
Statistica Sinica 34 (2024), 1723-1743
doi:https://doi.org/10.5705/ss.202022.0035

MUTUAL INFLUENCE REGRESSION MODEL

Xinyan Fan, Wei Lan∗, Tao Zou∗ and Chih-Ling Tsai

Renmin University of China,

Southwestern University of Finance and Economics,

The Australian National University and University of California, Davis

Abstract: In this article, we propose the mutual influence regression (MIR) model

to establish the relationship between the mutual influence matrix of actors and

a set of similarity matrices induced by their associated attributes. This model

is able to explain the heterogeneous structure of the mutual influence matrix by

extending the commonly used spatial autoregressive model, while allowing it to

change with time. To facilitate inferences using the MIR, we establish parameter

estimation, weight matrices selection, and model testing. Specifically, we employ the

quasi-maximum likelihood estimation method to estimate the unknown regression

coefficients. Then, we demonstrate that the resulting estimator is asymptotically

normal, without imposing the normality assumption and while allowing the number

of similarity matrices to diverge. In addition, we introduce an extended BIC-type

criterion for selecting relevant matrices from the divergent number of similarity

matrices. To assess the adequacy of the proposed model, we propose an influence

matrix test, and develop a novel approach to obtain the limiting distribution of the

test. The results of our simulation studies support our theoretical findings, and a

real example is presented to illustrate the usefulness of the proposed MIR model.

Key words and phrases: Extended Bayesian information criterion, mutual influence

matrix, similarity matrices, spatial autoregressive model.

1. Introduction

The possibility of relationships between subjects (such as network connec-

tions or spatial interactions) means that the traditional data assumption of

independent and identically distributed (i.i.d.) observations is no longer valid,

and there can be a complex structure of mutual influence between subjects. Ac-

cordingly, understanding such mutual influence has become an important topic in

fields such as business, biology, economics, medicine, sociology, political science,

psychology, engineering, and science. For example, studying the mutual influence

between actors can help to identify influential users within a network (see

Trusov, Bodapati and Bucklin (2010)). In addition, investigating the mutual

influence between geographic regions is essential for exploring spillover effects in

spatial data (see Golgher and Voss (2016); Zhang and Yu (2018)). For example,

this type of analysis is important to our understanding of how COVID-19 spreads
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between countries and cities (see Han et al. (2021)). Moreover, quantifying the

mutual influence in mobile social networks can provide important insights related

to the design of social platforms and applications (see Peng et al. (2017)). These

examples motivate us to introduce the mutual influence regression (MIR) model,

with which we can effectively and systematically study mutual influence.

Let Y1t, . . . , Ynt be the responses of n actors observed at time t, for t =

1, . . . , T . To characterize the mutual influence among the n actors, the following

regression model can be considered for each actor i = 1, . . . , n at t = 1, . . . , T :

Yit = bi1tY1t + · · ·+ bi(i−1)tY(i−1)t + bi(i+1)Y(i+1)t + · · ·+ bintYnt + ϵit, (1.1)

where bijt is the effect of Yjt on Yit, and ϵit is random noise. Define Yt =

(Y1t, . . . , Ynt)
⊤ ∈ Rn, ϵt = (ϵ1t, . . . , ϵnt)

⊤ ∈ Rn, and Bt = (bijt) ∈ Rn×n, with

biit = 0. Then, we have the matrix form of (1.1),

Yt = BtYt + ϵt, (1.2)

where Bt is called the mutual influence matrix, which characterizes the degree of

mutual influence among the n actors at time t.

Estimating model (1.2) is a challenging task because it involves a large

number of parameters, specifically, n(n − 1) for each t. The regularization-type

methods studied by Manresa (2013), de Paula, Rasul and Souza (2019), and

Kwok (2020) are not applicable when n is large. To avoid the probem of high

dimensionality, a common approach uses the spatial autoregressive (SAR) model,

which parameterizes the mutual influence matrix Bt by Bt = ρW (t), where W (t)

is the adjacency matrix of a known network, or a spatial weight matrix with

elements that are a function of geographic or economic distances. In addition, ρ

is the single influence parameter that characterizes the influence power among the

n actors; see, for example, Lee (2004), Zou et al. (2017), and Huang et al. (2019),

and the references therein, for detailed discussions and the references therein.

