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Abstract: In a completely randomized experiment, the variances of the treatment

effect estimators in a finite population are usually not identifiable, and hence not

estimable. Although some estimable bounds of such variances have been established

in the literature, few are derived in the presence of covariates. We consider the

difference-in-means estimator and the Wald estimator in completely randomized

experiments with perfect compliance and noncompliance, respectively. We also

establish sharp bounds for the variances of these two estimators when covariates

are available. Furthermore, we obtain consistent estimators for such bounds that

can be used to shorten the confidence intervals and improve the power of tests. The

confidence intervals are constructed based on the consistent estimators of the upper

bounds, and have coverage rates that are uniformly asymptotically guaranteed. We

use analyses based on simulations and real data to evaluate and demonstrate the

proposed methods.
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1. Introduction

Estimation and inference for the average treatment effect are extremely

important in practice. Many studies assume that the observations are sampled

from an infinite super-population (Hirano, Imbens and Ridder (2003); Imbens

(2004); Belloni, Chernozhukov and Hansen (2014); Chan, Yam and Zhang

(2016)). However, an infinite super-population seems contrived if we are

interested in evaluating the treatment effect for a particular finite population

(Li and Ding (2017)), for example, the patients enrolled in an experiment. In

such cases, and the finite-population framework is more suitable. This framework

views all potential outcomes as fixed, and the randomness of the data comes

solely from the treatment assignment (Imbens and Rosenbaum (2005); Nolen

and Hudgens (2011)). It also avoids assumptions about randomly sampling

from some “vaguely defined super-population of study units” (Schochet (2013)),

and the statistical analysis results under the framework are interpretable in the
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absence of a super-population. Theoretical guarantees in this framework rely on

the treatment assignment, rather than unverifiable on sampling assumptions,

such as the independent and identically distributed (i.i.d.) assumption. In

randomized experiments, the finite-population framework has been widely used

in data analysis since the work of Neyman (1990). A fundamental problem in

completely randomized experiments under this framework is that the variance of

the widely used difference-in-means estimator is unidentifiable. Thus, we cannot

obtain a consistent variance estimator, and the standard inference based on a

normal approximation fails. To mitigate this problem, Neyman (1990) adopted an

estimable upper bound for the variance, which leads to a conservative inference.

The precision of the bound is crucial for the power of a test and the width of

the resulting confidence interval (CI). Thus, it is important to incorporate all

available information to make the bound as precise as possible. The variance

bound with binary outcomes is fairly well studied by Robins (1988), Ding and

Dasgupta (2016), and Ding and Miratrix (2018), among others. For general

outcomes, Aronow, Green and Lee (2014) improved the results of Neyman (1990)

by deriving a sharp bound that cannot be improved without information other

than the marginal distributions of potential outcomes.

In many randomized experiments, some covariates are observed in addition

to the outcome. However, few approaches consider how to improve the variance

bound using covariate information; an exception is the work of Ding, Feller and

Miratrix (2019). Surprisingly, we observe that the upper bound for the variance

of the treatment effect estimator given by Ding, Feller and Miratrix (2019) can

be larger than that given by Aronow, Green and Lee (2014), in some situations.

This is illustrated in Example 1 in Section 2.

The first main contribution of this study is to derive a sharp bound for

the variance of the difference-in-means estimator in a finite population when

covariates are available, and to obtain a consistent estimator of the bound. The

proof of consistency is quite challenging. In our analysis of consistency, we

allow the cardinality of the covariate support to diverge with the population

size. This differs from the approach taken in many previous studies and increases

the difficulty of the proof, owing to the lack of tools for analyzing the sample

conditional quantile functions in such an estimator. Then, based on the consistent

estimator of the variance bound, we obtain a shorter CI with a more accurate

coverage rate. In addition, we show that the CI has an asymptotically guaranteed

coverage rate, and the asymptotic result is uniform over a large class of finite

populations. As discussed by Lehmann and Romano (2006), although this

uniformity is crucial for inferences based on asymptotic results, it is omitted

in many existing works.

The aforementioned results focus on completely randomized experiments in

which units comply with the assigned treatments. However, noncompliance often

occurs in randomized experiments. In such cases, the parameter of interest is
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the local average treatment effect (LATE) (Angrist, Imbens and Rubin (1996);

Abadie (2003)), and its inference is more complicated. For the LATE in a finite

population, estimators include the Wald estimator and those proposed by Ding,

Feller and Miratrix (2019) and Hong, Leung and Li (2020). The identification

problem also exists for the variances of these estimators. However, to the best

of our knowledge, no prior studies have derived a sharp bound for unidentifiable

variances.

Another main contribution of this study is to extend the aforementioned

results for the completely randomized experiment to the case with noncompliance.

We establish a sharp bound for the variance of the Wald estimator, and propose

a consistent estimator for the variance bound. The analysis of consistency is even

more involved in this case, owing to the complexity of the estimator. Based on the

consistent estimator of the upper bound, we construct a CI with a coverage rate

that is uniformly asymptotically guaranteed. Note that the sharp bound without

covariates can be derived as a special case of the resulting bound, which has not

been investigated in prior studies. Simulations and an application to two real

data sets from the randomized trial ACTG protocol 175 (Hammer et al. (1996))

and JOBS II (Vinokuir, Price and Schul (1995)) demonstrate the advantages of

our methods.

The remainder of this paper is organized as follows. In Section 2, we establish

the sharp variance bound in the presence of covariates for the difference-in-means

estimator in a completely randomized experiment with perfect compliance. A

consistent estimator is obtained for the bound. In Section 3, we consider the Wald

estimator for the LATE in a completely randomized experiment in the presence of

noncompliance; here, we establish a sharp variance bound for the Wald estimator

in the presence of covariates, and obtain a consistent estimator for the bound.

Simulation studies are conducted to evaluate the empirical performance of the

proposed bound estimators in Section 4, followed by some applications to data

from the randomized trial ACTG protocol 175 and JOBS II in Section 5. A

discussion on possible extensions of our results is provided in Section 6. Proofs

are relegated to the Supplementary Material.

2. Sharp variance bound for the difference-in-means estimator

2.1. Preliminaries

Suppose we are interested in the effect of a binary treatment on an outcome in

a finite population consisting of N units. In a completely randomized experiment,

n out of N units are sampled from the population, with n1 assigned randomly

to the treatment group and the other n0 = n− n1 assigned to the control group.

