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Abstract: Large-scale rare events data are commonly encountered in practice. To
tackle the massive rare events data, we propose a novel distributed estimation
method for logistic regression in a distributed system. A distributed framework
faces the following two challenges. The first challenge is how to distribute the data.
Here, we investigate two distribution strategies, namely, the RANDOM strategy
and the COPY strategy. The second challenge is how to select an appropriate type
of objective function so that the best asymptotic efficiency can be achieved. Then,
the under-sampled (US) and inverse probability weighted (IPW) types of objective
functions are considered. Our results suggest that the COPY strategy with the IPW
objective function is the best solution for a distributed logistic regression with rare
events. We demonstrate the finite sample performance of the distributed methods
using simulation studies and a real-world Swedish Traffic Sign dataset.
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1. Introduction

Massive data with rare events in binary regression are commonly encountered
in scientific fields and applications. Conceptually, rare events data, also called
imbalanced data, refer to the number of instances in the positive class being
much smaller than that in the negative class. For example, in online search or
recommendation systems, billions of impressions can be generated each day. If we
treat each impression as one sample, then the probability for one impression to
generate a click is very small. Thus, we can treat clicks as rare events (Japkowicz
(2000); McMahan et al. (2013)); |Chen et al. (2016]); Huang et al. (2020))). As
another example in political science, the occurrence of wars, vetos, coups and the
decisions of citizens to run for office have been modeled as rare events (King and
Zeng (2001); |Owen| (2007)); Neunhoeffer and Sternberg (2019)). Our last example
is small object detection in a high resolution image; see Figure 1. Suppose we
treat each pixel as a sample and whether it is covered by a bounding box as
corresponding response. Then, the bounding box of a small object treated as
a positive instance only covers less than 1% of the original image (Zhu et al.
(2016)); Zhao et al. (2019); Chen et al.| (2022)). Other important rare events data
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Figure 1. An example in the Swedish Traffic Sign dataset for traffic sign detection. The
original image is of size 960 x 1,280 x 3. Each bounding box is used to annotate a local
region containing a traffic sign. The bounding box of a small object treated as a positive
instance only covers less than 1% of the original image.

examples include fraud detection (Bolton and Hand| (2002); [Hassan and Abraham)
(2016)), drug discovery (Zhu, Su and Chipman| (2006); [Korkmaz (2020)) and rare
disease diagnosis (Zhuang et al. (2019))). For a comprehensive summary, we refer
to Sun, Wong and Kamel (2009)), Haixiang et al.| (2017) and Kaur, Pannu and
(2019).

A common approach to tackle imbalanced data is to balance it by under-
sampling the negative class (Drummond and Holte| (2003); Liu, Wu and Zhou
(2008)); Nguyen, Cooper and Kamei (2012))) or oversampling the positive class
(Chawla et al.| (2002); Han, Wang and Mao| (2005); Mathew et al| (2017))). Most
existing literature focuses on practical algorithms and methodologies for classifi-
cation with few statistical theory guarantees. They design sampling strategies or
ensemble learning methods to improve classification accuracy (Krawczyk| (2016))).
For example, Estabrooks, Jo and Japkowicz| (2004) empirically investigated an
effective combination of different resampling paradigms to improve classification
accuracy. [Sun et al.| (2007) adapted the AdaBoost algorithm for advancing the
classification of imbalanced data. [King and Zeng (2001) considered logistic re-
gression in rare events data and focused on correcting the biases when estimating
the regression coefficients and probabilities. Fithian and Hastie| (2014]) used the
special structure of logistic regression models to design a novel local case-control
sampling method. However, these theoretical studies are based on the regular
assumption that the probability of event occurring is fixed. This might not be
the best way to describe rare events mathematically, because this assumption
implies that the number of rare events should diverge to infinity at the same rate
as the total sample size diverges towards infinity. Instead, for rare events, it is
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more appropriate to assume that the positive class rate should decay towards
zero as the total sample size increases.

In this regard, Wang (2020) developed a novel theoretical framework and the
resulting estimators’ statistical properties were investigated accordingly. Under
his novel theoretical framework, he showed that the convergence rate of the
global maximum likelihood estimator (GMLE) is mainly determined by the
number of positive instances instead of the total sample size. As a consequence,
the convergence rate of the GMLE should be considerably slower than that
of the usual cases. Additionally, Wang| (2020) surprisingly found that both
under-sampling and over-sampling methods would cause unnecessary statistical
efficiency loss in parameter estimation. Then, how to develop new estimation
methods so that a statistically efficient estimator can be obtained becomes a
problem of great importance. In the remainder of the paper, we call an estimator
to be statistically efficient, if it achieves the same asymptotic distribution as the
GMLE.

It is worth mentioning that we are not among the first group of researchers
studying the problem of logistic regression for massive data. Significant progresses
have been made in the past literature. One possible solution is subsampling.
For example, Wang, Zhu and Ma (2018)) developed a subsampling method mo-
tivated by the A-optimality criterion of |Kiefer| (1959). Wang (2019) further
proposed more efficient estimators based on subsamples with optimal subsampling
probabilities. A general model with imbalanced binary response is studied by
Wang, Zhang and Wang| (2021) recently. Another possible solution is distributed
computing, if a parallel computing system can be used. For example, [Du,
Li and Li (2018) proposed differentially private approaches to collaboratively
and accurately train a logistic regression model among multiple parties. [Shi,
Wang and Zhang (2019)) studied a distributed logistic regression based on the
classical ADMM algorithm (Boyd et al. (2011)). Zuo et al. (2021) proposed
a distributed subsampling procedure to approximate the maximum likelihood
estimator. A cost-sensitive algorithm was developed by [Wang et al. (2016|) for
the linear support vector machine problem. Despite the usefulness of the above
methods, few attempts have been made for distributed classification problems
with rare events data and rigorous asymptotic theory. Without a solid theoretical
foundation, we are not able to deliver a statistically efficient estimator. This
motivates us to develop a novel distributed logistic regression method with solid
statistical theory support for massive rare events data.

It is noteworthy that developing a distributed estimation method for logistic
regression with rare events is not straightforward. We face at least the following
two challenging problems. The first problem is data distribution on local com-
puters in a distributed system. Because the total number of positive instances
is much smaller than the total sample size, the traditional pure random data
distribution strategy might not be the best choice in some cases. For example, if
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the number of instances assigned to a local machine is very small, this traditional
strategy leads to even smaller positive instances for each distributed computer
node. This process makes the local estimates obtained from each local computer
statistically inaccurate, which in turn makes the finally combined estimator
statistically inefficient. In fact, a potentially better choice is to copy all the
positive instances to each local computer and then to distribute the negative
instances to local computers as randomly as possible. For convenience, we refer
to the traditional data distribution strategy as a fully RANDOM strategy and this
new strategy as a COPY strategy. Then, investigating the statistical properties
of the estimators under both RANDOM and COPY strategies becomes a problem
of great interest.

