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Abstract: Peskun ordering is a partial ordering defined on the space of transition

matrices of discrete time Markov chains. If the Markov chains are reversible with

respect to a common stationary distribution π, Peskun ordering implies an ordering

on the asymptotic variances of the resulting Markov chain Monte Carlo estimators

of integrals with respect to π. Peskun ordering is also relevant in the framework

of time-invariant estimating equations in that it provides a necessary condition for

ordering the asymptotic variances of the resulting estimators. Tierney ordering

extends Peskun ordering from finite to general state spaces. In this paper Peskun

and Tierney orderings are extended from discrete time to continuous time Markov

chains.

Key words and phrases: Asymptotic variance, covariance ordering, efficiency order-

ing, MCMC, time-invariance estimating equations.

1. Introduction

The class of Markov chains (MCs) that are stationary with respect to a

specified distribution, π, plays an important role in two separate but connected

fields, namely Markov chain Monte Carlo methods (MCMC), Hastings (1970),

and time-invariance estimating equations (TIEE), Baddeley (2000).

In MCMC we are interested in estimating the expected value, Eπf , of a

function f with respect to a distribution π. If such integral cannot be computed

analytically, either because the state space is too large or because π and/or f are

too complicated, we construct a Markov chain that has π as its unique stationary

and limiting distribution. The MC is run for n time-steps to produce a simulated

path: x1, x2, · · · xn, possibly after a burn-in period that allows the MC to forget

its initial distribution and to reach the stationary regime. We then estimate

µ = Eπf by µ̂n = (1/n)
∑n

i=1 f(xi). Under regularity conditions, Tierney (1994),

the Strong Law of Large Numbers and the Central Limit Theorem ensure that

µ̂ is asymptotically unbiased and normally distributed.

Time-invariant estimating equations is a general framework to construct es-

timators for generic models. Suppose we have a model indexed by a parameter,
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πθ, and we are interested in estimating θ. We construct a MC that has the

model of interest as its stationary distribution. An unbiased estimating equa-

tion is obtained by equating to zero the generator of the Markov chain applied

to some function, S, defined on the sample space and evaluated at the data, x.

A natural way to evaluate the performance of time-invariant estimators is the

Godambe-Heyde asymptotic variance, Godambe and Kale (1991).

Both in the MCMC and the TIEE framework there are some degrees of

freedom on how to choose the Markov chain since, given the distribution or the

model of interest, there are many MCs that are stationary with respect to it. In

the MCMC context this raises the following question: given two Markov chains,

Q1 and Q2, both ergodic with respect to π, which one produces estimators of

Eπf with smaller asymptotic variance? The corresponding question in the TIEE

framework is the following: given two Markov chains stationary with respect to

πθ, which one produces time-invariant estimators of θ with smaller Godambe-

Heyde asymptotic variance?

Peskun (1973) first addressed the question in the MCMC context by propos-

ing a partial ordering on the space of discrete time Markov chains defined on

finite state spaces. The ordering was later extended by Tierney (1998) to general

state space MCs, but the discrete time assumption was retained. In their papers,

Peskun and Tierney demonstrate that their respective orderings imply an order-

ing on the resulting MCMC estimators in terms of asymptotic variances; i.e.,

in terms of their efficiency. A related partial ordering, the covariance ordering,

was later introduced by Mira and Geyer (1999). While Peskun ordering gives a

sufficient condition for efficiency ordering, covariance ordering is equivalent to

efficiency ordering.

The related question in the TIEE framework was first addressed by Mira

and Baddeley (2001). The authors show that Peskun ordering gives a necessary

but not sufficient condition for Godambe-Heyde ordering.

Both in the MCMC and in the TIEE framework one often has to deal

with continuous time Markov chains. In particular, in the MCMC framework,

there has been success in constructing an efficient proposal distribution for the

Metropolis-Hastings algorithm by using the Euler discretizations of the transi-

tion probabilities of a Langevin diffusion process that has π as its stationary

distribution. The seminal paper along these lines appeared in the physics liter-

ature (Doll, Rossky and Friedman (1978)), and the idea was only later brought

into the mainstream statistical literature in a discussion by Besag (1994). The-

oretical convergence properties, in terms of speed of convergence to stationarity,

of these type of MCMC algorithms have been extensively studied, see for ex-

ample Roberts and Tweedie (1996a,b) and Stramer and Tweedie (1999a,b). On
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the other hand, to our knowledge, there is still no theoretical discussion of the

properties of these diffusion Metropolis-Hastings-type algorithms in terms of the

asymptotic variance of the resulting estimators; i.e., in terms of efficiency order-

ings. As for the TIEE framework, there are state-space models that naturally

appear as stationary distributions of continuous time processes. Just to give one

example, a Gibbs point processes can be seen as the stationary distribution of

a spatial birth and death process. For more examples refer to Baddeley (2000),

Mira and Baddeley (2001), Mira and Baddeley (2007). In order to study the per-

formance of the resulting time-invariant estimators in this context, the extension

of Peskun ordering proposed in the present paper could be highly beneficial.