Let Ti = 1 if unit i is assigned to the treatment group, and Ti = 0 if the unit

is assigned to the control group; Ti is not defined if unit i is not enrolled in the

experiment. For each unit i and t = 0, 1, let yti denote the potential outcome



1002 WANG ET AL.

that would be observed if unit i is assigned to treatment t. Let wi denote a vector

of covariates, with the constant 1 as its first component. The covariate vector

wi is observed if unit i is enrolled in the experiment (i.e., Ti = 0 or 1). Then,

the characteristics of the population can be viewed as a matrix U = (y1, y0, w),

where y1 = (y11, y12, . . . , y1N)
T , y0 = (y01, y02, . . . , y0N)

T , and w = (w1, . . . , wN)
T.

For any vector a = (a1, . . . , aN)
T, we let

µ(a) =
1

N

N∑
i=1

ai, ϕ2(a) =
1

N

N∑
i=1

(ai − µ(a))2.

Letting τi = y1i − y0i be the treatment effect for unit i and τ = (τ1, . . . , τN)
T, the

parameter of interest is the average treatment effect,

θ = µ(τ) =
1

N

N∑
i=1

y1i −
1

N

N∑
i=1

y0i.

Note that all parameters discussed in this paper depend on N , unless otherwise

specified, and we omit the dependence in the notation for simplicity when there

is no ambiguity. The treatment assignment is unrelated to the covariates in

completely randomized experiments. Hence the average treatment effect can be

estimated by the difference-in-means estimator

θ̂ =
1

n1

∑
Ti=1

y1i −
1

n0

∑
Ti=0

y0i.

This estimator is widely used, owing to its simplicity and transparency, among

other practical reasons (Shao, Yu and Zhong (2010); Lin (2013)). Moreover, it

is the uniformly minimum variance unbiased estimator in the scenario presented

in (Kallus (2018)). Following the literature (Imai (2008); Aronow and Middleton

(2013); Shao, Yu and Zhong (2010); Kallus (2018); Ma, Tu and Liu (2020)), we

consider the inference based on the difference-in-means estimator because of its

popularity in practice and its theoretical importance.

According to Freedman (2008a), the variance of θ̂ is

1

N − 1

{
N

n1

ϕ2(y1) +
N

n0

ϕ2(y0)− ϕ2(τ)

}
,

and we denote this variance by σ2/(N − 1). Under certain standard regularity

conditions in a finite population, previous works (Freedman (2008a); Aronow,

Green and Lee (2014); Li and Ding (2017)) have established that

√
Nσ−1(θ̂ − θ)

d→ N(0, 1), (2.1)

as n1, n0, and N go to infinity. We can perform a statistical inference based
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on this asymptotic distribution. However, it is difficult to obtain a consistent

estimator for σ2. According to standard results in survey sampling (Cochran

(1977)), ϕ2(yt) can be consistently estimated by

ϕ̂2
t =

1

nt − 1

∑
Ti=t

(
yti −

1

nt

∑
Tj=t

ytj

)2

, (2.2)

for t = 0, 1. However, ϕ2(τ), and hence σ2, is not identifiable, because the

potential outcomes y1 and y0 can never be observed simultaneously. To make an

inference for θ based on (2.1), one can use an upper bound for σ2 to construct

a conservative CI. Alternatively, one may use an estimable lower bound for σ2

to obtain a shorter confidence interval. However, the coverage rate of such a CI

may not be guaranteed. To establish an estimable upper (lower) bound for σ2,

it suffices to establish an estimable lower (upper) bound for the unidentifiable

term ϕ2(τ). We then derive the sharp bound for ϕ2(τ) and obtain its consistent

estimator.

2.2. Sharp bound for ϕ2(τ )

For any matrices a = (a1, . . . , aN)
T, b = (b1, . . . , bN)

T and vectors ā, b̄ that

have dimensions equal to the number of columns of a and b, respectively, define

P (a ≤ ā) =
1

N

N∑
i=1

1{ai ≤ ā},

P (a = ā) =
1

N

N∑
i=1

1{ai = ā},

P (a = ā | b = b̄) =

∑N
i=1 1{ai = ā, bi = b̄}∑N

i=1 1{bi = b̄}
,

P (a ≤ ā | b = b̄) =

∑N
i=1 1{ai ≤ ā, bi = b̄}∑N

i=1 1{bi = b̄}
,

where 1{·} is the indicator function and “≤” between two vectors corresponds

to the component-wise inequality. Note that, in this paper, P (·) and P (· | ·) are
some quantities that describe a vector, and we use P(·) to denote the probability.

For any function H, we define H−1(u) = inf{s : H(s) ≥ u}. In this paper,

we adopt the convention inf ∅ = ∞. We let {ξ1, . . . , ξK} be the set of all different

values of wi. Clearly, K ≤ N . We aim to derive bounds for ϕ2(τ) by using the

covariate information efficiently. Define πk = P (w = ξk), for k = 1, . . . ,K. The

quantities πk (k = 1, . . . ,K) and the functions Ft|k (t = 0, 1 and k = 1, . . . ,K)

summarize the characteristics of the population and can be estimated using

observed data. To obtain estimable bounds for ϕ2(τ), we focus on the bound

that can be expressed as a functional of πk and Ft|k (t = 0, 1 and k = 1, . . . ,K).
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Define the set of lower bounds

BL = {bL : bL is a functional of πk and Ft|k for t = 0, 1 and k = 1, . . . ,K;

bL ≤ ϕ2(τ)}.

Define the set of upper bounds BH similarly. Then, the sharp bound is established

in the following theorem.

Theorem 1. A bound for ϕ2(τ) is [ϕ2
L, ϕ

2
H], where

ϕ2
L =

K∑
k=1

πk

∫ 1

0

(F−1
1|k (u)− F−1

0|k (u))
2du− θ2,

ϕ2
H =

K∑
k=1

πk

∫ 1

0

(F−1
1|k (u)− F−1

0|k (1− u))2du− θ2.

Moreover, the bound is sharp in the sense that ϕ2
L is the largest lower bound in

BL, and ϕ2
H is the smallest upper bound in BH.

