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Abstract: This study examines the problem of estimating a large coefficient matrix

in a multiple response linear regression model when the coefficient matrix could be

both of low rank and sparse, in the sense that most nonzero entries are concen-

trated in a few rows and columns. We are especially interested in high-dimensional

settings in which the numbers of predictors and/or response variables can be much

larger than the number of observations. We propose a new estimation scheme,

and show that it achieves both competitive numerical performance and fast com-

putation. Moreover, we show that (a slight variant of) the proposed estimator

simultaneously achieves near optimal nonasymptotic minimax rates of estimation

under a collection of squared Schatten norm losses by providing both the error

bounds for the estimator and the minimax lower bounds. The effectiveness of the

proposed algorithm is also demonstrated using an in vivo calcium imaging data set.

Key words and phrases: Adaptive estimation, dimension reduction, group spar-

sity, high dimensionality, low rank matrices, minimax rates, neuroimaging, variable

selection.

1. Introduction

Sparse linear regressions form a central topic in high-dimensional statistical

inferences. For univariate responses, many researchers have developed a dazzling

collection of tools to take advantage of the potential sparsity of the regression

coefficients, including the Lasso (Tibshirani (1996); Chen, Donoho and Saunders

(1998)), SCAD (Fan and Li (2001)), Dantzig selector (Candes and Tao (2007))

and MCP (Zhang (2010)) among others. However, in contemporary applications,

we routinely face multivariate, or even high-dimensional response variables and

a large number of predictors, while the sample size can be much smaller. For

example, in a cognitive neuroscience study, Vounou et al. (2012) used around

10,000 voxels from fMRI imaging as the response variables for each subject, and

An earlier version of this paper (Ma and Sun (2014)), under the title ”Adaptive sparse reduced-rank
regression”, studied a one-way sparse reduced-rank regression model, which can be viewed as a special
case of the model considered in this study. The earlier version has been uploaded on arXiv, but is not
intended for publication.
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over 400,000 single-nucleotide polymorphisms as predictors. In comparison, the

sample size was just several hundred.

Let n denote the sample size, m the number of responses, and p the number

of predictors. We observe a pair of matrices Y and X from the following linear

model:

Y = XA+ Z, (1.1)

where Y is an n × m response matrix, X is an n × p design matrix, A is a

p × m coefficient matrix that we want to estimate, and Z is an unobserved

n×m matrix with independent and identically distributed (i.i.d.) noise entries.

Thus, the ith rows of Y and X collect the measurements of the response and the

predictor variables, respectively, on the ith subject. When either the number of

predictors p or the number of response variables m is large, it becomes difficult to

estimate the coefficient matrix A accurately unless some structural assumptions

are imposed so that its intrinsic dimension is low.

Past studies have considered several important types of structural assump-

tions. For example, low-rankness assumes that the rank of A is much smaller

than its matrix dimensions p and m. Model (1.1) with such a structure is referred

to a reduced-rank regression model and is widely used in econometrics. See, for

instance, Izenman (1975), Reinsel and Velu (1998), and the references therein.

Another example of sparsity is that many entries in the coefficient matrix are

zeros. Several types of sparsity may be considered, depending on the application.

If only s of the p rows in A have nonzero entries, we refer to row sparsity. In

other words, only a small subset (of size s) of the p predictors contribute to the

variation of Y . Structures of this kind arise naturally in the context of multitask

learning (Koltchinskii, Lounici and Tsybakov (2011)). This can also be viewed

as an example of group sparsity (Yuan and Lin (2006)), where the rows of A form

natural groups. If only k of the m columns in A have nonzero entries, we refer

to column sparsity. In this case, only k of the m response variables are affected

by the predictors under consideration.

In this study, we are interested in the situation where low-rankness, row

sparsity and column sparsity could be present in the coefficient matrix simulta-

neously. In what follows, we refer to model (1.1) with these structures as the

two-way sparse reduced-rank regression model. Interest in such a model stems

from both application and theory, and has increased significantly in recent years.

In applications in the fields of genomics and neuroscience, researchers can now

measure many response and predictor variables, resulting in increasingly large co-
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efficient matrices. Thus, imposing both low-rankness and two-way sparsity leads

to enhanced interpretability, which is more appealing than simply imposing one

type of structure. For instance, Ma, Xiao and Wong (2014) conducted a case

study of regulatory relationships between different genome-wide measurements,

where the predictors are micro-RNA measurements and the response variables are

gene expression levels. The sparsity occurs because a relatively small number of

micro-RNAs regulated a small collection of genes under the specific experiments

of interest. Furthermore, the low-rankness assumption is reasonable because only

a handful of regulatory programs were present. Several algorithms have been pro-

posed to estimate coefficient matrix in this model. See, for instance, Chen, Chan

and Stenseth (2012) and Ma, Xiao and Wong (2014). However, to the best of

our knowledge, there is no theoretical guarantee on the performance of these

procedures in a high-dimensional regime, where the number of predictors and/or

response variables exceeds the sample size.