Accordingly, model (1.2) becomes estimable, becasue the number of parameters

is greatly reduced from n(n− 1) to one.

Because the SAR model involves only a single influence parameter ρ, it

may not fully capture the influential information of Bt. Hence, Lee and Liu

(2010), Elhorst, Lacombe and Piras (2012), Lee and Yu (2014), Kwok (2019),

and Lam and Souza (2020) consider higher-order SAR models that include

multiple weight matrices (i.e., W (t)s), along with their associated parameters.

Gupta and Robinson (2015, 2018) extend these models further by allowing the

number of weight matrices to diverge. In general, the elements of the weight

matrix W (t) are functions of the geographic or economic distances between the

n actors. For example, a typical choice of distance measure for spatial data is

geographic distance (Dou, Parrella and Yao (2016); Zhang and Yu (2018); Gao

et al. (2019)). In addition, a natural choice of distance measure for network
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data is whether there exists a link between actors using the adjacency matrix

(Zhou et al. (2017); Zhu et al. (2017); Huang et al. (2019)). However, the above

weight settings cannot be applied directly to the higher-order SAR model for

non-geographic or non-network data, because these distance measures are not

well defined for other types of data. Accordingly, how to parameterize the mutual

influence matrix for non-geographic and non-network data is an unsolved problem

that needs further investigation. This motivates us to study the following two

important and challenging subjects: (i) how to define weight matrices for general

non-geographic and non-network data; and (ii) how to assess the adequacy of the

selected weight matrices.

To resolve challenge (i), we propose using similarity matrices induced from

the attributes (e.g., gender or income) as our weight matrices to accommodate

non-geographic and non-network data. Specifically, let Z(t) = (z
(t)
1 , . . . , z(t)n )⊤ ∈

Rn denote the vector of values obtained from the n actors for a given attribute.

Then, for any two actors j1 and j2, the squared distance between j1 and j2 can be

defined as the distance between z
(t)
j1

and z
(t)
j2
, for example, (z

(t)
j1

− z
(t)
j2
)2. Following

the suggestion of Jenish and Prucha (2012), we consider the similarity matrix as

a nonincreasing function of the squared distance between actors j1 and j2, that

is, A(t) = (a{−(z
(t)
j1

− z
(t)
j2
)2})n×n, for some bounded and nondecreasing function

a(·). Furthermore, we can employ the same procedure to create a set of similarity

matrices A(t) from the actors’ attributes. In practice, these similarity matrices

change with time t. To this end, we introduce time heterogeneous matrices,

A(t), which link naturally to the mutual influence matrix Bt. To overcome

challenge (ii), we introduce an influence matrix test to examine the adequacy

of the selected similarity matrices (i.e., weight matrices) for the high-dimensional

and time-varying mutual influence matrix.

This study makes two main contributions to the literature. The first is to

propose the MIR model, which establishes the relationship between the mutual

influence matrix and a set of similarity matrices induced by the actors’ attributes.

The proposed model not only increases the usefulness of the traditional SAR

model, but also captures the heterogeneous structure of the mutual influence

matrix by allowing it to change with time. Accordingly, we study the parameter

space of the model, and then employ the quasi-maximum likelihood estimation

method (see, e.g., Wooldridge (2002)) to estimate the unknown regression

coefficients. By thoroughly studying the convergence of the Hessian matrix in the

Frobenius norm, we show that the resulting estimator is asymptotically normal

under some mild conditions, without imposing the normality assumption, while

allowing the number of similarity matrices to diverge. Because the number of

similarity matrices is diverging, we use an extended BIC-type criterion motivated

from Chen and Chen (2008) to select the relevant matrices. We show that

this extended BIC-type criterion is consistent, based on a novel result of the

exponential tail probability for the general form of quadratic functions.
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The second is to introduce an influence matrix test for assessing whether

the mutual influence matrix Bt satisfies a linear structure of the time-varying

weight matrices. Based on this setting, cov(Yt) is a nonlinear function of the

time-varying weight matrices. Thus, our test differs from the common hypothesis

test for testing whether cov(Yt) is a linear structure of the weight matrices (e.g.,

see Zheng et al. (2019)). However, under a nonlinear structure for the mutual

influence matrix Bt, however, the quasi-maximum likelihood estimators (QMLEs)

of the regression coefficients can result in a larger variance in the test statistic.

