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Abstract: This study establishes a central limit theorem (CLT) for R2 statistics in

a moderately high-dimensional asymptotic framework. The underlying population

accommodates a general independent components model, by which our result unifies

two existing CLTs. Beyond this, the new CLT characterizes the effect of kurtosis

of the latent independent components on the fluctuation of R2 statistics. As an

application, a novel confidence interval is constructed for the coefficient of multiple

correlation in a high-dimensional linear regression.
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1. Introduction

The coefficient of multiple correlation ρp measures the linear dependence

between a scalar random variable y and a set of variables x1, . . . , xp. It maximizes

the Pearson correlation between y and any linear combination of x = (x1, . . . , xp)
′,

that is,

ρp = ρ(y,x) ≜ max
α∈Rp

Cor (y, α′x) ; (1.1)

see Anderson (2003).

The R2 statistic, or squared sample multiple correlation coefficient, is by

definition the moment estimator of ρ2p. Under Gaussian distributions, its exact

distribution is derived by Fisher (1928). Additional discussions on this sampling

distribution can be found in Wilks (1932), Gurland (1968), Lee (1971), Williams

(1978), and Nandi and Choudhury (2005). Under general populations, numerous

works have examined the asymptotic behavior of R2 in a low-dimensional asymp-

totic regime, where the dimension p of the observations is fixed, while the sample

size n tends to infinity; see for instance, Muirhead (1982), Ali and Nagar (2002),

Anderson (2003), and Ogasawara (2006).

When the dimension p is non-negligible with respect to the sample size n, the

distribution of R2 deviates from its predicted limit in low-dimensional situations.

First, consider a moderately high-dimensional framework, that is,

n → ∞, p = pn → ∞,
p

n
→ c ∈ (0, 1), (1.2)
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which is commonly used in the literature on random matrix theory, and is referred

to as the Marčenko–Pastur (MP) asymptotic regime (Marčenko and Pastur

(1967)). In this regime, Zheng et al. (2014) prove that theR2 statistic converges to

c+(1−c)ρ2, almost surely, where ρ2 denotes the limit of ρ2p as p → ∞. Moreover,

under a specific independent components (IC) model (Bai and Silverstein (2004)),

the R2 statistic is asymptotically Gaussian, with a limiting variance determined

jointly by the limit ρ2 and the ratio c. Similar results are reported by Guo and

Cheng (2022), who studied the R2 statistic in a high-dimensional linear regression.

However, note that the models considered in Zheng et al. (2014) and Guo and

Cheng (2022), as well as their corresponding results, overlap, but not entirely.

Therefore, we need to study the R2 statistic under more general situations and

provide a unified limiting theory.

The main contribution of this study is a unified central limit theorem (CLT)

for the R2 statistic, established under a general IC model (Bai and Silverstein

(2010)) in the MP asymptotic regime (1.2). Our results show that the R2 statistic

converges in distribution to a Gaussian variable, the variance of which is a

function of the limiting ratio c, the whole dependence structure of (y, x1, . . . , xp),

and the fourth moments of their latent independent components. By specifying

the structure of the dependence and/or the fourth moments, our CLT reduces to

those in Zheng et al. (2014) and Guo and Cheng (2022). In general cases, the CLT

represents the moment contribution of the latent components to the fluctuation

of R2. As an application, we develop a novel interval estimation procedure for

the multiple correlation coefficient in a high-dimensional linear regression.

The rest of the paper is organized as follows. Section 2 details our model

assumptions and presents the new CLT for R2 statistics. Section 3 proposes our

interval estimation of multiple correlation coefficients, which is then applied to

an empirical analysis of a breast cancer data set. Technical proofs are relegated

to online Supplementary Material.

