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Abstract: For a set of dependent random variables, and without using stationary

or strong mixing assumptions, we derive the asymptotic independence between

their sums and maxima. Then, we apply this result to high-dimensional testing

problems. Here, we combine the sum-type and max-type tests, and propose a novel

test procedure for the one-sample mean test, two-sample mean test and regression

coefficient test in a high-dimensional setting. Based on the asymptotic independence

between the sums and maxima, we establish the asymptotic distributions of the test

statistics. Simulation studies show that our proposed tests perform well regardless

of the sparsity of the data. Examples based on real data are also presented to

demonstrate the advantages of our proposed methods.
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1. Introduction

Statistical independence is a very simple structure and is convenient in

statistical inference and applications. In this paper, we study the asymptotic

independence between two common statistics: the extreme-value statistic Mp =

max1≤i≤p Xi, and the sum Sp =
∑p

i=1 Xi, where {Xi}pi=1 is a sequence of

dependent random variables. Then, we apply these results to three high-

dimensional testing problems, with numerical examples.

1.1. Independence between sum and maximum

There is growing academic interest in understanding the asymptotic joint

distribution of Mp and Sp. In an early research, Chow and Teugels (1978)

established the asymptotic independence between Mp and Sp for independent

and identically distributed (i.i.d.) random variables. To overcome the limitation

imposed by the required assumptions, Anderson and Turkman (1991, 1993, 1995)

and Hsing (1995) generalized the asymptotic result to the case in which {Xi}pi=1

is strong mixing; for the concept of “strong mixing” and its properties, see,

*Corresponding author.

https://doi.org/10.5705/ss.202022.0354


1746 FENG ET AL.

for example, Bradley (2005), and the literature therein. In particular, Hsing

(1995) showed that for a stationary sequence, the strong mixing property and the

asymptotic normality of Sp are enough to guarantee the asymptotic independence

of the sum and maximum. However, Davis and Hsing (1995) show that in the

case of an infinite variance, Mp and Sp are not asymptotically independent,

because the asymptotic behavior of Sp is dominated by that of the extreme

order statistic. In addition, Ho and Hsing (1996), Ho and McCormick (1999),

McCormick and Qi (2000), and Peng and Nadarajah (2003) considered the joint

limit distribution of the maximum and sum of the stationary Gaussian sequence

{Xi}pi=1, in which E(Xi) = 0, Var(Xi) = 1, and r(p) = E(XiXi+p). Under

different conditions on r(p), the joint limiting distributions of maxima and sums

are different. Specifically, Ho and Hsing (1996) showed that Mp and Sp are

asymptotically independent, as long as limp→∞ r(p) log p = 0; the two statistics

are not independent provided limp→∞ r(p) log p = ρ ∈ (0,∞). Then, by assuming

limp→∞(log p/p)
∑p

i=1 |r(i)−r(p)| = 0, Ho and McCormick (1999) and McCormick

and Qi (2000) obtained the asymptotic independence of Mp − (Sp/n) and Sp.

The aforementioned results are all based on the stationary assumption that

the covariance structure among {Xi}pi=1 has the property that E(XiXi+h) =

E(X1X1+h), for each integer h and i = 1, . . . , p− h. Although this is a common

assumption in research, it is not easy to check. Even though it can be verified

using hypothesis testing, the stationary property still may not hold up to certain

statistical errors. In fact, in many scenarios this assumption is not true. For

example, for stock data from the US S&P 500 index, in which stock returns are

considered as variables, if stocks are ordered alphabetically by name, the two

stocks, such as AAPL and MSFT, may have both a far distance and a strong

correlation, which does not satisfy the stationary assumption.

In this work, we study the asymptotic independence between S̃p =
∑p

i=1 Z
2
i

and M̃p = max1≤i≤p Z
2
i , without the stationary assumption. In our case,

each Zi is marginally N(0, 1), and the covariance matrix of Zi, denoted by

Σp = (σij)1≤i,j≤p, satisfies certain conditions. Specifically, we first establish the

asymptotically normality of S̃p if [tr(Σ2+δ
p )]2 · [tr(Σ2

p)]
−2−δ → 0 for some δ > 0.

Then, we show that the limit distribution of the maximum M̃p−2 log p+log log p

is a Gumbel distribution, under conditions on the covariance matrix Σp. Finally,

we prove the asymptotic independence between S̃p and M̃p under the conditions

max1≤i<j≤p |σij| ≤ ϱ and max1≤i≤p

∑p
j=1 σ

2
ij ≤ (log p)C , together with two

additional conditions on the maximum and minimum eigenvalues of Σp. These

theoretical results are novel because they do not require the stationary property.