As a result, obtaining the asymptotic distribution of the test statistic becomes a

challenging task, especially when the number of similarity matrices is diverging.

To overcome such difficulties, we develop a novel approach to show the asymptotic

normality of a summation of the product of quadratic forms with a diverging

number of similarity matrices.

The remainder of this paper is organized as follows. Section 2 introduces the

MIR model, studies the parameter space, and obtains QMLEs of the regression

coefficients, which are asymptotically normal. Section 3 presents the extended

BIC-type selection criterion, as well as its consistency property. In addition, we

provide a high-dimensional covariance test to examine the model adequacy, and

theoretical properties of this test. Simulation studies and an empirical example

are presented in Sections 4 and 5, respectively. Section 6 concludes the paper.

All theoretical proofs are relegated to the Supplementary Material.

2. MIR Model and Estimation

2.1. Model and notation

We first construct similarity matrices, before modeling the mutual influence

matrix Bt as a regression function of them. Let Z
(t)
k be the kth n× 1 continuous

attribute vector collected at the tth time, for k = 1, . . . , d. Adapting the

approach of Jenish and Prucha (2012) to incorporate the time effect t, we then

obtain the following heterogeneous similarity matrices: A
(t)
k = A

(t)
k (Z

(t)
k ) =

(a{−(Z
(t)
kj1

− Z
(t)
kj2

)2})n×n, for j1 = 1, . . . , n and j2 = 1, . . . , n, where a(·) is a

bounded and nondecreasing function, and Z
(t)
kj1

and Z
(t)
kj2

are the j1th and j2th

elements, respectively, of Z
(t)
k . For continuous attributes, we consider a(·) equal

to the exponential function, with a{−(Z
(t)
kj1

− Z
(t)
kj2

)2} = exp{−(Z
(t)
kj1

− Z
(t)
kj2

)2}
when |Z(t)

kj1
− Z

(t)
kj2

| < ϕ
(t)
k , for some prespecified positive constant ϕ

(t)
k , and

a{−(Z
(t)
kj1

− Z
(t)
kj2

)2} = 0 otherwise. That is, once the distance between any two

actors, measured using their associated attributes in Z
(t)
k , exceeds a threshold,

the two actors are not mutually influenced. For discrete attributes Z
(t)
k , we define

a(Z
(t)
kj1

, Z
(t)
kj2

) = 1 if Z
(t)
kj1

and Z
(t)
kj2

belong to the same class, and a(Z
(t)
kj1

, Z
(t)
kj2

) = 0

otherwise. In this case, A
(t)
k can be regarded as the adjacency matrix of the

network induced by the attributes Z
(t)
k .
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To establish the relationship between the mutual influence matrix and a set

of similarity matrices, following Anderson (1973), Qu, Lindsay and Li (2000),

and Zheng et al. (2019), we parameterize the mutual influence matrix Bt as a

function of attributes Z
(t)
k (k = 1, . . . , d):

Bt(λ) ≜ Bt(Z
(t)
1 , . . . , Z

(t)
d , λ) = λ1W

(t)
1 + · · ·+ λdW

(t)
d , (2.1)

where w(Z
(t)
kj1

, Z
(t)
kj2

) = a(Z
(t)
kj1

, Z
(t)
kj2

)/
∑

j2
a(Z

(t)
kj1

, Z
(t)
kj2

) and W
(t)
k = (w(Z

(t)
kj1

,

Z
(t)
kj2

))n×n is the row-normalized version of A
(t)
k . We call W

(t)
k , for k = 1, . . . , d,

the weight matrix or the similarity matrix. The reason for adopting the row-

normalization method is primarily its wide applicability (see, e.g., Lee (2004)).

In practice, several alternative normalization methods can be considered, such as

column normalization and the normalization based on the maximum absolute row

(or column) sum norm; see Kelejian and Prucha (2010) for detailed discussions.

