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Abstract: Generalized varying-coefficient models are particularly useful for ex-

amining the dynamic effects of covariates on a continuous, binary, or count re-

sponse. This study examines feature screening for generalized varying-coefficient

models with ultrahigh-dimensional covariates. The proposed screening procedure

is based on the joint quasi-likelihood of all predictors, which differentiates it from

the marginal screening procedures proposed in the literature. In particular, the

proposed procedure effectively identifies active predictors that are jointly depen-

dent, but marginally independent of the response. We provide an algorithm for the

proposed procedure, and establish the ascent property of the proposed algorithm.

Furthermore, we prove that the proposed procedure possesses the sure screening

property. That is, with probability tending to one, the selected variable set includes

the actual active predictors. We examine the finite-sample performance of the pro-

posed procedure, and compare it with that of several Monte Carlo simulations.

Lastly, we illustrate our procedure using a real-data example.

Key words and phrases: Generalized varying-coefficient models, ultrahigh-dimensional

data, variable screening.

1. Introduction

Generalized linear models have been well studied in the literature. Penalized

likelihood methods have been developed for variable selection in such models with

high-dimensional covariates (Tibshirani (1996); Fan and Li (2001)). Ultrahigh-

dimensional data are becoming increasingly common in research areas such as

genome-wide association studies, proteomics studies, finance, tumor classifica-

tion, and biomedical imaging. However, variable-selection methods based on

penalized likelihood methods may not perform well for ultrahigh-dimensional

data because of the methods algorithmic stability, computational cost, and sta-

tistical accuracy (Fan, Samworth and Wu (2009)). Fan and Lv (2008) advocate

a two-stage approach: (a) reduce the ultrahigh-dimensional covariates to high-

dimensional covariates by filtering out those that are irrelevant covariates, using
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a marginal screening procedure, and (b) apply variable selection methods to

the reduced model. Fan and Lv (2008) proposed a sure independence screening

(SIS) procedure for linear models, using the Pearson correlation coefficient as

the marginal utility. They also established the sure screening property of their

procedure under a Gaussian linear model framework. Hall and Miller (2009) pro-

posed a feature screening procedure for the transformation linear model based on

a generalized correlation, and Li et al. (2012) advocated using a rank correlation

for screening to deal with a heavy-tailed distribution and the presence of outliers.

Fan, Samworth and Wu (2009) proposed an SIS procedure for generalized lin-

ear models based on a marginal likelihood estimate. Further details about these

procedures can be found in the recent review paper on feature screening by Liu,

Zhong and Li (2015).

Varying-coefficient models (VCMs) were proposed to deal with “curse of di-

mensionality” (Cleveland, Grasse and Shyu (1992); Hastie and Tibshirani (1993)).

As a natural extension of linear regression models that allow coefficients to vary

over a variable such as age and time, VCMs are particularly useful for explor-

ing dynamic patterns of effects, and have been used in various research fields

(e.g., Zhu et al. (2011); Tan et al. (2012); Liu, Li and Wu (2014)). Feature

screening procedures for VCMs with ultrahigh-dimensional covariates (referred

to as ultrahigh-dimensional VCMs) have been proposed in the literature. Liu,

Li and Wu (2014) developed an SIS procedure for ultrahigh-dimensional VCMs

that uses conditional Pearson correlation coefficients to denote marginal utility

in order to rank the importance of the predictors. Fan, Ma and Dai (2014)

proposed an SIS procedure for ultrahigh-dimensional VCMs that extends the

B-spline techniques of Fan, Feng and Song (2011) for additive models. Xia,

Yang and Li (2016) further extends the SIS procedure proposed in Fan, Ma and

Dai (2014) to include generalized varying-coefficient models (GVCMs). Cheng,

Honda and Zhang (2016) proposed a forward variable-selection procedure for

ultrahigh-dimensional VCMs based on techniques that use B-spline regressions

and grouped variable-selection. Song, Yi and Zou (2014) extended the proposal

of Fan, Ma and Dai (2014) for longitudinal data, without taking into account

within-subject correlation. Then, Chu, Li and Reimherr (2016) proposed an SIS

procedure for longitudinal data based on a weighted residual sum of squares that

uses within-subjection correlation to improve the accuracy of feature screening.

However, while feature screening for ultrahigh-dimensional VCMs is an active

research topic in the literature, few studies investigate joint feature screening for

ultrahigh-dimensional GVCMs, which is particularly useful for examining the dy-
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namic effects of covariates on a binary, count, or continuous response. Exceptions

include the work of Li and Zhang (2011), who proposed a new semiparametric

threshold model for censored longitudinal data analyses. Then, Cheng et al.

(2014) developed a procedure that automatically identifies sparse semivarying

coefficient models, which are widely used for longitudinal data analyses. This

study intends to fill this gap.

