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Abstract: When evaluating the tail risk of stock portfolio returns, providing statis-

tically sound solutions for long return horizons is important, but difficult. Further-

more, there are drawbacks to using traditional parametric methods that rely on

strong model assumptions or simulations. This study investigates the problem by

focusing on an important risk measure, the conditional tail expectation (CTE), un-

der a general multivariate stochastic volatility model. To overcome the estimation

difficulties caused by the long period, we derive an asymptotic formula to approxi-

mate the CTE. Based on this formula, we propose a simple nonparametric estimate

of the unconditional CTE, and show that it is both consistent and asymptotically

normal. Next, we forecast the CTE using a modified form of the nonparametric

estimator. With the help of the asymptotic formula, we evaluate the accuracy of

the CTE predictor by treating it as an interval forecast for furure returns. Simu-

lation studies demonstrate the applicability of our approach. Lastly, we apply the

proposed estimation and predictor to daily S&P 500 index returns.

Key words and phrases: Asymptotic normality, conditional tail expectation, inte-

grated process, interval forecast, long-horizon returns, stochastic volatility model.

1. Introduction

Quantifying extreme, high-impact events that have a low probability of oc-

curring is becoming increasingly important. Today, many studies use the func-

tionals derived from the distribution quantile of a random variable to achieve

this goal. For example, the quantile itself, is used to define one of the most pop-

ular risk measures, namely, the value at risk (VaR). Motivated by the need to

assess the market risk of long-term investments, we examine inferences on a less

researched quantile functional under a framework of long-horizon returns. We

focus on a risk measure called the conditional tail expectation (CTE), which is
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defined as the expected value of the loss, conditional on the loss being greater

than a given quantile or VaR. This measure is also referred to as the conditional

VaR (Du and Escanciano (2015)), tail VaR (Artzner et al. (1999)), or expected

shortfall (Hardy (2003, p.158)).

Artzner et al. (1999) proposed the CTE to address the incoherence inherent

in the VaR. Since the Great Recession of 2008, regulators have become increas-

ingly concerned about tail events that create severe adverse efferts and, thus, are

now more inclined to apply excessive prudence in captial reserve requirements

(Asimit et al. (2011)). As a more conservative risk measure than the VaR, the

CTE is receiving increasing attention from practitioners and academics, and has

replaced the VaR in the regulatory requirements of Canada, Israel, and Switzer-

land (Asimit et al. (2011)). Furthermore, the Basel Committee has explicitly

discussed the prospect of phasing out the VaR and replacing it with the CTE

(Basel Committee on Banking Supervision (2012)).

The body of research on long-horizon returns is extensive in the literature

on financial economics, but tends to focus on the forecastability of future re-

turns; here, recent works include those of Boudoukh, Richardson and Whitelaw

(2008); Neuberger (2012); Rapach and Zhou (2013); Fama and French (2018).

In contrast, we address this issue from the perspective of risk management. In-

stitutional investors, such as insurance companies, pension funds, and sovereign

funds, usually hold their portfolios for a long time, possibly several years, de-

pending on the nature of the funds. Moreover, long-term equity-linked financial

instruments exist, such as the Long-term Equity Anticipation Securities issued

by the Chicago Board Options Exchange (CBOE), with maturity from one to

five years. Evaluating the risk exposure of such contracts, requires an accurate

estimate of a tail risk measure (e.g., the CTE) of their returns.

In general, there are two approaches to estimating the CTE and, thus, assess-

ing the capital reserve required for a long-term equity portfolio or financial prod-

uct. The first comprises approaches in which both the marginal distribution and

the dependence structures of the return sequence are fully speified, shcuh as the

Gaussian framework (Lai and Xing (2008, Chap.12)). As a result, a closed-form

solution of the estimator and its limiting distribution can be derived. However,

these approaches have been criticized for their overly restrictive assumptions.

The second type of approach includes two estimation procedures, both of which

rely on generating a sample. The first procedure employs subsampling (Politis,

Romano and Wolf (1999)) to estimate the CTE of the accumulated returns for

a given long horizon, and then makes inferences using the bootstrap distribution
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based on these estimates. The second procedure imposes a dynamic paramet-

ric model, such as the regime-switching lognormal model on the daily returns.

Then, it estimates the tail risk (i.e., the CTE, in this study) from a large num-

ber of accumulated returns simulated by the model, with parameters estimated

from historical observations (Hardy (2003); Hardy, Freeland and Till (2006)). By

repeating the procedure to produce sufficiently many estimates, we can derive

their distribution and, thus, perform inferences. These two sample-generation

methods exhibit significant estimation bias, especially when the return horizon

is long; see the finite-sample comparative analysis presented in Section S3 of the

online Supplementary Material.

To avoid the shortcomings of the aforementioned methods, we adopt a new

approach in which we treat the long-horizon portfolio returns as an integrated

process of daily returns that follows a general multivariate stochastic volatility

(GMSV) model. Then, we derive an asymptotic formula to approximate the

long-term CTE, with the integration length tending to infinity. Based on this

formula, we propose a nonparametric estimate that is easy to implement. Lastly,

we verify that the proposed estimate is consistent and asymptotically normal.

The GMSV model assumed for the daily portfolio returns generalizes several

stochastic volatility (SV) models popular in the literature (Taylor (1986); Hamil-

ton (1994); Hardy (2001)). The advantage of this model generality lies in the

model-free nature of our approach, because we do not need to estimate the un-

derlying dynamic SV system. As a result, our estimator is free of the constraints

of nonidentifiability and is less vulnerable to model misspecification. The asymp-

totic normality of the normalized estimate is instrumental in rigorous inferences

on the CTE, and helps to verify that, for accumulated returns of middle to long

horizons, the coverage ratio of our estimate is significantly more accurate than

that of the simulation-based method. As discussed part (a) of Remark 2 in Sub-

section 3.1 and demonstrated in Subsection 4.1, the proposed estimate works very

well in finite-sample analyses, even when the sample size is not greater than the

return horizon. The asymptotic formula we derive for the CTE of the integrated

process, which forms the basis of our estimator, is itself a result of independent

interest.

Given the wide application of forecasting tail risk, we modify the nonpara-

metric estimator to predict future CTE. Here, we treat the CTE predictor as an

interval forecast for future returns. As such, we test the accuracy of the predictor

using a t-test based on the asymptotic formula.

The rest of the paper is organized as follows. In Section 2, we introduce a
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general multivariate version of the SV process to model the daily returns of a

portfolio’s component stocks. Subsection 3.1 discusses the method proposed to

estimate the CTE; this includes our main theoretical findings, stated as Propo-

sition 1, where we establish the asymptotic normality and consistency of the es-

timate. Our approach has advantages related to both estimation and prediction.

Although the α-level CTE of the long-horizon returns diverges as the horizon

increases, the rule that governs the asymptotic behavior turns out to have an

analytic form. This enables us to construct a consistent and asymptotically nor-

mal estimate. The unconditional confidence intervals based on the asymptotic

normality can then be used to perform inferences on the CTE of interest. In Sub-

section 3.2, we consider dynamic predictions of the conditional CTE. Section 4

presents a finite-sample analysis of our approach, and verifies the accuracy of the

proposed predictor using a formal test. Section 5 provides empirical results of our

CTE estimates and predictions for long-horizon S&P 500 returns, and Section 6

concludes the paper. The proof of Proposition 1 is provided in Section S2 of the

online Supplementary Material, and Section S3 shows that the coverage ratio of

the proposed method is superior to those of two traditional sample-generation

methods.