The second problem is the choice of objective function. If the COPY strategy
is adopted, the positive and negative instances become much more balanced on
each local computer, which makes the statistical estimation easier. However,
the side effect is that the local objective function is no longer unbiased for
the global log-likelihood function. Thus, the resulting estimator is statistically
inefficient, even though the resulting estimator remains to be asymptotically
normal. This is an interesting finding of [Wang (2020). For convenience, we refer
to the estimator computed on each local computer as an under-sampled estimator.
To solve this problem, a new-type objective function is proposed on each local
computer, which should be unbiased for the global one. This naturally leads to an
inverse probability weighted estimator (Fithian and Hastie (2014)); Wang (2020)).
Subsequently, we consider obtaining a distributed logistic regression estimator.
A simple and common approach is to take the average of the estimators produced
by the local computers. This approach is referred to the one-shot (OS) method
in the literature (Zhang, Duchi and Wainwright| (2013); Rosenblatt and Nadler
(2016)); |Chang, Lin and Wang| (2017))). We use the OS method to combine the
local IPW estimators to yield the final estimator, which is referred to as the IPW
estimator.

To summarize, we aim to make the following important contributions to the
existing literature. First, we theoretically prove that the traditional RANDOM
distributed framework cannot perform efficiently with rare events data due to
its unignorable random bias term in many cases. Second, a COPY strategy is
proposed and rigorously investigated. The US type of local objective function is
used to construct a US estimator. We find that the US estimator has a lower
bias but unsatisfactory statistical efficiency if the number of negative instances
on each computer node is not enough. Lastly, we find that the IPW estimator is
statistically more efficient than the US estimator and has the same asymptotic
behavior as the GMLE. Theoretical findings are further verified by extensive
numerical studies.

The remainder of this paper is organized as follows. Section 2 introduces the
model setting and three important benchmark estimation methods according to
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Wang (2020). Section 3 presents three distributed estimation methods and their
asymptotic theory. Numerical studies are given in Section 4. An application
to the Swedish traffic Sign Data is illustrated here using these three distributed
methods. The article concludes with a brief discussion in Section 5. All technical
details are relegated to the online Supplementary Material.

2. Logistic Regression with Rare Events Data
2.1. Model setup

Suppose there are N observations in total, which are indexed by 1 <7 < N.
The ith observation is denoted as (X;,Y;), where X; € R? is a p-dimensional
covariate and Y; € {0, 1} is the binary response. Assume (X, Y;) is independently
generated for 1 < ¢ < N and denote the full data by Sp = {(X,,Y;) : 1 <i < N}.
Let N; = ZiILYZ— be the number of positive instances, and Ny = N — N; be
the number of negative instances. To model their regression relationship, the
following logistic regression model is considered

et X B

P(Y;=1]X;) = pi(a, B) (2.1)

where o € R is the intercept and S € RP is the slope parameter. Define § =
(a,8T)T € RPF! as the full parameter vector with true value given by 0* =
(a*,8*T)T. As N diverges to infinity, if §* does not change, the number of
positive instances would diverge at a rate of O,(N). Following Shao (2003), we
define O,(-) as follows. Let {A;} and {B;} with 1 < i < N be two random
variable sequences. We then say A, = O,(B;) if and only if for any € > 0 there is
a constant C. > 0, such that sup, P(||A;|| > C.||Bil|) < €.

Under the classical logistic regression model setting , existing theory
shows that the maximum likelihood estimator (MLE) based on the full data
Sp converges at a rate of O,(N~"'/2) (Nelder and Wedderburn| (1972)). As
convincingly argued by Wang (2020]), this might not be the best choice for
modeling rare events data. For rare events data, the percentage of positive
instances is extremely small. Statistically, it is more appropriate to specify the
positive response rate to converge towards 0 as the total sample size increases
towards infinity. Meanwhile, we wish the covariate effect (as measured by (*)
remains constant since the value of X is unknown. Otherwise, it cannot be
accurately estimated statistically. Consequently, this suggests that we should
replace the intercept parameter a* by aj;, which should diverge towards negative
infinity as N — oo. Specifically, we should have a} — —oo at an appropriate
divergence rate as N — oo. However, what is a reasonable divergence rate
requires more careful investigation. Under this assumption, we should have
P(Y; =1 X;) = e~ X0 as N — co. We then have E(N;) ~ Neo~ E(eX: #7).
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Even though the positive response rate (i.e., N;/N) should converge toward zero
as IV goes to infinity, we still expect that the total number of positive instances
(i.e., N1) should diverge to infinity. Otherwise, we cannot estimate the parameters
of interest consistently. This suggests we should have

oy — —oo and op +log N — oo (2.2)

when N — oo. This becomes the most important technical assumption for the
proposed theoretical framework (Wang| (2020)).

2.2. Related methods

In this subsection, we demonstrate a number of important benchmark es-
timation methods according to |Wang| (2020). Specifically, we introduce the
global maximum likelihood estimation, under-sampled estimation, and inverse
probability weighted likelihood estimation, respectively.

2.2.1. Global maximum likelihood estimation
We start with the global maximum likelihood estimation method using the
full data. The log-likelihood function based on the full data Sr is given as follows:

Z [Y log p; an/B) + (1_Yi) 10g{1—Pi(@N75)}}7 (2.3)

i=1

where p;(ay, ) = e*¥tX B /(1 4 ~+X8) Then we obtain the GMLE as
Ocare = argmax,L(). According to Theorem 1 in [Wang| (2020), the GMLE
§GMLE should be vV Ne“~-consistent and asymptotically normal under appropriate
conditions. This result suggests that the convergence rate of the GMLE is fully
determined by the number of positive instances, which implies that the help
provided by an extra large amount of the negative instances should be limited.
This result is particularly true when the total number of negative instances is too
large to be easily managed on one computer.