See the Supplementary Material for the proof of this theorem. Here, we

compare this bound to previous bounds obtained by Aronow, Green and Lee

(2014) and Ding, Feller and Miratrix (2019). By using the marginal distributions

of the potential outcomes, Aronow, Green and Lee (2014) derive the following

bound for ϕ2(τ):

ϕ2
AL :=

∫ 1

0

(F−1
1 (u)− F−1

0 (u))2du− θ2 ≤ ϕ2(τ)

≤
∫ 1

0

(F−1
1 (u)− F−1

0 (1− u))2du− θ2 := ϕ2
AH,

where Ft(y) = P (yt ≤ y), for t = 0, 1. The bound of Aronow, Green and Lee

(2014) is sharp given the marginal distributions of the potential outcomes. In the

presence of covariates, Ding, Feller and Miratrix (2019) proposed the following

regression-based bound that may improve the bound of Aronow, Green and Lee

(2014) in certain situations:

ϕ2
DL := ϕ2(τw) +

∫ 1

0

(F−1
e1

(u)− F−1
e0

(u))2du ≤ ϕ2(τ)

≤ ϕ2(τw) +

∫ 1

0

(F−1
e1

(u)− F−1
e0

(1− u))2du := ϕ2
DH.

where τw = (wT

1 (γ1 − γ0), . . . , w
T

N(γ1 − γ0))
T, Fet(s) = P (et ≤ s), et = (yt1 −

wT

1γt, . . . , ytN − wT

Nγt)
T, and γt is the least square regression coefficient of yti on

wi. The lower bound of Ding, Feller and Miratrix (2019) is not sharp, because it

can be smaller even than that of Aronow, Green and Lee (2014), and thus may
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(b) Relationship between ϕ2
AH, ϕ2

DH, and ϕ2
H.

Figure 1. Comparison of three bounds under different values of p.

lead to more conservative CIs in spite of the available covariate information. This

situation does not occur with our bound. It can be verified that the bounds ϕ2
AL,

ϕ2
AH, ϕ

2
DL, and ϕ2

DH are all functionals of πk and Ft|k (t = 0, 1 and k = 1, . . . ,K).

Thus, we have

ϕ2
L ≥ max{ϕ2

AL, ϕ
2
DL}, ϕ2

H ≤ min{ϕ2
AH, ϕ

2
DH}, (2.3)

according to Theorem 1. When there is no covariate, our bound reduces to

[ϕ2
AL, ϕ

2
AH] by letting K = 1, ξ1 = 1, and wi = 1, for i = 1, . . . , N . The following

example illustrates the improvement of our bound as the association between the

covariates and the potential outcomes varies.

Example 1. Consider a population with N = 600 units. Suppose the potential

outcomes and the covariate are binary, with P (w = 1) = 1/3, P (y1 = 1) = 2/3,

P (y0 = 1) = 1/3, P (y0 = 1 | w = 1) = 3/4, and P (y0 = 1 | w = 0) = 1/8. Let

p = P (y1 = 1 | w = 1) (p ∈ {1/200, . . . , 1}); then, P (y1 = 1 | w = 0) = 1 − p/2.

Figure 1 presents the three bounds under different values of p.

Figure 1 shows that ϕ2
L ≥ max{ϕ2

AL, ϕ
2
DL} and ϕ2

H ≤ min{ϕ2
AH, ϕ

2
DH} under all

settings of p, and in many situations, the inequalities are strict. For p ≤ 143/200,

the bound of Ding, Feller and Miratrix (2019) is tighter than that of Aronow,

Green and Lee (2014). However, for p > 143/200, ϕ2
DL < ϕ2

AL, even though

covariate information is used in the approach of Ding, Feller and Miratrix (2019).

2.3. Estimation of the sharp bound and the CI

To estimate ϕ2
L and ϕ2

H and study the asymptotic properties of their proposed

estimators, we adopt the following standard framework (Li and Ding (2017)) for

our theoretical development. Suppose there is a sequence of finite populations

UN of size N . For each N , n1 units are assigned randomly to the treatment

group, and n0 units are assigned to the control group. As the population size



1006 WANG ET AL.

N → ∞, the sizes of the treatment and the control groups satisfy n1/N → ρ1,

n0/N → ρ0, with ρ1, ρ0 ∈ (0, 1) and ρ1+ρ0 ≤ 1. Here, we assume that the number

of covariate values K is known and is allowed to grow at a certain rate with

the population size N . To accommodate continuous covariates, we can stratify

them and increase the number of strata with the sample size. We estimate πk

and Ft|k(y) using the empirical probabilities π̂k = 1/n
∑

Ti∈{0,1} 1{wi = ξk} and

F̂t|k(y) =
∑

Ti=t 1{yti ≤ y, w = ξk}/
∑

Ti=t 1{wi = ξk}, respectively. By plugging

in these estimators, we obtain the following estimators for ϕ2
L and ϕ2

H:

ϕ̂2
L =

K∑
k=1

π̂k

∫ 1

0

(F̂−1
1|k (u)− F̂−1

0|k (u))
2du− θ̂2,

ϕ̂2
H =

K∑
k=1

π̂k

∫ 1

0

(F̂−1
1|k (1− u)− F̂−1

0|k (u))
2du− θ̂2. (2.4)

These estimators involve sample conditional quantile functions F̂−1
t|k (u), which

have complicated statistical properties in the finite-population framework. Many

of the theoretical results for such functions in the super-population framework

cannot be applied to the scenario we consider. Moreover, the number of covariate

values K is allowed to diverge as the population size increases, which further

complicates the problem. Thus, it is not trivial to analyze the asymptotic

properties of these estimators. However, we observe that the first term of

these estimators is actually the weighted sum of the Wasserstein distances

between some distributions. By invoking a representation theorem of Wasserstein

distances, we prove the consistency results for the estimators with a careful

analysis of the error terms. See the Supplementary Material for more details.

We assume that the population UN satisfies the following two conditions.

Condition 1. There is some constant CM that does not depend on N such that

1/N
∑N

i=1 y
4
ti ≤ CM , for t = 0, 1.

Condition 2. There is some constant Cπ that does not depend on N such that

πk ≥ Cπ/K, for k = 1, . . . ,K.

Furthermore, we assume K satisfies the following condition.

Condition 3. K2 logK/N → 0 as N → ∞.