2. A GMSV Model

For a security portfolio comprising m component assets, we consider the

following GMSV model for its return vector r̃t = (r1,t, . . . , rm,t)
′ at time t:

r̃t = µ̃+ VtUt, (2.1)

where µ̃ = (µ1, . . . , µm)′ is the mean vector of r̃t, Vt = diag(v1,t, . . . , vm,t), with

the diagonal matrix representing the volatility component, and Ut = (u1,t, . . . ,

um,t)
′ is a sequence of independent and identically distributed (i.i.d.) shocks

with mean zero and a positive-definite covariance matrix ΣU = [ρU,ij ]. Each

component vi,t of Vt is defined by

vi,t = hi(Zi,t), i = 1, . . . ,m, (2.2)

where hi(·) is a positive functional satisfying certain regularity conditions (spec-

ified in Section S1 of the online Supplementary Material; see Remark 1), and

Z̃t = (Z1,t, . . . , Zm,t)
′ is an m-dimensional stationary linear process, defined as
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Z̃t = µ̃z +

∞∑
s=0

Asηt−s, (2.3)

where µ̃z = (µz,1, . . . , µz,m)′, As = [A
(s)
ij ]mi,j=1, and ηt = (η1,t, . . . , ηm,t)

′ is a

sequence of i.i.d. zero-mean random vectors with a positive-definite covariance

matrix Ση = [ρη,ij ], and is independent of {Ut}. In (2.3), the component random

variable Zi,t of Z̃t is Zi,t = µz,i +
∑∞

s=0 Ã
(s)
i ? ηt−s, for 1 ≤ i ≤ m, where

Ã
(s)
i = (A

(s)
i,1 , . . . , A

(s)
i,m) is the ith row of As, and ? denotes the inner product.

We assume that {Z̃t} is short memory in the sense that {As}∞s=0 is absolutely

summable; that is,
∑∞

s=0

∣∣∣A(s)
ij

∣∣∣ < ∞, for i, j = 1, 2, . . . ,m (see, e.g., Chapter

10 of Hamilton (1994) for further details). Several multivariate SV models have

been considered in the literature, including those of Harvey, Ruiz and Shephard

(1994); Robinson (2001); Asai, McAleer and Yu (2006); Yu and Meyer (2006); Ho,

Chen and Tsai (2016), among others. In particular, Robinson (2001) considers an

SV model with general transformations in the volatility component, but requires

that Z̃t be Gaussian. Note that the models mentioned avove are not nested.

3. Goals and Main Findings

When assessing the quantitative risk of a portfolio, it is common to focus

on the weighted returns of all component assets. Suppose the weight allocated

to each asset during the investment horizon is fixed. Then, the weighted return

of the portfolio is given by rt =
∑m

i=1wiri,t = µ +
∑m

i=1wivi,tui,t, with mean

µ =
∑m

i=1wiµi and variance σ2 = E(rt − µ)2. The weights {wi : 1 ≤ i ≤ m}
satisfy wi > 0 and

∑m
i=1wi = 1.

For a fixed T , we consider the stationary sequence {RT,s : s = 1, 2, . . .} of

integrated returns for horizon T (i.e., RT,s =
∑s+T−1

j=s rj , for s = 1, 2, . . .), and

denote the distribution of RT,s by FT (·) (assumed continuous). Let qα(T ) be

the αth quantile of FT (·); that is, α = FT (qα(T )). Then, the αth CTE of FT is

defined as

CTα = α−1

∫ qα(T )

−∞
xdFT (x). (3.1)

If we set RT = RT,1, then (3.1) is equivalent to

CTα = E (RT |RT < qα(T )) , (3.2)

which is also commonly used to define the CTE.
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Given a sample {rt : t = 1, 2, . . . , n} of the portfolio’s daily returns, our goal

is to estimate the CTE of FT (·) for a small α and large T . For the CTE of the

right tail, equation (3.2) becomes CTα = E (RT |RT > qα(T )); however, we do

not consider this here, because our only concern is the loss. Instead of T being

fixed, we allow T to increase to infinity. Our approach is particularly suitable

for returns of middle to long horizons; Section S3 of the Spplementary Material

demonstrates that the finite-sample performance of the proposed approach is

superior to that of two traditional methods.

Let Zα be the αth CTE of a standard normal Z with distribution function

Φ(·); that is, Zα = E(Z|Z < Φ−1(α)) = −φ(Φ−1(α))/α. One of our main

findings is that CTα is asymptotically

CTα = Tµ+
√
TσZα +O

(
1√
T

)
, (3.3)

as shown in (S2.19) in the online Supplementary Material. Equation (3.3) leads

to a natural nonparametric estimate

ĈTα = Tµ∗ +
√
T σ̂nZα, (3.4)

for CTα , where σ̂n = (n−1
∑n

t=1(rt − µ∗)2)1/2, with µ∗ = µ if µ is known, and

µ∗ = µ̂n = n−1
∑n

t=1 rt otherwise.

In the next two subsections, we show how to use the nonparametric esti-

mate (3.4) to make conditional and unconditional inferences. For the latter, we

derive the asymptotic normality of ĈTα , which we use to determine confidence

intervals for the location of the true value of CTα from the full sample. For

the former, we use (3.4), with adaptive estimates of µ and σ, conditional on

the returns {r1, r2, . . . , rt−1}, to dynamically predict the CTE of future returns

RT,t =
∑t+T−1

s=t rs for horizon T .

3.1. Unconditional confidence intervals

Because CTα diverges as T increases, it is important to know whether ĈTα
is close to CTα when both n and T are large. To this end, in Proposition 1,

we establish the asymptotic normality and consistency of ĈTα , assuming certain

conditions on the sample size n and the integration length T are satisfied. The

proposition relies on applying the central limit theorem to µ̂n = n−1
∑n

t=1 rt
and σ̂2

n = n−1
∑n

t=1(rt − µ̂n)2; both are given in the first lemma in the online

Supplementary Material.
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Remark 1. To apply the central limit theorem to σ̂2
n = n−1

∑n
t=1(rt − µ̂n)2,

certain technical conditions are required on the functions hi given in (2.2); see

the online Supplementary Material. These conditions are satisfied by many com-

monly used functions, including the exponential function, absolute value function,

and positive polynomials.

In the following, we use an � bn to denote an = o(bn).

Proposition 1. Assume the GMSV model specified in (2.1), (2.2), and (2.3)

satisfies Ev4
i,1 <∞ for 1 ≤ i ≤ m, and that {Ut} is a sequence of i.i.d. m-variate

normal vectors that is independent of {Vt} and has mean zero and covariance

matrix ΣU . Let N = n/T , where n and T denote the sample size and the length

of integration, respectively.

(i) µ is unknown: If N and T are such that T � N � T 2, then√
N

T
(ĈTα − CTα )

d−→ N(0, σ2) (3.5)

as T tends to infinity.

(ii) µ is known: Under condition J , given in the online Supplementary Material,

if N and T are such that N � T , then

√
N(ĈTα − CTα )

d−→ N

(
0,

(
gZα
2σ

)2
)

(3.6)

as N tends to infinity; g2 is defined in Lemma 1 in the Supplementary

Material.