The aim of this paper is to extend Peskun ordering to the case of continuous

time Markov chains. Despite the fact that Peskun ordering can be relevant in

two different general frameworks, as we noted above, we mainly focus on the

original MCMC context where Peskun ordering was introduced. In Section 2 we

review the Peskun (2.1) and Tierney (2.2) orderings defined in discrete time for

finite and general state space Markov chains, respectively. We then show how

continuous time Markov chains could be exploited for MCMC purposes (Section

3). The core of the paper is in Section 4 and 5, where new orderings are defined

for continuous time Markov chains in finite and general state spaces, respectively.

An example (Section 6) and some remarks on possible future research directions

conclude the paper.

2. Ordering of Markov Chains in the MCMC Setting

In this section we review the definitions of orderings defined on the space

of Markov chains that are stationary with respect to a common distribution of

interest. These orderings are relevant for MCMC purposes in that they link

the performance of the resulting MCMC estimators to some characteristic of the

transition kernel used to update the underlying MC.

In particular we first give a definition of the efficiency ordering (Mira (2001))

that holds both for finite and general state spaces. We then review the Peskun

(1973) and Tierney (1998) orderings and the results that connect these orderings

to the efficiency of the resulting MCMC estimators.

2.1. Efficiency ordering

We begin by giving some definitions and setting up the notation. Let Q =

{qij}ij∈E be a time-invariant transition matrix; i.e.,

qij = P (Xt+1 = j|Xt = i), ∀t,
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where the MC takes values on a finite state space E, and Xt denote the position of

the MC at time t. We identify Markov chains with the corresponding transition

matrices.

Let S be the class of Markov chains stationary with respect to some given

distribution of interest, say π (i.e., Q ∈ S if πQ = π), R be the subset of the

reversible ones, and L2(π) be space of all functions that have a finite variance

with respect to π. Let v(f,Q) be the limit, as n tends to infinity, of n times the

variance of the MCMC estimator, µ̂n, computed on a π-stationary chain updated

using the transition matrix Q:

v(f,Q) = lim
n→∞

nVarπ(µ̂n) = Varπ(f(X))
[

1 + 2

∞
∑

j=1

ρj

]

,

where ρj = Corπ[f(X0), f(Xj)] is the lag-j autocorrelation along the simulated

π-stationary chain.

Definition 1. Let Q1, Q2 ∈ S. Q1 is uniformly more efficient than Q2, Q1 �E

Q2, if v(f,Q1) ≤ v(f,Q2) for all f ∈ L2(π).

2.2. Peskun ordering for discrete time finite state space Markov chains

Definition 2. Given two Markov chains Q1, Q2 ∈ S , Q1 = {q(1)ij}i,j∈E and

Q2 = {q(2)ij}i,j∈E, we say that Q1 is better than Q2 in the Peskun sense, and

write Q1 �P Q2, if

q(1)ij ≥ q(2)ij , ∀i 6= j.

Peskun ordering is also known as off the diagonal ordering because, in order

that Q1 �P Q2, each of the off-diagonal elements of Q1 has to be greater than or

equal to the corresponding off-diagonal elements in Q2. This means that Q1 has a

higher probability of moving around in the state space than Q2, and therefore the

corresponding Markov chain explores the space in a more efficient way (better

mixing). Thus, we expect that the resulting MCMC estimates will be more

precise than the ones obtained by averaging along a Markov chain generated via

Q2. This intuition is stated more rigorously in the Peskun (1973) theorem.

Theorem 1. Given two Markov chains Q1, Q2 ∈ R, Q1 �P Q2 ⇒ Q1 �E Q2.

The first use of this ordering appears in Peskun (1973), where the author

shows that the Metropolis-Hastings algorithm, Hastings (1970), the main algo-

rithm used in MCMC, dominates a class of competitors reversible with respect

to some π, all with the same propose/accept updating structure, and with sym-

metric acceptance probability (see also Baddeley (2000)).
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2.3. Tierney ordering for discrete time general state space Markov

chains

We identify Markov chains with the corresponding transition kernels: Q(x,A)

= Pr(Xn ∈ A|Xn−1 = x) for every set A.