Since these results are universal, they may provide many useful implications. In

this paper, we apply the above asymptotic independence results to three high-

dimensional hypothesis testing problems: the one-sample mean test, two-sample

mean test and regression coefficient test.
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1.2. High-dimensional hypothesis testing

High-dimensional hypothesis testing is an important research area in modern

statistics. It is frequently used in many fields, such as genomics, medical imaging,

risk management, and web search. The motivation for studying high-dimensional

tests is that traditional tests, such as the Hotelling T -squared test, do not work,

in general, when the data dimension is larger than the sample size owing to the

singularity of the sample covariance matrix. A natural way of solving this problem

is to replace the sample covariance matrix in the Hotelling T -squared test statistic

with a nonsingular matrix, such as the identity matrix or the diagonal matrix of

the sample covariance matrix. In this way, for example, Srivastava (2009), Park

and Ayyala (2013), Wang, Peng and Li (2015), Feng, Zou and Wang (2016),

Feng et al. (2015) and Feng et al. (2017) developed tests for the one-sample

mean problem, and Bai and Saranadasa (1996), Srivastava and Du (2008), Chen

and Qin (2010), and Gregory et al. (2015) developed tests for the two-sample

mean problem. In addition, Goeman, van de Geer and van Houwelingen (2006)

and Lan, Wang and Tsai (2014), among others, test the regression coefficients

in high-dimensional linear models. These tests are all sum-type tests, based on

a summation of the parameter estimators. It is well known that sum-type tests

perform well, in general, when the data are dense; that is, most of the parameters

are nonzero under the local alternative. However, such tests may be inefficient

when the data are sparse, where only a few parameters are nonzero under local

alternative. To establish high-dimensional tests for sparse data, Cai, Liu and Xia

(2014), Zhong, Chen and Xu (2013), and Chen, Li and Zhong (2019) propose

max-type tests, which typically perform well on sparse data, but worse when the

data become dense.

In practice, it is often difficult to determine whether or not the data are

sparse. Thus, much effort has been devoted to developing tests with good and

robust performance under both data conditions. For example, Fan, Liao and Yao

(2015) propose a power enhancement procedure that uses a screening technique

for high-dimensional tests. They combine the power enhancement component

with an asymptotically pivotal statistic to strengthen the power under sparse

alternatives. Xu et al. (2016) propose an adaptive test for a high-dimensional

two-sample mean test that combines information across a class of sum-of-power

tests, including tests based on the sum of the squares of the mean differences and

the supremum mean difference. Wu, Xu and Pan (2019) extend the adaptive test

to generalized linear models. He et al. (2021) construct U -statistics of different

orders that are asymptotically independent of the max-type test statistics in

high-dimensional tests, based upon which, they propose an adaptive testing

procedure. However, these results are based on the work of Hsing (1995), and

thus require that the data be sampled from stationary and α-mixing random

variables. In fact, the α-mixing property is rarely checked in practice, which
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greatly limits the application of these methods. In this study, we use the

novel asymptotic independence analysis between the aforementioned sum and

maximum to solve the problem without requiring the stationary assumption or

the α-mixing property. In addition, we propose a series of high-dimensional tests,

including one-sample mean test, two-sample mean test and regression coefficient

test. Numerical results demonstrate the strong robustness of the proposed tests,

regardless of the sparsity of the data.

This study makes three main contributions to the literature. First, we

establish the asymptotic distribution of the maximum of dependent Gaussian

random variables under a general assumption. Second, we prove the asymptotic

independence between the sum and maximum of dependent Gaussian random

variables, without needing the stationary or the α-mixing property. Third, we

propose three high-dimensional combo-type tests based on the aforementioned

asymptotic properties, namely, the one-sample mean test, two-sample mean test,

and regression coefficient test. Numerical examples on simulated and real-world

data demonstrate the strong robustness of our tests on both sparse and dense

data sets.

The rest of the paper is organized as follows. In Section 2, we state

our theoretical results, including the asymptotic distributions of the sum and

maximum statistics, and the asymptotic independence between them. In Section

3, we propose a series of tests for high-dimensional data based on these theoretical

results. Then, we compare our simulation results with those of several existing

tests in Section 4, followed by an application of the proposed tests in Section 5.

Finally, Section 6 concludes the paper. Several extended results and proofs are

provided in the Supplementary Material.

2. Asymptotic Independence of Sum and Maximum of Dependent

Random Variables

First, we study the asymptotic normality of the sum of dependent random

variables. For each p ≥ 2, let Zp1, . . . , Zpp beN(0, 1)-distributed random variables

with p × p covariance matrix Σp. If there is no danger of confusion, we simply

write “Z1, . . . , Zp” rather than “Zp1, . . . , Zpp” and “Σ” rather than “Σp”. The

following assumption is needed:

Assumption 1. limp→∞ [tr(Σ2+δ)]2/[tr(Σ2)]2+δ = 0, for some δ > 0.

Assumption 1 with δ = 2 is the same as condition (3.7) in Chen and Qin

(2010), and here we make it more general. In practice, the true covariance matrix

Σ is usually unknown. However, this condition ensures that our results apply to

a wide range of problems. For instance, if all eigenvalues of Σ are bounded above

and are bounded below from zero, it is trivial to see that Assumption 1 holds.
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Theorem 1. Under Assumption 1, (Z2
1 + · · ·+ Z2

p − p)/
√
2tr(Σ2) → N(0, 1) in

distribution as p → ∞.

Theorem 1 shows that the sum of squares of dependent Gaussian random

variables has the asymptotic normality if the covariance matrix satisfies Assump-

tion 1.