Condition 1 requires that the potential outcomes have uniformly bounded

fourth moments. Condition 2 requires that the proportion of units with each

covariate value not be too small. Condition 3 imposes some upper bound on the

number of values the covariate may take. If the covariate w is some subgroup

indicator, then Condition 3 can be satisfied easily if the number of subgroups is

not too large. Continuous components in w can be stratified to meet Condition

3. If w contains many components, then the number of covariate values may
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be too large, even after stratifying the continuous components. In this case,

one can partition units with similar covariate values into subgroups, and use the

subgroup label as the new covariate to apply the proposed method. Alternatively,

one can first employ dimension reduction or variable selection methods to obtain

a low-dimensional covariate, and then apply the proposed method using the

obtained covariate. The following theorem establishes the consistency of the

bound estimators.

Theorem 2. Under Conditions 1, 2, and 3, we have

(ϕ̂2
L, ϕ̂

2
H)− (ϕ2

L, ϕ
2
H)

P→ 0

as N → ∞.

The proof of this theorem is relegated to the Supplementary Material. The

lower bound ϕ2
L for ϕ2(τ) implies an upper bound for σ2. The consistency result

of ϕ̂2
L is sufficient for constructing a conservative CI. A conservative 1− α CI for

θ is given by

IN =
[
θ̂ − qα/2σ̂N

−1/2, θ̂ + qα/2σ̂N
−1/2

]
, (2.5)

where

σ̂2 =

(
N

n1

ϕ̂2
1 +

N

n0

ϕ̂2
0 − ϕ̂2

L

)

and qα/2 is the upper α/2 quantile of a standard normal distribution.

Next, we study the property of the CI IN in (2.5). As discussed in (Lehmann

and Romano (2006)), inferences based on asymptotic results are not reassuring

unless some uniform convergence results can be established. We next show that

IN is uniformly asymptotically level 1 − α over a class of finite populations.

For some constants L1, L2, L3 > 0, we introduce the following class of finite

populations:

PN =

{
U∗

N = (y∗
1 , y

∗
0 , w

∗) : U∗
N is of size N , and

(a)
1

N

N∑
i=1

y∗4
ti ≤ L1; (b) ϕ2(y∗

t ) ≥ L2; (c) P (w∗ = ξk) ≥
L3

K

for t = 0, 1 and k = 1, . . . ,K

}
.

(2.6)

Under Conditions 1 and 2, if the variances of the potential outcomes are bounded

away from zero, then UN belongs to PN , for some L1, L2, and L3. Constraint (a)

in the definition of PN requires that the fourth moments of the potential outcomes

be uniformly bounded. Bounded fourth moments are required for the theoretical

development in many existing works (Freedman (2008a,b)). Constraint (b)
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requires that the variance of the potential outcomes be bounded away from

zero. According to the Cauchy–Schwartz inequality and some straightforward

calculations, Constraint (b) implies that the variance of
√
N(θ̂ − θ) is bounded

away from zero, at least for sufficiently large N , if UN ∈ PN . Constraint (c)

requires that the units with each covariate value not be too rare. Constraints (b)

and (c) ensure that the denominators of some quantities in the theoretical analysis

are not too small, which is important to establish the desired properties. The

set PN contains a large class of finite populations. For an illustration, suppose

(y1i, y0i, wi), for i = 1, . . . , n, are i.i.d. observations of some random variables

(Y1, Y0,W ). Then, according to the strong law of large numbers, UN belongs to

PN for sufficiently large N with probability one, as long as (Y1, Y0,W ) satisfies

E[Y 4
t ] < L1, var[Yt] > L2, and P(W = ξk) > L3/K, for t = 0, 1 and k = 1, . . . ,K.

Next, we show that IN has a uniformly asymptotically guaranteed coverage

rate over PN for any L1, L2, L3 > 0.

Theorem 3. Under Condition 3, the CI IN in (2.5) is uniformly asymptotically

level 1− α over PN for any L1, L2, L3 > 0; that is,

lim inf
N→∞

inf
UN∈PN

P(θ ∈ IN) ≥ 1− α.

The proof of this theorem is given in the Supplementary Material.

3. Sharp Variance Bound for the Wald Estimator

3.1. Sharp bound for the unidentifiable term in the variance

In the previous section, we discussed the variance bound in completely

randomized experiments with perfect compliance, where each unit takes the

treatment assigned by the randomization procedure. However, noncompliance

often arises in randomized experiments, resulting in some units taking a treatment

different to the assigned treatment, following their own will or for other reasons.

For each unit i and t = 0, 1, we let dti ∈ {0, 1} denote the treatment that unit i

actually takes if assigned to treatment t. In this case, the units can be classified

into four groups according to the value of (d1i, d0i) (Angrist, Imbens and Rubin

(1996); Frangakis and Rubin (2002)):

gi =




Always Taker (a) if d1i = 1 and d0i = 1,

Complier (c) if d1i = 1 and d0i = 0,

Never Taker (n) if d1i = 0 and d0i = 0,

Defier (d) if d1i = 0 and d0i = 1.

Let g = (g1, . . . , gN). Then, the characteristics of the population can be viewed

as a matrix Uc = (y1, y0, w, g), where y1, y0, and w are defined in Section 2. For



VARIANCE BOUND 1009

t = 0, 1, k = 1, . . . ,K and h = a, c, n, d, let Ft|(k,h)(y) = P (yt ≤ y | w = ξk, g = h),

πk|h = P (w = ξk | g = h) and, πh = P (g = h).

In this section, we maintain the following standard assumptions when

analyzing the randomized experiment with noncompliance.

Assumption 1. (i) Monotonicity: d1i ≥ d0i; (ii) exclusion restriction: y1i = y0i
if d1i = d0i; and (iii) strong instrument: πc ≥ C0, where C0 is a positive constant.

Assumption 1 (i) rules out the existence of defiers, and is usually easy to

assess. For example, it holds automatically if units in the control group do

not have access to the treatment. Assumption 1 (ii) means that the treatment

assignment affects the potential outcome only by affecting the treatment that

a unit actually receives. Assumption 1 (iii) ensures the existence of compliers.

Assumption 1 is commonly adopted to identify the causal effect in the presence

of noncompliance; see Angrist, Imbens and Rubin (1996) and Abadie (2003)

for detailed discussions of Assumption 1. In a randomized experiment with

noncompliance, the parameter of interest is the LATE (Angrist, Imbens and

Rubin (1996); Abadie (2003)),

θc =

∑N
i=1 τi1{gi = c}∑N
i=1 1{gi = c}

,

which is the average effect of the treatment for the compliers.