Remark 2. (a) An interesting aspect of the asymptotic behavior of ĈTα −CTα is

the case in which the number of blocks N is a constant that does not increase

with T or n. For example, consider part (i) of Proposition 1. With only T

tending to infinity, we have√
N

T

(
ĈTα − CTα

)
=
√
n (µ̂n − µ) +Op

(
1√
T

)
, (3.7)

implying that
√
N/T

(
ĈTα − CTα

)
is approximately distributed as N(0, σ2), even

for moderately large T . As a result, we can use ĈTα to infer the location of CTα ,

even though the estimation error ĈTα − CTα does not vanish asymptotically. A
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similar analysis can be applied to part (ii) of Proposition 1. This type of asymp-

totic normality with a small N performs quite well in finite-sample analyses (see

Table 3 of Subection 4.1). This is particularly useful in circumstances similar to

that described in the example in Subsection 5.1. (b) Note that in Proposition 1,

no parametric assumptions are imposed on the dynamic model of Vt or on the

covariance matrix of the normal Ut. Because the estimator ĈTα proposed in (3.4)

only needs to estimate the mean and the variance of the return distribution, it is

free of the constraints of nonidentifiability, and is less vulnerable to model mis-

specification. (c) Ho, Chen and Tsai (2016) also studied the tail risk of integrated

returns, but focused on the VaR, not the CTE. Other major distinctions between

our study and that of Ho, Chen and Tsai (2016) are as follows. First, we ob-

tain an approximation error of order O(1/T ) for the VaR, shown in Lemma 2 of

the Supplementary Material, which serves as a preparatory step toward proving

Proposition 1; this is much sharper than that of order O(1/
√
T ) derived in Ho,

Chen and Tsai (2016). Second, the SV model considered by Ho, Chen and Tsai

(2016) is a special case of the GSVM introduced in Section 2. Third, Ho, Chen

and Tsai (2016) based their asymptotic analysis on a setting in which the return

horizon is required to be equal to the sample size. As such, they were unable to

address the issue of consistency in their proposed VaR estimate.

The next proposition is based on Proposition 1, and provides confidence

intervals for the diverging CTE, CTα , of the distribution FT (·) of RT .

Proposition 2. (i) If µ is unknown, the 100 (1− β) % confidence interval for

CTα is

ĈTα −
√
T

N
σ̂nU ≤ CTα ≤ ĈTα −

√
T

N
σ̂nL, (3.8)

where L and U are the 100 (β/2) % and 100 (1− β/2) % quantiles, respectively,

of N (0, 1).

(ii) If µ is known, the 100 (1− β) % confidence interval for CTα is

ĈTα −
hU√
N
≤ CTα ≤ ĈTα −

hL√
N
, (3.9)

where h = gZα/(2σ).

The main task when creating confidence intervals that agree with (3.9) is to

estimate the limiting standard deviation g of (3.6) contained in h. To achieve

this, we follow a well-established resampling scheme, called the sampling window

method, for dependent data; see Politis, Romano and Wolf (1999), and the refer-
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ences therein, for a comprehensive survey on the topic. The resampling method

is given as follows. Divide the whole sample into n − k + 1 subsamples, each of

size k, denoted by Bi =
(
ri, . . . , ri+k−1

)
. Here k = λn1/3, for some λ ≥ 1. For

the subsample Bi, let µ̂i = k−1
∑i+k−1

t=i rt and σ̂2
k,i =

∑i+k−1
t=i (rt − µ̂i)2 /(k − 1)

be its sample mean and sample variance, respectively. Because g2 is the limiting

variance of
√
n(σ̂2

n−σ2) (see (S2.4) and (S2.5) of Lemma 1 in the Supplementary

Material),

1

n− k + 1

n−k+1∑
i=1

{√
k(σ̂2

k,i − σ̂2
n)
}2

(3.10)

is a consistent estimate of g2.

3.2. Conditional interval forecasts

To transform ĈTα in (3.4) into a dynamic predictor for the CTE of future

returns, a natural method is to replace µ∗ and σ̂n in (3.4) with certain adaptive

estimates. Focusing on the case of unknown µ, which is more realistic in practice,

we use the equal-weighted moving averages,

µ̂∗t−1 = W−1
T

t−1∑
s=t−WT

rs and σ̂∗t−1 =

(
W−1
T

t−1∑
s=t−WT

(rs − µ̂∗t−1)2

)1/2

, (3.11)

and consider the conditional forecast

ĈTα,t = T µ̂∗t−1 +
√
T σ̂∗t−1Zα (3.12)

of the level-α CTE of the future return RT,t =
∑t+T−1

s=t rs. If we treat ĈTα,t as

an interval forecast (−∞, ĈTα,t) for the future return RT,t of horizon T , then the

following is a reasonable criterion that a good predictor ĈTα,t needs to satisfy: for

each t, ∣∣∣P (RT,t < ĈTα,t)− P (RT,t < CTα )
∣∣∣ = o(1) (3.13)

when T is large. To ensure (3.13), we assume the window length WT diverges

faster than T ; that is, T = o(WT ). The assumption T = o(WT ), (3.3), and the

central limit theorem togehter imply that, as T →∞,

P (RT,t < ĈTα,t) = P

(
RT,t − Tµ√

Tσ
< Zα + op(1)

)
−→ Φ(Zα). (3.14)

Then, (3.13) follows from
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P (RT,t < CTα ) = P

(
RT,t − Tµ√

Tσ
< Zα +O

(
1√
T

))
= Φ(Zα) +O

(
1√
T

)
(3.15)

according to (3.3) and the Berry–Esseen theorem. To evaluate the prediction

accuracy of ĈTα,t, we introduce the indicator function ITt (α) = I(RT,t < CTα ), and

its conditional version

ÎTt (α) = I(RT,t < ĈTα,t), (3.16)

based on the past returns {rt−WT
, . . . , rt−1}. Rewrite (3.14) as

P (RT,t < ĈTα,t) ≈ Φ(Zα). (3.17)

From (3.17), the accuracy of the forecast ĈTα,t can be evaluated by testing how

close P (RT,t < ĈTα,t) is to its stationary limit Φ(Zα). To achieve this, we employ

a simple t-test that uses the sample average,

π̂n(α) =

n−T∑
t=t0+1

ÎTt (α)

n∗
,

as the test statistic, where n is the sample size and n∗ = n − T − t0 for some

positive t0. To derive the critical values using the correlated sequence {ÎTt (α)}
resulting from overlapping returns RT,t, we adopt the subsample method (Politis,

Romano and Wolf (1999, Chap. 3)). This is similar in spirit to the method we

employed to find the limiting variance g2 (cf., Equation (3.10)) for the case of a

known mean. Denote by k the size of the subsamples, and by B̃i = {ÎTt (α), t =

t0 + i, . . . , t0 + i+ k− 1} the ith subsample of the conditional indicator functions

defined in (3.16). For i = 1, . . . , n∗ − k + 1, let π̂i,k(α) =
∑t0+i+k−1

t=t0+i ÎTt (α)/k be

the average over the ith subsample B̃i. Then, the 1 − β acceptance region of a

size β test for testing (3.17) is

(π̂n(α)− Uβ/2,k(n∗)−1/2, π̂n(α)− Lβ/2,k(n∗)−1/2), (3.18)

where Lβ/2,k and Uβ/2,k are the (β/2)th and (1− β/2)th quantiles, respectively,

of {
√
k(π̂i,k(α)− π̂n(α)), i = 1, . . . , n∗ − k + 1}.

