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Abstract: Large-scale rare events data are commonly encountered in practice. To

tackle the massive rare events data, we propose a novel distributed estimation

method for logistic regression in a distributed system. A distributed framework

faces the following two challenges. The first challenge is how to distribute the data.

Here, we investigate two distribution strategies, namely, the RANDOM strategy

and the COPY strategy. The second challenge is how to select an appropriate type

of objective function so that the best asymptotic efficiency can be achieved. Then,

the under-sampled (US) and inverse probability weighted (IPW) types of objective

functions are considered. Our results suggest that the COPY strategy with the IPW

objective function is the best solution for a distributed logistic regression with rare

events. We demonstrate the finite sample performance of the distributed methods

using simulation studies and a real-world Swedish Traffic Sign dataset.

Key words and phrases: Distributed system, logistic regression, massive rare events

data.

1. Introduction

Massive data with rare events in binary regression are commonly encountered

in scientific fields and applications. Conceptually, rare events data, also called

imbalanced data, refer to the number of instances in the positive class being

much smaller than that in the negative class. For example, in online search or

recommendation systems, billions of impressions can be generated each day. If we

treat each impression as one sample, then the probability for one impression to

generate a click is very small. Thus, we can treat clicks as rare events (Japkowicz

(2000); McMahan et al. (2013); Chen et al. (2016); Huang et al. (2020)). As

another example in political science, the occurrence of wars, vetos, coups and the

decisions of citizens to run for office have been modeled as rare events (King and

Zeng (2001); Owen (2007); Neunhoeffer and Sternberg (2019)). Our last example

is small object detection in a high resolution image; see Figure 1. Suppose we

treat each pixel as a sample and whether it is covered by a bounding box as

corresponding response. Then, the bounding box of a small object treated as

a positive instance only covers less than 1% of the original image (Zhu et al.

(2016); Zhao et al. (2019); Chen et al. (2022)). Other important rare events data
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Figure 1. An example in the Swedish Traffic Sign dataset for traffic sign detection. The
original image is of size 960× 1, 280× 3. Each bounding box is used to annotate a local
region containing a traffic sign. The bounding box of a small object treated as a positive
instance only covers less than 1% of the original image.

examples include fraud detection (Bolton and Hand (2002); Hassan and Abraham

(2016)), drug discovery (Zhu, Su and Chipman (2006); Korkmaz (2020)) and rare

disease diagnosis (Zhuang et al. (2019)). For a comprehensive summary, we refer

to Sun, Wong and Kamel (2009), Haixiang et al. (2017) and Kaur, Pannu and

Malhi (2019).

A common approach to tackle imbalanced data is to balance it by under-

sampling the negative class (Drummond and Holte (2003); Liu, Wu and Zhou

(2008); Nguyen, Cooper and Kamei (2012)) or oversampling the positive class

(Chawla et al. (2002); Han, Wang and Mao (2005); Mathew et al. (2017)). Most

existing literature focuses on practical algorithms and methodologies for classifi-

cation with few statistical theory guarantees. They design sampling strategies or

ensemble learning methods to improve classification accuracy (Krawczyk (2016)).

For example, Estabrooks, Jo and Japkowicz (2004) empirically investigated an

effective combination of different resampling paradigms to improve classification

accuracy. Sun et al. (2007) adapted the AdaBoost algorithm for advancing the

classification of imbalanced data. King and Zeng (2001) considered logistic re-

gression in rare events data and focused on correcting the biases when estimating

the regression coefficients and probabilities. Fithian and Hastie (2014) used the

special structure of logistic regression models to design a novel local case-control

sampling method. However, these theoretical studies are based on the regular

assumption that the probability of event occurring is fixed. This might not be

the best way to describe rare events mathematically, because this assumption

implies that the number of rare events should diverge to infinity at the same rate

as the total sample size diverges towards infinity. Instead, for rare events, it is



DISTRIBUTED LOGISTIC REGRESSION FOR MASSIVE DATA WITH RARE EVENTS 2279

more appropriate to assume that the positive class rate should decay towards

zero as the total sample size increases.

In this regard, Wang (2020) developed a novel theoretical framework and the

resulting estimators’ statistical properties were investigated accordingly. Under

his novel theoretical framework, he showed that the convergence rate of the

global maximum likelihood estimator (GMLE) is mainly determined by the

number of positive instances instead of the total sample size. As a consequence,

the convergence rate of the GMLE should be considerably slower than that

of the usual cases. Additionally, Wang (2020) surprisingly found that both

under-sampling and over-sampling methods would cause unnecessary statistical

efficiency loss in parameter estimation. Then, how to develop new estimation

methods so that a statistically efficient estimator can be obtained becomes a

problem of great importance. In the remainder of the paper, we call an estimator

to be statistically efficient, if it achieves the same asymptotic distribution as the

GMLE.

It is worth mentioning that we are not among the first group of researchers

studying the problem of logistic regression for massive data. Significant progresses

have been made in the past literature. One possible solution is subsampling.

For example, Wang, Zhu and Ma (2018) developed a subsampling method mo-

tivated by the A-optimality criterion of Kiefer (1959). Wang (2019) further

proposed more efficient estimators based on subsamples with optimal subsampling

probabilities. A general model with imbalanced binary response is studied by

Wang, Zhang and Wang (2021) recently. Another possible solution is distributed

computing, if a parallel computing system can be used. For example, Du,

Li and Li (2018) proposed differentially private approaches to collaboratively

and accurately train a logistic regression model among multiple parties. Shi,

Wang and Zhang (2019) studied a distributed logistic regression based on the

classical ADMM algorithm (Boyd et al. (2011)). Zuo et al. (2021) proposed

a distributed subsampling procedure to approximate the maximum likelihood

estimator. A cost-sensitive algorithm was developed by Wang et al. (2016) for

the linear support vector machine problem. Despite the usefulness of the above

methods, few attempts have been made for distributed classification problems

with rare events data and rigorous asymptotic theory. Without a solid theoretical

foundation, we are not able to deliver a statistically efficient estimator. This

motivates us to develop a novel distributed logistic regression method with solid

statistical theory support for massive rare events data.