Next, for the same Gaussian random variables, we consider the asymptotic

distribution of max1≤i≤p Z
2
i . Let |A| denote the cardinality of the set A. We

require the following assumption:

Assumption 2. Let Σ = (σij)1≤i,j≤p. For some ϱ ∈ (0, 1), |σij| ≤ ϱ, for all

1 ≤ i < j ≤ p and p ≥ 2. Suppose δp; p ≥ 1 and κp; p ≥ 1 are positive constants,

with δp = o(1/ log p) and κ = κp → 0 as p → ∞. For 1 ≤ i ≤ p, define

Bp,i =
{
1 ≤ j ≤ p; |σij| ≥ δp

}
and Cp =

{
1 ≤ i ≤ p; |Bp,i| ≥ pκ

}
. We assume

that |Cp|/p → 0 as p → ∞.

Theorem 2. Suppose Assumption 2 holds. Then, max1≤i≤p Z
2
i −2 log p+log log p

converges to a Gumbel distribution with cdf F (x) = exp{−(1/
√
π)e−x/2} as p →

∞.

Remark 1. Cai, Liu and Xia (2014) obtained the above limiting distribution of

max1≤i≤p Z
2
i under the assumption that max1≤i≤p

∑p
j=1 σ

2
ij ≤ C0, for each p ≥ 1,

where C0 is a constant free of p. In the following, we show that their result is a

special case of Theorem 2. In fact, let δp = (log p)−2, for p ≥ ee. Then, for each

1 ≤ i ≤ p, δ2p · |Bp,i| ≤
∑p

j=1 σ
2
ij ≤ C0. Hence, |Bp,i| ≤ C0 · (log p)2 < pκ, where

κ = κp := 5(log log p)/ log p for large p. As a result, |Cp| = 0, which implies the

results of Theorem 2.

A closely related but not the same result by Fan and Jiang (2019) shows that

δp = o(1/ log p) in Assumption 2 cannot be relaxed. Their statistic is max1≤i≤p Zi,

in contrast to max1≤i≤p |Zi| here. We expect that δp = o(1/ log p) is also the

critical threshold for max1≤i≤p |Zi|.
Theorem 2 is proved by using the spirit of the proof of Lemma 6 from Cai,

Liu and Xia (2014). First, the conditions imposed in our theorem are weaker than

those required in Lemma 6 of Cai, Liu and Xia (2014), as discussed in Remark 1.

This allows us to apply this type of result to a more general covariance matrix Σ.

Second, some of the steps in the proof of Theorem 2 are also used in the proof of

Theorem 3, stated next.

To proceed, we need some additional notation and one further assumption.

For two sequences of numbers {ap ≥ 0; p ≥ 1} and {bp > 0; p ≥ 1}, we write

ap ≪ bp if limp→∞ ap/bp = 0. We assume the following:

Assumption 3. There exist C > 0 and ϱ ∈ (0, 1) such that max1≤i<j≤p |σij| ≤ ϱ

and max1≤i≤p

∑p
j=1 σ

2
ij ≤ (log p)C, for all p ≥ 3; p−1/2(log p)C ≪ λmin(Σ) ≤

λmax(Σ) ≪ √
p(log p)−1 and λmax(Σ)/λmin(Σ) = O(pτ ) for some τ ∈ (0, 1/4).
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Assumption 3 is actually stronger than both Assumptions 1 and 2. To

see this, assume Assumption 3 holds now. To derive Assumption 1, observe

that tr(Σ2+δ) ≤ p · λmax(Σ)2+δ and tr(Σ2) ≥ p · λmin(Σ)2. Then, [tr(Σ2+δ)]2/

[tr(Σ2)]2+δ ≤ 1/pδ · (λmax(Σ)/λmin(Σ))4+2δ = O(1/pδ−(4+2δ)τ ) → 0 by choosing

δ = 2 and using the assumption τ ∈ (0, 1/4), stated in Assumption 3. We

then get Assumption 1 with δ = 2. To deduce Assumption 2, we replace

“C0” in Remark 1 with “(log p)C”. By the same argument as that in Remark

1 and choosing δp = (log p)−2, we have |Bp,i| ≤ C0 · (log p)C+2 < pκ, where

κ = κp := (C + 3)(log log p)/ log p for p ≥ ee. Hence, |Cp| = 0 and Assumption 2

holds.

Theorem 3. Under Assumption 3, (Z2
1 + · · ·+ Z2

p − p)/
√
2tr(Σ2) and

max1≤i≤p Z
2
i − 2 log p+ log log p are asymptotically independent as p → ∞.

Importantly, note that the above asymptotic independence result holds

without the stationary assumption or the α-mixing condition. For the assumption

on the spectrum, in the literature of high-dimensional statistics, it is common to

assume [λmin(Σ), λmax(Σ)] ⊂ [a, b], with 0 < a < b < ∞. Note that this is

stronger than our assumption on the eigenvalues of Σ in Assumption 3. In fact,

Assumption 3 allows that the largest eigenvalue goes to infinity and the smallest

eigenvalue goes to zero. Thus, Theorem 3 provides more a general result and

more freedom and practicality.