4. Finite-Sample Analysis

4.1. Unconditional coverage ratios

The numerical studies discussed in this subsection concentrate on the em-

pirical coverage ratios of the confidence intervals (3.8) and (3.9). Because our
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SV model for the return vectors r̃t = (r1,t, . . . , rm,t)
′ allows multivariate cases,

we focus on m = 2 and m = 10.

The m-dimensional return vector r̃t = (ri,t, . . . , rm,t)
′ is modeled by r̃t =

µ̃ + VtUt, Z̃t = ΦZ̃t−1 + εt, where µ̃ = (0.0003, . . . , 0.0003)′, Ut and εt are in-

dependent m-dimensional multivariate normal vectors with zero mean, Φ is an

m × m diagonal matrix with diagonal entries equal to φ, and the weight for

each component return ri,t is wi = 1/m. For vi,t, we consider two cases: (i)

vi,t = σ̄ exp(Zi,t/2), and (ii) vi,t = d̄|Zi,t + 2 log σ̄|, both for i = 1, . . . ,m. We set

σ̄ = 0.0099, d̄ = 0.001115, and φ = 0.5. Here, we calibrate the values of σ̄ and d̄

such that the variances of vi,t in cases (i) and (ii) are close.

For the case of m = 2, let Ut = (u1,t, u2,t)
′ and εt = (ε1,t, ε2,t), and denote by

ρu and ρε the correlations between the two marginals of Ut and εt, respectively.

To include the null, positive, and negative correlations between the component

random variables of Ut and εt, three combinations for (ρu, ρε) are considered:

(ρu, ρε)=(−0.5, 0.5), (0.5, 0.5), and (−0.5,−0.5). The covariance matrices of Ut
and εt are ΣU = [σU,ij ] and Σε = [σε,ij ], respectively, where σU,ij = 1 if i = j,

and σU,ij = ρu otherwise. Similarly, σε,ij = c̄ if i = j, and σε,ij = c̄ρε otherwise,

where c̄ = β̄2(1− φ2) with β̄ = 0.4.

For m = 10, we configure the correlations between the marginals of Ut and εt
similarly to the case of m = 2, where we consider independence and positive and

negative correlations. We choose the following five representative combinations

to depict the correlation structures for Ut and εt. Specifically, the covariance

matrix ΣU = [ΣU,ij ] of Ut is defined as follows: (i) if i = j, then ΣU,ij = 1;

(ii) if i 6= j, i ∧ j = 1, and i − j is odd, then ΣU,ij = ρU,1; (iii) if i 6= j,

i ∧ j = 1, and i − j is even, then ΣU,ij = ρU,2; (iv) if i 6= j, i ∧ j ≥ 2, and i − j
is odd, then ΣU,ij = ρU,3; and (v) if i 6= j, i ∧ j ≥ 2, and i − j is even, then

ΣU,ij = ρU,4, where i ∧ j = min(i, j). The covariance matrix Σε of εt is defined

similarly. Let ρU = (ρU,1, . . . , ρU,4) and ρε = (ρε,1, . . . , ρε,4). To incorporate

correlation diversity, we consider (ρU , ρε) = (ã, ã), (b̃, b̃), (b̃, ã), and (ã, b̃), where

ã = (0.5, 0.5, 0.5, 0.5) and b̃ = (−0.5, 0.5,−0.5, 0.5).

Table 1 reports the coverage ratios of the 95% confidence intervals for CTα ,

based on 1,000 simulated stochastic volatility series with T = 84, 105, and 126,

N = dc2T
δe, c2 = 0.8, 1.0, and 1.2, δ = 0.8 and 1.2, and α = 0.01, for case (i)

vi,t = σ̄ exp(Zi,t/2), for i = 1, . . . ,m. Those for case (ii) vi,t = d̄|Zi,t + 2 log σ̄|
are reported in Table 2. The notation dxe denotes the lowest integer greater

than or equal to x. Because a closed-form solution to the true value of CTα is

intractable, we compute CTα using the Monte Carlo method, based on 106 price
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paths generated by the given GMSV model. As mentioned earlier, we use the

sampling window method to estimate the limiting variance g2 for the case of a

known mean; for the block size k = λn1/3 (cf., Equation (3.10)), we choose λ = 3.

Overall, the finite-sample performance for both unknown µ and known µ are

equally good. For case (i) vi,t = σ̄ exp(Zi,t/2), the empirical coverage ratios for

known µ and unknown µ fall within the ranges (0.916, 0.963) and (0.925, 0.960),

respectively; those for case (ii) vi,t = d̄|Zi,t + 2 log σ̄| are (0.931, 0.963) and

(0.930, 0.966), respectively. The simulation scheme we adopt to produce Tables

1 and 2 intentionally includes a moderate T = 84 and combinations of (N,T )

that include T < N and T > N for both an unknown and a known mean. The

purpose of the design is to demonstrate that our estimator performs well even

when T is not large and the two conditions assumed on T and N in parts (i) and

(ii) of Proposition 1 are not strictly met. In the first subsection of Section 5, we

encounter a situation in which N is small owing to the choice of large T .

To determine whether confidence intervals (3.8) and (3.9) in Proposition 2

still work well for small N , we conduct a simulation withN = 0.8, 1, 2 and T given

as in Tables 1 and 2. Moreover, to highlight the robustness of our approach to a

departure from normality, as well as the seven normal models considered in Tables

1 and 2, we consider an additional six nonnormal univariate (i.e., m = 1) models.

Specifically, for m = 1, the returns are generated from rt = µ + VtUt, where

Vt = σ̄ exp(Zt/2). Here, {Zt = Z1,t} is the Gaussian AR(1) process determined

by the dynamic equation Zt = φZt−1 + εt, where εt
i.i.d.∼ N

(
0, β̄2

(
1− φ2

))
.

The six univariate nonnormal distributions we consider for {Ut = u1,t} are the

following: a generalized error distribution (GED) with mean=0, sd=1, ν = 1 and

1.5, and a skew-normal (SN) distribution with (ξ, ω, α) =(-0.68, 1.21, 1),(-1.22,

1.58, 4), (1.22, 1.58,−4), and (0.68, 1.21,−1). (The values of ξ and ω ensure that

the mean and variance of Ut are zero and one, respectively).