It is noteworthy that developing a distributed estimation method for logistic

regression with rare events is not straightforward. We face at least the following

two challenging problems. The first problem is data distribution on local com-

puters in a distributed system. Because the total number of positive instances

is much smaller than the total sample size, the traditional pure random data

distribution strategy might not be the best choice in some cases. For example, if
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the number of instances assigned to a local machine is very small, this traditional

strategy leads to even smaller positive instances for each distributed computer

node. This process makes the local estimates obtained from each local computer

statistically inaccurate, which in turn makes the finally combined estimator

statistically inefficient. In fact, a potentially better choice is to copy all the

positive instances to each local computer and then to distribute the negative

instances to local computers as randomly as possible. For convenience, we refer

to the traditional data distribution strategy as a fully RANDOM strategy and this

new strategy as a COPY strategy. Then, investigating the statistical properties

of the estimators under both RANDOM and COPY strategies becomes a problem

of great interest.

The second problem is the choice of objective function. If the COPY strategy

is adopted, the positive and negative instances become much more balanced on

each local computer, which makes the statistical estimation easier. However,

the side effect is that the local objective function is no longer unbiased for

the global log-likelihood function. Thus, the resulting estimator is statistically

inefficient, even though the resulting estimator remains to be asymptotically

normal. This is an interesting finding of Wang (2020). For convenience, we refer

to the estimator computed on each local computer as an under-sampled estimator.

To solve this problem, a new-type objective function is proposed on each local

computer, which should be unbiased for the global one. This naturally leads to an

inverse probability weighted estimator (Fithian and Hastie (2014); Wang (2020)).

Subsequently, we consider obtaining a distributed logistic regression estimator.

A simple and common approach is to take the average of the estimators produced

by the local computers. This approach is referred to the one-shot (OS) method

in the literature (Zhang, Duchi and Wainwright (2013); Rosenblatt and Nadler

(2016); Chang, Lin and Wang (2017)). We use the OS method to combine the

local IPW estimators to yield the final estimator, which is referred to as the IPW

estimator.

To summarize, we aim to make the following important contributions to the

existing literature. First, we theoretically prove that the traditional RANDOM

distributed framework cannot perform efficiently with rare events data due to

its unignorable random bias term in many cases. Second, a COPY strategy is

proposed and rigorously investigated. The US type of local objective function is

used to construct a US estimator. We find that the US estimator has a lower

bias but unsatisfactory statistical efficiency if the number of negative instances

on each computer node is not enough. Lastly, we find that the IPW estimator is

statistically more efficient than the US estimator and has the same asymptotic

behavior as the GMLE. Theoretical findings are further verified by extensive

numerical studies.

The remainder of this paper is organized as follows. Section 2 introduces the

model setting and three important benchmark estimation methods according to



DISTRIBUTED LOGISTIC REGRESSION FOR MASSIVE DATA WITH RARE EVENTS 2281

Wang (2020). Section 3 presents three distributed estimation methods and their

asymptotic theory. Numerical studies are given in Section 4. An application

to the Swedish traffic Sign Data is illustrated here using these three distributed

methods. The article concludes with a brief discussion in Section 5. All technical

details are relegated to the online Supplementary Material.

2. Logistic Regression with Rare Events Data

2.1. Model setup

Suppose there are N observations in total, which are indexed by 1 ≤ i ≤ N .

The ith observation is denoted as (Xi, Yi), where Xi ∈ Rp is a p-dimensional

covariate and Yi ∈ {0, 1} is the binary response. Assume (Xi, Yi) is independently

generated for 1 ≤ i ≤ N and denote the full data by SF = {(Xi, Yi) : 1 ≤ i ≤ N}.
Let N1 =

∑N
i=1 Yi be the number of positive instances, and N0 = N − N1 be

the number of negative instances. To model their regression relationship, the

following logistic regression model is considered

P
(
Yi = 1 | Xi

)
= pi(α, β) =

eα+X⊤
i β

1 + eα+X⊤
i β

, (2.1)

where α ∈ R is the intercept and β ∈ Rp is the slope parameter. Define θ =

(α, β⊤)⊤ ∈ Rp+1 as the full parameter vector with true value given by θ∗ =

(α∗, β∗⊤)⊤. As N diverges to infinity, if θ∗ does not change, the number of

positive instances would diverge at a rate of Op(N). Following Shao (2003), we

define Op(·) as follows. Let {Ai} and {Bi} with 1 ≤ i ≤ N be two random

variable sequences. We then say Ai = Op(Bi) if and only if for any ε > 0 there is

a constant Cε > 0, such that supi P (∥Ai∥ ≥ Cε∥Bi∥) < ε.

Under the classical logistic regression model setting (2.1), existing theory

shows that the maximum likelihood estimator (MLE) based on the full data

SF converges at a rate of Op(N
−1/2) (Nelder and Wedderburn (1972)). As

convincingly argued by Wang (2020), this might not be the best choice for

modeling rare events data. For rare events data, the percentage of positive

instances is extremely small. Statistically, it is more appropriate to specify the

positive response rate to converge towards 0 as the total sample size increases

towards infinity. Meanwhile, we wish the covariate effect (as measured by β∗)

remains constant since the value of X is unknown. Otherwise, it cannot be

accurately estimated statistically. Consequently, this suggests that we should

replace the intercept parameter α∗ by α∗
N , which should diverge towards negative

infinity as N → ∞. Specifically, we should have α∗
N → −∞ at an appropriate

divergence rate as N → ∞. However, what is a reasonable divergence rate

requires more careful investigation. Under this assumption, we should have

P (Yi = 1 | Xi) ≈ eα
∗
N+X⊤

i β∗
as N → ∞. We then have E(N1) ≈ Neα

∗
NE(eX

⊤
i β∗

).
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Even though the positive response rate (i.e., N1/N) should converge toward zero

as N goes to infinity, we still expect that the total number of positive instances

(i.e., N1) should diverge to infinity. Otherwise, we cannot estimate the parameters

of interest consistently. This suggests we should have

α∗
N → −∞ and α∗

N + logN → ∞ (2.2)

when N → ∞. This becomes the most important technical assumption for the

proposed theoretical framework (Wang (2020)).

