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Abstract: This study establishes a central limit theorem (CLT) for R? statistics in
a moderately high-dimensional asymptotic framework. The underlying population
accommodates a general independent components model, by which our result unifies
two existing CLTs. Beyond this, the new CLT characterizes the effect of kurtosis
of the latent independent components on the fluctuation of R? statistics. As an
application, a novel confidence interval is constructed for the coefficient of multiple

correlation in a high-dimensional linear regression.
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1. Introduction

The coefficient of multiple correlation p, measures the linear dependence

between a scalar random variable y and a set of variables x4, ..., z,. It maximizes
the Pearson correlation between y and any linear combination of x = (x4, ..., x,)’,
that is,

pp = ply,x) = max Cor (y, a'x); (1.1)

see |Anderson| (2003).

The R? statistic, or squared sample multiple correlation coefficient, is by
definition the moment estimator of p;. Under Gaussian distributions, its exact
distribution is derived by |Fisher| (1928). Additional discussions on this sampling
distribution can be found in [Wilks| (1932), Gurland| (1968), Lee (1971), Williams
(1978), and |[Nandi and Choudhury| (2005)). Under general populations, numerous
works have examined the asymptotic behavior of R? in a low-dimensional asymp-
totic regime, where the dimension p of the observations is fixed, while the sample
size n tends to infinity; see for instance, Muirhead| (1982), Ali and Nagar| (2002,
Anderson| (2003)), and |(Ogasawara (2006)).

When the dimension p is non-negligible with respect to the sample size n, the
distribution of R? deviates from its predicted limit in low-dimensional situations.
First, consider a moderately high-dimensional framework, that is,

n—o00, pP=mp,— x, £—>c€(0,1), (1.2)
n
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which is commonly used in the literature on random matriz theory, and is referred
to as the Marcenko—Pastur (MP) asymptotic regime (Marcenko and Pastur
(1967)). In this regime, Zheng et al.|(2014) prove that the R? statistic converges to
c+ (1 —c)p?, almost surely, where p* denotes the limit of p? as p — oo. Moreover,
under a specific independent components (IC) model (Bai and Silverstein| (2004))),
the R? statistic is asymptotically Gaussian, with a limiting variance determined
jointly by the limit p? and the ratio c. Similar results are reported by |Guo and
Cheng (2022), who studied the R? statistic in a high-dimensional linear regression.
However, note that the models considered in Zheng et al. (2014) and |Guo and
Cheng| (2022), as well as their corresponding results, overlap, but not entirely.
Therefore, we need to study the R? statistic under more general situations and
provide a unified limiting theory.

The main contribution of this study is a unified central limit theorem (CLT)
for the R? statistic, established under a general IC model (Bai and Silverstein
(2010)) in the MP asymptotic regime (1.2). Our results show that the R? statistic
converges in distribution to a Gaussian variable, the variance of which is a
function of the limiting ratio ¢, the whole dependence structure of (y, x1,...,z,),
and the fourth moments of their latent independent components. By specifying
the structure of the dependence and/or the fourth moments, our CLT reduces to
those in|Zheng et al.| (2014)) and |(Guo and Cheng] (2022). In general cases, the CLT
represents the moment contribution of the latent components to the fluctuation
of R%. As an application, we develop a novel interval estimation procedure for
the multiple correlation coefficient in a high-dimensional linear regression.

The rest of the paper is organized as follows. Section 2 details our model
assumptions and presents the new CLT for R? statistics. Section 3 proposes our
interval estimation of multiple correlation coefficients, which is then applied to
an empirical analysis of a breast cancer data set. Technical proofs are relegated
to online Supplementary Material.

2. Main Results
2.1. Multiple correlation coefficient and the R? statistic

Let zy, ..., z, be a sequence of independent and identically distributed (i.i.d.)
observations from a population z = (y,z1,...,2,) € RP™! with mean vector p
and covariance matrix 3. The sample mean and sample covariance matrix are

z=); ,%;/nand

) 1 n - B
Y= p— > (z; —2)(z; - 2), (2.1)

j=1
respectively. Partitioning the population z into y and x = (xy,...,x,)’, the

covariance matrices 3 and X have partitions
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Oyy O Gyy O
=" and B =" 2], (2.2)

respectively. By solving the optimization problem in (I.1)), the squared multiple
correlation coefficient ,0127 and its moment estimator, the R? statistic, are given by

/ —1 ~/ —1 4
o Y o, (o4 Silc J
Yy Ty
pi = W and R*=-Z 7Y (2.3)
Oyy Ty

respectively (Anderson (2003)).