Substituting (2.1) into (1.2), we introduce the following MIR model:

Yt = Bt(Z
(t)
1 , . . . , Z

(t)
d , λ)Yt + ϵt =

(
λ1W

(t)
1 + · · ·+ λdW

(t)
d

)
Yt + ϵt, (2.2)

where λ1, . . . , λd are unknown regression coefficients. This model explains the

structure of the mutual influence matrix Bt at each time t using a set of similarity

matrices W
(t)
k , induced by the covariates Z

(t)
k and their associated influence

parameter λk. For ease of notation, we use Bt rather than Bt(λ) in the rest

of paper. Define ∆t(λ) = In − Bt = In −
(
λ1W

(t)
1 + · · · + λdW

(t)
d

)
, where In is

the identity matrix of dimension n. Then, model (2.2) leads to ∆t(λ)Yt = ϵt. To

ensure that (2.2) is identifiable, we require that ∆t(λ) be invertible.

Note that, for d = 1 and W
(t)
1 = W constructed from network or

spatial data, the MIR model is the classical SAR model of LeSage and Pace

(2009). Furthermore, by model (2.1), we have bj1j2t = λ1w(Z
(t)
1j1

, Z
(t)
1j2

) + · · · +
λdw(Z

(t)
dj1

, Z
(t)
dj2

). Accordingly, the influence effect of node j2 on j1, bj1j2t, is

the linear combination of the similarity matrices at time t. Specifically, for

k = 1, . . . , d, the similarity matrix w(Z
(t)
kj1

, Z
(t)
kj2

) measures the distance between

nodes j1 and j2, and its effect is determined by the influence parameter λk.

Suppose λk > 0. Based on the MIR model (2.2), for any two actors j1 and j2,

the smaller the distance between Z
(t)
kj1

and Z
(t)
kj2

, the larger the influence effect

between Yj1t and Yj2t. Therefore, the covariate Z
(t)
k yields a positive effect

on the mutual influence between the responses of the n actors. In summary,

models (2.1) and (2.2) link the mutual influence matrix with many exogenous

attributes to responses, which can lead to insightful findings and provide practical

interpretations.
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Remark 1. Our concept is similar to the covariance tapering of Furrer, Genton

and Nychka (2006). For any given t = 1, . . . , T , we follow Furrer, Genton and

Nychka (2006) in assuming that Yit, the response of node i, can be affected by

the responses of nearby nodes. However, our method differs from theirs in two

respects. First, for the geographic data considered in Furrer, Genton and Nychka

(2006), the distance between nodes is well defined. However, for general non-

geographic and non-network data, the “distance” measure is not clearly defined.

Motivated by the concept of the near-epoch dependent (NED) process of Jenish

and Prucha (2012), we define the similarity matrices induced by the distances

between the attributes of actors. Second, the goals of the two methods are

different. The goal of our proposed model is to establish the relationship between

the mutual influence matrix of actors and a set of similarity matrices induced by

their associated attributes, whereas Furrer, Genton and Nychka (2006) focus on

the interpolation of large spatial data sets.

2.2. Parameter estimation

We assume that ϵt are i.i.d. random variables with mean zero and covariance

matrix σ2In, for t = 1, . . . , T , where σ2 is a scaled parameter. By (2.2), we have

Yt = ∆−1
t (λ)ϵt. Then, E(Yt) = 0 and Var(Yt) ≜ Σt = σ2∆−1

t (λ){∆⊤
t (λ)}−1, and

we obtain the quasi-log-likelihood function, following Lee (2004),

ℓ(θ) = −nT

2
log(2π)− nT

2
log(σ2) +

T∑
t=1

log |det(∆t(λ))| (2.3)

− 1

2σ2

T∑
t=1

Y ⊤
t ∆⊤

t (λ)∆t(λ)Yt,

where θ = (λ⊤, σ2)⊤.

We next employ the concentrated quasi-likelihood approach to estimate θ.

Specifically, given λ, one can estimate σ2 using

σ̂2(λ) = (nT )−1
∑
t

Y ⊤
t ∆⊤

t (λ)∆t(λ)Yt.