2.2. Related methods

In this subsection, we demonstrate a number of important benchmark es-

timation methods according to Wang (2020). Specifically, we introduce the

global maximum likelihood estimation, under-sampled estimation, and inverse

probability weighted likelihood estimation, respectively.

2.2.1. Global maximum likelihood estimation

We start with the global maximum likelihood estimation method using the

full data. The log-likelihood function based on the full data SF is given as follows:

L
(
θ
)
=

N∑
i=1

[
Yi log pi

(
αN , β

)
+

(
1− Yi

)
log

{
1− pi(αN , β)

}]
, (2.3)

where pi(αN , β) = eαN+X⊤
i β/(1 + eαN+X⊤

i β). Then we obtain the GMLE as

θ̂GMLE = argmaxθL(θ). According to Theorem 1 in Wang (2020), the GMLE

θ̂GMLE should be
√
Neα

∗
N -consistent and asymptotically normal under appropriate

conditions. This result suggests that the convergence rate of the GMLE is fully

determined by the number of positive instances, which implies that the help

provided by an extra large amount of the negative instances should be limited.

This result is particularly true when the total number of negative instances is too

large to be easily managed on one computer.

Nevertheless, we should remark that this never implies that a large number

of negative instances is totally useless for efficiency improvement. Extensive

theoretical and numerical experiences suggest that the statistical efficiency of

various benchmark estimators can be improved by a more efficient use of negative

instances, even though the convergence rate remains unchanged (Wang (2020)).

However, for many practical datasets with rare events, the total number of

negative instances is often too large to be easily managed on one computer. In

this case, how to utilize negative instances more efficiently for better estimation

efficiency becomes a problem of great interest.
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2.2.2. Under-sampled estimation

In practice, researchers often seek to include all the positive instances for

statistical analysis, because they are rare and thus valuable (Drummond and

Holte (2003); Liu, Wu and Zhou (2008); Nguyen, Cooper and Kamei (2012)).

Next, the same (or comparable) number of negative instances are randomly

selected so that a more balanced subsample can be constructed. Subsequently,

interested parameters can be estimated based on this more balanced subsample.

For convenience, we refer to this common practice as an under-sampled method

(Drummond and Holte (2003); Liu, Wu and Zhou (2008); Nguyen, Cooper and

Kamei (2012); Wang (2020)). By doing so, the estimation problem becomes com-

putationally feasible. Theoretically, this problem can be formulated as follows.

Let ai be a binary indicator with P (ai = 1) = π, which is independently generated

for each i. Here, ai = 1 suggests that the ith instance is sampled and π is the

probability for sampling. Accordingly, the US objective function becomes

LUS

(
θ
)
=

N∑
i=1

[
Yi log pi

(
αN , β

)
+

(
1− Yi

)
ai log

{
1− pi(αN , β)

}]
. (2.4)

For convenience, we call it a US objective function. Then, we obtain a US

estimator as θ̂US = argmaxθLUS(θ). However, Wang (2020) finds that θ̂US is

a biased estimator for θ∗. Thus, the debiased US estimator is further obtained

as θ̃US = θ̂US + (log π, 0, . . . , 0)⊤.

Comparing (2.4) with (2.3), we find the only difference is the treatment of

the negative instances. Considering (2.3), all the instances are used regardless

of positives or negatives. However, in (2.4), we use all positive instances, and

include negative instances only if the corresponding binary indicator ai = 1. By

doing so, we include all positive instances and only a much smaller number of

negative instances. One can verify easily that this formulation is mathematically

equivalent to that of Wang (2020). The careful theoretical analysis of Wang

(2020) suggests that such an estimator remains to be
√
Neα

∗
N -consistent and is

asymptotically normal. However, as shown in Theorem 3 by Wang (2020), the

US estimator cannot obtain the same efficiency as that of the GMLE if the ratio

of positive instances to negative instances does not converge to zero.

2.2.3. Inverse probability weighted estimation

The key reason for the statistical inefficiency of the US estimator is the

objective function in (2.4). By under-sampling, the resulting objective function

has been materially changed. A direct consequence is that it is no longer an

unbiased estimator for the global log-likelihood function. That leads to the

inefficiency for the US estimator. To fix this problem, one possible solution

is to find an unbiased estimator for the global log-likelihood function. This leads

to the following objective function for inverse probability weighted estimation
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(King and Zeng (2001); Fithian and Hastie (2014); Wang (2020))

LIPW

(
θ
)
=

N∑
i=1

[
Yi log pi(αN , β) +

(1− Yi)ai log{1− pi(αN , β)}
π

]
. (2.5)

One can easily verify that E{LIPW(θ)|SF} = L(θ), which suggests that LIPW(θ)

is an unbiased estimator for the global log-likelihood function. By optimizing

the above objective function, an IPW estimator can be obtained as θ̂IPW =

argmaxθLIPW(θ). Wang (2020) demonstrated that the IPW-type estimator has

the same convergence rate Op(1/
√
Neα

∗
N ) as that of θ̂GMLE but remains to be

statistically inefficient. Recall that we define in this work an estimator to be

statistically efficient if it shares the same asymptotic distribution as the GMLE.

The suboptimal efficiency of both the US and IPW estimators is under-

standable because both methods include only a very small fraction of the negative

instances for estimation. Then, there should exist a good possibility to use a larger

number of negative instances (but not as large as the full set of negative class) for

better statistical efficiency. This seems to be a particularly promising direction if a

powerful distributed computing system is available. With the help of a distributed

system, we should be able to compute various local estimators (e.g., the US and

IPW estimators) multiple times. They can then be aggregated together to form

a more powerful estimator. However, what type of local estimators should be

computed and how they should be assembled so that the final estimator can

be as efficient as the GMLE are problems of great interest. We thus aim to

systematically investigate these interesting problems in the next sections.