Because the sample size n is much smaller than those used for Tables 1 and

2, the tuning parameter λ that controls the block size k for the mean-known

case reduces to one. The results are summarized in Table 3. The overall per-

formance is reasonably good, because the empirical coverage ratios lie in the

range (0.858, 0.974) and most are above 0.90; the exceptions include a few in-

stances when Ut is GED(0,1,1) or SN(-1.22,1.58,4). These results demonstrate

two points. First, despite the normal assumption imposed on the shock sequence

{Ut} in Proposition 1, our approach is robust to nonnormal shocks. Second, they

provide strong evidence supporting part (a) of Remark 2 that, even for small

N (= 0.8, 1.0, 2.0) such that the sample size is no greater than the horizon (i.e.,
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Table 1. Coverage ratios of the 95% confidence intervals for CTα based on stochastic
volatility sequences. The results are based on 1,000 replicates, and the true CTα is
computed by simulating 106 price paths from the true model, with vi,t = σ̄ exp(Zi,t/2),
for i = 1, . . . ,m, N = dc2T δe, and α = 0.01.

c2
µ known unknown

T 84 105 126 84 105 126

δ 0.8 1.2 0.8 1.2 0.8 1.2 0.8 1.2 0.8 1.2 0.8 1.2

Ut \N 28 164 34 214 39 266 28 164 34 214 39 266

0.8

(a) 0.935 0.938 0.944 0.940 0.948 0.934 0.948 0.944 0.945 0.947 0.952 0.938

(b) 0.931 0.921 0.937 0.946 0.952 0.960 0.950 0.946 0.947 0.953 0.940 0.960

(c) 0.948 0.962 0.958 0.955 0.950 0.933 0.945 0.940 0.942 0.952 0.956 0.933

(d) 0.941 0.941 0.952 0.959 0.947 0.940 0.947 0.949 0.934 0.956 0.950 0.947

(e) 0.934 0.952 0.941 0.950 0.957 0.952 0.957 0.948 0.934 0.945 0.954 0.944

(f) 0.942 0.946 0.952 0.954 0.952 0.948 0.955 0.937 0.937 0.951 0.954 0.949

(g) 0.937 0.950 0.946 0.953 0.960 0.950 0.939 0.948 0.943 0.960 0.954 0.940

Ut \N 35 204 42 267 48 332 35 204 42 267 48 332

1.0

(a) 0.949 0.932 0.948 0.926 0.941 0.945 0.958 0.941 0.952 0.944 0.956 0.957

(b) 0.939 0.916 0.959 0.929 0.952 0.941 0.931 0.945 0.945 0.944 0.940 0.925

(c) 0.950 0.945 0.951 0.949 0.934 0.944 0.950 0.938 0.939 0.945 0.941 0.936

(d) 0.949 0.951 0.951 0.958 0.942 0.946 0.940 0.940 0.948 0.946 0.944 0.936

(e) 0.955 0.948 0.943 0.943 0.942 0.951 0.946 0.952 0.933 0.955 0.939 0.949

(f) 0.957 0.948 0.943 0.952 0.945 0.933 0.944 0.944 0.935 0.944 0.925 0.955

(g) 0.946 0.954 0.944 0.956 0.943 0.952 0.941 0.937 0.947 0.941 0.932 0.932

Ut \N 42 245 50 320 58 398 42 245 50 320 58 398

1.2

(a) 0.940 0.935 0.958 0.921 0.934 0.923 0.953 0.940 0.949 0.935 0.950 0.941

(b) 0.938 0.925 0.938 0.936 0.956 0.953 0.939 0.943 0.941 0.943 0.956 0.939

(c) 0.955 0.939 0.946 0.963 0.944 0.939 0.944 0.941 0.951 0.931 0.941 0.936

(d) 0.951 0.931 0.942 0.944 0.943 0.945 0.948 0.950 0.926 0.949 0.939 0.955

(e) 0.947 0.960 0.952 0.942 0.951 0.946 0.938 0.935 0.950 0.949 0.942 0.942

(f) 0.950 0.963 0.946 0.948 0.945 0.948 0.947 0.933 0.955 0.953 0.940 0.943

(g) 0.952 0.946 0.948 0.948 0.947 0.957 0.954 0.953 0.936 0.951 0.938 0.953

(a) MVN2(-0.5,0.5); (b) MVN2(0.5,0.5); (c) MVN2(-0.5,-0.5); (d) MVN10(ã, ã); (e) MVN10(b̃, b̃); (f)

MVN10(b̃, ã); (g) MVN10(ã, b̃), where ã = (0.5, . . . , 0.5) and b̃ = (−0.5, 0.5,−0.5, 0.5).

n = NT ≤ T ), ĈTα can be used effectively to locate CTα .

4.2. Performance of the predicted CTE for future returns

Following the method outlined in Subsection 3.2, we conduct a simulation

study to evaluate the size of the 1−β acceptance region (π̂n(α)−Uβ/2,k(n∗)−1/2,

π̂n(α) − Lβ/2,k(n∗)−1/2) given in (3.18), for a value of Φ(Zα). We consider n =
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Table 2. Coverage ratios of the 95% confidence intervals for CTα based on stochastic
volatility sequences. The results are based on 1,000 replicates, and the true CTα is
computed by simulating 106 price paths from the true model, with vi,t = d̄|Zi,t+2 log σ̄|,
for i = 1, . . . ,m, N = dc2T δe, and α = 0.01.

c2
µ known unknown

T 84 105 126 84 105 126

δ 0.8 1.2 0.8 1.2 0.8 1.2 0.8 1.2 0.8 1.2 0.8 1.2

Ut \N 28 164 34 214 39 266 28 164 34 214 39 266

0.8

(a) 0.956 0.938 0.946 0.942 0.942 0.951 0.943 0.947 0.956 0.935 0.942 0.949

(b) 0.940 0.961 0.956 0.957 0.935 0.932 0.943 0.961 0.942 0.943 0.937 0.942

(c) 0.954 0.940 0.947 0.951 0.955 0.963 0.946 0.940 0.947 0.951 0.931 0.955

(d) 0.948 0.940 0.952 0.952 0.943 0.942 0.935 0.966 0.930 0.949 0.951 0.944

(e) 0.955 0.953 0.952 0.949 0.947 0.940 0.937 0.944 0.948 0.938 0.954 0.949

(f) 0.954 0.939 0.951 0.950 0.938 0.942 0.934 0.967 0.934 0.949 0.950 0.945

(g) 0.952 0.953 0.954 0.950 0.949 0.943 0.942 0.945 0.947 0.940 0.952 0.946

Ut \N 35 204 42 267 48 332 35 204 42 267 48 332

1.0

(a) 0.938 0.940 0.945 0.952 0.950 0.950 0.933 0.948 0.941 0.945 0.961 0.945

(b) 0.942 0.950 0.952 0.929 0.937 0.936 0.956 0.935 0.941 0.951 0.951 0.945

(c) 0.940 0.948 0.942 0.962 0.946 0.945 0.951 0.948 0.961 0.944 0.945 0.951

(d) 0.941 0.964 0.952 0.950 0.959 0.949 0.940 0.946 0.947 0.950 0.953 0.952

(e) 0.938 0.950 0.941 0.949 0.951 0.952 0.939 0.947 0.931 0.945 0.946 0.963

(f) 0.941 0.963 0.944 0.952 0.965 0.946 0.939 0.943 0.943 0.951 0.952 0.948

(g) 0.942 0.950 0.942 0.948 0.948 0.956 0.938 0.948 0.932 0.944 0.947 0.966

Ut \N 42 245 50 320 58 398 42 245 50 320 58 398

1.2

(a) 0.956 0.950 0.955 0.955 0.952 0.949 0.947 0.937 0.936 0.955 0.942 0.950

(b) 0.955 0.956 0.949 0.940 0.944 0.931 0.939 0.945 0.946 0.941 0.945 0.953

(c) 0.949 0.949 0.945 0.965 0.949 0.947 0.946 0.948 0.935 0.949 0.934 0.947

(d) 0.954 0.942 0.960 0.949 0.949 0.950 0.941 0.950 0.943 0.951 0.953 0.949

(e) 0.953 0.959 0.948 0.948 0.939 0.943 0.930 0.954 0.944 0.939 0.942 0.947

(f) 0.955 0.942 0.960 0.951 0.947 0.945 0.940 0.953 0.941 0.952 0.952 0.949

(g) 0.956 0.960 0.948 0.949 0.938 0.939 0.935 0.952 0.947 0.939 0.940 0.947

(a) MVN2(-0.5,0.5); (b) MVN2(0.5,0.5); (c) MVN2(-0.5,-0.5); (d) MVN10(ã, ã); (e) MVN10(b̃, b̃); (f)

MVN10(b̃, ã); (g) MVN10(ã, b̃), where ã = (0.5, . . . , 0.5) and b̃ = (−0.5, 0.5,−0.5, 0.5).