Main contributions The main contributions of this study are as follows. First,

we propose a new computationally efficient estimator for the coefficient matrix

in (1.1) that takes advantage of the potential presence of low-rankness and two-

way sparsity adaptively. The proposed estimator shows competitive numerical

performance under a variety of simulation settings compared with that of state-

of-the-art methods. We also demonstrate how the estimation scheme can play a

critical role in analyzing the spatial-temporal structure in calcium imaging data.

Second, we obtain new minimax estimation rates of the coefficient matrix with

respect to a large class of squared Schatten norm losses. Furthermore, we show

that (a slight variant of) our estimator simultaneously and adaptively achieves

near optimal rates for this large collection of loss functions when the noise terms

are homoscedastic and Gaussian.

Connection to the literature Many studies have examined coefficient matri-

ces that are either sparse or of low rank. As a result, we now have a deep under-

standing of how the optimal mean squared estimation/prediction error depends

on the model parameters, and how to achieve near optimal error rates without

knowing the true rank or sparsity. See, for instance, Bunea, She and Wegkamp

(2011) for the low-rank case, and Huang and Zhang (2010) and Lounici et al.

(2011) for the row-sparse case.

In addition, extensive research exists for the case in which both low-rankness

and row sparsity are present. Chen and Huang (2012) proposed a weighted rank-

constrained group Lasso approach with two heuristic numerical algorithms, and

studied its fixed-dimension large-sample asymptotics. Bunea, She and Wegkamp
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(2012) derived oracle inequalities and studied the minimax rates under a squared

prediction error loss for this model in a high-dimensional setting. See also She

(2014) and an earlier version of the present paper (Ma and Sun (2014)).

The previous studies most closely related to ours are those of Chen, Chan

and Stenseth (2012) and Ma, Xiao and Wong (2014), both of which focus on

methodology. In comparison, in addition to proposing a new method, we justify

its practical effectiveness using both numerical and theoretical studies. From a

slightly different perspective, a series of studies have considered the problem of

sparse SVD (Lee et al. (2010); Yang, Ma and Buja (2014, 2016)), which can be

viewed as a special case of a two-way sparse reduced-rank regression with an

orthogonal design.

Organization The rest of the paper is organized as follows. Section 2 presents

our new methodology for obtaining a simultaneously sparse and low-rank esti-

mator of the coefficient matrix. Then, we demonstrate its competitive numerical

performance in Section 3 using both simulated and real data examples. In Sec-

tion 4, we provide finite-sample upper bounds for (a slight variant of) the pro-

posed estimator with respect to a collection of squared Schatten norm losses. In

addition, we derive minimax lower bounds and, hence, show that the proposed

estimator is simultaneously adaptive and near optimal with respect to all loss

functions under consideration. Section 5 discusses interesting related problems

for future research. The proofs of the theorems are presented in Section 6 in the

online Supplementary Material.

Notation For an n × p matrix X = (xij), the ith row of X is denoted by

Xi∗ and the jth column by X∗j . For a positive integer k, [k] denotes the index

set {1, 2, . . . , k}. For any set I, |I| denotes its cardinality and Ic denotes its

complement. For two subsets I and J of indices, we write XIJ for the |I| × |J |
submatrices formed by xij , with (i, j) ∈ I×J . For conciseness, we let XI∗ = XI[p]

and X∗J = X[n]J . For any matrix X, supp(X) represents the index set of its

nonzero rows. We denote the rank of X by rank(X), and σi(X) represents its ith

largest singular value. For any q ∈ [1,∞), the Schatten-q norm of X is ‖X‖sq =(∑n∧p
i=1 σ

q
i (X)

)1/q
, and for q =∞, ‖X‖S∞ = σ1(X). Note that ‖X‖S2

= ‖X‖F is

the Frobenius norm, and ‖X‖S∞ = ‖X‖op is the operator norm of X. For any

vector a, ‖a‖ denotes its `2 norm. The `2/`1 norm of X is defined as the `1 norm

of the vector consisting of its row `2 norms: ‖X‖2,1 =
∑n

j=1 ‖Xj∗‖. If n ≥ p and

X has orthonormal columns, then we say X is an orthonormal matrix, and we

write X ∈ O(n, p). We use 1d to denote the all-one vector in Rd. For any real

numbers a and b, set a ∨ b = max{a, b}, a ∧ b = min{a, b}, and a+ = a ∨ 0.
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2. Methodology

2.1. Main algorithm

The proposed estimation scheme, called double projected penalization (DPP),

is summarized in Algorithm 1. To initialize the algorithm, we need to specify

the rank r of the estimated coefficient matrix and a penalty function ρ(· ;λ) to

be used in the group penalized regression. In what follows, we explain the main

ideas underlying the algorithm; the choice of penalty and other initialization

details are deferred to Sections 2.2 and 2.3.