2. Main Results

2.1. Multiple correlation coefficient and the R2 statistic

Let z1, . . . , zn be a sequence of independent and identically distributed (i.i.d.)

observations from a population z = (y, x1, . . . , xp)
′ ∈ Rp+1, with mean vector µ

and covariance matrix Σ. The sample mean and sample covariance matrix are

z̄ =
∑n

j=1 zj/n and

Σ̂ =
1

n− 1

n∑
j=1

(zj − z̄)(zj − z̄)′, (2.1)

respectively. Partitioning the population z into y and x = (x1, . . . , xp)
′, the

covariance matrices Σ and Σ̂ have partitions
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Σ =

(
σyy σ′

xy

σxy Σxx

)
and Σ̂ =

(
σ̂yy σ̂′

xy

σ̂xy Σ̂xx

)
, (2.2)

respectively. By solving the optimization problem in (1.1), the squared multiple

correlation coefficient ρ2p and its moment estimator, the R2 statistic, are given by

ρ2p =
σ′

xyΣ
−1
xxσxy

σyy

and R2 =
σ̂′

xyΣ̂
−1
xx σ̂xy

σ̂yy

, (2.3)

respectively (Anderson (2003)).

2.2. CLT for the R2 statistic

Our study of the R2 statistic is under a general IC model (Bai and Silverstein

(2010)). It assumes that the population z has a stochastic representation

z = µ+Aw = µ+

(
a′
1

A2

)
w, (2.4)

where µ ∈ Rp+1 denotes the unknown mean vector, w = (w1, . . . , wm)
′ ∈ Rm

(m ≥ p + 1) is a vector of independent random variables representing the m

latent components, and A ∈ R(p+1)×m is a deterministic transformation matrix

with rank(A) = p + 1 and AA′ = Σ. Here, the transformation matrix A is

partitioned into a1 ∈ Rm and A2 ∈ Rp×m, according to the partition of the

population z.

Our main assumptions on this model are listed below.

Assumption 1. The dimensions (p,m, n) tend to infinity in a related way, such

that

p = pn → ∞, m = mn → ∞, cn ≜
p

n
→ c ∈ (0, 1), lim sup

n→∞

m

n
< 1.

Assumption 2. The latent independent variables (wi) satisfy

E(wi) = 0, E(w2
i ) = 1, E(w4

i ) = τi, sup
i≥1

E|wi|6 < ∞,

and supi≥1 E|wi|6I(|wi|⩾δn1/3) → 0, for any fixed δ > 0.

Assumption 3. As (p,m) → ∞, the multiple correlation coefficient ρp → ρ ∈
[0, 1) and the limits of the following quantities exist:

1

σ2
yy

m∑
i=1

(τi − 3)[a′
1ei]

5−k[σ′
xyΣ

−1
xxA2ei]

k−1 → ζk, k = 1, . . . , 5,

where {σyy,σxy,Σxx} are defined in (2.2), and ei denotes an m×1 column vector,

with its ith coordinate equals to one, and all others equal to zero.
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Remark 1. The IC model (2.4) generalizes the one studied in Zheng et al. (2014).

Their model assumes that the latent variables (wi) are i.i.d. and have common

finite fourth moment. Moreover, for the first row a′
1 of the matrix A, after

normalization, its ℓ∞-norm should converge to zero, that is, ||a1/
√
a′
1a1||∞ =

o(1), which implies that maxk Cor(y, wk) → 0. This condition is now removed

from our model and, as a price, we need the condition of a finite sixth moment;

see Assumption 2. An alternative condition on their model is E(w4
i ) = 3, under

which our Assumption 3 holds automatically with ζk = 0, for k = 1, . . . , 5. In

general cases, the five quantities {ζk} may contribute to the fluctuation of R2.

Remark 2. The IC model (2.4) includes the linear regression model as a special

case. Consider the following linear model:

y = β0 + β′x+ ϵ, (2.5)

where y ∈ R is the response variable, β0 ∈ R is the intercept, β ∈ Rp is the vector

of regression coefficients, x ∈ Rp is the vector of explanatory variables with zero

means, and ϵ = σϵ,pϵp, independent of x, denotes the error term, with mean zero

and variance σ2
ϵ,p (note that ϵp is a standardized variable). Suppose that x has

the following IC representation:

x = Axξ,

with Ax ∈ Rp×mx a row full-rank transformation matrix and ξ ∈ Rmx a vector of

independent components. Then, the joint vector of y and x in the linear model

can be written as (
y

x

)
=

(
β0

0

)
+

(
β′Ax σϵ,p

Ax 0

)(
ξ

ϵp

)
, (2.6)

which is a special case of the IC model (2.4) with the correspondence

µ =

(
β0

0

)
,a1 =

(
A′

xβ

σϵ,p

)
,A2 =

(
Ax 0

)
,w =

(
ξ

ϵp

)
, (2.7)

and m = mx + 1.