3. Distributed Logistic Regression

3.1. Distributed MLE with random strategy

We start with the simplest distributed estimator, that is the distributed

MLE obtained under the RANDOM strategy. For convenience, we refer to this

as RMLE. Assume there exists a distributed computation system with a total

of K local computers and one central computer. A typical architecture of a

distributed system is shown in Figure 2. The local computers are indexed by

1 ≤ k ≤ K. Then, the RMLE method randomly distributes the full data SF

to each local computer with approximately equal sizes. Denote SF = S+ ∪ S−,

where S+ = {i : Yi = 1} represents the set of all the positive instances, and S− =

{i : Yi = 0} represents the set of all negative instances. Specifically, let SR
k be

the sample randomly distributed to the kth local computer with SR
k = SR

k+∪SR
k−,

where SR
k+ = {i : i ∈ SR

k , Yi = 1} and SR
k− = {i : i ∈ SR

k , Yi = 0} refer to the set

of positive and negative instances on the kth local computer, respectively. For

convenience, denote nk = |SR
k |. In addition, let nR

1k = |SR
k+| and nR

0k = |SR
k−|.

Mathematically, denote a
(k)
i = 1 if the ith observation is randomly distributed
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Figure 2. Illustration of the distributed system.

to kth local computer. We then have
∑K

k=1 a
(k)
i = 1 for every i, nk =

∑N
i=1 a

(k)
i .

We also define n = E(nk) = N/K. Additionally, we have n1k =
∑N

i=1 a
(k)
i Yi and

n0k =
∑N

i=1 a
(k)
i (1− Yi).

As one can see, by the RANDOM strategy, both the positive and negative

instances are randomly distributed to each local computer. As a consequence,

their relative percentages remain approximately the same as the full data size.

That is n1k/nk ≈ N1/N . The merit of this method is that the data distribution

on each local computer remains the same as that of the full data. However,

the drawback is that the number of positive instances allocated to each local

computer become even smaller. This might turn into statistical inefficiency for

the resulting estimator. Specifically, for each local computer, define

LR,k

(
θ
)
=

N∑
i=1

a
(k)
i

[
Yi log pi(αN , β) +

(
1− Yi

)
log{1− pi(αN , β)}

]
as a local log-likelihood function with P (a

(k)
i = 1) = 1/K. Then a local MLE

is computed as θ̂RMLE,k = argmaxθLR,k(θ). Then, each local computer should

report this local estimator to the central computer. Next, the central computer

assembles those estimators to form a more powerful estimator. To achieve this

goal, a typical assembling solution is the OS type strategy (Zhang, Duchi and

Wainwright (2013); Chang, Lin and Wang (2017)). More specifically, the final

estimator is given by θ̂RMLE =
∑K

k=1 θ̂RMLE,k/K. The asymptotic distribution of

θ̂RMLE is presented in the following theorem.

Theorem 1. Assume (C1) P (∥Zi∥ > M) ≤ 2 exp(−CTailM
2) with Zi =

(1, X⊤
i )

⊤ ∈ Rp+1 for some positive constant CTail, (C2) n → ∞ as N → ∞,

(C3) log2 N/(neα
∗
N ) = O(1) and (2.2). Then we have the following asymptotic
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representation

√
Neα

∗
N

(
θ̂RMLE − θ∗

)
= P1 +

P2

2
+ op

(
K√
Neα

∗
N

)
,

where P1 = −(Neα
∗
N )1/2K−1

∑K
k=1 L̈

−1
R,k(θ

∗)L̇R,k(θ
∗) and P2 = (Neα

∗
N )−1/2K

B(θ∗). Here B(θ∗) is a random bias term such that Cmin ≤ E{∥B(θ∗)∥} ≤ Cmax

for some fixed positive constants 0 < Cmin < Cmax < ∞.

The theorem condition (C1) requires that covariate distributions have an

exponentially decayed tail probability (Zhang and Chen (2020)). The theorem

condition (C2) implies that the expected number of the instances on each local

computer n = E(nk) should diverge to infinity as the total sample sizeN → ∞. In

the meanwhile, we have E(n1k) = E(
∑N

i=1 a
(k)
i Yi) = neα

∗
NE{eX⊤

i β∗
/(1 + eZ

⊤
i θ∗

)}.
By condition (C3), we require that the number of the positive instances on the

local computer should be large enough. Then by Theorem 1, we know that√
Neα

∗
N (θ̂RMLE − θ∗) can be decomposed into three parts. The first part is P1,

where P1 →d N(0,Σ∗−1) as N → ∞. The second part P2 is a random bias

term of order K/(Neα
∗
N ), where the analytical formula for B(θ∗) is given in

Supplementary Material S1. The third part is a higher order and negligible term

as compared with P2. If K is sufficiently small in the sense that K/
√
Neα

∗
N → 0

as N → ∞, we should have P1 being the leading term. In this case, θ̂RMLE shares

the same asymptotic distribution as the θ̂GMLE of Wang (2020). Otherwise, we

should have P2/2 as the dominating term. This makes the statistical efficiency

of θ̂RMLE poor.

3.2. Under-sampling with an unweighted objective function

Next, we study the asymptotic properties of the distributed estimators by

under-sampling. We start with θ̂US utilized by the unweighted loss function

(2.4). To obtain the US estimator, we distribute the full data SF to each local

computer by the COPY strategy. Let SC
k be the sample distributed to the kth

local computer under the COPY strategy. Denote SC
k = SC

k+ ∪ SC
k−, where SC

k+

and SC
k− refer to the positive and negative instances on the kth local computer,

respectively. For the COPY strategy, we have SC
k+ = S+ for 1 ≤ k ≤ K, which

implies that the positive instances remain the same for all local computers. As

one can see, the advantage of the COPY strategy is that the number of positive

cases allocated to each local computer becomes much larger than that of the

RANDOM method. The negative instances are then randomly distributed on

each local computer such that ∪kSC
k− = S− with SC

k1− ∩SC
k2− = ∅ for any k1 ̸= k2.