The algorithm consists of two stages. The first stage involves steps 1–2 and

the second stage comprises steps 3–5. In either stage, we first screen the columns

of Y , then compute the r leading right singular vectors of the screened response

matrix and, finally, perform a group penalized regression on the projected data,

where the projection is onto the subspace spanned by the leading right singular

vectors. The purpose of the screening step is to identify those response variables

with signals that stand out from the noise. To motivate the projection step,

we observe that if the right singular vector matrix V of XA were known, then

we could immediately reduce the dimensionality by considering a new regression

problem in which we replace Y and A in (1.1) with their projected counterparts

Y V and AV , respectively. Thus, in either stage, we first estimate V by the r lead-

ing right singular vectors of the screened response matrix (a further projection is

involved in the second stage), and then project the data by post-multiplying the

response matrix by the estimated right singular vector matrix. When regressing

the projected responses on X, we actually estimate AV . Note that if A has at

most s nonzero rows, then AV does as well. Thus, the rows of AV form natural

groups, and it makes sense to induce row sparsity in our estimator of AV by

performing a group penalized regression.

Next, we discuss the necessity of the second stage. Comparing the two stages,

we note that both the screening step and the estimation of the right singular

matrix V are different, but both differences are due to the involvement of the

matrix U(1). By definition, U(1) ∈ Rn×r consists of the left singular vectors of

XB(1). Since B(1) is an estimate of AV , the column subspace of U(1) estimates the

left singular subspace of XAV or, equivalently, the left singular subspace of XA.

By projecting onto U(1), we increase the signal-to-noise ratio in the screening

step. As a result, we would be able to select additional columns, the signals

of which might have been drowned in noise in the first stage. The inclusion of

more signal columns of Y would then improve the estimation accuracy of the
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final estimator. Similarly, by pre-multiplying Ỹ (1) by U(1)U
′
(1), we further boost

the signal-to-noise ratio when estimating the right singular vector matrix V and,

thus, obtain a better estimator V(1). As shown in a later analysis, the second

stage is critical to achieve a high estimation accuracy for A.

In an earlier version of this paper (Ma and Sun (2014)), we considered a one-

way sparse reduced-rank regression model that does not assume column sparsity

in A. Compared with the earlier version, the current algorithm takes advantage of

the potential column sparsity by including column screening in both steps 1 and 3.

As we show in Section 4, even when column sparsity is absent, our procedure still

adapts automatically to achieve the best possible estimation accuracy, subject to

some multiplicative log factor in the low-rank and row-sparse scenario.

Algorithm 1 Estimation scheme for A using Double Projected Penalization.

Input: Observed response matrix Y , design matrix X, rank r, noise level σ, positive
constants α, β, and penalty function ρ(·;λ) with penalty level λ.

Output: Estimated coefficient matrix Â.

1: Column screening of Y . Select columns

J(0) =
{
j : ‖Y∗j‖2 ≥ σ2(n+ α

√
n log(p ∨m))

}
.

Define Ỹ (0), where Ỹ
(0)
∗j = Y∗jI{j ∈ J(0)}.

Compute the right singular vectors of Ỹ (0), denoted by an m× r matrix V(0).
2: Group penalized regression

B(1) = arg min
B∈Rp×r

{‖Y V(0) −XB‖2F
2

+ ρ(B;λ)

}
,

3: Column screening of Y . Compute the left singular vectors of XB(1), denoted by an
n× r matrix U(1). Select columns

J(1) =J(0) ∪
{
j : ‖U ′(1)Y∗j‖

2≥βσ2(r + 2
√

3r log(p ∨m) + 6 log(p ∨m))
}
.

Define Ỹ (1), where Ỹ
(1)
∗j = Y∗jI{j ∈ J(1)}.

Compute the first r right singular vectors of U(1)U(1)
′Ỹ (1), denoted by an m × r

matrix V(1).
4: Group penalized regression

B(2) = arg min
B∈Rp×r

{‖Y V(1) −XB‖2F
2

+ ρ(B;λ)

}
,

5: Compute the estimated coefficient matrix by Â = B(2)V(1)
′.
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2.2. Group penalized regression

The penalized regression in steps 2 and 4 of Algorithm 1 can be viewed as

a special case of linear regression with group sparsity, where each row of the

coefficient matrix is considered as a group, and all groups are of the same size r.

Penalized regressions with a group structure have been studied extensively.

One of the most popular procedures is the group Lasso (Bakin (1999); Yuan and

Lin (2006)), where the penalty function is defined by the `2/`1 matrix norm, as

follows:

ρ(B;λ) = λ‖B‖2,1 = λ

p∑
j=1

‖Bj∗‖2. (2.1)

The theoretical properties of the group Lasso have been studied in the literature

using ideas originating from the original Lasso method. Huang and Zhang (2010)

showed the upper bounds for the estimation and prediction errors of the group

Lasso with a proper penalty level, under strong group sparsity and group-sparse

eigenvalue conditions. Lounici et al. (2011) provided similar error bounds under

a group version of the restricted eigenvalue condition.