Definition 3. If Q1 and Q2 are transition kernels on a measurable space with

stationary distribution π, then Q1 dominates Q2 in the Tierney ordering, Q1 �T

Q2, if for π−almost all x in the state space we have Q1(x,B\{x}) ≥ Q2(x,B\{x})
for all measurable B.

The theorem of Tierney (1998) extends Theorem 2.1.1 by Peskun (1973).

Theorem 2. Given two Markov chains Q1, Q2 ∈ R, Q1 �T Q2 ⇒ Q1 �E Q2.

3. Continuous Time Markov Chains for MCMC Simulations

Let {X(t)}t∈ℜ+ be a continuous time MC (CTMC) taking values on a finite

state space E. Let G = {gij}i,j∈E be the generator of the MC. G is a matrix

with row sums equal to zero, having negative entries along the main diagonal

and positive entries otherwise. Assume that the MC is reversible, this condition,

usually checked on the MC transition matrix, can also be checked on the generator

by requiring that

πigij = πjgji ∀i, j ∈ E.

Let I be the identity matrix, c = supi |gii| and ν ≥ c, then Pν = I + (1/ν)G

is a stochastic matrix. Note that if G is reversible with respect to π, then so

is Pν ,∀ν. Such CTMC (based on Pν) could be used for MCMC purposes in the

following way. Assume, without loss of generality, that f has zero mean and finite

variance under π, f ∈ L2
0(π), and furthermore assume that f belongs to the range

of the generator, R(G), of the CTMC. Suppose we are interested in estimating

µ =
∫

f(x)π(dx). Construct a CTMC {X(t)}t∈ℜ+ ergodic with respect to π, fix

t > 0, and take

µ̂nt =
1√
n

∫ nt

0
f(X(s))ds

to be the MCMC estimator. By Theorem 2.1 in Bhattacharya (1982), µ̂nt con-

verges weakly to the Wiener measure with zero drift and variance parameter

v(f,G) = −2 < f, g >= −2

∫

f(x)g(x)π(dx) ≥ 0,

where g is some element in the domain of the generator, D(G) (i.e., the limit

lim
t→0

E[g(Xt)|X0 = x]

t
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exists), and Gg = f .

In Proposition 2.4, Bhattacharya (1982), proves that v(f,G) > 0 for all

non constant (a.s. π) bounded f in the range of G provided, for some t > 0

and all x, the transition probability P (t, x, dy) and the invariant measure π are

mutually absolutely continuous. If, however, G is reversible, then v(f,G) > 0

for all nonzero f ∈ R(G) without the additional assumption of boundedness and

mutual absolute continuity.

4. Peskun Ordering for Continuous Time Finite State Space MCs

We now introduce the generalized version of Peskun ordering for CTMC.

Definition 4. Let G1 = {g(1)ij} and G2 = {g(2)ij} be two CTMCs, both sta-

tionary with respect to π. We say that G1 dominates G2 in the Peskun sense,

and write G1 �P G2, if g(1)ij ≥ g(2)ij , ∀i 6= j.

The following theorem mimics the one in Tierney (1998).

Theorem 3. If G1 �P G2 and if the corresponding CTMCs are reversible, then

G2 − G1 is a positive operator.

Proof. Let c1 = supi |g(1)ii|, c2 = supi |g(2)ii| and ν ≥ max(c1, c2). Define

P1(ν) = I +
1

ν
G1 and P2(ν) = I +

1

ν
G2.

We thus have that G1 = ν(P1(ν) − I) and G2 = ν(P2(ν) − I). If G1 �P G2 it

follows that P1(ν) �P P2(ν). By Lemma 3 in Tierney (1998), it then follows that

P2(ν) − P1(ν) is a positive operator, and G2 − G1 = ν(P2(ν) − P1(ν)).

For f, g ∈ L2(π), write < f, g >=
∫

f(x)g(x)π(dx), and recall that an oper-

ator P on L2(π) is said to be self-adjoint, if for all f, g ∈ L2(π), < Pf, g >=<

f,Pg > .

Theorem 4. If G1 �P G2 and if the corresponding CTMCs are reversible, then

v(f,G1) ≤ v(f,G2), ∀f ∈ R(G1) ∩ R(G2),

where v(f,G1) and v(f,G2) are the asymptotic variances of estimators µ̂n ob-

tained by simulating the CTMCs that have G1 and G2, respectively, as generators.