We propose a new feature screening procedure for ultrahigh-dimensional

GVCMs. The proposed procedure is based on the joint likelihood of potential

active predictors. This differentiates it from existing SIS procedures (Fan, Ma

and Dai (2014); Liu, Li and Wu (2014); Xia, Yang and Li (2016)) in that the pro-

posed procedure is not a marginal screening procedure. Wang (2009) proposed a

forward regression approach for feature screening in ultrahigh-dimensional linear

models, which Cheng, Honda and Zhang (2016) then extended using B-spline re-

gressions and grouped variable-selection. Xu and Chen (2014) proposed a feature

screening procedure for generalized linear models based on the sparsity-restricted

maximum likelihood estimator. As demonstrated in Wang (2009), Xu and Chen

(2014), and Cheng, Honda and Zhang (2016), their approaches outperform the

SIS procedures, and effectively identify predictors that are jointly dependent, but

marginally independent of the response. We develop a new screening procedure

for ultrahigh-dimensional GVCMs based on the joint likelihood of the potential

active predictors. The proposed procedure effectively identifies active predictors

that are jointly dependent, but marginally independent of the response, without

performing an iterative procedure. We develop a computationally efficient algo-

rithm to implement the proposed procedure and establish the ascent property of

the proposed algorithm. Furthermore, we prove that this procedure possesses the

sure screening property. That is, with probability tending to one, the selected

variable set includes the actual active predictors. In summary, this work makes

the following major contributions to the literature. (a) We propose a sure joint

screening (SJS) procedure for ultrahigh-dimensional GVCMs. In addition, we

provide an efficient algorithm to implement the proposed screening procedure,

and demonstrate the ascent property of the proposed algorithm. (b) We establish

the screening property for the proposed joint screening procedure.

The rest of this paper is organized as follows. In Section 2, we present

the proposed feature screening procedure for ultrahigh-dimensional GVCMs, as

well as an algorithm for the proposed procedure. Here, we also investigate the

theoretical properties of the proposed procedure and algorithm. In Section 3, we

present numerical comparisons and an empirical analysis of a real-data example.
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Section 4 concludes the paper. All technical proofs are provided in the online

Supplementary Material.

2. Screening Procedure for GVCMs

Let Y be the response variable, and let {x, U} denote its associated covari-

ates, where x = (X1, . . . , Xp) and U are p-dimensional and univariate covariates,

respectively. Further, let µ(x, U) = E(Y |x, U). The GVCM assumes that

η(x, U)=̂g{µ(x, U)} = xTα(U), (2.1)

where g(·) is a known link function, and α(·) is a vector consisting of unspecified

smooth regression coefficient functions. Here, it is assumed that all αj(·) are

nonparametric functions, and that the support of U is finite and denoted by

[a, b].

Suppose that {Ui,xi, Yi}, for i = 1, . . . , n, constitute an independent and

identically distributed (i.i.d.) sample, and that, conditionally on {Ui,xi}, the

conditional quasi-likelihood of Yi is Q{µ(Ui,xi), Yi}, where the quasi-likelihood

function is defined by Q(µ, y) =
∫ y
µ (s− y)/(V (s))ds, or equivalently, (∂Q(µ, y))/

(∂µ) = (y − µ)/(V (µ)), for a specific variance function V (s). Denote by `{α(·)}
the quasi-likelihood (McCullagh and Nelder (1989)) of the collected data {(Ui,xi,
Yi), i = 1, . . . , n}. That is,

`{α(·)} =

n∑
i=1

Q[g−1{xTi α(Ui)};Yi]. (2.2)

To estimate the nonparametric regression coefficient, we use the B-spline

regression method. Let Sn be the space of polynomial splines of degree l ≥ 1,

and let {ψjk, k = 1, . . . , dnj
} denote a normalized B-spline basis with ‖ψjk‖∞ ≤ 1

and dnj = O(n1/5), where ‖ · ‖∞ is the sup norm. For any αnj ∈ Sn, we have

αnj(U) =

dnj∑
k=1

βjkψjk(U) = βTj ψj(U), j = 1, . . . , p, (2.3)

for some coefficients {βjk}
dnj

k=1. Here, dnj
increases with n. We allow dnj

to vary

with j because the coefficient functions may have varying smoothness. Under

some conditions, each nonparametric coefficient function αj(U), for j = 1, . . . , p,

can be well approximated by functions in Sn.

Substituting (2.3) into (2.2), the maximum quasi-likelihood estimate of (2.2)

maximizes
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`(β)=̂

n∑
i=1

Q

g−1


p∑
j=1

βTj ψj(Ui)Xij

 ;Yi

 =

n∑
i=1

Q[g−1(zTi β);Yi] (2.4)

with respect to β, where zi = (Xi1ψ1(Ui)
T , . . . , Xipψp(Ui)

T )T and β = (βT1 , . . . ,

βTp )T . With a slight abuse of notation, we use `{α(·)} in (2.2) and `(β) in (2.4).

However, the notation will be clear in the relevant context. In the presence of

ultrahigh-dimensional covariate x, the corresponding optimization problem be-

comes ill-posed. It is typical to assume sparsity. That is, only a few x-covariates

are significant, with the remainder having no impact on the response. We next

propose a feature screening procedure for model (2.1).