In Section 4, we present a theoretically justified choice of the penalty level λ

for the group Lasso penalty function (2.1) when we have i.i.d. Gaussian noise.

2.3. Initialization

We now discuss the initialization of Algorithm 1. Throughout, we assume

the noise standard deviation σ is known. Otherwise, we can estimate it by

σ̂ =
median(σ(Y ))√

n ∨m
, (2.2)

where σ(Y ) is the collection of all nonzero singular values of Y . If the true rank of

A is not known, we propose applying the estimator of Bunea, She and Wegkamp

(2011), which is summarized in Algorithm 2. The user-specified parameter can

be selected as

η =
√

2m+
√

2(n ∧ p), (2.3)

as suggested by Bunea, She and Wegkamp (2012) for Gaussian data.

In practice, we may also select the rank using cross-validation. Suppose the

data are split into training and test samples. For any given value of r ∈ [m ∧ p],
run Algorithm 1 using only the training sample. Then, use the resulting Â to

calculate the prediction error on the test sample. Thus, we can select the value of

r that leads to the smallest prediction error on the test sample, or to the smallest
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Algorithm 2 Rank estimation

Input: Response matrix Y , design matrix X, noise level σ, and a threshold level η.
Output: Estimated rank r̂, initial matrix V(0).

1: Compute P = XM−X ′, where M = X ′X and M− is its Moore–Penrose pseudo-
inverse.

2: Compute the singular values of PY and select

r̂ = max {j : σj(PY ) ≥ ση} .

average prediction error if k-fold cross-validation is used.

3. Numerical Study

3.1. Simulation

In this section, we compare the proposed DPP method (i.e., Algorithm 1)

with the thresholding SVD method (TSVD) of Ma, Xiao and Wong (2014) and

the exclusive extraction algorithm (EEA) of Chen, Chan and Stenseth (2012).

To ensure a fair comparison, equations (2.2)–(2.3) and Algorithm 2 were applied

to estimate the noise variance and the rank of the coefficient matrix, respectively,

for all methods in all simulation settings.

Comparison under different model parameters. We first compare the afore-

mentioned methods under different design matrices, ranks, and sparsity levels.

To this end, we borrow several simulation settings from Bunea, She and Wegkamp

(2012), but add columns of pure noise to the response matrices to induce two-

way sparsity. The rows of the design matrix X are i.i.d. random vectors sampled

from a multivariate Gaussian distribution with mean zero and covariance matrix

Σ, where Σij = ρ|i−j|. The coefficient matrix A ∈ Rp×m has the form

A =

(
A1 0

0 0

)
=

(
bB0B1 0

0 0

)
,

with b > 0, B0 ∈ Rs×r, and B1 ∈ Rr×k, where all entries in B0 and B1 are

filled with i.i.d. random numbers from N(0, 1). The noise matrix Z ∈ Rn×m has

i.i.d. N(0, σ2) entries. The following settings are considered, with σ = 1 and

ρ = 0.1 or 0.9:

• n = 30, m = 50, p = 100, s = 15, k = 10, r = 2, b = 0.5 or 1;
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Table 1. The estimated ranks for all simulation settings.

Dimensions (n,m, p, s, k, r) b ρ = 0.1 ρ = 0.9

( 30,50,100,15,10,2)
0.5 1.92± 0.27 1.54± 0.5
1 2 ± 0 2 ± 0

(100,50, 25,15,25,5)
0.2 4.74± 0.44 3.16± 0.55
0.4 5 ± 0 4.56± 0.5

• n = 100, m = 50, p = 25, s = 15, k = 25, r = 5, b = 0.2 or 0.4.

Large values of b correspond to large signal-to-noise ratios.

We compare the following five estimators, derived from the three methods.

The first two estimators are computed using Algorithm 1, with α = 2
√

3, β = 1,

and two possible choices of penalty level λ: an estimated universal penalty level

λuniv = σ̂
√

2 log(p)/n, denoted by DPP, and the estimator DPP.cv, which selects

a penalty level λ from the set {2i/2λuniv : i = −5, . . . , 4} using five-fold cross-

validation. The third estimator is the TSVD estimator, implemented by the R

package “tsvd” (version 1.3) with the default option “BICtype=2” for penalized

model selection criteria. The last two estimators are the EEA and its iterative

extension, denoted by iEEA.