Under the monotonicity and the exclusion restriction, we have 1{gi = c} =

d1i − d0i and (d1i − d0i)τi = τi = y1i − y0i. Thus,

πc =
1

N

N∑
i=1

1{gi = c} =
1

N

N∑
i=1

(d1i − d0i) = µ(d1)− µ(d0),

1

N

N∑
i=1

(d1i − d0i)τi =
1

N

N∑
i=1

τi = µ(τ),

and θc = π−1
c θ. Hence, θc can be estimated by the “Wald estimator”

θ̂c = π̂−1
c θ̂,

where θ̂ =
∑

Ti=1 y1i/n1 −
∑

Ti=0 y0i/n0 and π̂c =
∑

Ti=1 d1i/n1 −
∑

Ti=0 d0i/n0.

Let zi = (y1i, y0i, d1i, d0i)
T, z̄ =

∑N
i=1 zi/N , and

VN =
1

N

N∑
i=1

(zi − z̄)(zi − z̄)T.

The asymptotic normality is established under the following regularity condition.

Condition 4. There is some constant Cλ that does not dependent on N such

that the eigenvalues of VN are not smaller than Cλ.
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Now, we are ready to state the asymptotic normality result.

Theorem 4. Under Assumption 1and Conditions 1 and 4, we have

√
Nσ−1

c (θ̂c − θc)
d→ N(0, 1),

provided that σ2
c is bounded away from zero, where

σ2
c =

1

π2
c

(
N

n1

ϕ2(ỹ1) +
N

n0

ϕ2(ỹ0)− ϕ2(τ̃)

)
,

ỹt = (yt1 − θcdt1, . . . , ytN − θcdtN)
T, for t = 0, 1, and τ̃ = ỹ1 − ỹ0.

The proof of this theorem is provided in the Supplementary Material. Let

ŷti = yti − θ̂cdti; then, under the conditions of Theorem 4, ϕ2(ỹt) can be

consistently estimated using

ϕ̌2
t =

1

nt − 1

∑
Ti=t

(
ŷti −

1

nt

∑
Tj=t

ŷtj

)2

, (3.1)

and πc can be consistently estimated using π̂c. However, analogously to ϕ2(τ),

ϕ2(τ̃) is unidentifiable. Here, we construct a sharp bound for ϕ2(τ̃) using covariate

information. Note that the sharp bound has not been obtained, even in the

absence of covariates. Define F̃t|k(y) = P (ỹt ≤ y | w = ξk, g = c) as a set of lower

bounds for ϕ2(τ̃). Let B̃L = {b̃L : b̃L is a functional of πc, πk|c, and F̃t|k, for t =

0, 1 and k = 1, . . . ,K; b̃L ≤ ϕ2(τ̃). Define the set of upper bounds B̃H similarly.

Then, we can establish the following sharp bound for ϕ2(τ̃).

Theorem 5. A bound for ϕ2(τ̃) is [ϕ̃2
L, ϕ̃

2
H], where

ϕ̃2
L =

K∑
k=1

πcπk|c

∫ 1

0

(F̃−1
1|k (u)− F̃−1

0|k (u))
2du,

ϕ̃2
H =

K∑
k=1

πcπk|c

∫ 1

0

(F̃−1
1|k (u)− F̃−1

0|k (1− u))2du.

Moreover, the bound is sharp in the sense that ϕ̃2
L is the largest lower bound in

B̃L, and ϕ̃2
H is the smallest upper bound in B̃H.

See the Supplementary Material for the proof of this theorem. If there is no

covariate, we let K = 1 and ξ1 = 1, and define wi = 1, for i = 1, . . . , N . Then, we

can obtain a bound without covariates, which has not previously been considered

in the literature.
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3.2. Estimation of the sharp bound and the CI

To estimate the bounds, we need to estimate πc, πk|c, and F̃t|k(y). Here, πc

can be estimated using π̂c. We let

λ̂1k =
1

n1

∑
Ti=1

d1i1{wi = ξk} −
1

n0

∑
Ti=0

d0i1{wi = ξk}

λ̂0k =
1

n0

∑
Ti=0

(1− d0i)1{wi = ξk} −
1

n1

∑
Ti=1

(1− d1i)1{wi = ξk}.

Under Assumption 1, we estimate πk|c and F̃t|k(y) as

π̂k|c = π̂−1
c λ̂1|k,

F̌1|k(y) = λ̂−1
1|k

(
1

n1

∑
Ti=1

d1i1{ŷ1i ≤ y}1{wi = ξk}

− 1

n0

∑
Ti=0

d0i1{ŷ0i ≤ y}1{wi = ξk}
)
,

and

F̌0|k(y) = λ̂−1
0|k

(
1

n0

∑
Ti=0

(1− d0i)1{ŷ0i ≤ y}1{wi = ξk}

− 1

n1

∑
Ti=1

(1− d1i)1{ŷ1i ≤ y}1{wi = ξk}
)
,

where ŷti = yti − θ̂cdti, for t = 0, 1 and i = 1, . . . , N .

We then obtain estimators for ϕ̃2
L and ϕ2

H by plugging these estimators into

the expressions of Theorem 5:

ϕ̌2
L =

K∑
k=1

π̂cπ̂k|c

∫ 1

0

(F̌−1
1|k (u)− F̌−1

0|k (u))
2du,

ϕ̌2
H =

K∑
k=1

π̂cπ̂k|c

∫ 1

0

(F̌−1
1|k (u)− F̌−1

0|k (1− u))2du.

(3.2)

The estimator F̌t|k(y) may not be monotonic with respect to y, resulting in

difficulties in a theoretical analysis. However, F̌−1
t|k (u) is still well defined, and in

the next theorem, we show that the non-monotonicity of F̌t|k(y) does not diminish

the consistency of ϕ̌2
L and ϕ̌2

H.

In the following asymptotic analysis, we denote Uc by Uc,N . We assume that

Uc,N satisfies Assumption 1, Condition 1, and the following two conditions. The

following conditions are modified versions of Conditions 2 and 3 in the presence
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of noncompliance.

