and larger value of R has little improvement in

estimation accuracy. Excluding some covariates leads to variations in the

estimates of η, while the estimation of the coefficients for the remaining covariates

is still stable and accurate.
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5. Real Data Analysis

In this section, we apply the LFIGX(1, d, 1) model to investigate the dynamic

evolution of the daily new Covid-19 case time series of the six countries. We

initialize the first 500 observations for in-sample analysis and conduct the

forecasting from the 501th day till the ending of each dataset. The exogenous

covariates Xt includes 3 variables: policy index, temperature, and a weekend

dummy. The detailed description of datasets is in Section 2.

5.1. Interpretation

We investigate the long memory property and the effect of exogenous

covariates through the in-sample analysis using the proposed LFIGX(1, d, 1)

model. To evaluate the immediate- and longer-period effect of the policy after

its implementation, we consider using the lag−h policy index variable, denoted

as Policyt−h, and the lag−h temperature variable, denoted by Temperaturet−h,

while the weekend dummy variable at current time, i.e. Dt, is used since Dt is

always available according to the Gregorian calendar. The model is as follows.

Yt|(F (y)
t−1, X̃t−h) ∼ ZIGP(λ∗

t , φ, ρ),

λ∗
t =

1− φ

1− ρ
λt, (5.1)

log(λt) = η + ψR(L) log(Yt + 1) + γ1Policyt−h + γ2Temperaturet−h + γ3Dt,

where X̃t−h is the σ-field generated by {Policyt−h, . . . ,Policy1,Temperaturet−h,

. . . ,Temperature1, Dt, . . . , D1} representing all available past information of ex-

ogenous variables policy and temperature till time t − h, and weekend dummy

variable till time t. We consider h = 1, 2, 7, and 14 in the empirical study

to evaluate the immediate policy impact in the following one and two days

after implementation, and middle-term delayed effect after 1 and 2 weeks of

implementation.

Table 6 reports the estimated parameters of the LFIGX(1, d, 1) model using

the first 500 observations with R = 200 under h = 1 for Policyt−h and

Temperaturet−h. The LFIGX model delivers different features of the daily

new Covid-19 cases among six countries with different levels of persistence,

dependence, and impact of exogenous variables. For example, the coefficient

ϕ1 is 0.916 and 0.708 for ITA and GBR, respectively, and the magnitude is much

stronger than other countries, indicating a significant and positive neighborhood

effect for the two European countries, while the effect is weaker for the Asian

and American countries. It also shows that the daily new cases series is likely

to be modeled by a long-memory process with nonzero estimate of d. For ITA,

d = 0.0144, which is the smallest among the six countries, indicating moderate

persistence in the counting process. This is consistent to the feature displayed in

Figure 2 where the ACF of ITA decays fast and becomes insignificant after lag
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Table 6. The estimates of the parameters in LFIGX(1, d, 1) model using the first 500
observations. The estimated coefficients are obtained using the model with h = 1 for
Policyt−h and Temperaturet−h.

Country η ϕ1 β1 ρ ϕ d Policy (γ1) Temp. (γ2) W.D. (γ3)

JPN 1.098 0.275 -0.130 0.004 0.909 0.482 -0.014 -0.002 -0.194

VNM 0.930 -0.287 -0.022 0.010 0.804 0.446 0.001 -0.002 -0.076

ITA 1.108 0.916 0.361 0.026 0.958 0.144 -0.008 0.001 -0.063

GBR 0.739 0.708 -0.065 0.009 0.956 0.267 -0.001 -0.001 -0.134

USA 0.841 0.459 -0.009 0.006 0.986 0.315 0.002 0.000 -0.124

BRA 0.157 -0.115 -0.530 0.021 0.985 0.303 0.006 0.010 -0.118

order of 40. For JPN and VNM, d = 0.482 and 0.446, respectively, indicating

higher persistence in Covid-19 count series at these two Asian countries. For the

ZIGP distribution variables, the over-dispersion parameter φ is greater than 0.8

for all counties which is consistent to the significant over-dispersion feature of the

series. The zero-inflation parameter ρ is smaller than 0.1, which is also consistent

to the fact that zero percentage is quite low for all the datasets except for VNM.