3. Application: High-Dimensional Testing Problems

In this section, we apply the theoretical results derived in Section 2 to three

high-dimensional testing problems: the one-sample mean test, two-sample mean

test, and regression coefficient test. The first test is presented in the following

subsections; the two-sample mean test and regression coefficient test are presented

in the Supplementary Material.

3.1. One-sample mean test

Assume X1, . . . ,Xn are i.i.d. p-dimensional random vectors from N(µ,Σ).

The classical one-sample mean testing problem considers

H0 : µ = 0 versus H1 : µ ̸= 0. (3.1)

In the traditional setting, where p is fixed, this topic is covered in classic textbooks

on multivariate analysis, such as in Anderson (2003), Eaton (1983), and Muirhead

(1982). Recent research has begun developing tests for the high-dimensional

setting, where both n and p go to infinity. In the following, we highlight parts of

works before examining our problem of interest: the test (3.1) when n ≤ p. This

is a typical problem of interest in high-dimensional statistics with small n and

large p.
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Let X̄ = (1/n)
∑n

i=1 Xi and Ŝ = (1/n)
∑n

i=1(Xi − X̄)(Xi − X̄)T be the

sample mean and the sample covariance matrix of X1, . . . ,Xn, respectively. The

Hotelling T 2-statistic is defined as nX̄T Ŝ−1X̄; see Hotelling (1931). For n > p,

Bai and Saranadasa (1996) study the Hotelling statistic. However, when n ≤ p,

the matrix Ŝ is no longer invertible, which motivates the design of new statistics.

By replacing Ŝ with its diagonal matrix in the Hotelling T 2-statistic, Srivastava

and Du (2008) and Srivastava (2009) propose a scale-invariant test for (3.1),

defined as

T (1)
sum =

nX̄T D̂−1X̄ − (n− 1)p/(n− 3)√
2[tr(R̂2)− p2/(n− 1)]

, (3.2)

where D̂ is the diagonal matrix of the sample covariance matrix Ŝ, and R̂ =

D̂−1/2ŜD̂−1/2 is the sample correlation matrix. The major ingredient of T (1)
sum

can be written as a sum of random variables, so we sometimes call it a “sum-

type” statistic. In general, sum-type statistics do not perform well in sparse

cases, in which only a few entries in µ in the sum are nonzero; see Cai, Liu

and Xia (2014) for a more detailed discussion. Zhong, Chen and Xu (2013)

propose two alternative tests by first thresholding two statistics based on the

sample means, and then maximizing over a range of thresholding levels. Denote

X̄ = (X̄1, . . . , X̄p)
T . The L2-version of the thresholding statistic is

THC2 = max
s∈S

T2n(s)− µ̂(s)

σ̂(s)
, (3.3)

where S is a subset of the interval (0, 1),

T2n(s) =
p∑

j=1

n

(
X̄j

σj

)2

I

(
|X̄j| ≥ σj

√
λs

n

)
,

µ̂(s) = p
{
2λ1/2

p (s)ϕ(λ1/2
p (s)) + 2Φ̄(λ1/2

p (s))
}
,

σ̂2(s) = p
{
2
[
λ3/2
p (s) + 3λ1/2

p (s)
]
ϕ(λ1/2

p (s)) + 6Φ̄(λ1/2
p (s))

}
.

Here, λs(p) = 2s log p and ϕ(·), Φ̄(·) are the density and survival functions

of the standard normal distribution, respectively. Fan, Liao and Yao (2015)

propose a novel procedure by adding a power enhancement component that is

asymptotically zero under the null, and diverges under some specific regions of

alternatives. Their test statistic is

J = J0 + J1, (3.4)

where the power enhancement component J0 is J0 =
√
p
∑p

j=1 X̄
2
j σ̂

−2
j I(|X̄j| >

σ̂jδp,n), and J1 is the standard Wald statistic J1 = (X̄T v̂ar
−1
(X̂)X̄ − p)/2

√
p.
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Here, σ̂2
j is the sample variance of the jth coordinate of the population vector,

δp,n is a thresholding parameter, and v̂ar
−1
(X̂) is a consistent estimator of the

asymptotic inverse covariance matrix of X̄. However, the power enhancement

component is negligible if the signal is not very strong. As noted earlier, Cai,

Liu and Xia (2014) show that extreme-value statistics are particularly powerful

against sparse alternatives, and possess certain optimal properties. Hence, we

propose a statistic that combines the sum-type statistic from (3.2) and an

extreme-value statistic based on our results in Section 2, and compare it with

various baselines numerically in Section 4.1. As shown later, our method performs

very well, regardless of the sparsity of the alternative hypothesis.

We now formally introduce our approach. Define

T (1)
max = n · max

1≤i≤p

X̄2
i

σ̂2
ii

, (3.5)

where X̄i is the ith coordinate of X̄ = (1/n)(X1 + · · ·Xn) ∈ Rp, and σ̂2
ii is

the sample variance of the ith coordinate of the population vector; that is, if

we write Xj = (x1j, . . . , xpj)
T for each 1 ≤ j ≤ n, then σ̂2

ii is the sample

variance of the i.i.d. random variables xi1, xi2, . . . , xin. First, we present the

asymptotic distribution of T (1)
max, along with some additional notation. Let

R = D−1/2ΣD−1/2 = (ρij)1≤i,j≤p denote the population correlation matrix, where

D is the diagonal matrix of Σ. We impose the following assumption:

Assumption 4. There exist ϵ ∈ (1/2, 1] and K > 1, such that K−1pϵ ≤ n ≤ Kpϵ

and supp≥2(1/p)tr(R
i) < ∞, for i = 2, 3, 4.