Proof. From Bhattacharya (1982), for all functions f ∈ R(G1)∩R(G2), we have

v(f,Gi) = −2 < f, gi >, i = 1, 2, (4.1)

where gi ∈ D(Gi) and is such that

Gigi = f, i = 1, 2. (4.2)
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It follows that v(f,Gi) = −2 < Gigi, gi >, i = 1, 2. Define Hβ = G1 +β(G2 −G1)

and gλ = g1 + λ(g2 − g1), where 0 ≤ β ≤ 1 and 0 ≤ λ ≤ 1. Let hλ(β) = −2 <

Hβgλ, gλ > . Then h
′

λ(β) = −2 < (G2 − G1)gλ, gλ > and the derivative is non-

positive for every λ because G2−G1 is a positive operator. It follows that hλ(β) is

a decreasing function in β for any λ. We thus have that hλ(0) ≥ hλ(1),∀λ ∈ [0, 1].

Taking λ = 0 we get h0(0) = v(f,G1) and h0(1) = −2 < G2g1, g1 > . We thus

have

v(f,G1) ≥ −2 < G2g1, g1 >

= −2 < G2(g1 − g2 + g2), (g1 − g2 + g2) >

= −2 < G2(g1 − g2), (g1 − g2) > −2 < G2g1, g2 > +2 < G2g2, g2 >

−2 < G2g2, g1 > +2 < G2g2, g2 > −2 < G2g2, g2 >

= −2 < G2(g1 − g2), (g1 − g2) > −2 < G1g1, g1 > +2 < G2g2, g2 >

−2 < G1g1, g1 > +2 < G2g2, g2 > −2 < G2g2, g2 >

= −2 < G2(g1 − g2), (g1 − g2) > +v(f,G1) − v(f,G2)

+v(f,G1) − v(f,G2) + v(f,G2). (4.3)

The third equality in (4.3) follows from the fact that G is a self-adjoint operator

and from (4.2). The last equality in (4.3) follows from (4.1). As a result we

obtain

v(f,G2) − v(f,G1) ≥ −2 < G2(g1 − g2), (g1 − g2) > ≥ 0.

This results can easily be extended to countable state spaces provided the

Markov chain is uniformizable (see Kijima (1997, p.195)), which guarantees the

existence of Pν .

5. Tierney Ordering for Continuous Time General State Space Markov

Chains

Let E be a general state space and E the associated sigma-algebra. Consider

an homogeneous continuous time MC {Xt}t∈ℜ+ taking values on E, with transi-

tion kernel P (t, x, dy) and generator G : D(G) → R(G). If the generator of the

process can be written as an operator:

Gf(x) =

∫

f(y)Q(x, dy), (5.1)

where the kernel Q is defined in terms of the transition kernel P as

Q(x, dy) =
∂

∂t
P (t, x, dy) |t=0,
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we can extend Tierney ordering to CTMCs in the following way. Let G1 and

G2 be the generators of two CTMCs with kernels Q1 and Q2, respectively, both

stationary with respect to a common distribution π taking values on E. Assume

supx Qi(x,E \ {x}) < ∞, i = 1, 2.

Definition 5. G1 dominates G2 in the Tierney ordering, G1 �P G2, if Q1(x,A\
{x}) ≥ Q2(x,A \ {x}), ∀A ∈ E .

In this setting Theorems 3 and 4 can be easily extended to general state

spaces.

Theorem 5. If G1 �P G2 and if the corresponding kernels are reversible with

respect to a common distribution π on E, then G2 − G1 is a positive operator.

Proof. Let c1 = supx Q1(x,E \ {x}) < ∞, c2 = supx Q2(x,E \ {x}) < ∞ and

ν ≥ max(c1, c2). Then P1ν(x, dy) = δx(dy) + (1/ν)Q1(x, dy) and P2ν(x, dy) =

δx(dy) + (1/ν)Q2(x, dy) are transition kernel of CTMCs, reversible with respect

to π, and such that P1ν �P P2ν . By Lemma 3 in Tierney (1998), it then follows

that P2ν − P1ν = (1/ν)(Q2 − Q1) is a positive operator and, as a consequence,

Q2 − Q1 is also a positive operator.

Theorem 6. If G1 �P G2 and the corresponding kernels are reversible with

respect to a common distribution π on E, then

v(f,G1) ≤ v(f,G2), ∀f ∈ R(G1) ∩ R(G2),

where v(f,G1) and v(f,G2) are the asymptotic variances of MCMC estimators

obtained by simulating the processes having generators G1 and G2 respectively.

The proof is the same as the one of Theorem 4.