2.1. The proposed feature screening procedure

Denote ‖αj(U)‖2 = [Eα2
j (U)]1/2 as the L2-norm of αj(U). For ease of pre-

sentation, s denotes an arbitrary subset of {1, . . . , p}, xs = {xj , j ∈ s}, and

αs(U) = {αj(U), j ∈ s}. For a set s, τ(s) denotes the cardinality of s. Suppose

the effect of x is sparse, and the true value of α(U) is α∗(U); thus, β corre-

sponds to β∗. Denote s∗ = {j : ‖αj(U)‖2 > 0}. By sparsity, we mean that τ(s∗)

is much less than p. The goal of feature screening is to identify a subset s, such

that s∗ ⊂ s with overwhelming probability and τ(s) is also much less than p.

From a theoretical perspective, we can formulate this problem as the following

optimization problem:

max
α(·)

`{α(·)} subject to τ({j : ‖αj(·)‖22 > 0}) ≤ m, (2.5)

for a prespecified m, which is presumed to be much less than p.

When the approximation error is negligible, we construct a feature screening

procedure by considering the following maximization problem:

max
αn(·)

`{αn(·)} subject to τ({j : ‖αnj(·)‖22 > 0}) ≤ m. (2.6)

Note that ‖αnj(U)‖22 = βTj E{ψj(U)ψj(U)T }βj . Under the assumption that

E{ψj(U)ψj(U)T } is finite positive-definite, for all j = 1, . . . , p, the maximization

problem in (2.6) is equivalent to

max
β

`(β) subject to τ({j : ‖βj‖22 > 0}) ≤ m. (2.7)

For high-dimensional problems, it becomes almost impossible to solve the

constrained maximization problem in (2.7) directly. As an alternative, we con-

sider a proxy for the quasi-likelihood function. It follows from the Taylor expan-

sion for the quasi-likelihood function `(γ) at β, within the neighborhood of γ,
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that

`(γ) ≈ `(β) + (γ − β)T `′(β) +
1

2
(γ − β)T `′′(β)(γ − β),

where `′(β) = ∂`(γ)/∂γ|γ=β and `′′(β) = ∂2`(γ)/∂γ∂γT |γ=β. Denote Pt =∑p
j=1 dnj . If `′′(β) is invertible, the computational complexity of calculating the

inverse of `′′(β) is O(P 3
t ). For problems with large Pt and small n (i.e., Pt � n),

`′′(β) becomes not invertible. A low computational cost is always desirable for

feature screening. To cope with the singularity of the Hessian matrix and to

minimize the computational cost, we propose using the following approximation

for `′′(γ):

h(γ|β) = `(β) + (γ − β)T `′(β)− u

2
(γ − β)TW (β)(γ − β), (2.8)

where u is a scaling constant (to be specified), and W (β) = diag(W1(β), . . . ,

Wp(β)) is a block diagonal matrix, with Wj(β) a dnj × dnj matrix. Here, we

allowW (β) to depend on β. This implies that we approximate `′′(β) by−uW (β).

Throughout this paper, we use Wj(β) = −∂2`(β)/∂βj∂β
T
j .

Clearly, h(β|β) = `(β). Furthermore, under some conditions, h(γ|β) ≤ `(β),

for all γ. This ensures the ascent property. See Theorem 1 below for more details.

Because W (β) is a block diagonal matrix, h(γ|β) is an additive function of γj ,

for any given β. This additivity enables us to have a closed-form solution for the

following maximization problem:

max
γ

h(γ|β) subject to τ({j : ‖γj‖22 > 0}) ≤ m, (2.9)

for given β andm. Define γ̃j = βj+u
−1W−1j (βj)∂`(β)/∂βj , for j = 1, . . . , p, and

γ̃ = (γ̃T1 , . . . , γ̃
T
p )T = β + u−1W−1(β)`′(β) is the maximizer of h(γ|β). Denote

gj = γ̃Tj Wj(βj)γ̃j , for j = 1, . . . , p, and sort gj such that g(1) ≥ g(2) ≥ · · · ≥ g(p).
The solution to the maximization problem given in (2.9) is the hard-thresholding

rule defined as follows:

γ̂j = γ̃jI{gj > g(m+1)}.

This enables us to screen features effectively using the following algorithm:

Step 1. Set the initial value β
(0)
j = 0, for j = 1, . . . , p.

Step 2. Set t = 0, 1, 2, . . . , and iteratively perform Step 2a and Step 2b until

the algorithm converges.

Step 2a. Calculate γ̃
(t)
j = β

(t)
j + u−1t W−1j (βj)∂`(β

(t))/∂βj , and g
(t)
j =

{γ̃(t)
j }TWj(β

(t))γ̃
(t)
j . Let g

(t)
(1) ≥ g

(t)
(2) ≥ · · · ≥ g

(t)
(p), the order statistics of

g
(t)
j s. Set St = {j : g

(t)
j ≥ g

(t)
(m+1)}, the nonzero index set.
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Step 2b. Update β by β(t+1) = (β
(t+1)
1 , . . . ,β

(t+1)
p )T , as follows. If j 6∈

St, set β
(t+1)
j = 0; otherwise, set {β(t+1)

j : j ∈ St} as the maximum

likelihood estimate of the submodel St.