15,500; t0 = 1,000; T = 120, 180, and 250, corresponding roughly to six months,

nine months, and one year, respectively; and window size WT = T, 2T , and

3T . Similarly to Subsection 4.1, we set k = λn1/3, where λ = 2, 3, and 4.

The true data-generating process is the univariate version (i.e., m = 1) of the

standard SV model employed in case (i) vi,t = σ̄ exp(Zi,t/2) of Subsection 4.1,

with Ut ∼ N(0, 1). The empirical acceptance rates of the 95% confidence intervals
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for Φ(Zα), where α ranges from 0.01 to 0.2 with increments of 0.01, based on

1,000 independent replicates, are summarized in Table 4. In general, WT = 3T

and λ = 4 yield the best results in terms of the closeness between the empirical

and nominal coverage ratios. The results further confirm the appropriateness

of our method. Although we assume T = o(WT ) in Subsection 3.2 to ensure

(3.17), a mild WT = 3T is sufficient to warrant satisfactory rates. In addition, for

WT = 3T and λ = 4, a few acceptance rates are less than 0.900 for α ≤ 0.03. This

is expected, because the corresponding Φ(Zα) (not greater than 0.012) represents

an extreme tail event that is prone to relatively large estimation errors.

5. Applications

To demonstrate the potential applications of our CTE estimator and pre-

dictor, we conduct two experiments using data on the S&P 500 index (United

States). From Yahoo Finance (http://finance.yahoo.com/), we obtained ad-

justed daily prices {Pt} of the index from January 3, 1950, to January 8, 2019,

yielding 17,365 log-returns rt = log(Pt/Pt−1). Similarly to Subsections 4.1 and

4.2, we present the applications for the unconditional coverage ratios and the

accuracy of the conditional forecast in separate subsections.

5.1. Unconditional coverage ratios

In this subsection our goal is to compute the empirical coverage ratios for the

CTE of integrated S&P 500 returns, based on the confidence intervals given in

(3.8). To this end, we need to overcome two disadvantages: there is no analytic

solution to the true value of the CTE, and we have only a single series of the

index. We do so using the rolling window method, from which two families

of subsamples are generated. These subsamples enable us to approximate the

true CTE and create sufficient replicas to mimic the procedure in a simulation

experiment. The steps of our experiment are as follows. First, we generate two

families of subsamples: {Ri}, with Ri = {r1+(i−1)20, r2+(i−1)20, . . ., rT+(i−1)20},
for i = 1, . . . , b(H − T )/20 + 1c, and {Sj}, with Sj = {r1+(j−1)20, r2+(j−1)20,

. . ., rn+(j−1)20}, for j = 1, . . . , b(H − n)/20 + 1c. Here, H = 17,365 denotes the

total number of daily returns {rt}t=1,...,H ; T = 252 ·M , where M = 1, 2, . . . , 8,

and 10; and n = 2,520 and 3,000 are the length of the integration and the

sample size of each replica, respectively. The lag of 20 corresponds roughly to

the number of trading days in a month. This design is intended to have sufficient

subsamples that do not overlap too heavily. Second, we compute the integrated

http://finance.yahoo.com/
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Table 4. Coverage ratios of the approximate 95% confidence intervals (π̂n(α) −
Uβ/2,k(n∗)−1/2, π̂n(α)−Lβ/2,k(n∗)−1/2) for Φ(Zα). The results are based on 1,000 repli-
cates.

T = 120 T = 180 T = 250
λ α Φ(Zα) WT = T WT = 2T WT = 3T WT = T WT = 2T WT = 3T WT = T WT = 2T WT = 3T
2 0.01 0.004 0.136 0.602 0.443 0.428 0.526 0.261 0.576 0.409 0.204

0.02 0.008 0.083 0.934 0.930 0.378 0.921 0.824 0.628 0.858 0.721
0.03 0.012 0.060 0.920 0.962 0.303 0.960 0.916 0.542 0.930 0.872
0.04 0.016 0.047 0.887 0.966 0.241 0.945 0.949 0.428 0.939 0.907
0.05 0.020 0.028 0.864 0.969 0.210 0.920 0.947 0.380 0.903 0.892
0.06 0.024 0.028 0.824 0.970 0.159 0.882 0.930 0.324 0.868 0.870
0.07 0.028 0.021 0.808 0.966 0.123 0.895 0.944 0.278 0.877 0.901
0.08 0.032 0.020 0.767 0.946 0.144 0.858 0.923 0.264 0.843 0.877
0.09 0.036 0.016 0.782 0.948 0.109 0.818 0.927 0.210 0.808 0.869
0.10 0.040 0.018 0.749 0.944 0.100 0.796 0.914 0.185 0.771 0.862
0.11 0.044 0.009 0.740 0.940 0.083 0.768 0.910 0.178 0.754 0.840
0.12 0.048 0.017 0.726 0.929 0.093 0.767 0.895 0.177 0.725 0.818
0.13 0.052 0.017 0.699 0.931 0.090 0.749 0.894 0.141 0.715 0.835
0.14 0.056 0.007 0.679 0.914 0.056 0.739 0.902 0.129 0.713 0.834
0.15 0.060 0.014 0.649 0.927 0.051 0.681 0.863 0.103 0.658 0.801
0.16 0.064 0.009 0.652 0.907 0.057 0.661 0.855 0.108 0.637 0.780
0.17 0.068 0.009 0.647 0.904 0.051 0.642 0.850 0.094 0.601 0.779
0.18 0.072 0.008 0.606 0.880 0.040 0.625 0.825 0.085 0.616 0.773
0.19 0.077 0.006 0.599 0.896 0.041 0.628 0.840 0.092 0.629 0.777
0.20 0.081 0.011 0.598 0.892 0.044 0.592 0.809 0.082 0.587 0.763