2.2. CLT for the R? statistic

Our study of the R? statistic is under a general IC model (Bai and Silverstein
(2010)). It assumes that the population z has a stochastic representation

!
z=p+Aw = u—i—(Z)w (2.4)
2

where p € RPFT! denotes the unknown mean vector, w = (wy,...,w,) € R™
(m > p+ 1) is a vector of independent random variables representing the m
latent components, and A € RPTD*™ ig a deterministic transformation matrix
with rank(A) = p+ 1 and AA’ = ¥. Here, the transformation matrix A is
partitioned into a; € R™ and A, € RP*™  according to the partition of the
population z.

Our main assumptions on this model are listed below.

Assumption 1. The dimensions (p, m,n) tend to infinity in a related way, such
that

'U

m
p=p, =00, m=m, =00, ¢, ==—=c€(0,1), limsup— <1.

n—oo N

3

Assumption 2. The latent independent variables (w;) satisfy

E(w;) =0, E(w?)=1, REw!) =mr, supElw® < oo,

i>1
and sup; s, E|w;|° 1|y, 56n1/2) —= 0, for any fized 6 > 0.

Assumption 3. As (p,m) — oo, the multiple correlation coefficient p, — p €
[0,1) and the limits of the following quantities exist:

1 m
— Z — 3)[a)e]’” k[a;yE;;Agei]k_l (e k=1,...,5,

2
yi:

where {0y, Ory, Xyw b are defined in (2.2), and e; denotes an mx1 column vector,
with its ith coordinate equals to one, and all others equal to zero.
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Remark 1. The IC model generalizes the one studied in|Zheng et al.| (2014)).
Their model assumes that the latent variables (w;) are i.i.d. and have common
finite fourth moment. Moreover, for the first row aj of the matrix A, after
normalization, its ¢, -norm should converge to zero, that is, ||a;/\/ajai|| =
o(1), which implies that max; Cor(y,wy) — 0. This condition is now removed
from our model and, as a price, we need the condition of a finite sixth moment;
see Assumption 2. An alternative condition on their model is E(w}) = 3, under
which our Assumption 3 holds automatically with {, = 0, for k = 1,...,5. In
general cases, the five quantities {(;} may contribute to the fluctuation of R?.

Remark 2. The IC model (2.4]) includes the linear regression model as a special
case. Consider the following linear model:

Y=o+ Bx+e, (2.5)

where y € R is the response variable, 5, € R is the intercept, 3 € R? is the vector
of regression coeflicients, x € R? is the vector of explanatory variables with zero
means, and € = o, ,€,, independent of x, denotes the error term, with mean zero
and variance o7, (note that €, is a standardized variable). Suppose that x has
the following IC representation:

x = ALE,

with A, € RP*™= a row full-rank transformation matrix and & € R™= a vector of
independent components. Then, the joint vector of y and x in the linear model

OG-

which is a special case of the IC model ([2.4) with the correspondence

i (5] () - (0w (). o

and m = m, + 1.

can be written as

Theorem 1. Suppose that Assumptions 1 to 3 hold. Then,
VI{R? — ¢, — (1= ca)pp} — N{0,0°(c, p*)} (2.8)
in distribution. The variance function is o*(c,x) = oi(c, z) + o2(c, ), with
oi(c,z) =2{c+ (1 —c)x}?

+4{(1— O)2? — 2(1 — o) — c}{c+ (1- )z — ;}



CLT FOR R2? STATISTICS 2269
oy(c,z) = hy — 2{c+ (1 — c)x}hy + {c+ (1 — c)x}?(,

where hy = 3¢ +4c(1 — ) +2(2 — 3¢)(1 — )¢ — 4(1 — ¢)*Cy + (1 — ¢)?¢s and
hg = CCl + 2(1 — C)CQ — (1 — C)Cg.

Theorem 1 establishes a new CLT for the R? statistic under the IC model
(2.4). Tts limiting variance o*(c,p?) is represented as the sum of oi(c, p?)
and oy(c, p?). In particular, the second part o(c, p?) consists of all quantities
involving the five auxiliary parameters {(;} defined in Assumption 3. Thus,
this part characterizes how the fourth moments {7;} of the latent independent
components {w;} contribute to the fluctuation of RZ.