Nevertheless, we should remark that this never implies that a large number
of negative instances is totally useless for efficiency improvement. Extensive
theoretical and numerical experiences suggest that the statistical efficiency of
various benchmark estimators can be improved by a more efficient use of negative
instances, even though the convergence rate remains unchanged (Wang (2020))).
However, for many practical datasets with rare events, the total number of
negative instances is often too large to be easily managed on one computer. In
this case, how to utilize negative instances more efficiently for better estimation
efficiency becomes a problem of great interest.
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2.2.2. Under-sampled estimation

In practice, researchers often seek to include all the positive instances for
statistical analysis, because they are rare and thus valuable (Drummond and
Holte (2003); Liu, Wu and Zhou| (2008)); Nguyen, Cooper and Kamei (2012)).
Next, the same (or comparable) number of negative instances are randomly
selected so that a more balanced subsample can be constructed. Subsequently,
interested parameters can be estimated based on this more balanced subsample.
For convenience, we refer to this common practice as an under-sampled method
(Drummond and Holte| (2003)); [Liu, Wu and Zhou| (2008]); Nguyen, Cooper and
Kamei| (2012)); Wang (2020)). By doing so, the estimation problem becomes com-
putationally feasible. Theoretically, this problem can be formulated as follows.
Let a; be a binary indicator with P(a; = 1) = m, which is independently generated
for each i. Here, a; = 1 suggests that the ith instance is sampled and 7 is the
probability for sampling. Accordingly, the US objective function becomes

Lys (6 Z [Y log pi(an, B) + (1 — Y;)a;log {1 —pi(aN,ﬁ)}] (2.4)

i=1

For convenience, we call it a US objective function. Then, we obtain a US
estimator as @US = argmax,Lys(f). However, Wang| (2020) finds that §US is
a biased estimator for #*. Thus, the debiased US estimator is further obtained
as Ous = Ous + (logm,0,...,0)7.

Comparing with , we find the only difference is the treatment of
the negative instances. Considering , all the instances are used regardless
of positives or negatives. However, in , we use all positive instances, and
include negative instances only if the corresponding binary indicator a; = 1. By
doing so, we include all positive instances and only a much smaller number of
negative instances. One can verify easily that this formulation is mathematically
equivalent to that of [Wang (2020). The careful theoretical analysis of [Wang
(2020) suggests that such an estimator remains to be v Ne*~-consistent and is
asymptotically normal. However, as shown in Theorem 3 by Wang (2020), the
US estimator cannot obtain the same efficiency as that of the GMLE if the ratio
of positive instances to negative instances does not converge to zero.

2.2.3. Inverse probability weighted estimation

The key reason for the statistical inefficiency of the US estimator is the
objective function in . By under-sampling, the resulting objective function
has been materially changed. A direct consequence is that it is no longer an
unbiased estimator for the global log-likelihood function. That leads to the
inefficiency for the US estimator. To fix this problem, one possible solution
is to find an unbiased estimator for the global log-likelihood function. This leads
to the following objective function for inverse probability weighted estimation
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(King and Zeng (2001); |[Fithian and Hastie| (2014])); Wang| (2020)))

(1 —Y;)a;log{1 — p;(an, )} .

s

£IPW Z {Y log p; anB) +

(2.5)

One can easily verify that E{Lipw(0)|Sr} = L(#), which suggests that Lipw(6)
is an unbiased estimator for the global log-likelihood function. By optimizing
the above objective function, an IPW estimator can be obtained as é\IPW =
argmax,Lipw(0). (Wang| (2020|) demonstrated that the IPW-type estimator has
the same convergence rate O,(1/vV Ne“~) as that of §GMLE but remains to be
statistically inefficient. Recall that we define in this work an estimator to be
statistically efficient if it shares the same asymptotic distribution as the GMLE.
The suboptimal efficiency of both the US and IPW estimators is under-
standable because both methods include only a very small fraction of the negative
instances for estimation. Then, there should exist a good possibility to use a larger
number of negative instances (but not as large as the full set of negative class) for
better statistical efficiency. This seems to be a particularly promising direction if a
powerful distributed computing system is available. With the help of a distributed
system, we should be able to compute various local estimators (e.g., the US and
IPW estimators) multiple times. They can then be aggregated together to form
a more powerful estimator. However, what type of local estimators should be
computed and how they should be assembled so that the final estimator can
be as efficient as the GMLE are problems of great interest. We thus aim to
systematically investigate these interesting problems in the next sections.

3. Distributed Logistic Regression
3.1. Distributed MLE with random strategy

We start with the simplest distributed estimator, that is the distributed
MLE obtained under the RANDOM strategy. For convenience, we refer to this
as RMLE. Assume there exists a distributed computation system with a total
of K local computers and one central computer. A typical architecture of a
distributed system is shown in Figure 2. The local computers are indexed by
1 < k < K. Then, the RMLE method randomly distributes the full data Sg
to each local computer with approximately equal sizes. Denote Sp = S, US_,
where S, = {i : Y; = 1} represents the set of all the positive instances, and S_ =
{i : Y; = 0} represents the set of all negative instances. Specifically, let S7 be
the sample randomly distributed to the kth local computer with S = S, US/E
where S = {i: i€ S, Y, =1} and S = {i:i € S, Y, = 0} refer to the set
of positive and negative instances on the kth local computer respectively. For
convenience, denote n, = |Sf|. In addition, let nf} = S| and nf, = |S|.

(k)

Mathematically, denote a;”’ = 1 if the ith observation is randomly distributed
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Figure 2. Illustration of the distributed system.

to kth local computer. We then have Zszl az(-k) = 1 for every i, ny = Zfil agk).
We also define n = E(n;,) = N/K. Additionally, we have ny, = 3 aMY; and
nok = Sy a (1Y),

As one can see, by the RANDOM strategy, both the positive and negative
instances are randomly distributed to each local computer. As a consequence,
their relative percentages remain approximately the same as the full data size.
That is nqx/nx = N1 /N. The merit of this method is that the data distribution
on each local computer remains the same as that of the full data. However,
the drawback is that the number of positive instances allocated to each local
computer become even smaller. This might turn into statistical inefficiency for
the resulting estimator. Specifically, for each local computer, define

N

Lrp(0) =D al [Yilogpilan, B) + (1 - Y;) log{1 — pian, )}

=1

as a local log-likelihood function with P(a{*) = 1) = 1/K. Then a local MLE
is computed as é\RMLE,k = argmaxyLg x(#). Then, each local computer should
report this local estimator to the central computer. Next, the central computer
assembles those estimators to form a more powerful estimator. To achieve this
goal, a typical assembling solution is the OS type strategy (Zhang, Duchi and
Wainwright| (2013); (Chang, Lin and Wang (2017)). More specifically, the final
estimator is given by Ogyvre = Zszl Orvie /K. The asymptotic distribution of
gRMLE is presented in the following theorem.

Theorem 1. Assume (Cl) P(||Z;|| > M) < 2exp(—Cr.aaM?) with Z,
(1,X,")" € RPT for some positive constant Cray, (C2) n — oo as N — oo,
(C3) log® N/(ne®~) = O(1) and ®.2). Then we have the following asymptotic
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representation

e P K
N@aN(eRMLE—H*) :P1+72+0p — />
2 Necn
where P, = —(NeV)V2K =150 L2} (0%)Lri(0%) and Py = (Neo~) 12K
B(0*). Here B(6*) is a random bias term such that Cin < E{||B(6%)||} < Cax
for some fized positive constants 0 < Cpin < Chax < 00.