3 0.01 0.004 0.369 0.911 0.805 0.723 0.820 0.593 0.873 0.672 0.448
0.02 0.008 0.187 0.980 0.957 0.560 0.965 0.887 0.806 0.924 0.809
0.03 0.012 0.103 0.953 0.969 0.451 0.976 0.920 0.686 0.946 0.883
0.04 0.016 0.070 0.938 0.972 0.353 0.976 0.953 0.599 0.969 0.914
0.05 0.020 0.057 0.927 0.973 0.324 0.964 0.951 0.544 0.955 0.907
0.06 0.024 0.045 0.893 0.979 0.257 0.942 0.952 0.468 0.926 0.893
0.07 0.028 0.029 0.864 0.978 0.225 0.947 0.960 0.434 0.941 0.935
0.08 0.032 0.033 0.848 0.969 0.227 0.926 0.948 0.382 0.930 0.913
0.09 0.036 0.025 0.844 0.975 0.190 0.898 0.955 0.342 0.914 0.921
0.10 0.040 0.027 0.838 0.976 0.167 0.903 0.945 0.322 0.889 0.926
0.11 0.044 0.014 0.833 0.969 0.149 0.894 0.946 0.329 0.873 0.910
0.12 0.048 0.024 0.820 0.961 0.155 0.872 0.942 0.308 0.852 0.884
0.13 0.052 0.028 0.794 0.964 0.149 0.873 0.945 0.264 0.856 0.899
0.14 0.056 0.014 0.792 0.950 0.118 0.852 0.945 0.237 0.847 0.904
0.15 0.060 0.017 0.770 0.971 0.115 0.842 0.938 0.209 0.814 0.897
0.16 0.064 0.011 0.759 0.954 0.115 0.826 0.921 0.209 0.800 0.877
0.17 0.068 0.018 0.775 0.955 0.111 0.818 0.932 0.208 0.788 0.893
0.18 0.072 0.016 0.741 0.943 0.103 0.788 0.910 0.198 0.773 0.869
0.19 0.077 0.011 0.749 0.946 0.107 0.793 0.931 0.197 0.807 0.879
0.20 0.081 0.022 0.744 0.951 0.099 0.791 0.911 0.179 0.758 0.860

4 0.01 0.004 0.484 0.966 0.893 0.808 0.910 0.748 0.934 0.802 0.617
0.02 0.008 0.234 0.985 0.959 0.638 0.976 0.898 0.866 0.939 0.838
0.03 0.012 0.138 0.957 0.969 0.526 0.981 0.924 0.753 0.951 0.887
0.04 0.016 0.089 0.956 0.977 0.421 0.984 0.958 0.690 0.976 0.922
0.05 0.020 0.070 0.946 0.980 0.387 0.972 0.957 0.641 0.963 0.912
0.06 0.024 0.056 0.909 0.981 0.302 0.962 0.956 0.559 0.949 0.901
0.07 0.028 0.041 0.889 0.983 0.262 0.958 0.963 0.512 0.964 0.940
0.08 0.032 0.042 0.869 0.975 0.257 0.954 0.955 0.468 0.965 0.923
0.09 0.036 0.026 0.866 0.982 0.236 0.945 0.967 0.449 0.943 0.932
0.10 0.040 0.030 0.856 0.981 0.207 0.934 0.962 0.418 0.929 0.939
0.11 0.044 0.015 0.853 0.967 0.204 0.930 0.962 0.412 0.923 0.929
0.12 0.048 0.027 0.845 0.965 0.188 0.915 0.958 0.399 0.906 0.922
0.13 0.052 0.037 0.825 0.975 0.185 0.923 0.960 0.350 0.919 0.932
0.14 0.056 0.012 0.818 0.961 0.174 0.913 0.967 0.328 0.914 0.930
0.15 0.060 0.020 0.795 0.972 0.153 0.902 0.965 0.317 0.894 0.938
0.16 0.064 0.013 0.798 0.970 0.165 0.892 0.946 0.314 0.875 0.915
0.17 0.068 0.022 0.807 0.970 0.148 0.890 0.958 0.318 0.870 0.931
0.18 0.072 0.018 0.785 0.969 0.142 0.879 0.951 0.289 0.853 0.912
0.19 0.077 0.013 0.789 0.959 0.150 0.884 0.958 0.299 0.876 0.924
0.20 0.081 0.023 0.786 0.972 0.159 0.864 0.947 0.275 0.836 0.916
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return R
(i)
T =

∑T+(i−1)20
t=1+(i−1)20 rt using the subsample Ri, for each i ranging from 1

to b(H−T )/20) + 1c. Third, we rank these R
(i)
T to compute the αth CTE, which

we treat as the true CTα with α = 0.01, and denote it by C̃Tα . Fourth, we compute

the sample mean µ̂
(j)
n and the sample standard deviation σ̂

(j)
n of the subsample

Sj , for j = 1, . . . , b(H − n)/20) + 1c. Then, we use these values to derive the

confidence interval, following (3.4) and (3.8), to determine whether it covers C̃Tα
obtained in the third step. Finally, we compute the empirical coverage ratios for

C̃Tα based on the b(H − n)/20 + 1c confidence intervals.

Some of the horizons, such as T = 2,016 and 2,520, are much greater than

those considered in the simulation studies carried out in Subsection 4.1. This is

because the performance of the coverage ratios depends on three factors: (i) the

term AT ≡
√
N/T (ĈTα − CTα )−

√
n (µ̂n − µ), shown in (3.7) for fixed N , which

is Op(1/
√
T ); (ii) the convergence rate Nn of

√
n(µ̂n − µ)/σ to N(0, 1), which is

O(1/
√
n), where n denotes the size of the replica; and (iii) how quickly the average

obtained in the final step described above converges to the nominal level. For

factor (iii), the probability error EH,T of the convergence is Op(1/
√
H∗), where

H∗ = H − n represents the number of replicas. If the replicas are independent,

such as those simulated for the finite-sample analysis in Section 4, the probability

order of EH,T is
√
c/H∗. Here, c is close to 0.95× 0.05, according to the central

limit theorem, and thus is negligible when sufficient replicas can be generated.

However, in the current experiment, the speed of EH,T is considerably slower,

because a limited number of replicas can be created from one common S&P 500

series, and all are dependent. This may result in the orders of AT and EH,T being

of equal magnitude, even though H∗ is much greater than T . In this case, we

obtain good coverage ratios by using the large T to reduce the order Op(1/
√
T ) of

AT in factor (i). Although this increases the order of EH,T , the effect is much less

than that on the order of AT . The choice of large T means the ratio N = n/T

is necessarily restricted in order to produce sufficient subsample replicas of size

n. Therefore, the order of Nn in factor (ii) is also O(1/
√
T ), and thus shrinks as

T increases.

The results in Table 5 show that the coverage ratios increase with T , and are

close to the nominal level of 0.95 only when T (2,016 and 2,052) is fairly large, as

explained above. For these two cases of T , a few remarks are worth mentioning.

Because the difference |C̃Tα − CTα | between C̃Tα and CTα is of probability order

Op(1/
√
H∗), the coverage ratios in Table 5 for the approximated C̃Tα are close

to those obtained using the same procedures and the true, but unknown CTα .
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Table 5. Coverage ratios of the 95% confidence intervals of CTα with α = 0.01 for S&P
500 daily returns.

RT coverage ratios (N = n/T )
T mean median n = 2,520 n = 3,000
252 0.0750 0.1001 0.2651 (10.0) 0.1961 (11.9)
504 0.1441 0.1599 0.5976 ( 5.0) 0.5758 ( 6.0)
756 0.2150 0.2352 0.7470 ( 3.3) 0.7538 ( 4.0)

1,008 0.2838 0.3033 0.8681 ( 2.5) 0.8818 ( 3.0)
1,260 0.3551 0.3904 0.7456 ( 2.0) 0.7622 ( 2.4)
1,512 0.4177 0.4585 0.8869 ( 1.7) 0.8873 ( 2.0)
1,764 0.4805 0.4742 0.8600 ( 1.4) 0.8679 ( 1.7)
2,016 0.5452 0.5574 0.9354 ( 1.3) 0.9138 ( 1.5)
2,520 0.6653 0.7016 0.9435 ( 1.0) 0.9207 ( 1.2)

As pointed out in part (a) of Remark 2, the confidence intervals constructed

from (3.8) capture the true value C̃Tα , even when the value of n/T (displayed in

parentheses in Table 5) is small.