Note that Assumption 4 is the same as assumptions (3.1) and (3.2) of

Srivastava (2009). If the eigenvalues of the correlation matrix R are bounded, the

second condition of Assumption 4 holds automatically. For rigor of mathematics,

we assume n depends on p, and sometimes write np when there is possible

confusion.

Theorem 4. Under the null hypothesis in (3.1), the following hold as p → ∞:

(i) If Assumption 4 holds, then T (1)
sum → N(0, 1) in distribution.

(ii) If Assumption 2 holds, with “Σ” replaced with “R” and log p = o(n1/3),

then T (1)
max−2 log p+log log p converges weakly to a Gumbel distribution with

cdf F (x) = exp{−(1/
√
π) exp(−x/2)}.

(iii) Assume Assumption 4 is true. If Assumption 3 holds, with “Σ” replaced

with “R”, then T (1)
sum and T (1)

max − 2 log p + log log p are asymptotically

independent.

Part (i) of the above theorem is from Srivastava (2009), and is also a corollary

of the recent work by Jiang and Li (2021). For the sum-type test, we perform
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a level-α test, where we reject H0 when T (1)
sum is larger than the (1− α)-quantile

zα = Φ−1(1 − α) where Φ(y) is the cdf of N(0, 1). For the max-type test, we

then perform a level-α test where we reject H0 when T (1)
max − 2 log p+ log log p is

larger than the (1− α)-quantile qα = − log π − 2 log log(1− α)−1 of the Gumbel

distribution F (x).

Based on Theorem 4, we propose a combo-type test statistic by combining

the max-type and the sum-type tests. It is defined by

T (1)
com = min{P (1)

S , P
(1)
M }, (3.6)

where P
(1)
S = 1 − Φ{T (1)

sum} and P
(1)
M = 1 − F (T (1)

max − 2 log p + log log p). Note

that P
(1)
S and P

(1)
M are the p-values for the tests using the statistics T (1)

sum and

T (1)
max, respectively, and T (1)

com is defined as the smaller one of the two, with an

asymptotic distribution characterized by the minimum of two standard uniform

random variables.

Corollary 1. Assume the conditions in Theorem 4(iii) hold. Then, T (1)
com from

(3.6) converges weakly to a distribution with density G(w) = 2(1−w)I(0 ≤ w ≤ 1)

as p → ∞.

According to Corollary 1, the proposed combo-type test allows us to perform

a level-α test by rejecting the null hypothesis when T (1)
com < 1−

√
1− α ≈ α/2 as

α is small. We now discuss the power functions. First, the power function of our

combo-type test is

β
(1)
C (µ, α) = P

(
T (1)
com < 1−

√
1− α

)
= P

(
P

(1)
M < 1−

√
1− α or P

(1)
S < 1−

√
1− α

)
≥ max

{
P
(
P

(1)
S < 1−

√
1− α

)
, P
(
P

(1)
M < 1−

√
1− α

)}
≈ max

{
β
(1)
S

(
µ,

α

2

)
, β

(1)
M

(
µ,

α

2

)}
(3.7)

when α is small, where β
(1)
M (µ, α) and β

(1)
S (µ, α) are the power functions of T (1)

max

and T (1)
sum, respectively, with significance level α. From Srivastava (2009), the

power function of T (1)
sum is

β
(1)
S (µ, α) = lim

p→∞
Φ

(
−zα +

nµTD−1µ√
2tr(R2)

)
, (3.8)

where zα = Φ−1(1 − α) is the (1 − α)-quantile of N(0, 1). From (3.7), we have

β
(1)
C (µ, α) ≥ limp→∞ Φ(−zα/2+nµTD−1µ/

√
2tr(R2)). Denote D = diag(σ2

11, . . . ,

σ2
pp). By the same argument as that in Theorem 2 of Cai, Liu and Xia (2014),

the asymptotic power of T (1)
max converges to one if max1≤i≤p |µi/σii| ≥ c

√
log p/n,

for a certain constant c, and also the nonzero µi are randomly uniformly sampled
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with sparsity level γ < 1/4, that is, the number of nonzero µi is less than pγ , γ <

1/4. Thus, according to (3.7), the power function of our proposed test T (1)
com also

converges to one in this case. Similarly, according to Theorem 3 in Cai, Liu and

Xia (2014), the condition max1≤i≤p |µi/σii| ≥ c
√
log p/n is minimax rate optimal

for testing against sparse alternatives. If c is sufficiently small, then any α-level

test is unable to reject the null hypothesis with probability tending to one. Cai,

Liu and Xia (2014) show that T (1)
max enjoys a certain optimality against sparse

alternatives. By (3.7), our test T (1)
com also has this optimality.