Let nC
1k = |SC

k+| and nC
0k = |SC

k−|. We typically require that nC
1k = Op(n

C
0k). In

other words, the number of negative instances assigned to each local computer

should not be much smaller than that of the positive instances, which is also the

most common case in practice.
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Subsequently, define a local MLE for each local computer as θ̂US,k =

argmaxθLUS,k(θ), where we have

LUS,k(θ) =
N∑
i=1

[
Yi log pi

(
αN , β

)
+

(
1− Yi

)
a
(k)
i log

{
1− pi(αN , β)

}]
.

Recall that a
(k)
i = 1 if the ith instance is allocated to the kth local computer.

As a consequence, the θ̂US,k on each worker is equivalent to the under-sampled

estimator proposed by Wang (2020). After conducting local estimation, each

local computer sends the local estimator θ̂US,k to the central computer. Similarly,

by using the OS strategy, we obtain the final estimator as θ̂US =
∑K

k=1 θ̂US,k/K.

We next analyze the asymptotic properties of θ̂US in the following theorem.

Theorem 2. Assume the same conditions in Theorem 1. Define ♭ = (logK, 0, . . . ,

0) and Σ∗
2 = E{(1 + γeX

⊤
i β∗

)−1eX
⊤
i β∗

ZiZ
⊤
i } with γ = limN→∞ Keα

∗
N ∈ [0,∞).

We then have the following asymptotic representation as

√
Neα

∗
N

(
θ̂US − θ∗ − ♭

)
=

(
Neα

∗
N
)−1/2

Σ∗−1
2 K−1

K∑
k=1

L̇US,k

(
θ∗ + ♭

)
+ op(1).

By Theorem 2, we know that
√
Neα

∗
N (θ̂US − θ∗ − ♭) can be decomposed into

two parts. For the first part, we have Σ∗−1
2 K−1

∑K
k=1 L̇US,k(θ

∗+ ♭)(Neα
∗
N )−1/2 →d

N(0,Σ∗−1
2 Σ∗

1Σ
∗−1
2 ) as N → ∞, where Σ∗

1 = E{(1 + γeX
⊤
i β∗

)−2eX
⊤
i β∗

ZiZ
⊤
i }. The

second part is a higher order negligible term. Here the asymptotic normality

can be established since (Neα
∗
N )−1/2Σ∗−1

2 K−1
∑K

k=1 L̇US,k(θ
∗ + ♭) can be written

as the summation of a set of carefully defined independent random variables;

see Theorem 2 Step 4 in Supplementary Material S2 for details. Therefore, the

Lindeberg-Feller Central Limit Theorem can be readily applied. Consequently,

θ̃US = θ̂US − ♭ is
√
Neα

∗
N -consistent for θ∗. Comparing this results with that

of Theorem 1, we find some interesting differences. First, an additional bias

correction term ♭ is necessarily involved for the intercept. It is mainly caused by

the distortion of the data distribution in the US setting. Second, we find that

the US estimator has a lower bias than that of the RMLE estimator if K is large.

That is mainly because the bias of the local estimators computed by the COPY

strategy is smaller than that of the RANDOM strategy.

We further comment about the constant γ occurring in both Σ∗
1 and Σ∗

2.

As remarked by Wang (2020), one can verify that γE(eX
⊤
i β∗

) ≈ N1/(N0/K)

asymptotically, where N0/K represents the number of negative instances on

each local computer. Thus, γE(eX
⊤
i β∗

) asymptotically quantifies the ratio of

the positive instance number to negative instance number. If γ = 0, then

the number of negative instances dominates the positive ones. Therefore, we

have Σ∗−1
2 Σ∗

1Σ
∗−1
2 = Σ∗−1. This implies that the US estimator shares the same

asymptotic covariance matrix as the GMLE θ̂GMLE. If 0 < γ < ∞, then the
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positive and negative instances are of comparable sizes. This implies that the US

estimator becomes statistically inefficient as compared with the GMLE θ̂GMLE.

This finding is also consistent with Theorem 2 in (Wang (2020)). We do not

consider γ = ∞, which implies that the number of positive instances is much

larger than that of the negative ones.

3.3. Under-sampling with a weighted objective function

The analysis presented in Sections 3.1 and 3.2 suggests that neither the

RMLE nor the US estimator can achieve the global asymptotic efficiency. The

RMLE fails because too small amount of positive instances are distributed to

each local computer. The US estimator fails since the US objective function

used by each local computer is not unbiased for the global one. We are then

inspired to develop a new local log-likelihood function, which should be an

unbiased estimator for the global one. Meanwhile, all positive instances should

be used by each local machine. To this end, we propose an IPW estimator as

follows. Specifically, we still distribute the full data SF to each local computer

by the COPY strategy. Next, we define for each local computer a local MLE as

θ̂IPW,k = argmaxθLIPW,k(θ), where we have

LIPW,k(θ) =
N∑
i=1

[
Yi log pi

(
αN , β

)
+K

(
1− Yi

)
a
(k)
i log

{
1− pi(αN , β)

}]
.

Hence, on each worker, the θ̂IPW,k can be treated as the under-sampled weighted

estimator proposed by Wang (2020) as also given in (2.5). One can immediately

verify that E{LIPW,k(θ)|SF} = L(θ), where recall that SF = {(Xi, Yi) : 1 ≤ i ≤
N} denotes the full data. Then, each local computer sends this local estimator

θ̂IPW,k to the central computer. Similarly, by using the OS strategy, we obtain

the final estimator as θ̂IPW =
∑K

k=1 θ̂IPW,k/K. As noted before, LIPW,k(θ) is now

an unbiased estimator for the global log-likelihood function, and we expect θ̂IPW

to achieve the same asymptotic efficiency as the GMLE. To this end, we analyze

the asymptotic properties of θ̂IPW in the following theorem.

Theorem 3. Assume the same conditions in Theorem 1, we then have the

following asymptotic representation as

√
Neα

∗
N

(
θ̂IPW − θ∗

)
=

(
Neα

∗
N
)−1/2

Σ∗−1L̇
(
θ∗
)
+ op(1).