Unfortunately not all CTMCs admit the representation in (5.1), for example

the generator of the multidimensional Brownian motion is the Laplacian. On the

other hand, the generator of a Markov jump process is such that

Gf(x) = λ(x)

∫

[f(y) − f(x)]µ(x, dy), (5.2)

where µ(x, dy) is the transition kernel and λ(x) is a non-negative bounded real

function on E. Let λ = supx∈E λ(x) (assume λ > 0). We can then rewrite (5.2)

as

Gf(x) = λ

∫

[f(y) − f(x)]µ′(x, dy),

where µ′(x, dy) = [1−λ(x)/λ]δx(dy)+(λ(x)/λ)µ(x, dy). Let Q(x, dy) = λ[µ′(x, dy)

−δx(dy)], so that, as required, Gf(x) =
∫

f(y)Q(x, dy).
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6. An Example of Peskun Ordering

Let {X(t)}t∈ℜ+ be a birth and death process taking values in E = {0, . . . , N},
and having infinitesimal generator

G1 =



















−λ0 λ0 0 0 · · · 0

µ1 −λ1 − µ1 λ1 0 · · · 0

0 µ2 −λ2 − µ2 λ2 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 µN−1 −λN−1 − µN−1 λN−1

0 · · · 0 0 µN −µN



















,

where λi, µi > 0,∀i are the birth and death rates respectively. The invariant

distribution of the process is, up to a proportionality constant, π0 = 1 and

πi =
λ0λ1 · · · λi−1

µ1µ2 · · ·µi

, i = 1, . . . , N.

Furthermore the process is reversible with respect to this invariant distribution.

Without loss of generality take N = 4 and fix the birth rates λ0 = 1, λ1 =

2, λ2 = 3, λ3 = 2 and the death rates µ1 = 1, µ2 = 3, µ3 = 2, µ4 = 1. The

invariant distribution is, up to a proportionality constant, π0 = 1, π1 = 1, π2 =

2/3, π3 = 1, π4 = 2.

Consider now a different birth and death process, G2 with rates λ1 = 2, λ2 =

6, λ3 = 15, λ4 = 4 and µ1 = 2, µ2 = 9, µ3 = 10, µ4 = 2. It is easy to check that G2

is also reversible with respect to the same stationary distribution. Furthermore

we have G2 �P G1.

More general of, if we take any other birth and death process, G(k), where

k = (k1, k2, . . . , kN ),∀k > 0, with rates given by λ(k)i−1 = λi−1ki and µ(k)i =

µiki, i = 1, . . . , N, then this process is also reversible with respect to π and

G(k) �P G1 if ki > 1,∀i .

6.1. A possible use of Peskun ordering for MCMC purposes

Suppose we are interested in sampling from a distribution defined on E,

π ∝ (π0, . . . , πN ). For the sake of simplicity, assume that π0 = 1. The idea is to

use the birth and death process defined in Section 6 to sample from π. We first

construct a birth and death process invariant with respect to π. This is done by

letting the birth and death rates {λ0, λ1, . . . , λN−1, µ1, . . . , µN} be λ0/µ1 = π1

and λi−1/µi = πi/πi−1, i = 2, . . . , N . If P (t) = {pij}i,j∈E is the t-step transition

matrix of the process, e.g. pij(t) = P (X(t) = j|X(0) = i), we can use P (∆) to

sample from π, where ∆ > 0, is a predefined time-step. The intuition is that,

for ∆ sufficiently small, the asymptotic variance of the MCMC estimator will
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be close to v(f,G)/∆ (Mira and Leisen (2007)). We know, from Section 6, that

the choice of the birth and death process is not unique, so by choosing a process

which is better in the Peskun ordering, the resulting MCMC estimator should

have a smaller asymptotic variance. Note that P (∆) is reversible with respect to

π, since

P (t) = exp{Gt} =

∞
∑

i=0

Giti

i!
. (6.1)

To calculate P (∆), for sufficiently small ∆, we use a first order approximation of

(6.1); i.e., we take the first two terms in the infinite sum on the right hand side

to get P (∆) = I +∆G+o(∆). Then pi,i+1(∆) = λi∆+o(∆) as ∆ → 0, for i ≥ 0;

pi,i−1(∆) = µi∆ + o(∆) as ∆ → 0, for i ≥ 1; pi,i(∆) = 1 − (λi + µi)∆ + o(∆)

as ∆ → 0, for i ≥ 0. In the limit, when ∆ = 0, we have pij(0) = δij . We note

that also this first order approximation to P (∆) (and any other higher order

approximation) is reversible with respect to π.

7. Remarks

We plan to investigate the extension of the covariance ordering from discrete

to continuous time Markov chains in further research. At this stage not much

can be said about the performance, in terms of efficiency, of MCMC algorithms

like Langevin diffusions, because we have been able to extend Tierney ordering

from discrete to continuous time only under the assumption that the generator of

the process can be written as an integral operator involving the time-derivative

of the transition kernel. This is an open research line.
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