For a rough asymptotic power comparison between T (1)
sum, T

(1)
max and T (1)

com, we

simply assume that Σ = Ip. There are m nonzero µi, and all are equal to δ ̸= 0.

Equation (3.8) gives β
(1)
S (µ, α) = limp→∞ Φ(−zα + nmδ2/

√
2p).

We consider two special cases:

(1) Dense case: δ = O(n−ξ) and m = O(p1/2n2ξ−1), with ξ ∈ (1/2, 5/6]. We

also assume log p = o(nξ−1/2); hence, log p = o(n1/3). As a result, the

requirement on p versus n imposed in Theorem 4(ii) is fulfilled. Obviously,

the number of nonzero µi goes to infinity. The power function for T (1)
max is

given by β
(1)
M (µ, α) = P (T (1)

max − 2 log p + 2 log log p > qα). In this case, we

will show in Section S3.4 of the Supplementary Material that β
(1)
M (µ, α) ≈ α,

which means that T (1)
max is not effective or useful. Consequently, we have

β
(1)
C (µ, α) ≈ β

(1)
S (µ, α/2). When the significance level α is small, the

difference between β
(1)
S (µ, α) and β

(1)
S (µ, α/2) is negligible. Thus, our

proposed test T (1)
com has similar performance as T (1)

sum in this dense case.

(2) Sparse case: δ = c
√
log p/n for a sufficiently large constant c and m =

o((log p)−1p1/2). Here, the value of m is much smaller than that in (1),

confirming the notion of “sparse”. In this case, nmδ2/
√
2p → 0; thus,

β
(1)
S (µ, α) ≈ α and T (1)

sum is not effective or useful. However, β
(1)
M (µ, α) → 1,

by an argument similar to that of Theorem 2 of Cai, Liu and Xia (2014)

as discussed above, which also leads to β
(1)
C (µ, α) → 1 in this sparse case.

In addition, in Fan, Liao and Yao (2015), the quantity δp,n is chosen to

as log log n
√
log p/n, which implies that the screening set {i :

√
n|X̄i| >

log log n
√
log p} is empty, with probability tending to one. Thus, the power

enhancement component of Fan, Liao and Yao (2015) is negligible in this

case, which makes the standardized Wald test statistic the same as T (1)
sum

because Σ = Ip. That is, their test is also ineffective in this sparse case.

The above theoretical results and analysis, together with the simulation in the

next section, indicate that our proposed test T (1)
com performs very well, regardless

of the sparsity of the alternative hypothesis, and is more convenient to use in

various practical scenarios.

To conserve space, we present the combo-type two-sample mean test and

regression coefficient test, as well as their simulation results, in the Supplementary

Material.
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4. Simulation Results

In this section, we carry out a series of simulation studies on the testing

problems discussed in the previous section to compare different test statistics

and validate the advantage of the proposed combo-type tests.

4.1. One-sample test problem

First, we present numerical examples of the one-sample test problem. We

compare our combo-type test Tcom in (3.6) (abbreviated as COM) with the sum-

type test T (1)
sum in (3.2) by Srivastava (2009) (abbreviated as SUM), the max-

type test T (1)
max in (3.5) (abbreviated as MAX), the higher criticism test THC2

from (3.3) by Zhong, Chen and Xu (2013) (abbreviated as HC2), and the power

enhancement test J from (3.4) by Fan, Liao and Yao (2015) (abbreviated as

FLY). The data set is simulated as follows.

Example 1. We consider Xi = µ+Σ1/2zi, for i = 1, . . . , n, and each component

of zi is generated independently from three distributions: (1) the normal

distribution N(0, 1); (2) the t-distribution t(3)/
√
3; and (3) the mixture normal

random variable V/
√
1.8, where V has density function 0.1f1(x)+ 0.9f2(x), with

f1(x) and f2(x) being the densities of N(0, 9) and N(0, 1), respectively. We have

two sample sizes n = 100, 200, and three dimensions p = 200, 400, 600. Under the

null hypothesis, we set µ = 0 and the significance level α = 0.05. We consider

the following three scenarios of covariance matrices:

(I) AR(1) model: Σ = (0.5|i−j|)1≤i,j≤p.

(II) Σ = D1/2RD1/2, with D = diag(σ2
1, . . . , σ

2
p) and R = Ip + bbT − B̌, where

σ2
i are generated independently from Uniform(1, 2), b = (b1, . . . , bp)

T , and

B̌ = diag(b21, . . . , b
2
p). The first [p0.3] entries of b are independently sampled

from Uniform(0.7, 0.9), and the remaining entries are set to zero, where [·]
denotes taking the integer part.

(III) Σ = γγT + (Ip − ρϵW )−1(Ip − ρϵW
T )−1, where γ = (γ1, . . . , γ[pδγ ], 0, 0, . . . ,

0)T . Here, γi, with i = 1, . . . , [pδγ ], are generated independently from

Uniform(0.7, 0.9). Let ρϵ = 0.5 and δγ = 0.3. Let W = (wi1i2)1≤i1,i2≤p

have a so-called rook form, that is, all elements of W are zero, except

that wi1+1,i1 = wi2−1,i2 = 0.5 for i1 = 1, . . . , p − 2 and i2 = 3, . . . , p, and

w1,2 = wp,p−1 = 1.