The theorem condition (C1) requires that covariate distributions have an
exponentially decayed tail probability (Zhang and Chen| (2020)). The theorem
condition (C2) implies that the expected number of the instances on each local
computer n = F(ny) should diverge to infinity as the total sample size N — co. In
the meanwhile, we have E(ny,) = E(YXN, aMY;) = neoNE{eX 8" /(1 + 210},
By condition (C3), we require that the number of the positive instances on the
local computer should be large enough. Then by Theorem 1, we know that
VN e“TV(gRMLE — 0*) can be decomposed into three parts. The first part is P,
where P, —; N(0,X*7') as N — oco. The second part P, is a random bias
term of order K/(Ne®~), where the analytical formula for B(6*) is given in
Supplementary Material S1. The third part is a higher order and negligible term
as compared with P,. If K is sufficiently small in the sense that K/v Ne*~ — 0
as N — oo, we should have P; being the leading term. In this case, §RMLE shares
the same asymptotic distribution as the 5GMLE of |Wang| (2020). Otherwise, we
should have P,/2 as the dominating term. This makes the statistical efficiency
of §RMLE poor.

3.2. Under-sampling with an unweighted objective function

Next, we study the asymptotic properties of the distributed estimators by
under-sampling. We start with gUs utilized by the unweighted loss function
(2.4). To obtain the US estimator, we distribute the full data Sr to each local
computer by the COPY strategy. Let S be the sample distributed to the kth
local computer under the COPY strategy. Denote Sf = S, U Sy, where Sf,
and 8¢ refer to the positive and negative instances on the kth local computer,
respectively. For the COPY strategy, we have Sf, = S, for 1 < k < K, which
implies that the positive instances remain the same for all local computers. As
one can see, the advantage of the COPY strategy is that the number of positive
cases allocated to each local computer becomes much larger than that of the
RANDOM method. The negative instances are then randomly distributed on
each local computer such that U,SS = S_ with S(f;_ OSC;_ = () for any k; # k.
Let n§), = [SF,| and nf), = |S7_|. We typically require that n$), = O,(nf;,). In
other words, the number of negative instances assigned to each local computer
should not be much smaller than that of the positive instances, which is also the
most common case in practice.
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Subsequently, define a local MLE for each local computer as é\US,k =
argmax,Lys r(0), where we have

N

£US k( Z [Y log p; aN,ﬁ) + (1 - K)agk) log {1 —Pi(aN,B)}]

i=1

Recall that agk) = 1 if the ¢th instance is allocated to the kth local computer.
As a consequence, the §US,k on each worker is equivalent to the under-sampled
estimator proposed by Wang| (2020). After conducting local estimation, each
local computer sends the local estimator §Us,k to the central computer. Similarly,
by using the OS strategy, we obtain the final estimator as é\US = Zle gUsyk/K.
We next analyze the asymptotic properties of 5US in the following theorem.

Theorem 2. Assume the same conditions in Theorem 1. Defineb = (log K,0,...,
0) and £ = E{(1 + ~eX 8)1eX 8" 2, 2T} with v = limy_,.. Ke*~ € [0, oo)
We then have the following asymptotic representation as

K
VN (s = 0" —b) = (Ne) "R KT YT Lus (607 +5) +0,(1).

k=1

By Theorem 2, we know that v/ Neo~ (fys — 6* —b) can be decomposed into
two parts. For the first part, we have $3 'K~ S5 | Ly k(@ +0)(Neon)—1/2 -,
N(0,257 1515571 as N — oo, where ¥F = E{(1 +veX #7)~2eX: 0" 2, 2T}, The
second part is a higher order negligible term. Here the asymptotic normality
can be established since (Ne®~)~1/253 VK15 | L6 4(0* 4+ b) can be written
as the summation of a set of carefully defined independent random variables;
see Theorem 2 Step 4 in Supplementary Material S2 for details. Therefore, the
Llndeberg—Feller Central Limit Theorem can be readily applied. Consequently,
GUS = HUS — b is V Ne“~-consistent for #*. Comparing this results with that
of Theorem 1, we find some interesting differences. First, an additional bias
correction term b is necessarily involved for the intercept. It is mainly caused by
the distortion of the data distribution in the US setting. Second, we find that
the US estimator has a lower bias than that of the RMLE estimator if K is large.
That is mainly because the bias of the local estimators computed by the COPY
strategy is smaller than that of the RANDOM strategy.

We further comment about the constant v occurring in both ¥j and 3.
As remarked by Wang (2020), one can verify that vE(eXi #") ~ Ny/(No/K)
asymptotically, where Ny/K represents the number of negative instances on
each local computer. Thus, 'yE(eXiT #") asymptotically quantifies the ratio of
the positive instance number to negative instance number. If v = 0, then
the number of negative instances dominates the positive ones. Therefore, we
have ¥3 '35~ = ¥*~1. This implies that the US estimator shares the same
asymptotic covariance matrix as the GMLE §GMLE. If 0 < v < o0, then the
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positive and negative instances are of comparable sizes. This implies that the US
estimator becomes statistically inefficient as compared with the GMLE §GMLE.
This finding is also consistent with Theorem 2 in (Wang (2020))). We do not
consider 7 = oo, which implies that the number of positive instances is much
larger than that of the negative ones.

3.3. Under-sampling with a weighted objective function

The analysis presented in Sections 3.1 and 3.2 suggests that neither the
RMLE nor the US estimator can achieve the global asymptotic efficiency. The
RMLE fails because too small amount of positive instances are distributed to
each local computer. The US estimator fails since the US objective function
used by each local computer is not unbiased for the global one. We are then
inspired to develop a new local log-likelihood function, which should be an
unbiased estimator for the global one. Meanwhile, all positive instances should
be used by each local machine. To this end, we propose an IPW estimator as
follows. Specifically, we still distribute the full data Sr to each local computer
by the COPY strategy. Next, we define for each local computer a local MLE as
é\lpw’k = argmax,Lipw x(#), where we have

N
[rIPW e ( Z [Y log p; aNaﬁ) + K(1 - Yi)az(-k) log {1 —pi(OéNaﬁ)}]

i=1

Hence, on each worker, the é\lpw’k can be treated as the under-sampled weighted
estimator proposed by [Wang| (2020) as also given in (2.5). One can immediately
verify that E{Lipw x(0)|Sr} = L(0), where recall that Sp = {(X;,Y;) : 1 <i <
N} denotes the full data. Then, each local computer sends this local estimator
91Pw x to the central computer. Similarly, by using the OS strategy, we obtain
the final estimator as 91PW = Zk 1 Glpw 1/ K. As noted before, Lipw x(6) is now
an unbiased estimator for the global log-likelihood function, and we expect é\lpw
to achieve the same asymptotic efficiency as the GMLE. To this end, we analyze
the asymptotic properties of @pw in the following theorem.

Theorem 3. Assume the same conditions in Theorem 1, we then have the
following asymptotic representation as

VN (Brpw — 07) = (Ne®™) 25 1L(67) + 0, (1).