Condition 5. There is some constant Cπ,c that does not depend on N such that

πk|cπc ≥ Cπ,c/K, for k = 1, . . . ,K.

Condition 6. K2 logKmax{C4
N , 1}/N → 0 as N → ∞, where CN = maxt,i |yti|.

Then, we are ready to establish the consistency of the estimators proposed

in (3.2).

Theorem 6. Under Assumption 1 and Conditions 1, 5, and 6, we have

(ϕ̌2
L, ϕ̌

2
H)− (ϕ̃2

L, ϕ̃
2
H)

P→ 0.

The proof of this theorem is relegated to the Supplementary Material. The

lower bound ϕ̃2
L for ϕ2(τ̃) implies an upper bound for σ2

c . By Theorems 4 and 6,

we can construct a conservative 1− α CI for θc,

Ic,N =
[
θ̂c − qα/2σ̂cN

−1/2, θ̂c + qα/2σ̂cN
−1/2

]
, (3.3)

where

σ̂2
c =

1

π̂2
c

(
N

n1

ϕ̌2
1 +

N

n0

ϕ̌2
0 − ϕ̌2

L

)
(3.4)

and qα/2 is the upper α/2 quantile of a standard normal distribution. We then

show that Ic,N is uniformly asymptotically level 1 − α over a class of finite

populations. In the following asymptotic analysis, we denote Uc by Uc,N . For

any finite population U∗
c,N = (y∗

1 , y
∗
0 , w

∗, g∗), we define ỹ∗
t similarly to ỹt, for

t = 0, 1. Let Λ∗
N be the smallest eigenvalue of

1

N

N∑
i=1

(z∗i − z̄∗)(z∗i − z̄∗)T,

where z∗i = (y∗
1i, y

∗
0i, d

∗
1i, d

∗
0i)

T and z̄∗ =
∑N

i=1 z
∗
i /N . For some constants

L0, L1, L2, L3 > 0, we introduce the following class of finite populations:

Pc,N =

{
U∗

c,N = (y∗
1 , y

∗
0 , w

∗, g∗) : U∗
c,N is of size N and satisfies

(a) Assumption 1; (b) Λ∗
N ≥ L0; (c)

1

N

N∑
i=1

y∗4
ti ≤ L1;

(d) ϕ2(ỹ∗
t ) ≥ L2; and (e) P (w∗ = ξk | g∗ = c)P (g∗ = c) ≥ L3

K

for t = 0, 1 and k = 1, . . . ,K

}
.
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Table 1. Bounds ϕ2
AL, ϕ

2
AH, ϕ

2
DL, ϕ

2
DH, ϕ

2
L, and ϕ2

H and the true value of ϕ2(τ) under
different population sizes.

ϕ2
AL ϕ2

AH ϕ2
DL ϕ2

DH ϕ2
L ϕ2

H ϕ2(τ)

N = 400 0.98 58.14 1.02 58.04 9.04 42.92 16.72

N = 800 0.78 54.79 0.74 54.76 8.83 40.53 17.70

N = 2,000 0.88 58.23 0.86 58.22 9.14 42.25 18.56

Constraint (a) is required for the identification of the LATE. Constraint (b) is

a regularity condition that ensures the asymptotic normality of θ̂c. Constraints

(c), (d), and (e) are similar to those in the definition of PN in Section 2.3. Here,

Pc,N can be a large class of finite populations if L0, L2, and L3 are small and

L1 is large. The class of finite populations Pc,N can be related to some class of

generic distributions in the same way as discussed before Theorem 3. The details

are omitted here. Similar arguments to those in the proof of Theorem 3 show the

following result.

Theorem 7. Under Condition 6, the CI Ic,N in (3.3) is uniformly asymptotically

level 1− α over Pc,N ; that is,

lim inf
N→∞

inf
Uc,N∈Pc,N

P(θ ∈ Ic,N) ≥ 1− α.

4. Simulations

4.1. Completely randomized experiments with perfect compliance

In this subsection, we evaluate the performance of the bounds and the

estimators ϕ̂L, ϕ̂H proposed in Section 2 using simulations. We first generate

a finite population of size N by drawing i.i.d. samples from the following data-

generation process:

(i) W takes a value in {1, 2, 3, 4} with equal probability;

(ii) for w = 1, 2, 3, 4, Y1 | W = w ∼ N(µw, ϕ
2
w), V | W = w ∼ N(0, 6 − ϕ2

w),

Y1 ⊥⊥ V | W , and Y0 = 0.3Y1 + V , where (µ1, µ2, µ3, µ4) = (3, 0,−2, 4) and

(ϕ2
1, ϕ

2
2, ϕ

2
3, ϕ

2
4) = (2, 1.5, 5, 4).

The generated values are viewed as the fixed finite population. We take N =

400, 800 and 2000, to demonstrate the performance of the proposed method under

different population sizes. The following table shows the ϕ2(τ) and the true value

of different bounds under different population sizes.

It can be seen that the intervals [ϕ2
AL, ϕ

2
AH], [ϕ

2
DL, ϕ

2
DH], and [ϕ2

L, ϕ
2
H] all contain

ϕ2(τ), and hence the bounds are all valid. Under all population sizes, the lower

bound ϕ2
L is much larger than the other two lower bounds, and the upper bound

ϕ2
H is much smaller than the other two upper bounds.
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Table 2. RMSE of the estimators for ϕ2
L and ϕ2

H under different population sizes (n1 =
n0 = N/2).

N = 400 N = 800 N = 2,000

ϕ2
L 1.71 0.87 0.66

ϕ2
H 2.31 1.36 1.00

Table 3. Average widths (AWs) and coverage rates (CRs) of 95% CIs based on the naive
bound, ϕ2

AL, ϕ
2
DL, and ϕ2

L under different population sizes (n1 = n0 = N/2).

Method
naive ϕ2

AL ϕ2
DL ϕ2

L

AW CR AW CR AW CR AW CR

N = 400 1.511 98.0% 1.495 97.8% 1.493 97.8% 1.383 96.6%

N = 800 1.033 97.8% 1.025 97.7% 1.025 97.7% 0.945 96.7%

N = 2,000 0.674 98.4% 0.668 98.3% 0.668 98.3% 0.619 97.3%

The above results show the effectiveness of our bounds at the population

level. Next, we consider the performance of the proposed bound estimators in

completely randomized experiments. In the simulation, half of the units are

assigned randomly to the treatment group, and the other half are assigned to the

control group. Then, we estimate the proposed bounds using the estimators

defined in (2.4). The randomized assignment is repeated 1,000 times. The

root mean squared error (RMSE) of the bound estimator under different N is

summarized in Table 2, showing that the RMSE decreases as the sample size

increases, which confirms the consistency result in Theorem 2.