Remark 1. Unlike the screening procedures based on marginal partial likelihood

methods, our proposed procedure iteratively updates β in Step 2. This enables

the proposed screening procedure to incorporate information on the correlations

between the predictors by updating `′p(β) and `′′p(β). Thus, the proposed pro-

cedure is expected to outperform the marginal screening procedures when some

predictors are marginally independent. At the same time, because Step 2 does

not include a large-scale matrix inversion, it incurs a low computational cost.

Theorem 1. Let {β(t)} be the sequence defined in Step 2b of the above algorithm.

Denote

ρ(t) = sup
β

[
λmax{W−1/2(β(t)){−`′′(β)}W−1/2(β(t))}

]
.

Here, and hereafter, λmax(A) and λmin(A) denote the maximal and minimal

eigenvalues of a matrix A, respectively. If ut ≥ ρ(t), then

`
(
β(t+1)

)
≥ `

(
β(t)

)
,

where β(t+1) is defined in Step 2b of the above algorithm.

Theorem 1 claims the ascent property of the proposed algorithm if ut is

chosen appropriately. That is, the proposed algorithm may improve the cur-

rent estimate within the feasible region (i.e., τ({j : ‖αj(U)‖2 > 0}) ≤ m),

and the resulting estimate in the current step may serve as a refinement of

the previous step. This theorem also provides insight into choosing ut in a

practical implementation. For VCMs: E(Y |U,x) = xTα(U), and we may set

`{α(·)} = −2−1
∑n

i=1{Yi − xiα(Ui)}2. In this case, `(β) in (2.4) is `(β) =

−2−1
∑n

i=1(Yi − zTi β)2. Thus, −`′′(β) =
∑n

i=1 ziz
T
i = ZTZ, where Z is n × pt

matrix, with the ith row being zTi . Thus,

ρ(t) = λmax(diag(ZTZ)−1/2(ZTZ)diag(ZTZ)−1/2),

which does not depend on iteration t. If zi is marginally standardized such that

its marginal sample mean and sample standard deviation are equal to zero and

one, respectively, then diag(ZTZ)−1/2(ZTZ)diag(ZTZ)−1/2 is the corresponding

sample correlation matrix of zi. Thus, ρ is the largest eigenvalue of the sample

correlation matrix.
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2.2. Sure screening property

For a subset s of {1, . . . , p} with size τ(s), recall that xs = {xj , j ∈ s} and its

associated coefficients αs(U) = {αj(U), j ∈ s} correspond to βs = {βj , j ∈ s},
with βj = (βj1, . . . , βjdnj

). We denote the true model by s∗ = {j : Eα2
j (U) >

0, 1 ≤ j ≤ p}, with τ(s∗) = q. The objective of feature selection is to obtain a

subset ŝ, such that s∗ ⊂ ŝ with very high probability.

We now provide theoretical justifications for the screening procedure for the

GVCM. The sure screening property (Fan and Lv (2008)) is defined as

Pr(s∗ ⊂ ŝ) −→ 1, as n→∞. (2.10)

To establish this property for the proposed feature screening method, we intro-

duce the following additional notation. For any model s, let `′(βs) = ∂`(βs)/∂βs
and `′′(βs) = ∂2`(βs)/∂βs∂β

T
s be the score function and the Hessian matrix of

`(·) as a function of βs, respectively. Assume that a screening procedure retains

m out of p features, such that τ(s∗) = q < m. Therefore, we define

Sm+ = {s : s∗ ⊂ s; ‖s‖0 ≤ m} and Sm− = {s : s∗ 6⊂ s; ‖s‖0 ≤ m} (2.11)

as collections of over-fitted and under-fitted models, respectively. We investigate

the asymptotic properties of β̂m when p, q, m, and β∗ are allowed to depend on

the sample size n. We impose the following conditions, some of which are purely

technical and serve only to facilitate a theoretical understanding of the proposed

procedure.

(C1) The support of U is bounded and is assumed to be [a, b].

(C2) The functions {αj(U)}pj=1 belong to a class of functions F , whose rth deriva-

tive α
(r)
j exists and is Lipschitz of order η,

F =
{
αj(·) : |α(r)

j (s)− α(r)
j (t)| ≤ K|s− t|η for s, t ∈ [a, b]

}
,

for some positive constant K, where r is a nonnegative integer and η ∈ (0, 1],

such that υ = r + η > 0.5.

(C3) There exist w1, w2 > 0 and nonnegative constants τ1 and τ2, such that

τ1 + τ2 < 1/2, with

min
j∈s∗
‖αj(U)‖2 ≥ w1n

−τ1 and q < m ≤ w2n
τ2 .

(C4) log p = O(nκ), for some 0 ≤ κ < 1− 2(τ1 + τ2).