By Theorem 3, we know that v Ne“~ (é\lpw — 0*) could be decomposed into
two parts. For the first part, we have (Ne®~)~1/25*1£(0*) —, N(0,2*7 1) as
N — o0. The second part is of the order o,(1), which is a higher order negligible
term. Consequently, eAIPW is vV Ne“~-consistent for #*. Comparing this result
of the GMLE in (Wang (2020), we find that fipw shares the same asymptotic
distribution as the GMLE. Comparing the result of the US estimator in Theorem
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2, we find that the US estimator over-weights the positive instances by using
the US objective function (2.4) on the local computers. In contrast, the IPW
estimator assigns equal weights to positive instances and negative instances by
using the IPW objective function on the local computers. This is the
key reason why the IPW estimator performs better than the US estimator.
Particularly, the ~ given in Theorem 2 is not involved, which represents the
asymptotic ratio of positive instances to negative instances. As a consequence,
we do not require v = 0 to attain the global efficiency as compared to the
US estimator (or the under-sampled estimator in Wang| (2020)). Our extensive
numerical studies also illustrate better finite sample performance of élpw. To
summarize, the RMLE estimator §RMLE with a large K suffers from significant
bias. The debiased US estimator gus is statistically inefficient either due to its
high asymptotic covariance if the number of negative instances distributed on
each computer node is not enough. The IPW estimator @PW stands out as the
most attractive estimator.

It is remarkable that both the US and IPW estimators investigated in
Wang (2020)) are different from their counterpart estimators studied in our work.
Specifically, these two estimators in Wang] (2020)) are based on a subsample, which
contains all positive instances but only a small fraction of negative instances. By
doing so, a significant amount of computation cost can be nicely saved. In this
case, Wang| (2020)) found that the US estimator is more efficient than the IPW
estimator. However, both the US and IPW estimators studied in our work are
based on the whole sample but computed in a distributed way. Therefore, for
our estimators, not only all positive instances but also all negative instances are
fully used. In fact, all the positive instances are repeatedly used by different local
computers due to our COPY strategy. In contrast, only a small proportion of
negative instances are used in Wang| (2020)). This makes the theoretical properties
of our US and IPW estimators quite different from those of [Wang| (2020). This is
also the key reason accounting for the performance differences between the two
sets of estimators.

4. Numerical Studies

4.1. A simulation study

4.1.1. Model setup and performance measure

To demonstrate the finite sample performance of the proposed methods, a
number of simulation studies are conducted in this section. A standard logistic
regression model is used to generate the full data with covariate Z; =
(1,X,7)" € R5. Here the covariates X;s are generated from N (0, X) with ¥ = (o;;)
and o;; = 0.2/"=7. The total sample sizes are N = 10%,10°,5 x 10° and 10°. For
a fixed N, we set ay = —0.45log N and 8* = (1,1,1,1)". By doing so, we allow
P(Y =1) - 0 and E(N;) — oo as N — oco. We next set the number of local
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computers (i.e., K) in two different cases. For CASE 1, we set K = 17, 36,63, 81
with the four different sample sizes, respectively. One can verify that, for the
COPY strategy, the number of positive instances is approximately 1.5 times as
large as that of the negative instances on each local computer. In contrast,
for CASE 2, we set K = 2,3,4,5 accordingly. By doing so, the number of
negative instances assigned to each local computer should be much larger than
that of positive instances for the COPY strategy. Next, two different distribution
strategies (i.e. RANDOM and COPY) are considered. We then obtain three
local estlmators HRMLE ks HUS &, and 91pw x for every local machine k. Here GUS &
and Hlpwk can be treated as the under-sampled estimators proposed by (Wang
(2020)). This leads to the combined estimators as §RMLE, §US, and t@}pw on the
central computer. Here for the US method, we use the debiased estimator §US
(instead of §Us) as our final estimator. For comparison purpose, the GMLE
§GMLE is also calculated. For a reliable evaluation, each experiment is randomly
replicated for a total of M = 500 times. Let §(™) (H(m) 1<j<p+1)" beone
particular estimator obtained in the mth replication (e.g., ORMLE,k for k=1 or
éRMLE). To evaluate the estimation accuracy, we calculate the root mean square
error (RMSE) as RMSE = (p+1)~! er:I{M s 1(A(m —07)?}'/2. Then the
RMSE of §GMLE is numerically computed according to its theoretical formula.
Furthermore, the absolute bias of @ is estimated by BIAS= (p+1)~! p+1 116,031,

where ; = M~ M '™ . The standard error (SE) of g is estimated by SE =

mlj

(p—|—1) P+1{M 12 (A(m) 4)2}1/2‘

4.1.2. Simulation results

The detailed results are given in Figure 3. Here we study both the local
and distributed estimators. Two different cases (i.e., CASE 1 and CASE 2)
regarding the number of local machines are considered. This leads to a total of
four combinations that are represented in different panels. The vertical axis in
Figure 3 represents the RMSE value in log-scale. The horizontal axis denotes
the total sample size also in log-scale. First, the top left panel presents the
results of the local estimators for CASE 1. In this case, all estimators under
study are much less efficient than the GMLE in the sense that the log(RMSE)
values of various estimators are much 1arger than that of the GMLE. This is
because other estimators (i.e., QRMLE ks 9US , and 91Pw ) are local estimators.
Here fys;, = Ousy — b is the deblased estimator with b = (log K,0,...,0). The
sample sizes used by these estimators are much smaller than that of the global
estimator. Consequently, they are expected to be less efficient than the global
estimator. However, among all local estimators, we find that the performance
of §RMLEJC is always the worst. This is expected because the number of positive
instances used by the RMLE estimator is much less than that of other local
estimators. Comparatively speaking, we find that 5Us,k performs better than
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Figure 3. RMSE of the local and distributed estimators in log-scale. The horizontal axis
presents the total sample size IV in log-scale. The top panels show the local estimators.
The bottom panels present the distributed estimators. The left panels show the cases
where the number of positive cases is approximately 1.5 times as large as that of negative
ones. The right panels present the cases where the number of negative instances is much
larger than that of positive ones.

é\lpw’k. These observations are in line with that of .

The top right panel in Figure 3 presents the results of the local estimators
for CASE 2. Compared with the top left panel, we find that the GMLE remains
to be the best estimator. However, among all local estimators, the performance
differences are markedly smaller. This is because the number of negative instances
assigned to the local machine is sufficiently large in this case. This makes the
performances of all local estimators improve towards that of the global estimator
and their relative differences vanish.

The bottom left panel presents the log(RMSE) values of distributed estima-
tors for CASE 1. We find that the performances of the distributed estimators
(e.g., GIPW) are improved compared to the local estimators (e.g., HUS « and 91pw K
proposed by m m especially when the under-sampled negative instances
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Table 1. Simulation Results for the Distributed Estimators under CASE 1.