Plugging this into (2.3), the resulting quasi-concentrated log-likelihood function

is

ℓc(λ) = −nT

2
log(2π)− nT

2
− nT

2
log

{
σ̂2(λ)

}
+

T∑
t=1

log |det(∆t(λ))|. (2.4)

Accordingly, we obtain the QMLE of λ, which is λ̂ = argmaxλ∈Λℓc(λ), and Λ

is the parameter space. To make λ̂ estimable, it is necessary to specify the

parameter space Λ. From model (2.2) and the definition of ∆t(λ), we require

that, for any λ ∈ Λ, ∆t(λ) is invertible. Note that a sufficient condition for
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the invertibility of ∆t(λ) is ∥
∑d

k=1 λkW
(t)
k ∥ < 1, where ∥ · ∥ denotes the L2

(i.e., spectral) norm. Using the fact that W
(t)
k is row-normalized, we have that

∥
∑d

k=1 λkW
(t)
k ∥ ≤ maxk ∥W (t)

k ∥
∑d

k=1 |λk| ≤
∑d

k=1 |λk|. Accordingly, a sufficient

condition for the invertibility of ∆t(λ) is
∑d

k=1 |λk| < 1. This leads us to define

the parameter space of λ as follows:

Λ =

{
λ :

d∑
k=1

|λk| < 1− ς

}
,

where ς is some sufficiently small positive number. The reason for introducing ς is

to ensure that
∑d

k=1 |λk| is away from one. In practice, we can set ς to be a small

positive number, such as 0.01. This specification does not affect the parameter

estimation, as long as
∑d

k=1 |λk| is smaller than one.

Using the assumption of σ2 > 0, the parameter space of θ is

Θ =
{
θ = (λ⊤, σ2)⊤ : λ ∈ Λ and σ2 > 0

}
.

In addition, σ2 can be estimated using σ̂2 = σ̂2(λ̂), which leads to the QMLE,

θ̂ = (λ̂⊤, σ̂2)⊤.

Denote by θ0 = (λ⊤
0 , σ

2
0)

⊤ the unknown true parameter vector, where λ0 =

(λ01, . . . , λ0d)
⊤ ∈ Λ and σ2

0 > 0. By Lemma 3 and Condition (C4) in Section S1 of

the Supplementary Material, the second-order derivative matrix of ℓ(θ) is negative

definite for sufficiently large nT in a small neighborhood of θ0. Accordingly, the

parameter estimator θ̂ exists and lies in Θ. To avoid the problem of local optima

when computing the QMLE, we recommend using a random initialization method

(see, e.g., Wang et al. (2022)). Specifically, we generate many randomized initial

values, and find the solution that yields the maximum value of the objective

function. Our simulation results in Section 5 indicate that this algorithm works

satisfactorily in various settings. The asymptotic property of θ̂ is given in the

following theorem.

Theorem 1. Under Conditions (C1)–(C5) in Section S1 of the Supplementary

Material, as nT → ∞, (nT/d)1/2DI(θ0)(θ̂ − θ0) is asymptotically normal with

mean zero and covariance matrix G(θ0), where D is an arbitrary M × (d + 1)

matrix, with M < ∞ satisfying ∥D∥ < ∞ and d−1DJ (θ0)D
⊤ → G(θ0), and

I(θ0) and J (θ0) defined in Condition (C4).

Note that nT → ∞ inTheorem 1 means that either n or T go to infinity.

To make this theorem practically useful, we need to estimate I(θ0) and J (θ0)

consistently. For k = 1, . . . , d + 1 and l = 1, . . . , d + 1, define InT (θ0) =

−(nT )−1E{∂2ℓ(θ0)/(∂θ∂θ
⊤)} ≜ (InT,kl) ∈ R(d+1)×(d+1) and JnT (θ0) = (nT )−1

Var(∂ℓ(θ0)/∂θ) ≜ (JnT,kl) ∈ R(d+1)×(d+1). By Condition (C4), it suffices to show

that the plug-in estimators InT (θ̂) and JnT (θ̂) are consistent with I(θ0) and

J (θ0), respectively.
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After a simple calculation, we have that, for any k = 1, . . . , d and l = 1, . . . , d,

InT,k(d+1) ≜ −(nT )−1E

{
∂2ℓ(θ0)

∂λk∂σ2

}
=

1

nTσ2

T∑
t=1

tr(W
(t)
k ∆−1

t (λ0)) =
1

nTσ2
tr(Uk),

InT,kl ≜ −(nT )−1E

{
∂2ℓ(θ0)