5.2. Conditional forecasts

To apply the conditional forecast ĈTα,t to the data on S&P 500 index returns,

two concerns need to be addressed. First, it is impractical to choose an 8- or

10-year horizon, as we did in the previous subsection. Second, each condition

indicator function ÎTt (α) defined in (3.16) involves WT past returns and T future

returns, creating persistent dependence between these functions. Consequently,

the subsample method used in Subsection 5.1 to produce replicates as the basis for

an inference is not suitable. Therefore, rather than conducting a formal test, we

use estimation biases to assess the accuracy of the predictor ĈTα,t. Our approach

follows the framework formulated in Subsection 3.2. We reduce the estimation

bias caused by the dependence between RT,ts by adopting the same method as

in the previous subsection, where any pair of consecutive integrated returns are

∆ trading days apart. Let J∆ = {WT + (i− 1)∆ + 1 : i = 1, 2, . . . , b(H −WT −
T )/∆ + 1c} be the set of all t such that RT,t is included. Here, WT denotes the

window length used to compute µ̂∗t−1 and σ̂∗t−1 (see (3.11)). Then, we use

π̂(α) =
∑
j∈J∆

ÎTj (α)

|J∆|

to estimate P (RT,t < ĈTα,t); we report the biases π̂(α) − Φ(Zα) in Table 6.

The values of the design parameters are as follows: the return horizon T is
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Table 6. Biases π̂(α)− Φ(Zα) of estimated probabilities for CTE forecasts

T = 500 T = 600 T = 700

∆ α Φ(Zα) WT = 1,000 1,250 1,500 1,200 1,500 1,800 1,400 1,750 2,100

20 0.10 0.0396 0.0699 0.0755 0.0592 0.0810 0.0585 0.0351 0.0598 0.0353 0.0399

0.11 0.0437 0.0671 0.0752 0.0564 0.0795 0.0584 0.0337 0.0597 0.0326 0.0414

0.12 0.0478 0.0643 0.0724 0.0537 0.0780 0.0583 0.0364 0.0609 0.0326 0.0414

0.13 0.0518 0.0603 0.0709 0.0496 0.0765 0.0607 0.0363 0.0620 0.0298 0.0442

0.14 0.0559 0.0612 0.0745 0.0481 0.0750 0.0592 0.0335 0.0619 0.0297 0.0442

0.15 0.0600 0.0634 0.0768 0.0440 0.0773 0.0578 0.0307 0.0617 0.0310 0.0428

0.16 0.0642 0.0618 0.0778 0.0451 0.0745 0.0576 0.0280 0.0615 0.0309 0.0442

0.17 0.0683 0.0589 0.0762 0.0474 0.0716 0.0560 0.0238 0.0587 0.0267 0.0428

0.18 0.0725 0.0611 0.0772 0.0446 0.0739 0.0558 0.0223 0.0584 0.0266 0.0400

0.19 0.0766 0.0581 0.0743 0.0430 0.0710 0.0543 0.0195 0.0556 0.0265 0.0372

0.20 0.0808 0.0552 0.0765 0.0402 0.0707 0.0527 0.0180 0.0580 0.0236 0.0344

40 0.10 0.0396 0.0662 0.0755 0.0591 0.0783 0.0598 0.0324 0.0598 0.0379 0.0398

0.11 0.0437 0.0621 0.0740 0.0576 0.0794 0.0610 0.0310 0.0610 0.0339 0.0412

0.12 0.0478 0.0606 0.0699 0.0535 0.0779 0.0596 0.0349 0.0648 0.0325 0.0427

0.13 0.0518 0.0565 0.0709 0.0495 0.0764 0.0607 0.0335 0.0660 0.0310 0.0441

0.14 0.0559 0.0599 0.0668 0.0480 0.0748 0.0592 0.0294 0.0619 0.0296 0.0427

0.15 0.0600 0.0634 0.0729 0.0439 0.0784 0.0578 0.0280 0.0604 0.0335 0.0441

0.16 0.0642 0.0618 0.0739 0.0475 0.0769 0.0589 0.0238 0.0615 0.0321 0.0454

0.17 0.0683 0.0576 0.0724 0.0434 0.0727 0.0600 0.0197 0.0574 0.0280 0.0440

0.18 0.0725 0.0611 0.0759 0.0418 0.0711 0.0611 0.0182 0.0584 0.0265 0.0399

0.19 0.0766 0.0594 0.0717 0.0429 0.0695 0.0595 0.0141 0.0543 0.0303 0.0357

0.20 0.0808 0.0552 0.0727 0.0413 0.0679 0.0580 0.0099 0.0580 0.0262 0.0343

500, 600, 700; the window length WT , used to compute the adaptive estimates, is

WT = 2T, 2.5T, 3T ; the distance ∆ that separates consecutive returns is 20, 40;

and the level of the CTE ranges from 0.1 to 0.2, in increments of 0.01.

Table 6 shows that WT = 3T and T = 700 achieve the best results. This

is expected, because the larger T and WT help to reduce the estimation errors,

according to properties (3.15) and (3.13). In addition, most of the biases reported

in WT = 3T are close to or within the magnitude of the error bound O(1/
√
T )

given in (3.15).

6. Conclusion

We estimate a distribution’s conditional tail expectation for long return hori-

zons. This study contributes to the literatures in several ways. Even though the

target parameter diverges as the horizon increases, we derive a simple nonpara-

metric estimate, and show that it is asymptotically normal under a GMSV model.

Furthermore, by using adaptive estimates, the estimator can be transformed into
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a conditional predictor of the CTE for future returns of long horizons. Treating

the predictor as an interval forecast, we developed a t-test to evaluate the ac-

curacy of the predictor. The results of Monte Carlo experiments show that the

proposed estimate outperforms traditional simulation-based approaches. Fur-

thermore, we show that the modified predictor performs well, and is consistent

with the theoretical results. We demonstrate the usefulness of our findings by

applying the estimator and the predictor to data on the S&P 500 index. Several

challenges remain. First, it is worth studying models that allow for structural

breaks and/or long-range dependence in the volatility process {Vt}. This theoret-

ically challenging extension is also of practical interest in terms of long-horizon

returns. Second, our GMSV model does not include the popular ARCH-type

process (Engle (1982); Bollerslev (1986)). As a result, the argument (i.e., being

conditional on the volatility component) that we use to build our theory for the

SV process may not work, and a completely new approach may be needed. Thus,

it is worth extending our findings to include the class of ARCH processes.

Supplementary Material

The online Supplementary Material contains three sections. The regularity

conditions used to define the class of functions h are stated in Section S1. Section

S2 presents the proof of Proposition 1. Section S3 provides numerical evidence

that the coverage ratio of our approach is superior to those of two traditional

sample-generation methods.
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