RMLE UsS IPW
N VNee~ BIAS SE RMSE BIAS SE RMSE BIAS SE RMSE
10* 13 0.055 0.067 0.088 0.005 0.075 0.076 0.018 0.063 0.066
10° 24 0.019 0.027 0.033 0.001 0.035 0.035 0.006 0.026 0.027
5 x 10° 37 0.010 0.015 0.018 0.000 0.020 0.020 0.003 0.015 0.015
108 45 0.008 0.012 0.015 0.001 0.016 0.016 0.003 0.012 0.012

are not enough. For example, the RMSE value of §U3’k is 0.094 and the RMSE
value of é\lpw’k is 0.121 when N = 10% in the top left panel. For comparison,
the RMSE value of @pw is 0.065, which is close to that of the GMLE (i.e.,
0.061). This implies that the IPW estimator is less sensitive to the ratio of
positive to negative instances. Among all distributed estimators, we find that
the debiased US estimator fys appears to be the worst estimator in the sense
that the associated log(RMSE) value is always the largest. In contrast, the IPW
estimator é\IPW stands out to be the best estimator. The relative difference among
different distributed estimators disappears as the number of negative instances
assigned to each local machine increases. This can be seen from the results of the
bottom right panel. More detailed results about Figure 3(c) are given in Table
1. By Table 1, we find that the RMLE estimator gRMLE in CASE 1 demonstrates
a large bias, since K is relatively large. In the meanwhile, the debiased US
estimator gus suffers from high SE values. These observations are in line with
the theoretical findings of the proposed Theorems 1-2.

4.2. Swedish traffic sign data analysis

4.2.1. Data processing

For illustration purpose, we present an interesting real data example. The
dataset used in this study is the Swedish Traffic Sign (STS) dataset, which
is publicly available at https://www.cvl.isy.liu.se/research/datasets/
traffic-signs-dataset/. It contains a total of 1,970 annotated images with
various traffic signs annotated by bounding boxes; see Figure 1 for a graphical
illustration. We aim to detect the traffic signs in Figure 1 automatically. For
a reliable evaluation, we randomly split the entire data into two parts. The
first part contains 1,576 images (about 80% of the whole data) for training,
while the remaining 394 images (about 20% of the whole data) for testing.
This task contains two important steps; see |Girshick et al. (2014) and |Girshick
(2015). For the first step, one needs to automatically detect a sufficiently tight
local region containing a traffic sign from an input image without bounding
box information. In the second step, one needs to classify the traffic signs
detected in the local region to different categories (e.g., prohibitive, informative,
warning and mandatory traffic signs). In this study, we focus on the first step.


https://www.cvl.isy.liu.se/research/datasets/traffic-signs-dataset/
https://www.cvl.isy.liu.se/research/datasets/traffic-signs-dataset/
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We subsequently demonstrate how this task can be converted into a logistic
regression problem, which has a large sample size and can be efficiently solved
by our proposed method in a distributed way.

Specifically, each image given in the STS dataset is of relatively high resolu-
tion; see Figure 4(a). Mathematically, each image can be represented by a tensor
of size 960 x 1,280 x 3; see Figure 4(b). Next, we apply a pretrained VGG16
model on the image (Simonyan and Zisserman| (2014)). The VGG16 model is
a classical convolutional neural network model with a total of 13 convolutional
layers. The last two fully connected layers are dropped. Then, a feature map of
size 30 x 40 x 512 can be extracted from the last convolutional layer; see Figure
4(c). This can be viewed as a new “image” of resolution 30 x 40 but with a total of
512 channels. We can then treat each pixel of this feature map as one sample. As
a result, a total of 30 x 40 = 1,200 pixel samples can be generated for each image.
For each pixel sample, a feature vector of 512 dimension can be constructed.
Consequently, we have p = 512 in this case. The ith image is then denoted by
Xikhye € RO with 1 <4 < N, 1 <k; <30 and 1 < ky < 40; see Figure 4(d).
Then the total sample size is given by N = 1,970 x 1,200 = 2,364,000.

We next present the details about how the response Y, x, € {0,1} is
constructed. Define W; = (W, r,) as a binary matrix with dimensions 960 x
1,280 and W, x, x, € {0,1}. For a given image with the bounding box information,
define W, y, x, = 1 if the (k1, k2)th pixel is located in the bounding box region and
Wi kiks = 0 otherwise; see Figure 4(e) and (f). Subsequently, we partition W;
matrix into a 30 x40 block matrix with equal sizes; see Figure 4(f). Specifically, we
write this block matrix as W; = (W, x, x,) with W, ., € R32¥32 for 1 < k; < 30
and 1 < ko < 40. Next, compute the average value of the block matrix
W, k1., and denote it by 1 5, x,. With the help of TensorFlow and GPU, this
operation can be efficiently conducted in a fully parallel way by an average pooling
operation. Define Y, ., x, = I(tir, k, > 0.5). Then Y, r, becomes the binary
response associated with X; x, x,; see Figure 4(g) and (h). They both correspond
to the same region in the original image. All data (8.59 GB, including X, x, x,
and Y, x, x,) are placed on the hard drive. A simple calculation reveals that the
sample mean of Y; j, x, is 0.225%, which is extremely small. Thus, we can treat
it as the rare events data.

Since the total sample size is extremely large, we call for a distributed
computation. For illustration purpose, we fix the number of local computers
as K = 50. This leads to the sample size allocated to each local machine
being approximately N/K = 47,280 by the RANDOM strategy and N; +
No/K = 52,491 by the COPY strategy. Consequently, the three distributed
estimators gRMLE, §US and é\lpw are computed based on the train data. For
comparison purpose, §GMLE is also computed by self-developed Newton-Raphson
type algorithm. If this algorithm is executed on one single computer, then the
time cost is extremely high. If the algorithm is executed on a distributed system,
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Figure 5. Prediction results FP obtained on the test data.

then the communication cost is extremely high due to the Newton-Raphson type
iteration. Simply speaking, this self-developed algorithm is mainly developed
here for theoretical comparison. It can hardly be used in real practice due to its
high cost in time, either due to communication or computation.

4.2.2. Performance results

Next, consider the ¢*th image (1 < i* < N*) in the test data, where N* = 394
denotes the number of images for testlng For a given pixel (ki,k2) in the i*th
image and one particular estimator 0 obtained on the train data (i.e. HRMLE) we
then estimate the response probability by Py i, u, = €7 % kikz /(1 + e Fimkinz)
and predict S?i*7k1’k2 = I(Di* ky ko > Ci), Where ¢ = min{Di gy by © Yir by hy =
1,1 <k; <30,1 < ky <40}. This ¢ is the largest threshold value so that all the
positive instances can be correctly captured. However, the price paid here is the
false positive predictions. Define the number of the false positive instances for
the i*th image in the test data as FP;- = 37, T(Yie gy = DI (Ye gy 5y = 0).
Its median value is then computed as FP*. Then its overall mean across different
random replications is denoted as FP. The prediction results are shown in Figure
5. By Figure 5, we observe that the FP value of the IPW method is as low as 1.88,
which is much smaller than 2.52 of the RMLE method and 2.20 of the US method.
This value is the same as 1.88 of the GMLE method. To summarize, among all
distributed estimators, the IPW estimator achieves the best performance with
the smallest FP value of 1.88.