When the coefficient of multiple correlation has the limit p = 0, we have
(3= (4 = (5 = 0, because

L e 2 _ 2
— Z(Umyzza: AQe’i) = Pp — 07
Tyy =1
which gives 02(c,0) = 2¢(1 — ¢) and 03(c,0) = 0. Tt follows immediately that
Vn(R? —¢,) — N{0,2¢(1 —¢)}

in distribution, which coincides with the result in Zheng et al. (2014). This
conclusion does not depend on the distributions of the latent independent
components, and thus can facilitate the testing procedure for Hy : p = 0.

Under the linear model (2.5)), o2(c, p?) can be simplified to
oa(esp?) = (1= (1 — 22 {r, =3+ (20° — 1)(r. — )},

where 7, and 7, are the (limiting) kurtosis parameters of the response variable y
and the error term ¢,, respectively. This shows that the overall contribution of
the fourth moments of € = (£1,...,&,,, ) to the variance of R? can be quantified
by the kurtosis of the response . This result coincides with Theorem 5 in |Guo
and Chengl (2022). Note that their CLT is established under a concentration
condition on &, that is, for some « > 0,

max P (& > t) < 2exp (—at?), ¥t >0, (2.9)

whereas ours is established under finite sixth moments, a weaker condition.
As an illustration, we numerically examine the fluctuation of R? under the
following model.

Model 1. Take A =1,,;, except with the (2,1)th entry equal to g € {0, 1}, set
p = 0, and let the components of w be i.i.d. standardized Gamma(1,2) random
variables.
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Model 1, p = 1000, n = 2000, p> =0 Model 1, p = 1000, n = 2000, p>=0.5
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Figure 1. Normal Q-Q plots for the normalized R? from 5,000 independent replications,
with p? = 0 (left panel) and p? = 0.5 (right panel).

The dimensional setting is (p, n,¢) = (1000, 2000, 0.5). Under this model, for

q = 0, we have p* = 0 and 0?(c, p?) = 0.5, with o3(c, p*) = 0; for ¢ = 1, we have

2 = 0.5 and o*(c, p?) = 0.4375, with o4(c, p?) = 0.1875. Normal Q-Q plots for

the normalized R? from 5,000 independent replications are displayed in Figure 1,
which confirms its asymptotic standard normality.

3. Interval Estimation of p? in a Linear Regression

3.1. Confidence interval for p?

This section considers the interval estimation of the squared multiple corre-
lation coefficient p? in the linear regression ([2.5). Using the CLT developed in
Section 2, it is sufficient to present a reasonable estimate of the limiting variance
a?(c, p?), which involves three unknown parameters, namely, p?, 7,, and ..

Let (y1,%}),--.,(yn, X)) be a sequence of i.i.d. observations from the regres-
sion model. Then, the moment estimates of the three parameters are, respectively,

ﬁQZR*QéRQ_Cn P (1/n)23 1(y _g)4
{a/m) S5 -9

1—c¢,

and

e Z{ee/ >} ShelmerEe))

where g is the sample mean of {y;}, and € denotes the residual vector of the
regression. Note that the consistency of p? and 7, is obvious, and that of 7,
is verified in |Guo and Cheng (2022) under the concentration condition ([2.9),
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which can be relaxed to our moment conditions. Therefore, a plug-in estimator
of o?(c, p?) is given by

6% = 01(cn, ) + (L= ca)*(1 = p°)* {7, = 3+ (20" — 1)(7. = 3)} .

However, as attested by our simulations, for moderately large p and n, the
estimator 62 sometimes takes negative values due to the fluctuations of p* and 7,
especially when ¢, is large and p? is small. To cope with this irrational situation,
we find a lower bound for o2(c, p?), that is,

02(07 PQ) > U?(Cv PQ) - 4(1 - 0)2(1 - P2)2,04 > 07 va € [07 1)’ (31)
and propose a truncated estimator of o2(c, p?) as

67 = oi(cn, R?)

+(1—¢,)*(1 = R;*)*max {—4R;*, 7, — 3+ (2R;> — 1)(7. — 3)},
where Rf? = max{R*?* 0} is the truncated statistic of R**.

Theorem 2. Under the assumptions of Theorem 1, 67 converges to o*(c, p?) in
probability.

Based on Theorems 1 and 2, the (1 — «)100% confidence interval for p? in a
linear regression can be constructed as

" " Za)20¢ " Za/2<3t
C(R?)2{p2  R?— 2027t <2< g2y 2027t LA ],

(@ &4 R - s < SR s b
where z,/ is the upper «/2-quantile of the standard normal distribution. If
C(R*?) is a null set, the confidence interval is deemed to be nonexistent; the
probability of this event is o(1) for any p* € (0,1).