Tables 1, 2, and 3 report the empirical sizes of the five tests, showing that

SUM, MAX, and COM can control the empirical size very well, in most cases.

However, the empirical sizes of HC2 and FLY can be much smaller than the

nominal level in some cases.

Next, we examine the power of each test. Our simulation shows that the

power comparisons are similar for any combination of (n, p), with n = 100, 200
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Table 1. Sizes of tests for Example 1 with Scenario (I), α = 0.05.

Distribution (1) (2) (3)

p 200 400 600 200 400 600 200 400 600

n = 100 MAX 0.053 0.062 0.082 0.026 0.052 0.045 0.044 0.039 0.061

SUM 0.064 0.064 0.060 0.052 0.050 0.059 0.063 0.058 0.064

COM 0.063 0.069 0.059 0.040 0.059 0.055 0.056 0.047 0.061

HC2 0.028 0.044 0.034 0.033 0.029 0.032 0.038 0.025 0.044

FLY 0.014 0.009 0.004 0.003 0.003 0.002 0.025 0.018 0.014

n = 200 MAX 0.046 0.060 0.049 0.045 0.041 0.045 0.042 0.045 0.032

SUM 0.065 0.068 0.058 0.053 0.057 0.062 0.056 0.054 0.056

COM 0.056 0.068 0.048 0.042 0.047 0.052 0.043 0.050 0.039

HC2 0.019 0.027 0.030 0.031 0.024 0.023 0.029 0.020 0.029

FLY 0.005 0.000 0.000 0.003 0.000 0.000 0.017 0.012 0.005

Table 2. Sizes of tests for Example 1 with Scenario (II), α = 0.05.

Distribution (1) (2) (3)

p 200 400 600 200 400 600 200 400 600

n = 100 MAX 0.058 0.070 0.065 0.044 0.037 0.039 0.048 0.042 0.047

SUM 0.053 0.067 0.056 0.054 0.052 0.048 0.054 0.055 0.045

COM 0.055 0.057 0.061 0.054 0.044 0.040 0.043 0.047 0.047

HC2 0.022 0.011 0.013 0.005 0.015 0.005 0.011 0.011 0.006

FLY 0.022 0.011 0.011 0.013 0.010 0.006 0.024 0.015 0.007

n = 200 MAX 0.053 0.054 0.076 0.025 0.042 0.025 0.044 0.040 0.041

SUM 0.053 0.057 0.060 0.053 0.051 0.052 0.055 0.065 0.060

COM 0.058 0.061 0.066 0.037 0.045 0.044 0.043 0.053 0.055

HC2 0.003 0.011 0.006 0.010 0.006 0.003 0.004 0.005 0.008

FLY 0.037 0.033 0.025 0.030 0.022 0.011 0.032 0.026 0.015

Table 3. Sizes of tests for Example 1 with Scenario (III), α = 0.05.

Distribution (1) (2) (3)

p 200 400 600 200 400 600 200 400 600

n = 100 MAX 0.054 0.066 0.059 0.053 0.040 0.033 0.049 0.039 0.043

SUM 0.052 0.055 0.059 0.053 0.048 0.060 0.059 0.064 0.061

COM 0.053 0.066 0.059 0.053 0.050 0.040 0.062 0.046 0.051

HC2 0.034 0.038 0.035 0.032 0.030 0.025 0.036 0.030 0.030

FLY 0.013 0.003 0.005 0.013 0.001 0.000 0.020 0.013 0.010

n = 200 MAX 0.053 0.058 0.063 0.034 0.027 0.038 0.049 0.039 0.050

SUM 0.061 0.065 0.062 0.044 0.058 0.068 0.063 0.058 0.057

COM 0.065 0.075 0.069 0.033 0.048 0.047 0.059 0.051 0.053

HC2 0.035 0.032 0.032 0.019 0.029 0.019 0.029 0.023 0.024

FLY 0.001 0.001 0.000 0.004 0.001 0.000 0.016 0.011 0.002

and p = 200, 400, 600. Hence, we present the case n = 100 and p = 200 for

conciseness. Define µ = (µ1, . . . , µp)
T . For different numbers of nonzero-mean



ASYMPTOTIC INDEPENDENCE OF THE SUM AND MAXIMUM 1757

variables m = 1, . . . , 20, we consider µj = δ for 0 < j ≤ m, and µj = 0 for j > m.

The parameter δ is chosen as ||µ||2 = mδ2 = 0.5. Figure 1 reports the power

of the five tests. The power of MAX decreases as the number of nonzero-mean

variables increases, which is as expected, because, in general, the max-type test

is more powerful in the sparse case and less powerful in the nonsparse case. The

power of SUM increases slightly with m, and is higher than the power of HC2

and FLY in all cases. The proposed COM is as powerful as MAX when the

number of variables with nonzero means is small (sparse case), and has almost

the same power as SUM when the number of variables with nonzero means grows.

In general, COM possesses the advantages of both MAX (in the sparse case) and

SUM (in the nonsparse case), and outperforms HC2 and FLY in all scenarios.

Note that all tests, other than COM, favor either the sparse or the nonsparse case.