To gain further intuitive understanding about the prediction accuracy, we
present several randomly selected prediction results in Figure 6. Specifically,
each row in Figure 6 shows one arbitrarily selected image in the test data. The
first column shows the original input image of size 960x 1,280. The second column
presents the prediction results of the US method. The third column illustrates
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Figure 6. A number of arbitrarily selected test examples for prediction demonstration.
Each row represents one arbitrarily selected image from the test data. The input images
are shown in the first column. The second column presents the US method. The third
column presents the RMLE method. The fourth column presents the IPW method. The
fifth column presents the GMLE method. The last column shows the true annotated
regions.

the prediction results by the RMLE method. The fourth column presents the
prediction results due to the GMLE method. The fifth column illustrates the
prediction results by the IPW method. The last column represents the true
annotated regions. By Figure 6, we find that the prediction results of both US
and RMLE methods are very noisy. The prediction results of both GMLE and
IPW methods are much better and very comparable.

5. Conclusion

In this study, we have investigated a distributed logistic regression problem
for massive rare events data. We study here two different data distribution
strategies. They are RANDOM and COPY strategles respectlvely We also
investigate three different estimators. They are ORMLE, HUS and GIPW, respectively.
Our results suggest that the COPY strategy together with the modified log-
likelihood function for the IPW estimator is the best choice. The resulting
estimator can be statistically as efficient as the global estimator. To conclude
this article, we would like to discuss a number of interesting topics for future
study. First, we focus on the logistic regression model in this paper. It is
interesting to investigate more complicated and general models in future research
projects for the rare events data. Second, we use the OS strategy for the last
step in the distributed estimation. Although this strategy is efficient in terms
of communication, it might not be the best choice if the data are non-randomly
distributed across different local machines (Zhu, Li and Wang (2021)). In this
case, various inverse variance weighting (IVW) methods (Lin and Xi| (2011));
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Zhu, Li and Wang (2021); Yu et al.| (2022)) can be used. The key idea of IVW is
to take the weighted average of local estimators. The weights are related to the
inverse of the Hessian matrices, which are computed by local computers. How
to combine the IVW idea with our COPY strategy for distributed rare events
data analysis seems to be an another interesting topic for future study. Lastly,
covariates in large datasets typically have high dimensionality. Thus, how to
conduct feature selection or screening based on these distributed estimators is
worthy of consideration.

Supplementary Material

The online Supplementary Material contains the proofs of all theoretical
results in the main text.

Acknowledgments

We thank the editor, associate editor, and two referees for their insightful
comments. Xuening Zhu’s research is supported by the National Natural Science
Foundation of China (nos. 72222009, 71991472). Hansheng Wang’s research is
partially supported by National Natural Science Foundation of China (12271012,
11831008) and also partially supported by the Open Research Fund of Key
Laboratory of Advanced Theory and Application in Statistics and Data Science
(KLATASDS-MOE-ECNU-KLATASDS2101).

References

Bolton, R. J. and Hand, D. J. (2002). Statistical fraud detection: A review. Statistical Science
17, 235-255.

Boyd, S., Parikh, N., Chu, E., Peleato, B. and Eckstein, J. (2011). Distributed optimization and
statistical learning via the alternating direction method of multipliers. Foundations and
Trends® in Machine learning 3, 1-122.

Chang, X., Lin, S.-B. and Wang, Y. (2017). Divide and conquer local average regression.
Electronic Journal of Statistics 11, 1326-1350.

Chawla, N. V., Bowyer, K. W., Hall, L. O. and Kegelmeyer, W. P. (2002). Smote: Synthetic
minority over-sampling technique. Journal of Artificial Intelligence Research 16, 321-357.

Chen, G., Wang, H., Chen, K., Li, Z., Song, Z., Liu, Y. et al. (2022). A survey of the four
pillars for small object detection: Multiscale representation, contextual information, super-
resolution, and region proposal. IEEE Transactions on Systems, Man, and Cybernetics:
Systems 52, 936-953.

Chen, J., Sun, B., Li, H., Lu, H. and Hua, X.-S. (2016). Deep CTR prediction in display
advertising. In Proceedings of the 24th ACM International Conference on Multimedia, 811—
820.

Drummond, C. and Holte, R. C. (2003). C4.5, class imbalance, and cost sensitivity: Why under-
sampling beats over-sampling. In Workshop on Learning from Imbalanced Datasets II, 1-8.
Citeseer.



2298 LI, ZHU AND WANG

Du, W., Li, A. and Li, Q. (2018). Privacy-preserving multiparty learning for logistic regression.
In International Conference on Security and Privacy in Communication Systems, 549-568.
Springer.

Estabrooks, A., Jo, T. and Japkowicz, N. (2004). A multiple resampling method for learning
from imbalanced data sets. Computational Intelligence 20, 18-36.

Fithian, W. and Hastie, T. (2014). Local case-control sampling: Efficient subsampling in
imbalanced data sets. The Annals of Statistics 42, 1693—-1724.

Girshick, R. (2015). Fast R-CNN. In Proceedings of the IEEE International Conference on
Computer Vision, 1440-1448.

Girshick, R., Donahue, J., Darrell, T. and Malik, J. (2014). Rich feature hierarchies for accurate
object detection and semantic segmentation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 580-587.

Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H. and Bing, G. (2017). Learning
from class-imbalanced data: Review of methods and applications. Fxpert Systems with
Applications 73, 220-239.

Han, H., Wang, W.-Y. and Mao, B.-H. (2005). Borderline-smote: A new over-sampling method
in imbalanced data sets learning. In International Conference on Intelligent Computing,
878-887. Springer.

Hassan, A. K. I. and Abraham, A. (2016). Modeling insurance fraud detection using imbalanced
data classification. In Advances in Nature and Biologically Inspired Computing, 117-127.
Springer.

Huang, J.-T., Sharma, A., Sun, S., Xia, L., Zhang, D., Pronin, P. et al. (2020). Embedding-
based retrieval in facebook search. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2553—-2561.

Japkowicz, N. (2000). Learning from imbalanced data sets: A comparison of various strategies.
In AAAI Workshop on Learning from Imbalanced Data Sets, 10-15. AAATI Press, Menlo
Park.

Kaur, H., Pannu, H. S. and Malhi, A. K. (2019). A systematic review on imbalanced data
challenges in machine learning: Applications and solutions. ACM Computing Surveys
(CSUR) 52, 1-36.