(C5) µ′(·)/V (·) is bounded by some constant M > 0.
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(C6) There exist constants C1, C2 > 0, δ > 0, such that, for sufficiently large n,

C1d
−1
n ≤ λmin[−n−1`′′(βs)] ≤ λmax[−n−1`′′(βs)] ≤ C2d

−1
n ,

for βs ∈ {β : ‖βs−β∗s‖2 ≤ δ} and s ∈ S2m
+ , where λmin[·] and λmax[·] denote

the smallest and largest eigenvalues of a matrix, respectively.

Under Conditions (C1) and (C2), the following two properties of B-splines

are valid.

(a) (de Boor (1978)) For k = 1, . . . , dn, ψjk(U) ≥ 0 and
∑dn

k=1 ψjk(U) = 1,

U ∈ [a, b]. In addition, there exist positive constants C3 and C4, such that

C3d
−1
n ≤ Eψ2

jk(U) ≤ C4d
−1
n .

(b) (Stone (1982, 1985)) If {αj , j = 1, 2, . . . , p} is a set of functions in F de-

scribed in condition (C2), there exists a positive constant C5 that does not

depend on αj(U), such that the uniform approximation error has the fol-

lowing bound: ρ = supU∈[a,b] ‖αj(U)− αnj(U)‖2 ≤ C5d
−υ
n , ∀j, as dn →∞.

Conditions (C1) and (C2) ensure properties (a) and (b), which are required for

the B-spline approximation and establishing the sure screening properties.

Note that ‖αnj(U)‖22 = βTj E{ψj(U)ψj(U)T }βj . Based on properties (a)

and (b) and Condition (C3), we can derive that

min
j∈s∗
‖βj‖2 ≥ w1dnn

−τ1 . (2.12)

Condition (C3) states a few requirements for establishing the sure screening

property of the proposed procedure. The first is the sparsity of β∗, which makes

the sure screening possible with τ(ŝ) = m > q. Condition (C3) requires that

the signal of the active components (‖αj(U)‖2, j ∈ s∗) does not vanish. This is

referred to as the minimal signal condition in the literature. A minimal signal

condition is a commonly imposed assumption in existing works on marginal fea-

ture screening for other models (e.g., Liu, Li and Wu (2014)). From (2.12), the

condition is equivalent to requiring that the minimal component in β∗ does not

degenerate too fast, so that the signal is detectable in the asymptotic sequence.

Condition (C4) has p diverge with n at up to an exponential rate. At the same

time, together with (C6), it confines an appropriate order of m that guarantees

the identifiability of s∗ over s, for τ(s) ≤ m. For the VCM discussed in Section

2.1, Condition (C6) requires

C1d
−1
n ≤ λmin[n−1ZTs Zs] ≤ λmax[n−1ZTs Zs] ≤ C2d

−1
n ,

where Zs is the corresponding design matrix of model s. We establish the sure

screening property of the quasi-likelihood estimation by the following theorem.
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In Fan and Song (2010), Condition D ensures the tail of the response variable Y is

exponentially light, as shown in the following Lemma 1. Furthermore, Condition

D corresponds to our Condition (C6); thus Condition (C6) ensures that Y is

bound.

Remark 2. In particular, our proposed screening procedure is based on the

joint quasi-likelihood of all predictors. However, Fan, Ma and Dai (2014) investi-

gate marginal nonparametric methods for screening variables in sparse ultrahigh-

dimensional VCMs. Then, in Fan, Ma and Dai (2014), conditions (v) and (vi)

are requirements related to the tail distribution of each covariate and the noise,

respectively, which are used to establish the sure screening property. However,

errors need to be independent, but not normally distributed. Corresponding

to our condition (C6), we need only assume that the minimum and maximum

eigenvalues of the Hessian matrix are bounded.

Theorem 2. Suppose we have n independent observations, with p candidate

features, from model (2.1), and that conditions (C1)-(C7) are satisfied. Let ŝ be

the features obtained by (2.5) of size m. Then, we have

Pr(s∗ ⊂ ŝ)→ 1, as n→∞.

The proof is given in the online Supplementary Material. The sure screening

property is an appealing property of a screening procedure because it ensures that

the true active predictors are retained in the model selected by the procedure.

We establish the sure screening property under weaker conditions than those

imposed in Fan, Ma and Dai (2014) and Xia, Yang and Li (2016).

One has to specify the value of m in a practical implementation. Here,

there are two scenarios. In the first, we choose m using the data-driven method

described in Section 2.3. The second is an ad hoc method. In the literature on

feature screening, it is typical to set m = [n/ log(n)] for a parametric model,

where [a] indicates the integer part of a (Fan and Lv (2008)). Because we use a

linear combination of dn B-spline bases in our proposed screening procedure for

the GVCM, we set m = [(n/dn)/ log(n/dn)] throughout in Examples 1, 2, and

3. Despite being an ad hoc choice, it works reasonably well in our numerical

examples. Given this choice of m, we are ready to apply existing methods, such

as the penalized quasi-likelihood method, to further remove inactive predictors.