Next, we evaluate the performance of the bound estimators in terms of

constructing CIs. Different CIs can be constructed based on the asymptotic

normality in (2.1) and different lower bounds for ϕ2(τ). To obtain the CIs, we

use ϕ̂2
t defined in (2.2) to estimate ϕ2(yt), for t = 0, 1, and replace ϕ2(τ) in σ2

with the estimators of the different lower bounds. We also estimate the bounds of

Aronow, Green and Lee (2014) and Ding, Feller and Miratrix (2019) using plug-in

estimators, as suggested in these works, and estimate the proposed lower bound

using the estimators defined in (2.4). The following table shows the average width

(AW) and coverage rate (CR) of the 95% CIs based on the naive lower bound

zero (Neyman (1990)), the estimator of ϕ2
AL (Aronow, Green and Lee (2014)),

the estimator of ϕ2
DL (Ding, Feller and Miratrix (2019)), and the estimator of ϕ2

L.

The CIs based on the estimator of ϕ2
L are the narrowest, and the corre-

sponding coverage rate is the closest to 95% of the four CIs under all population

sizes. See the Supplementary Material for additional simulation results on the

performance of the proposed CI.
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Table 4. Bounds constructed with and without covariates, and the RMSE of their
estimators under different population sizes. LNC: lower bound without covariate; HNC:
upper bound without covariate; LC: lower bound with covariate; HC: upper bound with
covariate (n1 = n0 = N/2).

LNC HNC LC HC

Value RMSE Value RMSE Value RMSE Value RMSE

N = 400 0.78 0.75 40.05 5.41 9.82 4.62 29.42 5.94

N = 800 0.73 0.45 39.61 3.49 10.42 3.92 28.79 5.35

N = 2,000 0.72 0.27 37.19 2.10 9.52 2.45 28.45 4.55

4.2. Completely randomized experiments with noncompliance

Here, we show the simulation performance of the bounds and the estimators

ϕ̌L, ϕ̌H proposed in Section 3. First, we generate finite populations of size N =

400, 800, and 2000 by drawing i.i.d. samples from the following data-generation

process:

(i) generate the compliance type G ∈ {a, c, n}, with the probability that G = a,

c, and n being 0.2, 0.7, and 0.1, respectively;

(ii) for h = a, c, and n, the conditional distribution W | G = h has

probability mass p1h, p2h, p3h, and p4h at 1, 2, 3, and 4, respectively, where

(p1a, p2a, p3a, p4a) = (0.15, 0.2, 0.3, 0.35), (p1c, p2c, p3c, p4c) =

(0.25, 0.25, 0.25, 0.25), and (p1n, p2n, p3n, p4n) = (0.35, 0.3, 0.2, 0.15);

(iii) for w = 1, 2, 3, 4, Y1 | W = w ∼ N(µw, ϕ
2
w), where (µ1, µ2, µ3, µ4) =

(3, 0,−2, 4) and (ϕ2
1, ϕ

2
2, ϕ

2
3, ϕ

2
4) = (2, 1.5, 5, 4);

(iv) Y0 | G = c,W = w ∼ N(0.3w, 6− ϕ2
w), and Y0 = Y1 if G = a or n.

Theorem 5 can also provide a bound without using covariates. So to illustrate the

usefulness of the covariates, we compare the bounds constructed with and without

them. In the following, the lower bounds constructed with and without covariates

are denoted by “LC” and “LNC”, respectively, and the upper bounds constructed

with and without covariates are denoted by “HC” and “HNC”, respectively. As

in Section 4.1, half of the units are assigned randomly to the treatment group,

and the other half are assigned to the control group. Then, we estimate the

bounds for each of these random assignments using the estimators proposed in

(3.2). The randomized assignment is repeated 1,000 times. In the simulation

ϕ2(τ̃) is equal to 9.97, 10.41, and 9.56 when N = 400, 600, and 2000, respectively.

The following table shows the true values of various bounds and the RMSE of

their estimators under different population sizes.

Table 4 shows that LC is much larger than LNC, and HC is much smaller

than HNC. Therefore, covariates are useful in terms of sharpening the bounds.
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Table 5. Average widths (AWs) and coverage rates (CRs) of 95% CIs based on the
naive bound, HNL and HL under different population sizes. LNC: lower bound without
covariate; LC: lower bound with covariate (n1 = n0 = N/2)

Method
naive LNC LC

AW CR AW CR AW CR

N = 400 2.188 98.5% 2.168 98.4% 1.990 97.3%

N = 800 1.553 97.9% 1.542 97.8% 1.399 96.4%

N = 2,000 0.980 98.2% 0.973 98.2% 0.893 96.6%

In general, the RMSE of the bound estimators generally decreases as the sample

size increases, validating the consistency result in Theorem 6.

Next, we construct CIs based on the asymptotic normality in Theorem 4 and

different lower bounds for ϕ2(τ̃). To obtain the CIs, we use ϕ̌2
t defined in (3.1) to

estimate ϕ2(ỹt), for t = 0, 1, and replace ϕ2(τ̃) in σ2
c with the estimators of various

lower bounds. The following table shows the average width (AW) and coverage

rate (CR) of the 95% CIs based on the naive lower bound zero and the estimator

of the lower bound in Theorem 5, construct with and without covariates.

The results show that the CI based on the estimator of LC is the narrowest,

and that the corresponding coverage rate is the closest to 95% of the three CIs

under all population sizes. This demonstrates the usefulness of covariates in terms

of constructing CIs.