In practice, it is often difficult to justify whether or not the true underlying model

is sparse. Hence, our proposed COM test, with its strong robustness, should be

a more favorable choice over competing approaches.

5. Real-Data Application

In this section, we apply the results and test statistics obtained in Section 3 to

two real data sets: US stock data (dense model), and search engine data (sparse

model), given in the Supplementary Material. As shown here, the proposed

combo-type test, COM, performs well on both data sets. Thus, it serves as a

“universal” test in practice, regardless of whether or not the true model is sparse.

5.1. US stock data

We apply the methods developed for the one-sample mean test in Section 3.1

to a pricing problem in finance. Specifically, we investigate how financial returns

of assets are related to their risk-free returns. Let Xij = Rij − rfi denote the

excess return of the jth asset at time i, for i = 1, . . . , n and j = 1, . . . , p, where

Rij is the return on asset j during period i, and rfi is the risk-free return rate of

all assets during period i. We study the following pricing model:

Xij = µj + ξij, (5.1)

for i = 1, . . . , n and j = 1, . . . , p, or, in vector form, Xi = µ + ξi, where Xi =

(Xi1, . . . , Xip)
T , µ = (µ1, . . . , µp)

T , and ξi = (ξi1, . . . , ξip)
T is the zero-mean error

vector. The pricing model in (5.1) is the zero-factor model in arbitrage pricing

theory (Ross (1976)), where “zero-factor” means that no additional factor is used

to model the price. A common null hypothesis considered under pricing model

(5.1) is H0 : µ = 0, which means that the excess return of any asset is zero, on

average; that is, the return rate of any asset Rij is equal to the risk-free return

rate rfi on average.

We consider the monthly return rates of the stocks that constitute the S&P
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Figure 1. Power versus number of variables with nonzero means for Example 4.1. The
x-axis m denotes the number of variables with nonzero means; the y-axis is the empirical
power.

Table 4. Rejection rates of each test in the US stock data.

MAX SUM COM

n = 30 0.35 0.39 0.40

n = 50 0.40 0.51 0.51

n = 70 0.44 0.67 0.62

n = 100 0.52 0.86 0.83

500 index for the period January 2005 to November 2018. Because the stocks

in the index change over time, and some stocks were created during this period,

we consider only 374 stocks that were included in the index for the full period

under review. Figure 2 shows the sample mean of each stock in this period. We

observe that most average returns are positive. In fact, as we increase the time

range (thus increasing the sample size n), the p-values of MAX, SUM, and COM

are eventually smaller than 0.05. These results suggest that we reject the null

that asset returns do not only come from the risk-free rates (on average), which

is consistent with the views of many economists (Fama and French (1993, 2015)).
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Figure 2. Histogram of sample means of stock monthly return rates in the S&P 500.

We further evaluate the tests using a random sampling procedure. Specifi-

cally, we randomly choose n samples from the whole data set and apply MAX,

SUM, and COM on this new sample. For each n, we repeat this experiment

1,000 times. Table 4 reports the rejection rates for each method with different n.

From Table 4, we observe that SUM outperforms MAX in all cases by providing

higher rejection rates. This is not surprising, because for these data, the number

of variables with nonzero means (assets with non-zero expected excess return)

might be large, which is when sum-type tests typically outperform than max-

type tests. On the other hand, the combo-type test COM performs similarly to

SUM, overall. Therefore, COM does not lose efficiency in this problem.

6. Conclusion

We have proved the asymptotic independence between the sum and maximum

of dependent random variables, without requiring stationary assumptions or

strong mixing conditions. We applied our results to high-dimensional testing

problems. Our proposed combo-type tests perform well, regardless of the sparsity

of the data. Note the following:

1. The normal assumption is essential in the proof of asymptotic independence.

Hence, we make a Gaussian assumption in the high-dimensional test

problems. Recent studies, such as Liang, Tang and Zhao (2019) and Chen

and Xia (2021), have developed high-dimensional normality tests to check

whether a p-dimensional random vector with large p is a Gaussian vector.

In the literature, we may not need the Gaussian assumption to analyze the

asymptotic distribution of the sum-type and max-type test statistics; see,

for example Cai, Liu and Xia (2014) and Chen and Qin (2010). To prove the

asymptotic independence between the sum and the maximum of nonnormal

dependent random variables deserves further investigation.
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2. To obtain the asymptotic distributions of the sum and the maximum

of dependent random variables, we assume the correlations between the

random variables are not very strong. Recent studies consider high-

dimensional testing problems without the weak correlation assumption,

such as Wang and Xu (2021) and Zhang et al. (2020). The analogue of

our asymptotic independence result between the sum and the maximum of

dependent random variables with arbitrary covariance structures is also an

interesting and challenging problem.

3. The asymptotic independence result in Theorem 3 is universal. As such,

we believe it can be generalized and applied widely, for example, in change

point detection and statistical process controls.

Supplementary Material

In the online Supplementary Material, we propose the combo-type two-

sample mean test and regression coefficient test, and present corresponding

simulation results to show the advantages of our proposed tests. The

Supplementary Material also includes technical proofs of our theoretical results.
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