Figure 1 and Figure 2 show box plots of the prediction errors, estimation

errors, and sizes of the selected models based on 50 replications in each set-

ting. The horizontal lines indicate the true model sizes (the numbers of nonzero

rows/columns). The estimated ranks for each simulation setting are reported in

Table 1. DPP.cv performs best for almost all cases considered, whereas the DPP

with the estimated universal penalty level tends to choose a smaller model with

slightly larger estimation errors. In some settings, DPP.cv was able to reduce

the estimation errors by up to 40% compared with TSVD, EEA and iEEA. Note

that when comparing prediction errors, the quantity that makes the most sense

to use is the excessive error an estimator makes in addition to the oracle error

one would make even when the true coefficient matrix is given. In the current

setting, the (normalized) oracle error is one. In terms of the excessive prediction

error, we observe that the prediction accuracy of DPP.cv is better than those of

the other methods by a similar percentage. In addition, note that the proposed

method tends to choose more rows than the true model, whereas the column se-

lection, relying on the screening of the columns of U ′Y , is more accurate. This is

somewhat expected, because the group Lasso tends to over-select variables when

cross-validation is employed to choose the tuning parameter values.
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Figure 1. Performance of five methods: prediction errors, estimation errors, and sizes of
selected models across 50 replications. Sample size n = 30, model size m = 50, p = 100,
s = |supp(A)| = 15, k = |supp(A′)| = 10, and rank r = 2. The four blocks in each plot
are for (ρ, b) = (0.1, 0.5), (0.1, 1), (0.9, 0.5), (0.9, 1), respectively.
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Figure 2. Performance of five methods: prediction errors, estimation errors, and sizes of
selected models across 50 replications. Sample size n = 100, model size m = 50, p = 25,
s = |supp(A)| = 15, k = |supp(A′)| = 25, and rank r = 5. The four blocks in each plot
are for (ρ, b) = (0.1, 0.2), (0.1, 0.4), (0.9, 0.2), (0.9, 0.4), respectively.
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Comparison under different noise distributions. We now compare the perfor-

mance of the methods using nonGaussian data. To this end, we consider three

different noise distributions:
√

3/5t5,
√

4/5t10, and 3 Uniform (the sum of three

uniform [−1, 1] random variables). Here, tν denotes the t-distribution with ν

degrees of freedom. Note that all three distributions are normalized to have a

unit variance. Figure 3 shows the simulation results for the second setting with

ρ = 0.1, b = 0.2, and for all three noise distributions along with the standard

normal error. The results show that our methods, and particularly DPP.cv,

demonstrate competitive performance, even for nonGaussian data. Moreover,

compared with the corresponding performance measures on Gaussian data (the

first block of box plots), we find that all of the estimators are relatively robust to

the noise distributions, although their performance (with the exception of TSVD)

does degrade as the tail of the noise distribution becomes heavier.

Performance under heteroscedastic noise. Although the proposed method is

designed under a model in which the responses have equal variances, we test

the robustness of our method for heteroscedastic cases. In what follows, the

noise matrix Z ∈ Rn×m has independent normal entries with mean zero and

variance σ2
j for the jth column, where σ2

j is selected from a uniform distribution

U [2/(ω + 1), 2ω/(ω + 1)], with four choices of ω = 1, 2, 5, 10. In this setting, ω

is the ratio of the largest to the smallest possible variance. When ω = 1, this

becomes the case of equal variance, as above (the second setting with ρ = 0.1, b =

0.2). When ω increases, the noise variance varies among the columns, whereas

the average noise variance remains one. In Figure 4, we report the prediction,

estimation, and selection performance of the proposed DPP method for different

ω. When heteroscedasticity occurs, our approach selects more columns than,

and comparable numbers of rows to the homoscedastic case. The prediction and

estimation errors were not significantly affected.

3.2. In vivo calcium imaging data

Calcium imaging has become an increasingly important tool in neuroscience

for tracking the activity of neuronal populations by recording the dynamics of

the time-varying fluorescence of the neurons (Akerboom et al. (2012); Chen et al.

(2013)). When a neuron fires an electrical action potential (spike), calcium enters

the cell and changes its fluorescent properties by attaching to genetically encoded

calcium indicators. By recording movies of fluorescence activity, researchers hope

to identify and demix the regions of interest (ROIs) and extract spike traces
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Figure 3. Performance of five methods on nonGaussian data. Sample size n = 100,
model size m = 50, p = 25, s = |supp(A)| = 15, k = |supp(A′)| = 25, rank r = 5,
ρ = 0.1, and b = 0.2. The four blocks in each plot are for different noise distributions:
standard normal,

√
3/5t5,

√
4/5t10, and 3 Uniform (the sum of three uniform [−1, 1]

random variables).
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Figure 4. Performance of the proposed DPP method on heteroscedastic data. Sample
size n = 100, model size m = 50, p = 25, s = |supp(A)| = 15, k = |supp(A′)| = 25,
rank r = 5, ρ = 0.1, and b = 0.2. The four box plots in each plot are for ω = 1, 2, 5, 10,
respectively.

(Pnevmatikakis et al. (2014); Haeffele, Young and Vidal (2014)).