Theorem 1. Suppose that Assumptions 1 to 3 hold. Then,

√
n{R2 − cn − (1− cn)ρ

2
p} → N{0, σ2(c, ρ2)} (2.8)

in distribution. The variance function is σ2(c, x) = σ2
1(c, x) + σ2(c, x), with

σ2
1(c, x) = 2{c+ (1− c)x}2

+4{(1− c)x2 − 2(1− c)x− c}
{
c+ (1− c)x− 1

2

}
,
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σ2(c, x) = h1 − 2{c+ (1− c)x}h2 + {c+ (1− c)x}2ζ1,

where h1 = c2ζ1 + 4c(1− c)ζ2 + 2(2− 3c)(1− c)ζ3 − 4(1− c)2ζ4 + (1− c)2ζ5 and

h2 = cζ1 + 2(1− c)ζ2 − (1− c)ζ3.

Theorem 1 establishes a new CLT for the R2 statistic under the IC model

(2.4). Its limiting variance σ2(c, ρ2) is represented as the sum of σ2
1(c, ρ

2)

and σ2(c, ρ
2). In particular, the second part σ2(c, ρ

2) consists of all quantities

involving the five auxiliary parameters {ζk} defined in Assumption 3. Thus,

this part characterizes how the fourth moments {τi} of the latent independent

components {wi} contribute to the fluctuation of R2.

When the coefficient of multiple correlation has the limit ρ = 0, we have

ζ3 = ζ4 = ζ5 = 0, because

1

σyy

m∑
i=1

(σ′
xyΣ

−1
xxA2ei)

2 = ρ2p → 0,

which gives σ2
1(c, 0) = 2c(1− c) and σ2(c, 0) = 0. It follows immediately that

√
n(R2 − cn) → N{0, 2c(1− c)}

in distribution, which coincides with the result in Zheng et al. (2014). This

conclusion does not depend on the distributions of the latent independent

components, and thus can facilitate the testing procedure for H0 : ρ = 0.

Under the linear model (2.5), σ2(c, ρ
2) can be simplified to

σ2(c, ρ
2) = (1− c)2(1− ρ2)2

{
τy − 3 + (2ρ2 − 1)(τϵ − 3)

}
,

where τy and τϵ are the (limiting) kurtosis parameters of the response variable y

and the error term ϵp, respectively. This shows that the overall contribution of

the fourth moments of ξ = (ξ1, . . . , ξmx
)′ to the variance of R2 can be quantified

by the kurtosis of the response y. This result coincides with Theorem 5 in Guo

and Cheng (2022). Note that their CLT is established under a concentration

condition on ξ, that is, for some α > 0,

max
i

P (|ξi| ≥ t) ≤ 2 exp
(
−αt2

)
, ∀t ≥ 0, (2.9)

whereas ours is established under finite sixth moments, a weaker condition.

As an illustration, we numerically examine the fluctuation of R2 under the

following model.

Model 1. Take A = Ip+1, except with the (2,1)th entry equal to q ∈ {0, 1}, set
µ = 0, and let the components of w be i.i.d. standardized Gamma(1,2) random

variables.
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Figure 1. Normal Q–Q plots for the normalized R2 from 5,000 independent replications,
with ρ2 = 0 (left panel) and ρ2 = 0.5 (right panel).

The dimensional setting is (p, n, c) = (1000, 2000, 0.5). Under this model, for

q = 0, we have ρ2 = 0 and σ2(c, ρ2) = 0.5, with σ2(c, ρ
2) = 0; for q = 1, we have

ρ2 = 0.5 and σ2(c, ρ2) = 0.4375, with σ2(c, ρ
2) = 0.1875. Normal Q–Q plots for

the normalized R2 from 5,000 independent replications are displayed in Figure 1,

which confirms its asymptotic standard normality.