3.2. Simulations

We numerically evaluate the performance of our confidence interval for p?,
referred to as ClI,,.,,, and compare it with that of the original estimator 62 (Guo
and Cheng| (2022)), referred to as CI,..

The model settings are as follows:

1. Weset fp = 0 and A, = I, in the model, because the R? statistic is invariant
under any invertible affine transformation on the explanatory vector x.

2. Two distributional settings for £ and € are considered:

Case 1. The first [p/2] components of & are generated from a standard-
ized Gamma(1,2) distribution and the rest are from a Unif(—+/3,+/3)
distribution, and e follows N(0,1).
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Table 1. Coverage (%) and average length of the 95% confidence intervals for p? under

Case 1.
c (p*, k)
(0.2,22) (0.8,22) (0.2,2) (0.8,2)

o0p Cluew 95.10(0.1134)  94.54(0.0478) ~ 94.42(0.1177)  94.58(0.0582)
Cl,e  94.78(0.1127)  94.54(0.0478)  94.40(0.1173)  94.58(0.0582)
09 300 Cleew 95.34(0.0924)  94.90(0.0390)  94.78(0.0963)  95.16(0.0478)
Cl,e  95.20(0.0921)  94.90(0.0390)  94.68(0.0962)  95.16(0.0478)
s0p Cluew 95.06(0.0714)  94.74(0.0302)  94.92(0.0746)  95.14(0.0370)
Cl,e  95.02(0.0713)  94.74(0.0302)  94.90(0.0746)  95.14(0.0370)
50p Cloew 95.12(0.2606)  94.50(0.0891)  95.02(0.2645)  94.56(0.1032)
Cl,e  93.72(0.2523%)  94.50(0.0891)  93.76(0.2572%)  94.56(0.1032)
05 300 Cluew 9542(0.2168)  94.38(0.0728)  95.22(0.2165)  94.64(0.0846)
Cl,e  94.36(0.2117%) 94.38(0.0728)  94.40(0.2108%)  94.64(0.0846)
c0p Cloew 95.00(0.1682)  94.58(0.0565)  94.70(0.1705)  94.38(0.0654)
Cl,.  94.48(0.1653)  94.58(0.0565)  94.32(0.1684)  94.38(0.0654)
o0p  Cleew 92.44(0.4822)  91.50(0.1660) ~ 92.38(0.4847)  91.70(0.1761)
Cl,.  85.20(0.4384%) 89.84(0.1594*) 86.26(0.4426%) 90.80(0.1729)
Clucw 93.64(0.4196)  92.64(0.1362)  93.76(0.4181)  91.88(0.1444)

0.8 300
Cl,.  88.64(0.3873%) 91.52(0.1327)  88.60(0.3846*) 91.30(0.1430)
s0p Cluew 94.62(03472)  93.98(0.1049)  94.54(0.3485)  93.32(0.1118)
Cl,.  91.38(0.3260%) 93.32(0.1034)  91.16(0.3269*%) 93.20(0.1115)

Case 2. The first [p/2] components of £ are generated from a standardized
Poisson(1) distribution and the rest are from N(0,1), and € follows a
t(9) distribution.

3. For the regression coefficient vector 3, we fix its ¢;-norm ||3||, and let its
first to kth elements be equal to ||3||/vk, and the rest be zero. Here, we
set [|B]| = 0.5 or 2, corresponding to a small or large p?, respectively. Note
that p? is equal to 0.2 or 0.8 under Case 1, and 7/43 or 28/37 under Case
2. The parameter k is set to 2 or [3p/4], representing a sparse and dense
regression, respectively.

4. The dimensional settings are p = 200, 300, 500 and ¢,, = 0.2,0.5,0.8.

The empirical coverage rates and average lengths of CI,,.,, and CI . from 5,000
independent replications are collected in Tables 1 and 2. Starred results imply
that there are some negative estimates 62 among the 5,000 replications. When
this occurs, we set the length of the corresponding CI,. to zero and judge that
this interval does not cover p?.