By Theorem 3, we know that
√
Neα

∗
N (θ̂IPW − θ∗) could be decomposed into

two parts. For the first part, we have (Neα
∗
N )−1/2Σ∗−1L̇(θ∗) →d N(0,Σ∗−1) as

N → ∞. The second part is of the order op(1), which is a higher order negligible

term. Consequently, θ̂IPW is
√
Neα

∗
N -consistent for θ∗. Comparing this result

of the GMLE in Wang (2020), we find that θ̂IPW shares the same asymptotic

distribution as the GMLE. Comparing the result of the US estimator in Theorem
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2, we find that the US estimator over-weights the positive instances by using

the US objective function (2.4) on the local computers. In contrast, the IPW

estimator assigns equal weights to positive instances and negative instances by

using the IPW objective function (2.5) on the local computers. This is the

key reason why the IPW estimator performs better than the US estimator.

Particularly, the γ given in Theorem 2 is not involved, which represents the

asymptotic ratio of positive instances to negative instances. As a consequence,

we do not require γ = 0 to attain the global efficiency as compared to the

US estimator (or the under-sampled estimator in Wang (2020)). Our extensive

numerical studies also illustrate better finite sample performance of θ̂IPW. To

summarize, the RMLE estimator θ̂RMLE with a large K suffers from significant

bias. The debiased US estimator θ̃US is statistically inefficient either due to its

high asymptotic covariance if the number of negative instances distributed on

each computer node is not enough. The IPW estimator θ̂IPW stands out as the

most attractive estimator.

It is remarkable that both the US and IPW estimators investigated in

Wang (2020) are different from their counterpart estimators studied in our work.

Specifically, these two estimators in Wang (2020) are based on a subsample, which

contains all positive instances but only a small fraction of negative instances. By

doing so, a significant amount of computation cost can be nicely saved. In this

case, Wang (2020) found that the US estimator is more efficient than the IPW

estimator. However, both the US and IPW estimators studied in our work are

based on the whole sample but computed in a distributed way. Therefore, for

our estimators, not only all positive instances but also all negative instances are

fully used. In fact, all the positive instances are repeatedly used by different local

computers due to our COPY strategy. In contrast, only a small proportion of

negative instances are used in Wang (2020). This makes the theoretical properties

of our US and IPW estimators quite different from those of Wang (2020). This is

also the key reason accounting for the performance differences between the two

sets of estimators.

4. Numerical Studies

4.1. A simulation study

4.1.1. Model setup and performance measure

To demonstrate the finite sample performance of the proposed methods, a

number of simulation studies are conducted in this section. A standard logistic

regression model (2.1) is used to generate the full data with covariate Zi =

(1, X⊤
i )

⊤ ∈ R5. Here the covariatesXis are generated fromN(0,Σ) with Σ = (σij)

and σij = 0.2|i−j|. The total sample sizes are N = 104, 105, 5× 105 and 106. For

a fixed N , we set α∗
N = −0.45 logN and β∗ = (1, 1, 1, 1)⊤. By doing so, we allow

P (Y = 1) → 0 and E(N1) → ∞ as N → ∞. We next set the number of local



2290 LI, ZHU AND WANG

computers (i.e., K) in two different cases. For CASE 1, we set K = 17, 36, 63, 81

with the four different sample sizes, respectively. One can verify that, for the

COPY strategy, the number of positive instances is approximately 1.5 times as

large as that of the negative instances on each local computer. In contrast,

for CASE 2, we set K = 2, 3, 4, 5 accordingly. By doing so, the number of

negative instances assigned to each local computer should be much larger than

that of positive instances for the COPY strategy. Next, two different distribution

strategies (i.e. RANDOM and COPY) are considered. We then obtain three

local estimators θ̂RMLE,k, θ̃US,k, and θ̂IPW,k for every local machine k. Here θ̃US,k

and θ̂IPW,k can be treated as the under-sampled estimators proposed by (Wang

(2020)). This leads to the combined estimators as θ̂RMLE, θ̃US, and θ̂IPW on the

central computer. Here for the US method, we use the debiased estimator θ̃US

(instead of θ̂US) as our final estimator. For comparison purpose, the GMLE

θ̂GMLE is also calculated. For a reliable evaluation, each experiment is randomly

replicated for a total of M = 500 times. Let θ̂(m) = (θ
(m)
j : 1 ≤ j ≤ p+1)⊤ be one

particular estimator obtained in the mth replication (e.g., θ̂RMLE,k for k = 1 or

θ̂RMLE). To evaluate the estimation accuracy, we calculate the root mean square

error (RMSE) as RMSE = (p+ 1)−1
∑p+1

j=1{M−1
∑M

m=1(θ̂
(m)
j − θ∗j )

2}1/2. Then the

RMSE of θ̂GMLE is numerically computed according to its theoretical formula.

Furthermore, the absolute bias of θ̂ is estimated by BIAS= (p+1)−1
∑p+1

j=1 |θ̄j−θ∗j |,
where θ̄j = M−1

∑M
m=1 θ̂

(m)
j . The standard error (SE) of θ̂ is estimated by SE =

(p+ 1)−1
∑p+1

j=1{M−1
∑M

m=1(θ̂
(m)
j − θ̄j)

2}1/2.

4.1.2. Simulation results

The detailed results are given in Figure 3. Here we study both the local

and distributed estimators. Two different cases (i.e., CASE 1 and CASE 2)

regarding the number of local machines are considered. This leads to a total of

four combinations that are represented in different panels. The vertical axis in

Figure 3 represents the RMSE value in log-scale. The horizontal axis denotes

the total sample size also in log-scale. First, the top left panel presents the

results of the local estimators for CASE 1. In this case, all estimators under

study are much less efficient than the GMLE in the sense that the log(RMSE)

values of various estimators are much larger than that of the GMLE. This is

because other estimators (i.e., θ̂RMLE,k, θ̃US,k and θ̂IPW,k) are local estimators.