3. Interval Estimation of ρ2 in a Linear Regression

3.1. Confidence interval for ρ2

This section considers the interval estimation of the squared multiple corre-

lation coefficient ρ2 in the linear regression (2.5). Using the CLT developed in

Section 2, it is sufficient to present a reasonable estimate of the limiting variance

σ2(c, ρ2), which involves three unknown parameters, namely, ρ2, τy, and τϵ.

Let (y1,x
′
1), . . . , (yn,x

′
n) be a sequence of i.i.d. observations from the regres-

sion model. Then, the moment estimates of the three parameters are, respectively,

ρ̂2 = R∗2 ≜
R2 − cn
1− cn

, τ̂y =
(1/n)

∑n
j=1(yj − ȳ)4{

(1/n)
∑n

j=1(yj − ȳ)2
}2 ,

and

τ̂ϵ =
1

(1− cn)4

 1
n

n∑
j=1

{
ϵ̂2j

ϵ̂′ϵ̂/(n− p)

}2

− 3cn(1− cn)
2(2− cn)

 ,
where ȳ is the sample mean of {yj}, and ϵ̂ denotes the residual vector of the

regression. Note that the consistency of ρ̂2 and τ̂y is obvious, and that of τ̂ϵ
is verified in Guo and Cheng (2022) under the concentration condition (2.9),
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which can be relaxed to our moment conditions. Therefore, a plug-in estimator

of σ2(c, ρ2) is given by

σ̂2 = σ2
1(cn, ρ̂

2) + (1− cn)
2(1− ρ̂2)2

{
τ̂y − 3 + (2ρ̂2 − 1)(τ̂ϵ − 3)

}
.

However, as attested by our simulations, for moderately large p and n, the

estimator σ̂2 sometimes takes negative values due to the fluctuations of ρ̂2 and τ̂ϵ,

especially when cn is large and ρ2 is small. To cope with this irrational situation,

we find a lower bound for σ2(c, ρ2), that is,

σ2(c, ρ2) ≥ σ2
1(c, ρ

2)− 4(1− c)2(1− ρ2)2ρ4 > 0, ∀ρ2 ∈ [0, 1), (3.1)

and propose a truncated estimator of σ2(c, ρ2) as

σ̂2
t = σ2

1(cn, R
∗2
t )

+(1− cn)
2(1−R∗2

t )2 max
{
−4R∗4

t , τ̂y − 3 + (2R∗2
t − 1)(τ̂ϵ − 3)

}
,

where R∗2
t = max{R∗2, 0} is the truncated statistic of R∗2.

Theorem 2. Under the assumptions of Theorem 1, σ̂2
t converges to σ2(c, ρ2) in

probability.

Based on Theorems 1 and 2, the (1− α)100% confidence interval for ρ2 in a

linear regression can be constructed as

C(R∗2) ≜

{
ρ2 : R∗2 −

zα/2σ̂t√
n(1− cn)

≤ ρ2 ≤ R∗2 +
zα/2σ̂t√
n(1− cn)

}
∩ [0, 1],

where zα/2 is the upper α/2-quantile of the standard normal distribution. If

C(R∗2) is a null set, the confidence interval is deemed to be nonexistent; the

probability of this event is o(1) for any ρ2 ∈ (0, 1).

3.2. Simulations

We numerically evaluate the performance of our confidence interval for ρ2,

referred to as CInew, and compare it with that of the original estimator σ̂2 (Guo

and Cheng (2022)), referred to as CIgc.

The model settings are as follows:

1. We set β0 = 0 andAx = Ip in the model, because the R2 statistic is invariant

under any invertible affine transformation on the explanatory vector x.