Note that to distinguish it from the SIS procedure, we refer to the proposed

procedure as sure joint screening (SJS) procedure.
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2.3. Choice of m

Feature screening may be used in various contexts. In some, we may treat

m as a prespecified value. For example, owing to a budget constraint, a biologist

can examine up to m genes that potentially associate with a certain phenotype.

In other contexts, we might treat m as a tuning parameter to control model

complexity. In such cases, it is desirable to develop an automatic data-driven

method to determine m. We propose selecting m by minimizing the following

high-dimensional BIC score:

HBIC(m) = −2`(β̂m) + dnm
Cn log(dnp)

n
,

where β̂j = (β̂j1, . . . , β̂jdn), for j = 1, . . . ,m, and Cn is a sequence of numbers

that diverges to ∞. Wang, Kim and Li (2013) proposed the HBIC for selecting

the tuning parameter in the penalized least squares method for high-dimensional

linear models. Here, we modify their proposal for high-dimensional GVCMs.

In our simulation, we take Cn = log(log n), and compare its performance with

that of the AIC and BIC tuning parameter selectors, defined in the same manner.

Note that the proposed HBIC selector for the tuning parameter requires searching

over m = 1, 2, . . . , [n/dn]. In contrast, the classical AIC and BIC used for subset

selection require searching over subsets. Thus, the tuning parameter selector

does not incur a high computational cost.

Recall the notation Sm+ and Sm− defined in (2.11). Theorem 3 shows that the

HBIC selects the right model size, almost surely.

Theorem 3. Suppose we have n independent observations with p candidate fea-

tures from model (2.1), and that conditions (C3)-(C6) are satisfied. Let ŝ be the

features obtained by (2.4) and (2.7) of size m. Then, we have

Pr

{
min
s∈Sm

−

HBIC(τ(s)) ≤ HBIC(q)

}
−→ 0, (2.13)

where q = τ(s∗), and

Pr

{
min

s∈Sm
+ ,s 6=s∗

HBIC(τ(s)) ≤ HBIC(q)

}
−→ 0. (2.14)

In Example 4, we examine the performance of the proposed HBIC tuning

parameter selector.
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3. Numerical Studies

In this section, we conduct numerical studies to examine the finite-sample

performance of the proposed procedure, which we then compare with that of

existing procedures. All simulations are conducted using R code. Examples 1,

2, and 3 examine the performance of the proposed screening procedures. Fol-

lowing the literature on feature screening (e.g., Fan and Lv (2008)), we set

m = [n/ log(n)] in these examples. Example 4 examines the performance of

the proposed HBIC, and m is determined by minimizing the HBIC score.

3.1. Simulation studies

In our simulation, the covariates u and x are generated as follows. First,

draw (U∗,x)T from a p + 1-dimensional normal distribution N(0,Σ). Then,

set U = Φ(U∗), where Φ(·) is the cumulative distribution function of N(0, 1).

Thus, U follows a uniform distribution U(0, 1) and is correlated with x, and the

predictors X1, . . . , Xp are all correlated with each other. In our simulation, we

consider two scenarios for Σ = (σij):

Σ1: A compound symmetric correlation structure: σij = 1 if i = j, and ρ

otherwise.

Σ2: An AR(1) correlation structure: σij = ρ|i−j|.

In our numerical studies, we set the number of B-spline basis functions as

dnj
= 5, for j = 1, . . . , p, for each coefficient function. We use the following two

criteria to assess the performance of the proposed procedure:

Pa: The proportion of submodels M̂ with size d that contain all true predictors

among 1,000 simulations.

Pj : The proportion of submodels M̂ with size d that contain Xj among 1,000

simulations.

Example 1. This example compares the proposed screening procedure to exist-

ing SIS procedures for VCMs. The proposal of Xia, Yang and Li (2016) under the

setting of a VCM coincides with that in Fan, Ma and Dai (2014), which follows

the spirit of Liu, Li and Wu (2014). Furthermore, Song, Yi and Zou (2014) and

Chu, Li and Reimherr (2016) proposed methods for longitudinal data. Therefore,

we concentrate on our comparison with CC-SIS, as proposed by Liu, Li and Wu

(2014). Given {U,x}, we generate a continuous response from

Y = α1(U)X1 + α2(U)X2 + α3(U)X3 + α4(U)X4 + ε, (3.1)
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where ε ∼ N(0, 1). Model (3.1) implies that αj(·) = 0 for j > 4 and M∗ =

{1, 2, 3, 4}. We consider two sets of coefficient functions:

α1: Let α1(u) = α2(u) = α3(u) = 2 + 2 sin2(2πu) and α4(u) = −3ρ ∗ α1(u).

α2: α1(u) = −(3 + 2 cos2(π2u)), α2(u) = −(3 + 3u), α3(u) = (2− u)2 + 2,

α4(u) = 3 + 2 sin2(π2u).

In this example, we consider p = 1,000 and 2,000, with the sample sizes

n = 200 and 400. All simulation results are based on 1,000 replications. The

simulation results are summarized in Tables 1-3.