Kiefer, J. (1959). Optimum experimental designs. Journal of the Royal Statistical Society. Series
B (Methodological) 21, 272-304.

King, G. and Zeng, L. (2001). Logistic regression in rare events data. Political Analysis 9, 137—
163.

Korkmaz, S. (2020). Deep learning-based imbalanced data classification for drug discovery.
Journal of Chemical Information and Modeling 60, 4180-4190.

Krawczyk, B. (2016). Learning from imbalanced data: Open challenges and future directions.
Progress in Artificial Intelligence 5, 221-232.

Lin, N. and Xi, R. (2011). Aggregated estimating equation estimation. Statistics and its
Interface 4, 73-83.

Liu, X.-Y., Wu, J. and Zhou, Z.-H. (2008). Exploratory undersampling for class-imbalance learn-
ing. IEEFE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 39, 539—
550.

Mathew, J., Pang, C. K., Luo, M. and Leong, W. H. (2017). Classification of imbalanced data
by oversampling in kernel space of support vector machines. IEEE Transactions on Neural
Networks and Learning Systems 29, 4065—4076.



DISTRIBUTED LOGISTIC REGRESSION FOR MASSIVE DATA WITH RARE EVENTS 2299

McMahan, H. B., Holt, G., Sculley, D., Young, M., Ebner, D., Grady, J. et al. (2013). Ad
click prediction: A view from the trenches. In Proceedings of the 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 1222-1230.

Nelder, J. A. and Wedderburn, R. W. (1972). Generalized linear models. Journal of the Royal
Statistical Society. Series A (General) 135, 370-384.

Neunhoeffer, M. and Sternberg, S. (2019). How cross-validation can go wrong and what to do
about it. Political Analysis 27, 101-106.

Nguyen, H. M., Cooper, E. W. and Kamei, K. (2012). A comparative study on sampling
techniques for handling class imbalance in streaming data. In The 6th International
Conference on Soft Computing and Intelligent Systems, and The 13th International
Symposium on Advanced Intelligence Systems, 1762—-1767. IEEE.

Owen, A. B. (2007). Infinitely imbalanced logistic regression. The Journal of Machine Learning
Research 8, 761-773.

Rosenblatt, J. D. and Nadler, B. (2016). On the optimality of averaging in distributed statistical
learning. Information and Inference: A Journal of the IMA 5, 379-404.

Shao, J. (2003). Mathematical Statistics. Springer Science & Business Media.

Shi, P., Wang, P. and Zhang, H. (2019). Distributed logistic regression for separated massive
data. In CCF Conference on Big Data, 285—-296. Springer.

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale image
recognition. arXw:1409.1556.

Sun, Y., Kamel, M. S.;, Wong, A. K. and Wang, Y. (2007). Cost-sensitive boosting for
classification of imbalanced data. Pattern Recognition 40, 3358-3378.

Sun, Y., Wong, A. K. and Kamel, M. S. (2009). Classification of imbalanced data: A review.
International Journal of Pattern Recognition and Artificial Intelligence 23, 687-719.
Wang, H. (2019). More efficient estimation for logistic regression with optimal subsamples. The

Journal of Machine Learning Research 20, 1-59.

Wang, H. (2020). Logistic regression for massive data with rare events. In Proceedings of the
37th International Conference on Machine Learning PMILR 119, 9829-9836.

Wang, H., Gao, Y., Shi, Y. and Wang, H. (2016). A fast distributed classification algorithm for
large-scale imbalanced data. In 2016 IEEE 16th International Conference on Data Mining
(ICDM), 1251-1256. IEEE.

Wang, H., Zhang, A. and Wang, C. (2021). Nonuniform negative sampling and log odds correc-
tion with rare events data. Advances in Neural Information Processing Systems 34, 19847—
19859.

Wang, H., Zhu, R. and Ma, P. (2018). Optimal subsampling for large sample logistic regression.
Journal of the American Statistical Association 113, 829-844.

Yu, J., Wang, H., Ai, M. and Zhang, H. (2022). Optimal distributed subsampling for maxi-
mum quasi-likelihood estimators with massive data. Journal of the American Statistical
Association 117, 265-276.

Zhang, H. and Chen, S. X. (2020). Concentration inequalities for statistical inference.
arXiw:2011.02258.

Zhang, Y., Duchi, J. C. and Wainwright, M. J. (2013). Communication-efficient algorithms for
statistical optimization. The Journal of Machine Learning Research 14, 3321-3363.

Zhao, Z.-Q., Zheng, P., Xu, S.-T. and Wu, X. (2019). Object detection with deep learning: A
review. IEEE Transactions on Neural Networks and Learning Systems 30, 3212-3232.
Zhu, M., Su, W. and Chipman, H. A. (2006). Lago: A computationally efficient approach for

statistical detection. Technometrics 48, 193-205.



2300 LI, ZHU AND WANG

Zhu, X., Li, F. and Wang, H. (2021). Least-square approximation for a distributed system.
Journal of Computational and Graphical Statistics 30, 1004-1018.

Zhu, Z., Liang, D., Zhang, S., Huang, X., Li, B. and Hu, S. (2016). Traffic-sign detection and
classification in the wild. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2110-2118.

Zhuang, J., Cai, J., Wang, R., Zhang, J. and Zheng, W. (2019). CARE: Class attention to regions
of lesion for classification on imbalanced data. In Proceedings of the 2nd International
Conference on Medical Imaging with Deep Learning PMLR 102, 588-597.

Zuo, L., Zhang, H., Wang, H. and Sun, L. (2021). Optimal subsample selection for massive
logistic regression with distributed data. Computational Statistics 36, 2535—-2562.

Xuetong Li

Department of Business Statistics and Econometrics, Peking University, Beijing 100871, China.
E-mail: 2001110929@stu.pku.edu.cn

Xuening Zhu

School of Data Science, Fudan University, Shanghai 200433, China.

E-mail: xueningzhu@fudan.edu.cn

Hansheng Wang

Department of Business Statistics and Econometrics, Peking University, Beijing 100871, China.
E-mail: hansheng@gsm.pku.edu.cn

(Received July 2022; accepted April 2023)


mailto:2001110929@stu.pku.edu.cn
mailto:xueningzhu@fudan.edu.cn
mailto:hansheng@gsm.pku.edu.cn

	Introduction
	Logistic Regression with Rare Events Data
	Model setup
	Related methods
	Global maximum likelihood estimation
	Under-sampled estimation
	Inverse probability weighted estimation


	Distributed Logistic Regression
	Distributed MLE with random strategy
	Under-sampling with an unweighted objective function 
	Under-sampling with a weighted objective function

	Numerical Studies
	A simulation study
	Model setup and performance measure
	Simulation results

	Swedish traffic sign data analysis
	Data processing
	Performance results


	Conclusion