2. Two distributional settings for ξ and ϵ are considered:

Case 1. The first [p/2] components of ξ are generated from a standard-

ized Gamma(1,2) distribution and the rest are from a Unif(−
√
3,
√
3)

distribution, and ϵ follows N(0,1).
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Table 1. Coverage (%) and average length of the 95% confidence intervals for ρ2 under
Case 1.

c p
(ρ2, k)

(0.2, 3p4 ) (0.8, 3p4 ) (0.2,2) (0.8,2)

0.2

200
CInew 95.10(0.1134) 94.54(0.0478) 94.42(0.1177) 94.58(0.0582)

CIgc 94.78(0.1127) 94.54(0.0478) 94.40(0.1173) 94.58(0.0582)

300
CInew 95.34(0.0924) 94.90(0.0390) 94.78(0.0963) 95.16(0.0478)

CIgc 95.20(0.0921) 94.90(0.0390) 94.68(0.0962) 95.16(0.0478)

500
CInew 95.06(0.0714) 94.74(0.0302) 94.92(0.0746) 95.14(0.0370)

CIgc 95.02(0.0713) 94.74(0.0302) 94.90(0.0746) 95.14(0.0370)

0.5

200
CInew 95.12(0.2606) 94.50(0.0891) 95.02(0.2645) 94.56(0.1032)

CIgc 93.72(0.2523*) 94.50(0.0891) 93.76(0.2572*) 94.56(0.1032)

300
CInew 95.42(0.2168) 94.38(0.0728) 95.22(0.2165) 94.64(0.0846)

CIgc 94.36(0.2117*) 94.38(0.0728) 94.40(0.2108*) 94.64(0.0846)

500
CInew 95.00(0.1682) 94.58(0.0565) 94.70(0.1705) 94.38(0.0654)

CIgc 94.48(0.1653) 94.58(0.0565) 94.32(0.1684) 94.38(0.0654)

0.8

200
CInew 92.44(0.4822) 91.50(0.1660) 92.38(0.4847) 91.70(0.1761)

CIgc 85.20(0.4384*) 89.84(0.1594*) 86.26(0.4426*) 90.80(0.1729)

300
CInew 93.64(0.4196) 92.64(0.1362) 93.76(0.4181) 91.88(0.1444)

CIgc 88.64(0.3873*) 91.52(0.1327) 88.60(0.3846*) 91.30(0.1430)

500
CInew 94.62(0.3472) 93.98(0.1049) 94.54(0.3485) 93.32(0.1118)

CIgc 91.38(0.3260*) 93.32(0.1034) 91.16(0.3269*) 93.20(0.1115)

Case 2. The first [p/2] components of ξ are generated from a standardized

Poisson(1) distribution and the rest are from N(0,1), and ϵ follows a

t(9) distribution.

3. For the regression coefficient vector β, we fix its ℓ2-norm ∥β∥, and let its

first to kth elements be equal to ∥β∥/
√
k, and the rest be zero. Here, we

set ||β|| = 0.5 or 2, corresponding to a small or large ρ2, respectively. Note

that ρ2 is equal to 0.2 or 0.8 under Case 1, and 7/43 or 28/37 under Case

2. The parameter k is set to 2 or [3p/4], representing a sparse and dense

regression, respectively.

4. The dimensional settings are p = 200, 300, 500 and cn = 0.2, 0.5, 0.8.

The empirical coverage rates and average lengths of CInew and CIgc from 5,000

independent replications are collected in Tables 1 and 2. Starred results imply

that there are some negative estimates σ̂2 among the 5,000 replications. When

this occurs, we set the length of the corresponding CIgc to zero and judge that

this interval does not cover ρ2.

The results in Tables 1 and 2 show that when the ratio cn is small and ρ2

is large, the two interval estimates are comparable, with similar average lengths,

and their coverage rates are all close to the nominal level 0.95. However, for
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Table 2. Coverage (%) and average length of the 95% confidence intervals for ρ2 under
Case 2.

c p
(ρ2, k)

( 7
43 ,

3p
4 ) ( 2837 ,

3p
4 ) ( 7

43 ,2) (2837 ,2)

0.2

200
CInew 94.84(0.1152) 94.94(0.0613) 94.40(0.1155) 94.80(0.0635)

CIgc 92.44(0.1108*) 94.94(0.0613) 92.76(0.1112*) 94.80(0.0635)