Here θ̃US,k = θ̂US,k − ♭ is the debiased estimator with ♭ = (logK, 0, . . . , 0). The

sample sizes used by these estimators are much smaller than that of the global

estimator. Consequently, they are expected to be less efficient than the global

estimator. However, among all local estimators, we find that the performance

of θ̂RMLE,k is always the worst. This is expected because the number of positive

instances used by the RMLE estimator is much less than that of other local

estimators. Comparatively speaking, we find that θ̃US,k performs better than
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Figure 3. RMSE of the local and distributed estimators in log-scale. The horizontal axis
presents the total sample size N in log-scale. The top panels show the local estimators.
The bottom panels present the distributed estimators. The left panels show the cases
where the number of positive cases is approximately 1.5 times as large as that of negative
ones. The right panels present the cases where the number of negative instances is much
larger than that of positive ones.

θ̂IPW,k. These observations are in line with that of Wang (2020).

The top right panel in Figure 3 presents the results of the local estimators

for CASE 2. Compared with the top left panel, we find that the GMLE remains

to be the best estimator. However, among all local estimators, the performance

differences are markedly smaller. This is because the number of negative instances

assigned to the local machine is sufficiently large in this case. This makes the

performances of all local estimators improve towards that of the global estimator

and their relative differences vanish.

The bottom left panel presents the log(RMSE) values of distributed estima-

tors for CASE 1. We find that the performances of the distributed estimators

(e.g., θ̂IPW) are improved compared to the local estimators (e.g., θ̃US,k and θ̂IPW,k

proposed by Wang (2020)) especially when the under-sampled negative instances
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Table 1. Simulation Results for the Distributed Estimators under CASE 1.

RMLE US IPW

N
√
Neα

∗
N BIAS SE RMSE BIAS SE RMSE BIAS SE RMSE

104 13 0.055 0.067 0.088 0.005 0.075 0.076 0.018 0.063 0.066

105 24 0.019 0.027 0.033 0.001 0.035 0.035 0.006 0.026 0.027

5× 105 37 0.010 0.015 0.018 0.000 0.020 0.020 0.003 0.015 0.015

106 45 0.008 0.012 0.015 0.001 0.016 0.016 0.003 0.012 0.012

are not enough. For example, the RMSE value of θ̃US,k is 0.094 and the RMSE

value of θ̂IPW,k is 0.121 when N = 104 in the top left panel. For comparison,

the RMSE value of θ̂IPW is 0.065, which is close to that of the GMLE (i.e.,

0.061). This implies that the IPW estimator is less sensitive to the ratio of

positive to negative instances. Among all distributed estimators, we find that

the debiased US estimator θ̃US appears to be the worst estimator in the sense

that the associated log(RMSE) value is always the largest. In contrast, the IPW

estimator θ̂IPW stands out to be the best estimator. The relative difference among

different distributed estimators disappears as the number of negative instances

assigned to each local machine increases. This can be seen from the results of the

bottom right panel. More detailed results about Figure 3(c) are given in Table

1. By Table 1, we find that the RMLE estimator θ̂RMLE in CASE 1 demonstrates

a large bias, since K is relatively large. In the meanwhile, the debiased US

estimator θ̃US suffers from high SE values. These observations are in line with

the theoretical findings of the proposed Theorems 1–2.

4.2. Swedish traffic sign data analysis

4.2.1. Data processing

For illustration purpose, we present an interesting real data example. The

dataset used in this study is the Swedish Traffic Sign (STS) dataset, which

is publicly available at https://www.cvl.isy.liu.se/research/datasets/

traffic-signs-dataset/. It contains a total of 1,970 annotated images with

various traffic signs annotated by bounding boxes; see Figure 1 for a graphical

illustration. We aim to detect the traffic signs in Figure 1 automatically. For

a reliable evaluation, we randomly split the entire data into two parts. The

first part contains 1,576 images (about 80% of the whole data) for training,

while the remaining 394 images (about 20% of the whole data) for testing.

This task contains two important steps; see Girshick et al. (2014) and Girshick

(2015). For the first step, one needs to automatically detect a sufficiently tight

local region containing a traffic sign from an input image without bounding

box information. In the second step, one needs to classify the traffic signs

detected in the local region to different categories (e.g., prohibitive, informative,

warning and mandatory traffic signs). In this study, we focus on the first step.

https://www.cvl.isy.liu.se/research/datasets/traffic-signs-dataset/
https://www.cvl.isy.liu.se/research/datasets/traffic-signs-dataset/
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We subsequently demonstrate how this task can be converted into a logistic

regression problem, which has a large sample size and can be efficiently solved

by our proposed method in a distributed way.

Specifically, each image given in the STS dataset is of relatively high resolu-

tion; see Figure 4(a). Mathematically, each image can be represented by a tensor

of size 960 × 1,280 × 3; see Figure 4(b). Next, we apply a pretrained VGG16

model on the image (Simonyan and Zisserman (2014)). The VGG16 model is

a classical convolutional neural network model with a total of 13 convolutional

layers. The last two fully connected layers are dropped. Then, a feature map of

size 30× 40× 512 can be extracted from the last convolutional layer; see Figure

4(c). This can be viewed as a new “image” of resolution 30×40 but with a total of

512 channels. We can then treat each pixel of this feature map as one sample. As

a result, a total of 30×40 = 1,200 pixel samples can be generated for each image.

For each pixel sample, a feature vector of 512 dimension can be constructed.

Consequently, we have p = 512 in this case. The ith image is then denoted by

Xi,k1,k2
∈ R512 with 1 ≤ i ≤ N , 1 ≤ k1 ≤ 30 and 1 ≤ k2 ≤ 40; see Figure 4(d).

Then the total sample size is given by N = 1,970× 1,200 = 2,364,000.