5. Real-Data Applications

5.1. Application to ACTG protocol 175

In this section, we apply our approach proposed in Section 2 to a data set

from the randomized trial ACTG protocol 175 (Hammer et al. (1996)). The data

used in this subsection are available from the R package “speff2trial” (https://

cran.r-project.org/web/packages/speff2trial/index.html). The ACTG

175 study evaluated four therapies for subjects infected with the human

immunodeficiency virus whose CD4 cell counts (a measure of immunologic status)

were between 200 and 500 mm−3. Here, we regard the 2,139 enrolled subjects as

a finite population, and consider two treatment arms: the standard zidovudine

monotherapy (denoted by “arm 0”), and the combination therapy with zidovudine

and didanosine (denoted by “arm 1”). The parameter of interest is the average

treatment effect of the combination therapy on the CD8 cell count, measured

at 20 ± 5 weeks post baseline, compared with that of the monotherapy. In the

randomized trial, 532 subjects are assigned randomly to arm 0, and 522 subjects

are assigned randomly to arm 1. The available covariate is the age of each subject.

In order to meet Condition 3, we divide the subjects into ⌊N 1/4⌋ = 6 groups

according to age: less than 20 years old, between 21 and 30 years old, between
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31 and 40 years old, between 41 and 50 years old, between 51 and 60 years old,

and older than 60 years old. We then use age group, gender, and antiretroviral

history as covariates, and apply our proposed method. The proposed bounds ϕ2
L

and ϕ2
H are estimated using the estimators defined in (2.4). We also estimate the

bounds proposed in the literature (Aronow and Middleton (2013); Ding, Feller

and Miratrix (2019)). Bounds ϕ2
AL, ϕ2

AH, ϕ2
DL, and ϕ2

DH are estimated using

plug-in estimators, as suggested in Aronow, Green and Lee (2014) and Ding,

Feller and Miratrix (2019). The estimates of the lower bounds ϕ2
AL, ϕ

2
DL, and

ϕ2
L are 0.12, 0.27, and 4.75, respectively; the estimates of the upper bounds

ϕ2
AH, ϕ

2
DH, and ϕ2

H are 70.79, 69.87, and 65.67, respectively (values are divided

by 10,000). The estimate of the proposed lower bound is the largest among

the three lower bounds, and the estimate of the proposed upper bound is the

smallest among the three upper bounds. The 95% CI constructed using zero

as a lower bound for ϕ2(τ) is [−13.27, 92.79]. Using the lower bound estimate

of Aronow, Green and Lee (2014) leads to the CI [−13.25, 92.77], and using

that of Ding, Feller and Miratrix (2019) leads to the CI [−13.23, 92.75]. The

CI [−12.46, 91.98] is obtained by using ϕ̂2
L given in (2.4). The widths of the

four CIs are 106.07, 106.02, 105.98, and 104.44, respectively. Comparing the

CI width of the naive method with the widths based on the lower bound of

Aronow and Middleton (2013) and Ding, Feller and Miratrix (2019), and the

proposed lower bound for ϕ2(τ), the CI width reductions are 0.04, 0.09, and 1.62,

respectively. The reductions for the three methods are not very large compared

with that of the naive method. The reason may be that Nϕ̂2
1/n1 + Nϕ̂2

0/n0 is

too large relative to the estimator of the lower bound for ϕ2(τ) in this specific

problem, where ϕ̂2
1 and ϕ̂2

0 are the estimators for ϕ2(y1) and ϕ2(y0), respectively.

Note that the CI width is proportional to
√
Nϕ̂2

1/n1 +Nϕ̂2
0/n0 − ϕ̂2

B, where ϕ̂2
B

is the estimator of the lower bound for ϕ2(τ). This implies that the lower bound

estimator ϕ̂2
B does not play an important role in the CI width if Nϕ̂2

1/n1+Nϕ̂2
0/n0

is much larger than ϕ̂2
B.

5.2. Application to JOBS II

In this section, we apply our approach proposed in Section 3 to a data set

from the randomized trial JOBS II (Vinokuir, Price and Schul (1995)). The

data used in this subsection are available from https://www.icpsr.umich.

edu/web/ICPSR/studies/2739. The JOBS II intervention trial studied the

efficacy of a job training intervention in preventing depression caused by job

loss, and in prompting high-quality re-employment. The treatment consisted of

five half-day training seminars designed to enhance the participants’ job search

strategies. The control group receives a booklet with some brief tips. After

some screening procedures, 1,801 respondents were enrolled in this study, with

552 and 1,249 respondents in the control and treatment groups, respectively. Of
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the respondents assigned to the treatment group, only 54% participated in the

treatment. Thus, there is a large proportion of noncompliance in this study. The

parameter of interest is the LATE of the treatment on the depression score (a

larger score indicates more severer depression). We use gender, initial risk status

and economic hardship as the covariates, and apply our proposed method. The

estimates for ϕ̃2
L and ϕ̃2

H are 0.23 and 0.81, respectively. The 95% CIs constructed

using the naive bound zero and ϕ̃L are [−0.2428, 0.0271] and [−0.2360, 0.0202],

respectively. Our method shortens the CI by 0.014. When testing the null

hypothesis that θc = 0 against the alternative hypothesis that θc < 0, the naive

method gives a p-value of 0.059, whereas our method gives a p-value of 0.049.

Thus, our method can detect the treatment effect at the 0.05 significance level,

whereas the naive method cannot.

6. Discussion

In this paper, we establish sharp variance bounds for the widely used

difference-in-means estimator and Wald estimator in the presence of covariates

in completely randomized experiments. These bounds can help to improve the

performance of inference procedures based on a normal approximation. We do

not impose any assumption on the support of the outcomes; hence, our results

are general and apply to both binary and continuous outcomes. The variances of

the difference-in-means estimator in matched pair randomized experiments (Imai

(2008)) and those of the Horvitz–Thompson estimator in stratified randomized

experiments and clustered randomized experiments (Miratrix, Sekhon and Yu

(2013); Mukerjee, Dasgupta and Rubin (2018); Middleton and Aronow (2015))

share a similar unidentifiable term to that considered in this study. Moreover, the

unidentifiable phenomenon appears in the asymptotic variance of the regression

adjustment estimators; see Lin (2013), Freedman (2008a), and Bloniarz et al.

(2016). The insights provided in this paper also apply in these settings, although

we omit the details here. It would be of great interest to extend our work to

randomized experiments with other randomization schemes, such as a 22 factorial

design (Lu (2017)) or some other complex assignment mechanism (Mukerjee,

Dasgupta and Rubin (2018)).

Supplementary Material

The online Supplementary Material contains further simulation results and

proofs for all theoretical results presented in this paper.
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