Following the spatiotemporal model in Pnevmatikakis et al. (2014), suppose

an l1×l2 area (2D imaging plane of an original 3D volume) containing K neurons

(possibly overlapping) is monitored for T time frames. Here, K is typically much

smaller than l1 × l2 and T . Let ci = (ci(1), . . . , ci(T ))′ ∈ RT be the calcium

activity, and ωi ∈ Rm (m = l1 × l2) be the spatial footprint (stacked by the

monitored area) of the ith neuron. Then, the fluorescence intensity observed at

time t can be modeled as

yt =

K∑
i=1

ωici(t) + zt, 1 ≤ t ≤ T,

where zt
iid∼ N(0, σ2Im) is the noise vector at time t. In matrix notation, we have
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Y = CΩ + Z,

where Y = (y1, . . . , yT )′ ∈ RT×m,Ω = (ω1, . . . , ωK)′ ∈ RK×m, C = (c1, . . . , cK) ∈
RT×K , and Z = (z1, . . . , zT )′ ∈ RT×m. Let si = (si(1), . . . , si(T ))′ ∈ RT be the

spike trace of the ith neuron. Then, the calcium activity can be characterized

by a simple first-order autoregressive model,

ci(t) = γci(t− 1) + si(t), 1 ≤ t ≤ T,

or, equivalently (ci(0) = 0 by convention), S = GC, where S = (s1, . . . , sK) ∈
RT×K and

G =


1 0 · · · 0

−γ 1
. . .

...
...

. . .
. . . 0

0 · · · −γ 1

 ∈ RT×T .

In this way,

Y = G−1SΩ + Z = XA+ Z, (3.1)

where A = SΩ is the spatiotemporal convolution matrix, and X = G−1 is a

known design matrix.1 The support of Ω is the location of the neurons, and

the support of S represents the time frames when the neurons fire. Because the

number of neurons in the monitored area is small and the neurons do not fire very

frequently, Ω is approximately row sparse and S is approximately column sparse.

Taken together, these imply that A is two-way sparse (and low-rank, because

the rank is no greater than the number of neurons K). Therefore, the generative

model (3.1) can be viewed as a special case of model (1.1), with n = p = T

and m = l1 × l2. To recover Ω and S, we suggest first estimating A using the

proposed algorithm, and then running a nonnegative matrix factorization (NMF)

on Â to obtain Ω̂ and Ŝ. Pnevmatikakis et al. (2014) proposed an alternating

l1 minimization strategy to estimate Ω and S, but no theoretical guarantee has

been established for this heuristic.

The calcium imaging data (n = p = T = 559, m = 135 × 131) we use here

are taken in vivo from the primary auditory cortex of a mouse with genetically

encoded calcium indicator GCaMP5 (Akerboom et al. (2012)). We report here

the four most significant neurons in order to demonstrate the effectiveness of

1 Following Vogelstein et al. (2010), γ is set to γ = 1− 1/(frame rate).
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Figure 5. Application to in vivo calcium imaging data. First row: manually segmented
regions of neurons. Second row: heat maps of the recovered spatial components by
Algorithm 1. Third row: estimated spike trace by Algorithm 1. Fourth row: heat maps
of the corresponding spatial components recovered by the method in Pnevmatikakis et al.
(2014). Fifth row: estimated spike trace by the method in Pnevmatikakis et al. (2014).
In the third row and the fifth row, the spatial components have been rescaled to have
the same `2 norms.

the proposed method, as illustrated in Figure 5. For comparison, we have also

included the best matching findings by the method in Pnevmatikakis et al. (2014)

and its Matlab implementation by Giovannucci et al. (2017). In Figure 5, the

first row shows the manually segmented regions of the neurons from the raw

data set, which can be regarded as the approximately true support of the spatial

component Ω. The first neuron consists of a cell body with a dendritic branch,
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and it overlaps heavily with the second neuron, making manual segmentation

very challenging. The second row displays heat maps of the neurons recovered

by the proposed approach, showing that they match the manual segmentation

very well. The third row of Figure 5 shows the estimated spike traces using our

method. The fourth and the fifth rows show the corresponding components found

using the method proposed in Pnevmatikakis et al. (2014). These estimates are,

in general, sparser than those obtained by Algorithm 1. However, they fail to

recover the dendritic branch in the top-left subplot. Indeed, none of the spatial

components extracted by the method in Pnevmatikakis et al. (2014) captured

this important structure in our experiment.

4. Theoretical Properties

In this section, we present the theoretical results for a slight variant of the

proposed estimation scheme, where the noise matrix Z in (1.1) has i.i.d. Gaussian

entries. All proofs are provided in the Supplementary Material.