We next present the details about how the response Yi,k1,k2
∈ {0, 1} is

constructed. Define Wi = (Wi,k1,k2
) as a binary matrix with dimensions 960 ×

1, 280 andWi,k1,k2
∈ {0, 1}. For a given image with the bounding box information,

define Wi,k1,k2
= 1 if the (k1, k2)th pixel is located in the bounding box region and

Wi,k1,k2
= 0 otherwise; see Figure 4(e) and (f). Subsequently, we partition Wi

matrix into a 30×40 block matrix with equal sizes; see Figure 4(f). Specifically, we

write this block matrix as Wi = (Wi,k1,k2
) with Wi,k1,k2

∈ R32×32 for 1 ≤ k1 ≤ 30

and 1 ≤ k2 ≤ 40. Next, compute the average value of the block matrix

Wi,k1,k2
and denote it by µi,k1,k2

. With the help of TensorFlow and GPU, this

operation can be efficiently conducted in a fully parallel way by an average pooling

operation. Define Yi,k1,k2
= I(µi,k1,k2

> 0.5). Then Yi,k1,k2
becomes the binary

response associated with Xi,k1,k2
; see Figure 4(g) and (h). They both correspond

to the same region in the original image. All data (8.59 GB, including Xi,k1,k2

and Yi,k1,k2
) are placed on the hard drive. A simple calculation reveals that the

sample mean of Yi,k1,k2
is 0.225%, which is extremely small. Thus, we can treat

it as the rare events data.

Since the total sample size is extremely large, we call for a distributed

computation. For illustration purpose, we fix the number of local computers

as K = 50. This leads to the sample size allocated to each local machine

being approximately N/K = 47, 280 by the RANDOM strategy and N1 +

N0/K = 52, 491 by the COPY strategy. Consequently, the three distributed

estimators θ̂RMLE, θ̃US and θ̂IPW are computed based on the train data. For

comparison purpose, θ̂GMLE is also computed by self-developed Newton-Raphson

type algorithm. If this algorithm is executed on one single computer, then the

time cost is extremely high. If the algorithm is executed on a distributed system,
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Figure 5. Prediction results FP obtained on the test data.

then the communication cost is extremely high due to the Newton-Raphson type

iteration. Simply speaking, this self-developed algorithm is mainly developed

here for theoretical comparison. It can hardly be used in real practice due to its

high cost in time, either due to communication or computation.

4.2.2. Performance results

Next, consider the i∗th image (1 ≤ i∗ ≤ N∗) in the test data, where N∗ = 394

denotes the number of images for testing. For a given pixel (k1, k2) in the i∗th

image and one particular estimator θ̂ obtained on the train data (i.e., θ̂RMLE), we

then estimate the response probability by p̂i∗,k1,k2
= eθ̂

⊤Xi∗,k1,k2/(1 + eθ̂
⊤Xi∗,k1,k2 )

and predict Ŷi∗,k1,k2
= I(p̂i∗,k1,k2

> ci∗), where ci∗ = min{p̂i∗,k1,k2
: Yi∗,k1,k2

=

1, 1 ≤ k1 ≤ 30, 1 ≤ k2 ≤ 40}. This c∗i is the largest threshold value so that all the

positive instances can be correctly captured. However, the price paid here is the

false positive predictions. Define the number of the false positive instances for

the i∗th image in the test data as FPi∗ =
∑

k1,k2
I(Ŷi∗,k1,k2

= 1)I(Yi∗,k1,k2
= 0).

Its median value is then computed as FP∗. Then its overall mean across different

random replications is denoted as FP. The prediction results are shown in Figure

5. By Figure 5, we observe that the FP value of the IPW method is as low as 1.88,

which is much smaller than 2.52 of the RMLE method and 2.20 of the US method.

This value is the same as 1.88 of the GMLE method. To summarize, among all

distributed estimators, the IPW estimator achieves the best performance with

the smallest FP value of 1.88.

To gain further intuitive understanding about the prediction accuracy, we

present several randomly selected prediction results in Figure 6. Specifically,

each row in Figure 6 shows one arbitrarily selected image in the test data. The

first column shows the original input image of size 960×1,280. The second column

presents the prediction results of the US method. The third column illustrates
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Figure 6. A number of arbitrarily selected test examples for prediction demonstration.
Each row represents one arbitrarily selected image from the test data. The input images
are shown in the first column. The second column presents the US method. The third
column presents the RMLE method. The fourth column presents the IPW method. The
fifth column presents the GMLE method. The last column shows the true annotated
regions.

the prediction results by the RMLE method. The fourth column presents the

prediction results due to the GMLE method. The fifth column illustrates the

prediction results by the IPW method. The last column represents the true

annotated regions. By Figure 6, we find that the prediction results of both US

and RMLE methods are very noisy. The prediction results of both GMLE and

IPW methods are much better and very comparable.

5. Conclusion

In this study, we have investigated a distributed logistic regression problem

for massive rare events data. We study here two different data distribution

strategies. They are RANDOM and COPY strategies, respectively. We also

investigate three different estimators. They are θ̂RMLE, θ̃US and θ̂IPW, respectively.

Our results suggest that the COPY strategy together with the modified log-

likelihood function for the IPW estimator is the best choice. The resulting

estimator can be statistically as efficient as the global estimator. To conclude

this article, we would like to discuss a number of interesting topics for future

study. First, we focus on the logistic regression model in this paper. It is

interesting to investigate more complicated and general models in future research

projects for the rare events data. Second, we use the OS strategy for the last

step in the distributed estimation. Although this strategy is efficient in terms

of communication, it might not be the best choice if the data are non-randomly

distributed across different local machines (Zhu, Li and Wang (2021)). In this

case, various inverse variance weighting (IVW) methods (Lin and Xi (2011);
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Zhu, Li and Wang (2021); Yu et al. (2022)) can be used. The key idea of IVW is

to take the weighted average of local estimators. The weights are related to the

inverse of the Hessian matrices, which are computed by local computers. How

to combine the IVW idea with our COPY strategy for distributed rare events

data analysis seems to be an another interesting topic for future study. Lastly,

covariates in large datasets typically have high dimensionality. Thus, how to

conduct feature selection or screening based on these distributed estimators is

worthy of consideration.

Supplementary Material

The online Supplementary Material contains the proofs of all theoretical

results in the main text.
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