The long memory dependence of Covid-19 pandemic could be caused by the

effect of exogenous variables such as policy and temperature, which could affect

the latent intensity process λt in a long-range pattern. Figure 4 displays the

estimated coefficients and corresponding 95% credible intervals for policy index

and temperature with h = 1, 2, 7 and 14 respectively. It shows that the policy

effect changes with different time period after policy implementation. There is

only weak immediate policy impact with small magnitude of coefficient at h = 1,

while it presents a stronger negative intermediate impact after 7 and 14 days

with much greater magnitude. For example, when h = 1, the coefficient of

policy is close to zero for all countries except JPN, while when h increases to

14, the negative coefficient’s magnitude becomes larger for all countries except

USA, which means that the policy effect becomes more significant after 2 weeks’

introduction. The findings indicate that there exists a delay in the impact

of policy after implementation; it is hard to obtain immediate policy impact,

while the policy impact in reducing the daily new Covid-19 cases becomes more

significant after 2 weeks.

Temperature shows positive effect with a stronger magnitude when h is larger,

indicating that after a longer period of policy introduction (14 days), a higher

level of the daily new cases of Covid-19 is likely to occur as a result of warmer

temperatures. While if a strict policy is implemented at previous day, the hot

temperature effect to new cases at following two days is less significant. For

example, for the two European countries, the immediate temperature effect (i.e.,

h = 1) is 0.001 and -0.001 in ITA and GBR, respectively, while the impact

increases to 0.009 and 0.030, respectively when h = 14. This is possibly due to

the fact that after observing a drop of the daily new cases and after a certain
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Figure 4. The estimated coefficients for policy index (top two rows) and temperature
variable (bottom two rows) with h = 1, 2, 7 and 14 for the six countries. The solid
line is the estimated parameter and dashed lines refer to the corresponding 95% credible
interval.

period time of strict policy introduction, e.g., two weeks, people may get tired

of tight regulations and start to increase social activity and retaliatory gathering

under warm weather, which, in turn, could expand the possibility of infection.

This result is consistent with Han et al. (2022) and Qiu, Chen and Shi (2020), who

documented that cold weather tends to discourage social activity and decrease

Covid-19 virus transmission. The feature of warm temperature effect is more

obvious for ITA, GBR and VNM than JPN and USA. Moreover, there exhibits

negative coefficient for the weekend dummy variable, indicating smaller new cases

at weekend than weekdays. While this is possibly because of the test number

difference at a weekday and weekend.
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5.2. Out-of-sample forecasting

We conduct a set of multi-period ahead forecasting experiments to the daily

new Covid-19 cases of the six countries. In addition to the conventional 1-day

ahead forecasts, we consider h = 2, 7 and 14, covering 1- and 2-day, 1- and 2-week

ahead forecasts. We start the forecasting from the 501th observation to the end

of each dataset. The ZIGP-INGARCH(1,1) model is considered as a comparative

short memory model.

We directly predict counts at time t + h with the observations at time t,

which is more robust than the iterated forecast under model misspecification

(Marcellino, Stock and Watson, 2006). Especially, we compute the h-day ahead

forecast as follows.

Yt+h|(F (y)
t , X̃t) ∼ ZIGP(λ∗

t+h, φt+h, ρt+h),

λ∗
t+h =

1− φt+h

1− ρt+h

λt+h,

log(λt+h) = ηt +
R∑

k=0

ψk,tL
k log(Yt + 1) + γ1Policyt + γ2Temperaturet + γ3Dt+h,

where the definition of X̃t is similar as (5.1). Since the daily new cases of Covid-19

exhibit non-stationary pattern, at each time point t, instead of using all the past

observations to conduct Bayesian estimation, we apply rolling window technique

using subsamples within the interval It = [t−m, t] for parameter estimation. We

consider a rolling window size of m = 30 days. That is, we move forward one day

at a time to re-do the estimation using the past 30 days data up to that point

and conduct forecast until reaching the end of the sample.