4.1. Minimax upper bounds

To facilitate the discussion, we put the estimation problem in a decision-

theoretic framework. We are interested in estimating the coefficient matrix A

in model (1.1), where A is both two-way sparse and of low rank, and Z has

i.i.d. N(0, σ2) entries. Thus, we assume that A belongs to the following parameter

space:

Θ(s, k, r, d, γ) =
{
A ∈ Rp×m : rank(A) = r, γd ≥ σ1(A) ≥ · · · ≥ σr(A) > d > 0,

|supp(A)| ≤ s, |supp(A′)| ≤ k
}
, (4.1)

where supp(M) is the index set of nonzero rows in matrix M . Here, and after,

we treat γ as an absolute positive constant. To measure the accuracy of any

estimator Ã, we consider the following class of squared Schatten norm losses:

Lq(A, Ã) = ‖Ã−A‖2sq , q ∈ [1, 2]. (4.2)

For simplicity, we assume the noise variance σ2 is known. In addition, we treat

the design matrix X as fixed, and the noise matrix Z as the only source of

randomness. In what follows, we present high probability error bounds for (a

slight variant of) the DPP estimator, where independent samples are generated

and used in steps 1–4. We believe the deviation from Algorithm 1 is an artifact of
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the proof technique. Numerical studies (not reported) showed that the algorithm

produces comparable results, regardless of whether independent samples are used

or a single sample is used repeatedly.

Independent sample generation. Note that we can generate the desired inde-

pendent samples from the observed (X,Y ) when the noise is homoscedastic and

Gaussian. Indeed, when the entries of the noise matrix Z are i.i.d. N(0, σ2),

we can first generate an independent copy Z̃, such that all entries in Z + Z̃

and Z − Z̃ are mutually independent, and all follow the same Gaussian distri-

bution N(0, 2σ2). Thus, Y + Z̃ and Y − Z̃ are independent, following model

(1.1), with i.i.d. N(0, 2σ2) noise. Employing this method twice, we generate four

independent copies of responses

Y(i) = XA+ Z(i), i = 0, 1, 2, 3,

where Z(i) has i.i.d. N(0, σ̃2) entries with σ̃ = 2σ. In the rest of this paper,

Algorithm 1 refers to the procedure with independent samples Y(i) used in the

(i+ 1)th step, for i = 0, 1, 2, 3, where the noise variance is σ̃2 = 4σ2.

The design matrix. Without loss of generality, we assume X is of full rank.

Otherwise, we can always perform the following operation to reduce it to the

full-rank case. If rank(X) = q < n ∧ p, let O ∈ Rn×q be its left singular vector

matrix. Setting Ỹ = O′Y and X̃ = O′X, we obtain that Ỹ and X̃ satisfy model

(1.1) with the same coefficient matrix A, i.i.d. N(0, σ2) noise and a design matrix

of full rank.

We write the singular value decomposition of XA as

XA = U∆V ′, (4.3)

with U ∈ O(n, r), V ∈ O(m, r), and ∆ = diag(δ1, . . . , δr) containing the nonzero

singular values of XA. To introduce appropriate assumptions on X, we first state

the following definition.

Definition 1. For any k ∈ [p], the `-sparse Riesz constants κ±(`) of X are

defined as

κ2
−(`;X) = min

B⊂[p],|B|=`
σmin(X ′∗BX∗B), κ2

+(`;X) = max
B⊂[p],|B|=`

σmax(X ′∗BX∗B).

(4.4)
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By definition, if the `-sparse Riesz constants of X are κ±(`;X), then for any

l ∈ [`], the l-sparse Riesz constants κ±(l;X) of X satisfy κ−(`;X) ≤ κ−(l;X) ≤
κ+(l;X) ≤ κ+(`;X).

To establish upper bounds for the proposed estimator, for some integer s∗
depending only on s, we require the s∗-sparse Riesz constants of X to satisfy the

following condition.

Condition 1 (Sparse eigenvalue condition). There exist positive constants s∗ and

c∗ and K ≥ 1, such that the s∗-sparse Riesz constants satisfy K−1 ≤ κ−(s∗;X) ≤
κ+(s∗;X) ≤ K, and

κ2
+(s∗;X)− κ2

−(2s∗;X)

κ2
−(s∗;X)

< c∗.

We do not place a condition on κ−(2s∗;X). Following the above definition

and discussion, we know that 0 ≤ κ−(2s∗;X) ≤ κ−(s∗;X) always holds.

The following theorem gives the high probability upper bounds, provided

that the design matrix satisfies mild regularity conditions and the penalty level

is properly chosen.