Table 1 shows the values of P1, . . . ,P4, and Pa for a continuous response,

with Σ = Σ1. Under the design of α1, X4 is jointly dependent, but marginally

independent of Y . In this setting, the marginal screening procedure fails to

identify X4. As shown in Table 1, when there exists marginal independence, CC-

SIS is unable to detect X4, which has values of P4 and Pa near zero, as expected.

However, our method does identify X4 in this setting, and the corresponding

values of P4 and Pa are close to one. Therefore, our procedure outperforms CC-

SIS in the presence of marginal independence. Under the design of α2, there is no

predictor that is jointly dependent, but marginally independent of Y . Both CC-

SIS and the proposed procedure perform very well, with detection probabilities

close to one. CC-SIS performs better when the sample size increases and the

dimensionality decreases. However, these factors have less of an effect on the

new procedure than they do on CC-SIS. Furthermore, the corresponding values

of Pjs and Pa of our new procedure are closer to one in every case. In summary,

when Σ = Σ1, regardless of whether marginal independence exists, the proposed

procedure outperforms CC-SIS.

Table 2 shows the values of Pjs and Pa for a continuous response, with Σ =

Σ2. There is no predictor that is jointly dependent, but marginally independent of

Y . Hence, both procedures perform well, with most values of Pa greater than 0.9.

Table 2 also indicates that when the sample size increases and the dimensionality

decreases, both CC-SIS and our procedure perform better. Furthermore, this

table shows that these factors have less of an effect on the proposed procedure.

For instance, when n = 200, some values of Pa obtained by CC-SIS are less than

0.8, but the corresponding values of Pa of the proposed procedure are close to one.

In addition, Table 2 shows that our procedure outperforms CC-SIS in every case,

which is consistent with our theoretical analysis because our procedure exhibits

the sure screening property. Hence, our procedure also outperforms CC-SIS in

the setting of Σ = Σ2.
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In addition, comparing the two methods for different ρ, Tables 1-2 show that

when ρ increases, the performance of both procedures deteriorates. This is ex-

pected because when the predictors are highly correlated, unimportant predictors

may be selected owing to their strong correlations with the true predictors.

We also examine the computational efficiency and empirical convergence of

the proposed algorithm for VCMs. Table 3 shows the medians and median of

absolute deviations (MADs) of the computing time (seconds), as well as the num-

ber of iterations over 1,000 replications. When p = 1,000, most of the medians of

the computing times are below 5 seconds, and the MAD is relatively small; when

p = 2,000, the computing time increases, but the medians are still mostly below

9 seconds and the MADs are again small. In general, the algorithm converges

faster as the sample size increases. As shown in Table 3, the algorithm converges

after five iterations when n = 400, and it usually converges after 10 iterations

when n = 200. These results show that the proposed algorithm is reasonably

efficient.

Example 2. This example examines the performance of the proposed procedure

for a binary response. Given {U,x}, we generate a binary response, with the

probability of Y = 1 being p(U,x), as follows:

logit{p(U,x)} = α1(U)X1 + α2(U)X2 + α3(U)X3 + α4(U)X4, (3.2)

where logit(t) = log{t/(1 − t)}, which is the logit link in the logistic regression.

Model (3.2) implies that αj(·) = 0 for j > 4 and M∗ = {1, 2, 3, 4}. In this

example, the coefficients are set to the same values as those in Example 1.

In this example, we consider p = 1,000 and 2,000, and sample sizes n =

300 and 500. All simulation results are based on 1,000 replications, and are

summarized in Tables 4-5.

Table 4 shows the values of Pjs and Pa for the binary responses. Under the

design of Σ1 and α1, X4 is jointly dependent, but marginally independent of Y .

As shown in Table 4, the values of P4 and Pa are very close to one, which means

our method identifies the predictor that is jointly important, but marginally

independent of the response. In general, P4 is the largest, because the absolute

value of α4(U) is no less than those of the other three coefficient functions, which

makes X4 much easier to identify. If there is no marginal independence, the

values of Pj and Pa are very close to one. From the table, we see that the values

of Pa are mostly greater than 0.9. In addition, our procedure performs better as

the sample size increases, and the dimensionality decreases, consistent with the

sure screening property of the method.
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Furthermore, comparing the performance of the proposed procedure under

different ρ, Table 4 shows that the proposed procedure performs better as the

value of ρ decreases, as in Example 1.

Table 5 presents the medians and MADs of the computing time (seconds)

and the number of iterations for the binary response over 1,000 simulations. In

general, the computing time increases as the sample size and the dimension of

the predictors increase. The algorithm converges in five iterations, and is not

influenced by the sample size or the dimension of the predictors. This implies

that the proposed algorithm works well for a GVCM with a binary response.

Example 3. This example examines the performance of the proposed procedure

for a GVCM with a count response. Given {U,x}, we generate a count response

from a Poisson distribution with mean λ(U,x), as follows:

log{λ(U,x)} = α1(U)X1 + α2(U)X2 + α3(U)X3 + α4(U)X4. (3.3)

Model (3.3) implies that αj(·) = 0 for j > 4 and M∗ = {1, 2, 3, 4}. In this

example, we consider two sets of coefficient functions:

α1: Let α1(u) = α2(u) = α3(u) = {2 + 2 sin2(2πu)}/4 and α4(u) = −0.75ρ ∗
α1(u).