As the intensity λt is the conditional expectation of observed counts which

represents the essential feature of the data, we thus consider evaluating the

prediction performance by the mean squared error (MSE) of the Pearson residuals

defined by

MSE =
1

T − t0 − h

T−h∑
t=t0+1

 Yt+h − λ̂t+h√
Var(Yt+h|(F (y)

t , X̃t)


2

,

where t0 + 1 indicates the starting time point of forecasting.

Table 7 reports the MSE using the LFIGX(1, d, 1) model and the ZIGP-

INGARCH(1,1) model for out-of-sample h-day ahead forecasting of the six

datasets. It shows that LFIGX model presents better forecasting performance

with smaller MSE than short memory ZIGP-INGARCH(1,1) model among

various forecasting horizons and countries. For example, when h = 1, the LFIGX

model outperforms the ZIGP-INGARCH(1,1) at all countries with smaller MSE.

For h = 2, 7, and 14, the LFIGX is also better than short memory model at 5
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Table 7. The MSE of forecasting using the LFIGX(1, d, 1) and the ZIGP-INGARCH(1,1)
model with rolling window size of 30. The best forecast is marked in boldface.

Model JPN VNM ITA GBR USA BRA

h = 1

LFIGX(1, d, 1) 2.402 2.929 3.034 0.443 11.033 3.849

ZIGP-INGARCH(1,1) 2.575 3.879 3.513 0.608 14.887 5.512

h = 2

LFIGX(1, d, 1) 6.370 3.442 6.981 0.819 8.970 4.971

ZIGP-INGARCH(1,1) 7.616 4.440 6.743 1.021 14.158 8.126

h = 7

LFIGX(1, d, 1) 54.183 8.088 8.010 2.328 5.255 3.962

ZIGP-INGARCH(1,1) 103.572 11.970 18.600 2.780 5.745 3.564

h = 14

LFIGX(1, d, 1) 394.593 43.314 53.047 5.602 15.446 2.705

ZIGP-INGARCH(1,1) 592.102 72.805 53.380 5.176 16.102 2.850

out of 6 countries.

As illustration, Figures 5 to 7 display the h-day ahead forecasting with h = 1,

2, 7 and 14 using the LFIGX(1, d, 1) model for JPN, GBR and BRA, respectively.

See Figures B, C and D in the Supplementary Material for the results of VNM,

ITA, and USA, respectively. For short period ahead forecasts at h = 1 and 2, the

LFIGX(1, d, 1) model delivers accurate forecasting performance to all datasets,

although the forecast gets worse slightly along with the forecast horizons. The

forecast of intensity process λt enables us to capture the dynamics of the daily

new cases of Covid-19 series very well, and it presents a narrow 95% credible

interval for the prediction, indicating that forecasting is not very dispersed but

does exhibit dynamic changes. Even for the longer period forecasts of h = 7 and

14 days, the LFIGX(1, d, 1) model still captures the dynamics of daily new cases

series well with good prediction in GBR and BRA. For JPN, the LFIGX(1, d, 1) is

also able to capture the true dynamic pattern in general, while exhibiting certain

delay in the prediction of the wave peak at around August to September 2021. It

is not surprised that 14-day ahead forecast is worse than shorter horizons given

the non-stationarity of datasets and the larger difficulty in long period ahead

forecasting.

6. Conclusion

In this paper, the LFIGX model (log-linear zero-inflated generalized Poisson

integer-valued fractionally integrated GARCH model with exogenous covariates)

is proposed for modeling the dynamics of the daily new Covid-19 cases. It is a

novel long memory integer-valued modeling which accounts for multiple features
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Figure 5. The h-day ahead forecasting using the LFIGX(1, d, 1) model with h =1, 2, 7
and 14 for JPN.