Theorem 1. Let A ∈ Θ(s, k, r, d, γ), where s ≥ r ≥ 1. Set the penalty level as

λ = 4σmax
j≤p
‖X∗j‖(

√
r +

√
4 log(p ∨m)) (4.5)

in steps 2 and 4 of Algorithm 1 with the group Lasso penalty (2.1). Let α = 2
√

3

and β = 1.1 in Algorithm 1. Suppose that Condition 1 holds with an absolute

constant K > 1, for all X and positive constants s∗, c∗ satisfying

s∗ ≥ 2s, 6c∗ ≤
√

s∗
s− 1

, (4.6)

and that there exist sufficiently small constants c0 > 0 and c1 > 0, such that

2σ

d

{√
n+
√
k + 2

√
log(p ∨m) +

√
k
√
n log(p ∨m)

}
≤ c0,

√
sλ

d
≤ c1. (4.7)

Then, uniformly over Θ(s, k, r, d, γ) in (4.1), with probability at least 1 − 3(p ∨
m)−1, the output Â of Algorithm 1 satisfies

Lq(A, Â) ≤ Cσ2r2/q−1(k + s)(r + log(p ∨m)), for all q ∈ [1, 2],

where C is a constant depending only on κ±(s∗), γ, c∗, c0, and c1.
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When we specialize to the case of a simultaneously low-rank and row-sparse

setting, condition (4.7) is stronger than some related conditions in the literature,

such as that in Bunea, She and Wegkamp (2012) for establishing minimax rates.

However, we provide the theoretical guarantee of an actual estimator computed

using Algorithm 1, whereas Bunea, She and Wegkamp (2012) were concerned

with the global optimum of a nonconvex program, which is not always attainable

by heuristic algorithms. Therefore, the two are not directly comparable.

4.2. Minimax lower bounds

To assess the tightness of the error bounds in Theorem 1, we now provide

lower bounds on the minimax risk when estimating A under the loss functions in

(4.2).

Theorem 2. Let the observed X,Y be generated by (1.1), with Z having i.i.d.

N(0, σ2) entries. Suppose that the coefficient matrix A ∈ Θ(s, k, r, d, γ), for some

k ≥ 2r and s ≥ 2r, and that the (2s)-sparse Riesz constants of the design matrix

X satisfy K−1 ≤ κ−(2s) ≤ κ+(2s) ≤ K, for some absolute constant K > 1.

Then, there exists a positive constant c depending only on γ and κ+(2s), such

that, when estimating A, the minimax risk satisfies

inf
Â

sup
Θ

ELq(A, Â) ≥ cσ2

{(
r2/q−1 d

2

σ2

)
∧
[
r2/q(s+ k) + r2/q−1

(
s log

ep

s
+ k log

em

k

)]}
,

(4.8)

for all q ∈ [1, 2].

Remark 1. Comparing Theorem 1 and Theorem 2, we find that they match up

to a multiplicative log factor in general, and up to a constant multiplier when

r is no smaller than log(p ∨ m) in order of magnitude. Moreover, Theorem 1

imposes an additional condition on the minimum singular value of A in (4.7).

Therefore, under the conditions of Theorem 1, Algorithm 1 adaptively attains

nearly optimal convergence rates for all losses in (4.2).

As mentioned earlier, the one-way sparse reduced-rank regression model con-

sidered in the literature, for example, by Chen and Huang (2012), Bunea, She

and Wegkamp (2012), She (2014), and Ma and Sun (2014), does not consider

column sparsity in A, and can be viewed as a special case of model (1.1) with

k = m. In view of the foregoing discussion, our estimator is also adaptive to

this special case, while retaining the ability to fully exploit any potential column
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sparsity.

5. Conclusion

We have proposed a new DPP estimator for the coefficient matrix in a two-

way sparse reduced-rank regression. The model is well motivated by the massive

data sets that are becoming increasingly common in a number of fields, espe-

cially genomics and neuroimaging. The proposed estimator is fast to compute

and demonstrates competitive performance compared with existing methods in

simulation studies. In addition, we have illustrated its potential use in neuro-

science by applying it to an analysis of a calcium imaging data set, with the

results comparing favorably with some state-of-the-art methods. Lastly, we fur-

ther justify its nice empirical performance using a decision-theoretic analysis

when the data is Gaussian.

In terms of the DPP estimator, an interesting problem to be studied in future

is to establish high-probability error bounds when the data are nonGaussian.

Since one cannot easily generate independent samples in such cases, we anticipate

that different proof techniques will be needed to achieve this goal. In addition,

note that steps 3–4 of Algorithm 1 can be iterated till a certain convergence

criterion is met. Thus, we could also define an iterative projected penalization

estimator. However, simulation results not reported here did not find a significant

performance gain by employing such an iterative scheme, which is more costly

in terms of computation. Furthermore, it is of interest to investigate the low

signal-to-noise ratio scenario when (4.7) fails to hold.

Another potential direction for future research is to consider certain nonlin-

ear extensions of the model. When the response is univariate, researchers have

considered sparse sliced inverse regressions (Li and Nachtsheim (2006); Lin, Zhao

and Liu (2015)). Therefore, it would be of great interest to conduct analogous

investigations for multiple responses that include both low-rankness and sparsity.

Supplementary Material

The online Supplementary Material provides all technical proofs.
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