The results in Tables 1 and 2 show that when the ratio ¢, is small and p?
is large, the two interval estimates are comparable, with similar average lengths,
and their coverage rates are all close to the nominal level 0.95. However, for
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Table 2. Coverage (%) and average length of the 95% confidence intervals for p? under

Case 2.
c (?, k)
(&%) (£ (5:2) (33,2)
o00 Clwew O484(0.1152)  04.04(0.0613)  04.40(0.1155)  94.80(0.0635)
CI,. 92.44(0.1108%)  94.94(0.0613) 92.76(0.1112*%)  94.80(0.0635)
0.2 300 Cluew 94.88(0.0934)  95.08(0.0504) 95.08(0.0938) 95.06(0.0520)
Clg. 93.22(0.0907*)  95.08(0.0504) 93.84(0.0914*)  95.06(0.0520)
so0 Cluew 95.24(0.0720)  95.08(0.0301)  05.46(0.0724)  94.68(0.0404)
Clg. 94.24(0.0707*)  95.08(0.0391) 94.54(0.0714*)  94.68(0.0404)
500 Cluew 9530(0.2617)  93.44(0.1126)  95.42(0.2620)  93.92(0.1148)
Clye  90.82(0.2451%)  93.44(0.1126)  91.14(0.2448%)  93.92(0.1148)
05 300 Cluew 95.08(0.2214)  94.26(0.0922)  95.46(0.2212)  94.48(0.0944)
Clg. 92.36(0.2092*%)  94.26(0.0922) 91.94(0.2097*)  94.48(0.0944)
500 Cluew 95.26(0.1739)  94.84(0.0717) 95.52(0.1747) 94.54(0.0733)
Clg. 92.92(0.1667*) 94.84(0.0717) 93.62(0.1676%)  94.54(0.0733)
200 Cluew 92.64(0.4796)  91.50(0.2039) 92.64(0.4764) 91.72(0.2046)
Clg. 84.52(0.4347*%)  90.28(0.1979*) 83.32(0.4283*) 90.70(0.1995%)
Cluew 93.42(0.4111)  92.68(0.1662) 94.02(0.4103) 91.88(0.1677)
0.8 300
Cl,.  86.76(0.3758%) 92.06(0.1633)  86.70(0.3717%) 91.02(0.1653)
so0 Cluew 93.04(0.3414)  03.68(0.1204)  04.08(0.3412)  93.58(0.1304)
Clge 88.80(0.3153*)  93.34(0.1285) 89.06(0.3162*)  93.36(0.1296)

large c,, their coverage rates tend to be biased downward, and the biases become
small as the dimensions increase. In particular, when c, is large and p? is small,
CL,¢y outperforms Cl,., with more accurate coverage rates. This demonstrates
the necessity and validity of using the truncated estimate of the limiting variance

a?(c, p?).
3.3. An empirical study

We study a breast cancer data set collected by Yau et al| (2010) that can
be downloaded from the UCSC Xena platform (http://xena.ucsc.edu). This
data set consists of measurements on 9,168 gene expression levels of n = 228
cancer patients and their (uncensored) distant metastasis-free survival times 7.
Our interest is the extent to which a linear function of a set of gene expressions
can explain the variation of the survival time.

Motivated by the accelerated failure time model (Kalbfleisch and Prentice
(2002)), we regress the logarithm of the survival time log(T") on p gene expression
levels selected to have the largest marginal correlations with the response. Three
95% confidence intervals, I1C,,.,,, IC,., and IC,pn, (Zheng et al|(2014)), for the
squared coefficient of multiple correlation p? are reported in Table 3, where the
dimension p varies from 100 to 160. The results illustrate that, compared with
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Table 3. 95% confidence intervals of p? for breast cancer data.

LI AND HONG

D CIncw CIgc CIzhcng
100 (0.1816,0.4679) (0.1816,0.4679) (0.1765,0.4730)
110 (0.1728,0.4749) (0.1728,0.4749) (0.1679,0.4799)
120 (0.1530,0.4733) (0.1530,0.4733) (0.1470,0.4794)
130 (0.1495,0.4852)  (0.1495,0.4852) (0.1418,0.4928)
140 (0.1371,0.4944) (0.1445,0.4869) (0.1285,0.5030)
150 (0.1064,0.4986) (0.1138,0.4911) (0.0989,0.5061)
160 (0.1119,0.5286) (0.1308,0.5096) (0.1043,0.5361)

ClL.heng, both Cl,.,, and Cl,. suggest a slightly narrower confidence interval in
all cases under study. In addition, when p is large (p > 140), CL,.,, indicates
the need to truncate the estimate of o2(c, p?), which results in a wider confidence
interval than that of CI,.

Supplementary Material

The online Supplementary Material includes proofs of Theorems 1 and 2.
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