Figure 6. The h-day ahead forecasting using the LFIGX(1, d, 1) model with h = 1, 2, 7
and 14 for GBR.

including serial dependence (positive or negative), over-dispersion, zero-inflation,

nonlinearity, and the effect of exogenous covariates in a unified framework. The

parameters are estimated by an adaptive Bayesian Markov chain Monte Carlo

(MCMC) sampling scheme, which is quite new in the literature of long memory

modeling to count time series. The LFIGX model delivers good interpretation
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Figure 7. The h-day ahead forecasting using the LFIGX(1, d, 1) model with h = 1, 2, 7
and 14 for BRA.

and forecasting performance to the daily new Covid-19 cases for six countries

across four continents: JPN, VNM, ITA, GBR, BRA and USA. We find that the

effects of policies and temperature vary depending on the time period following

their implementation. We observe a weak immediate policy impact (e.g., 1 and

2 days) but a strong negative intermediate impact (e.g., 14 days) after policy

implementation. Furthermore, we find that higher-level daily new Covid-19 cases

tend to occur as a result of warmer temperatures 14 days after policy introduction.

This is possibly due to increased social activities in warm weather and a decrease

in compliance with strict regulations after a certain period of policy introduction.

For out-of-sample forecasting, the LFIGX model also delivers better forecasting

accuracy than the comparative short memory model for most countries and

forecast horizons.

Several extensions could be considered as future research. Firstly, it would

be beneficial to investigate the theoretical properties for parameter estimation

such as MCMC convergence rate and the central limit theorem of the LFIGX

estimator. Liu (2001) provided a good review of theoretical study for Bayesian

based MCMC technique. The theoretical derivation of Bayesian method in the

long memory model would be an exciting direction for the count time series. It

is also interesting to extend the LFIGX model to a multivariate framework for

modeling multiple or even high-dimensional count time series simultaneously, or

adopting spatial temporal models cooperated with long memory structure for

Covid-19 data study, given that the change of policy or the new cases in one

country may affect the Covid situation in other countries. This could possibly
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deliver new findings to capture principal features in the dynamics and effects

of exogenous covariates on Covid-19. The multivariate INGARCH-models have

been studied by Fokianos et al. (2020) and Cui, Li and Zhu (2020). Han et al.

(2022) and Celani and Giudici (2022) investigated the policy effectiveness on the

Covid-19 pandemic by means of a spatio-temporal approach, allowing for spatial

and serial dependence. While there are few studies on the extension of these types

of models to count time series in a long memory framework. Lastly, the proposed

model provides a novel approach to handle multiple features, especially the long-

range dependence phenomenon, in count time series. However, it is worth noting

that the underlying source of long memory in the daily new cases of Covid-19

series still requires further investigation. In practice, dominant, universal and

core factors such as policies, temperature, vaccines, and variants of Covid-19

virus could contribute to the long-range patterns of the latent intensity process.

Additionally, different waves of the pandemic which occur as clusters could be

another possible cause of slowly decaying autocorrelation, as suggested by one

referee. Exploring the essential cause of long-range dependence phenomenon

and considering dynamic non-stationary models with time-varying parameters

for infectious disease analysis could be promising avenues for further research on

the study of Covid-19 data.

Supplementary Material

The online Supplementary Material provides some additional figures for the

exogenous variables and forecasting performance of the LFIGX model in real data

analysis as well as some empirical results of state-level study of USA considering

the large land area of this country.
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Chen, Y., Härdle, W. K. and Pigorsch, U. (2010). Localized realized volatility modeling. Journal

of the American Statistical Association 105, 1376–1393.

Chernozhukov, V., Kasahara, H. and Schrimpf, P. (2021). Causal impact of masks, policies,

behavior on early COVID-19 pandemic in the US. Journal of Econometrics 220, 23–62.

Conrad, C. and Haag, B. R. (2006). Inequality constraints in the fractionally integrated GARCH

model. Journal of Financial Econometrics 4, 413–449.

Cui, Y., Li, Q. and Zhu, F. (2020). Flexible bivariate Poisson integer-valued GARCH model.