α2: α1(u) = −{3+2 cos2((π/2)u)}/6, α2(u) = −(3+3u)/6, α3(u) = {(2−u)2+

2}/6, α4(u) = {3 + 2 sin2((π/2)u)}/6.

That is, we rescale the α(·) in Example 1 so that its ranges lies between −1 and

1, because the mean function λ(U,x) is in the exponential scale of α(·).

In this example, we consider p = 1,000 and 2,000, and sample sizes n =

300 and 500. All simulation results are based on 1,000 replications, and are

summarized in Tables 6-7.

Table 6 shows the values of Pj and Pa for the count responses. In most

cases, the values of Pj and Pa are very close to one, regardless of the presence of

marginal independence. In general, the proposed procedure performs better as

the sample size increases and the dimensionality decreases. Similarly to Examples

1 and 2, the proposed procedure performs better as ρ decreases.

The computing time and the number of iterations of the proposed algorithm

are summarized in Table 7. Compared with those in Example 2 for the binary

response, the computing time for the count response is relatively shorter. In gen-

eral, the computing times also increases with n and p. The algorithm converges

in fewer steps than in the binary case.
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Example 4. This example examines the performance of the HBIC tuning pa-

rameter selector. We set n = 500, p = 1,000, 2,000, Σ = Σ2 with ρ = 0.5,

and α = α2 as the coefficient functions. We set Cn = log(log n) for the HBIC,

and compare its performance with that of the AIC and BIC tuning parameter

selectors. The following three criteria are used to evaluate the performance:

1. P: the probability that the true model is selected;

2. C: the number of predictors selected correctly from four active predictors;

3. I: the number of predictors selected incorrectly as active from among all

inactive predictors.

The simulation results based on 200 replications are summarized in Table 8.

Table 8 shows that the AIC, BIC, and HBIC tuning parameter selectors

reduce the model complexity significantly, while retaining all active predictors.

The HBIC performs much better than the AIC and BIC in terms of controlling

the false positives in a linear VCM. For the HBIC, the probability of obtaining

the true model is close to one, and the number of false positives is close to zero.

For the logistic and Poisson models, the HBIC performs much better than the

AIC and the BIC in terms of selecting the true model. The BIC also works well

for the logistic and Poisson models, because the probabilities of obtaining the

true model are very close to those of the HBIC.

3.2. An application

We illustrate the proposed methodology by means of an empirical analysis

of a subset of data collected as part of the Framingham Heart Study (FHS). See

Dawber, Meadors and Moore (1951) and Jaquish (2007) for details about the

FHS. The subset consists of data on 977 subjects. Here, we wish to investigate

the impact of dynamic genetic effects on obesity. In our analysis, we focus on

nonrare SNPs, which are those with a minor allele frequency greater than 0.05.

In our analysis, we include 4,395 nonrare SNPs with missing rates less than 0.02.

According to Wikipedia, a BMI equal to or greater than 25 is considered over-

weight, and above 30 is considered obese. Thus, the response variable takes the

value one if the subject’s BMI is greater than 25, and zero otherwise. The re-

sponse variable denotes a status of overweight or obese. The goal is to identify

those SNPs strongly associated with the response in order to examine the dy-

namic (age-dependent) effect of SNPs and gender on the response. We consider a

logistic VCM with u denoting age and 8,791 covariates. For each SNP, both the
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dominant effect and the additive effect are considered, and we include gender as

a covariate in our analysis. This leads to a high-dimensional logistic VCM with

the sample size n = 977.

We first apply the proposed screening procedure to the logistic VCM with

the number of knots equal to dn = 6 ≈ 1.5n1/5. Note that the gender variable is

not subject to screening. Thus, we have a total of 29 variables after screening.

We further apply a group Lasso to the model obtained from the screening

procedure. The HBIC is used to select the tuning parameter. The Lasso-HBIC

selects a model with 20 SNPs. Figure 1 depicts plots of the estimated coefficient

functions, along with their pointwise confidence intervals for the selected model.

Figure 1 shows that the intercept function changes over age. In addition, the

coefficient functions of some SNPs change over age too, although they hover

around zero.

4. Conclusion

In this work, we proposed an SJS feature screening procedure for a GVCM

with ultrahigh-dimensional covariates. The proposed SJS method differs from

the existing SIS method, because the SJS method is based on the joint likelihood

of the potential candidate features. We have also proposed an effective algorithm

for implementing the feature screening procedure, and show that the proposed

algorithm possesses the ascent property. In addition, we establish the sure screen-

ing property for the SJS method. We also conduct a numerical study to assess

the empirical performance of the proposed procedure. The numerical results im-

ply that the proposed algorithm converges quickly and that the computing time

is reasonable.

Supplementary Material

The online Supplementary Material provides for proofs of Theorems 1-3 in

Section 2, as well as Tables 1-8 and Figure 1 in Section 3.
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