300
CInew 94.88(0.0934) 95.08(0.0504) 95.08(0.0938) 95.06(0.0520)

CIgc 93.22(0.0907*) 95.08(0.0504) 93.84(0.0914*) 95.06(0.0520)

500
CInew 95.24(0.0720) 95.08(0.0391) 95.46(0.0724) 94.68(0.0404)

CIgc 94.24(0.0707*) 95.08(0.0391) 94.54(0.0714*) 94.68(0.0404)

0.5

200
CInew 95.30(0.2617) 93.44(0.1126) 95.42(0.2620) 93.92(0.1148)

CIgc 90.82(0.2451*) 93.44(0.1126) 91.14(0.2448*) 93.92(0.1148)

300
CInew 95.08(0.2214) 94.26(0.0922) 95.46(0.2212) 94.48(0.0944)

CIgc 92.36(0.2092*) 94.26(0.0922) 91.94(0.2097*) 94.48(0.0944)

500
CInew 95.26(0.1739) 94.84(0.0717) 95.52(0.1747) 94.54(0.0733)

CIgc 92.92(0.1667*) 94.84(0.0717) 93.62(0.1676*) 94.54(0.0733)

0.8

200
CInew 92.64(0.4796) 91.50(0.2039) 92.64(0.4764) 91.72(0.2046)

CIgc 84.52(0.4347*) 90.28(0.1979*) 83.32(0.4283*) 90.70(0.1995*)

300
CInew 93.42(0.4111) 92.68(0.1662) 94.02(0.4103) 91.88(0.1677)

CIgc 86.76(0.3758*) 92.06(0.1633) 86.70(0.3717*) 91.02(0.1653)

500
CInew 93.94(0.3414) 93.68(0.1294) 94.08(0.3412) 93.58(0.1304)

CIgc 88.80(0.3153*) 93.34(0.1285) 89.06(0.3162*) 93.36(0.1296)

large cn, their coverage rates tend to be biased downward, and the biases become

small as the dimensions increase. In particular, when cn is large and ρ2 is small,

CInew outperforms CIgc, with more accurate coverage rates. This demonstrates

the necessity and validity of using the truncated estimate of the limiting variance

σ2(c, ρ2).

3.3. An empirical study

We study a breast cancer data set collected by Yau et al. (2010) that can

be downloaded from the UCSC Xena platform (http://xena.ucsc.edu). This

data set consists of measurements on 9,168 gene expression levels of n = 228

cancer patients and their (uncensored) distant metastasis-free survival times T .

Our interest is the extent to which a linear function of a set of gene expressions

can explain the variation of the survival time.

Motivated by the accelerated failure time model (Kalbfleisch and Prentice

(2002)), we regress the logarithm of the survival time log(T ) on p gene expression

levels selected to have the largest marginal correlations with the response. Three

95% confidence intervals, ICnew, ICgc, and ICzheng (Zheng et al. (2014)), for the

squared coefficient of multiple correlation ρ2 are reported in Table 3, where the

dimension p varies from 100 to 160. The results illustrate that, compared with

http://xena.ucsc.edu


2274 LI AND HONG

Table 3. 95% confidence intervals of ρ2 for breast cancer data.

p CInew CIgc CIzheng
100 (0.1816,0.4679) (0.1816,0.4679) (0.1765,0.4730)

110 (0.1728,0.4749) (0.1728,0.4749) (0.1679,0.4799)

120 (0.1530,0.4733) (0.1530,0.4733) (0.1470,0.4794)

130 (0.1495,0.4852) (0.1495,0.4852) (0.1418,0.4928)

140 (0.1371,0.4944) (0.1445,0.4869) (0.1285,0.5030)

150 (0.1064,0.4986) (0.1138,0.4911) (0.0989,0.5061)

160 (0.1119,0.5286) (0.1308,0.5096) (0.1043,0.5361)

CIzheng, both CInew and CIgc suggest a slightly narrower confidence interval in

all cases under study. In addition, when p is large (p ≥ 140), CInew indicates

the need to truncate the estimate of σ2(c, ρ2), which results in a wider confidence

interval than that of CIgc.

Supplementary Material

The online Supplementary Material includes proofs of Theorems 1 and 2.
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