Annals of the Institute of Statistical Mathematics 72, 1449–1477.

Dandekar, R. and Barbastathis, G. (2020). Quantifying the effect of quarantine control in

Covid-19 infectious spread using machine learning. medRxiv preprint. DOI: 10.1101/

2020.04.03.20052084.

Darolles, S., Le Fol, G., Lu, Y. and Sun, R. (2019). Bivariate integer-autoregressive process with

an application to mutual fund flows. Journal of Multivariate Analysis 173, 181–203.

Davis, R. A. and Dunsmuir, W. T. (2016). State space models for count time series. In Handbook

of Discrete-Valued Time Series, 121–144. Chapman and Hall/CRC.

Davis, R. A., Fokianos, K., Holan, S. H., Joe, H., Livsey, J., Lund, R. et al. (2021). Count time

series: A methodological review. Journal of the American Statistical Association 116, 1533–

1547.

Diebold, F. X. (1986). Comment on modelling the persistence of conditional variance.

Econometric Reviews 5, 51–56.

https://doi.org/10.1101/2020.04.03.20052084
https://doi.org/10.1101/2020.04.03.20052084


LONG-MEMORY AUTOREGRESSION FOR COVID-19 PANDEMIC 531

Engle, R. F. and Bollerslev, T. (1986). Modelling the persistence of conditional variances.

Econometric Reviews 5, 1–50.

Famoye, F. and Singh, K. P. (2006). Zero-inflated generalized Poisson regression model with an

application to domestic violence data. Journal of Data Science 4, 117–130.

Faria, N. R., Mellan, T. A., Whittaker, C., Claro, I. M., Candido, D. d. S., Mishra, S. et al.

(2021). Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil.

Science 372, 815–821.

Ferland, R., Latour, A. and Oraichi, D. (2006). Integer-valued GARCH process. Journal of Time

Series Analysis 27, 923–942.

Fokianos, K., Støve, B., Tjøstheim, D. and Doukhan, P. (2020). Multivariate count autoregres-

sion. Bernoulli 26, 471–499.

Fokianos, K. and Tjøstheim, D. (2011). Log-linear Poisson autoregression. Journal of Multivari-

ate Analysis 102, 563–578.

Fokianos, K. and Tjøstheim, D. (2012). Nonlinear Poisson autoregression. Annals of the Institute

of Statistical Mathematics (AISM) 64, 1205–1225.

Gelman, A., Roberts, G. O. and Gilks, W. R. (1996). Efficient Metropolis jumping rules. In

Bayesian Statistics (Edited by J. M. Bernardo, J. O. Berger, A. P. Dawid and A. F. M.

Smith), 599–608. Oxford University Press, Oxford.

Granger, C. W. (1980). Long memory relationships and the aggregation of dynamic models.

Journal of Econometrics 14, 227–238.

Granger, C. W. and Joyeux, R. (1980). An introduction to long-memory time series models and

fractional differencing. Journal of Time Series Analysis 1, 15–29.

Gupta, P. L., Gupta, R. C. and Tripathi, R. C. (1996). Analysis of zero-adjusted count data.

Computational Statistics & Data Analysis 23, 207–218.

Han, X., Zhu, Y., Zhang, Y. and Chen, Y. (2022). Policy effectiveness on the global COVID-

19 pandemic and unemployment outcomes: A large mixed frequency spatial approach.

Available at SSRN 4049509.

Hsiang, S., Allen, D., Annan-Phan, S., Bell, K., Bolliger, I., Chong, T. et al. (2020). The effect

of large-scale anti-contagion policies on the COVID-19 pandemic. Nature 584, 262–267.

Hurst, H. E. (1951). Long-term storage capacity of reservoirs. Transactions of the American

Society of Cvil Engineers 116, 770–799.

Jiang, F., Zhao, Z. and Shao, X. (2023). Time series analysis of COVID-19 infection curve: A

change-point perspective. Journal of Econometrics 232, 1–17.
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