∂λk∂λl

}
= (nT )−1

T∑
t=1

tr{∆−1⊤
t (λ0)W

(t)⊤
k W

(t)
l ∆−1

t (λ0)}

+(nT )−1
T∑

t=1

tr{W (t)
k ∆−1

t (λ0)W
(t)
l ∆−1

t (λ0)} =
2

nT
tr(UkUl),

where Uk = diag{s(W (1)
k ∆−1

t (λ0)), . . . , s(W
(T )
k ∆−1

T (λ0))} ∈ R(nT )×(nT ) and s(A) =

(A+A⊤)/2, for any arbitrary matrix A. In addition,

InT,(d+1)(d+1) ≜ −(nT )−1E

{
∂2ℓ(θ0)

∂2σ2

}
=

1

2σ4
0

.

Using the result θ̂ →p θ0 in Theorem 1, we have InT (θ̂) →p InT (θ0). This,

together with Condition (C4), implies that InT (θ̂) →p I(θ0).
After algebraic calculation, we next obtain that, for any k = 1, . . . , d and

l = 1, . . . , d,

JnT,k(d+1) ≜ (nT )−1cov

{
∂ℓ(θ0)

∂λk

,
∂ℓ(θ0)

∂σ2

}
=

1

2nTσ2
0

{
(µ(4) − 1)tr(Uk)

}
and

JnT,kl ≜ (nT )−1cov

{
∂ℓ(θ0)

∂λk

,
∂ℓ(θ0)

∂λl

}
=

2

nT
tr(UkUl) +

µ(4) − 3

nT
tr(Uk ⊗ Ul),

where µ(4) = E(ϵ4it)/σ
4
0 can be estimated as µ̂(4) = (nT )−1

∑n
i=1

∑T
t=1 ϵ̂

4
it/σ̂

4, with

ϵ̂t = ∆−1
t (λ̂)Yt and ϵ̂t = (ϵ̂1t, . . . , ϵ̂nt)

⊤. Furthermore,

JnT,(d+1)(d+1) ≜ (nT )−1Var

{
∂ℓ(θ0)

∂σ2

}
=

1

4σ4
0

{
2 + (µ(4) − 3)

}
.

As a result, J (θ0) can be consistently estimated using JnT (θ̂). In summary,

we can practically apply Theorem 1 by replacing I(θ0) and J (θ0) with their

corresponding estimators InT (θ̂) and JnT (θ̂), respectively.

According to Theorem 1, we can assess the significance of λ0k, which allows us

to determine the influential similarity matrices, W
(t)
k , induced by their associated

covariates Z
(t)
k , for k = 1, . . . , d. In addition, based on the estimated λ̂, the

mutual influence matrix Bt can be estimated using B̂t = λ̂1W
(t)
1 + · · ·+ λ̂dW

(t)
d ,

the asymptotic property of which is given in the following theorem.
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Theorem 2. Under Conditions (C1)–(C5) in Section S1 of the Supplementary

Material, as nT → ∞, supt≤T ∥B̂t −Bt∥ = Op{d(nT )−1/2}.

Theorem 2 indicates that the estimated mutual influence matrix B̂t is consistent

uniformly for any t under the L2 norm, as either n or T goes to infinity, and

d = o{(nT )1/4} is from Condition (C5). Hence, B̂t can be a consistent estimator

of Bt, even for finite T . After estimating the mutual influence matrix, we next

examine how to select the similarity matrices and test the fitness of Bt.

3. Similarity Matrix Selection and Influence Matrix Test

3.1. Selection consistency

In the MIR model, the number of similarity matrices is diverging, which

motivates us to consider the similarity matrix selection. Note that assessing

the significance of λ0k separately for k = 1, . . . , d using Theorem 1 can result in

multiple testing problems (see, e.g., Storey, Taylor and Siegmund (2004) and Fan,

Han and Gu (2012)). In addition, the traditional BIC becomes overly liberal when

d is diverging, as demonstrated by Chen and Chen (2008). Hence, we modify the

extended Bayesian information criterion (EBIC) to select the similarity matrices.

To this end, we define the true model ST = {k : λ0k ̸= 0}, which consists of

all relevant W
(t)
k . In addition, let SF = {1, . . . , d} denote the full model, and S

represent an arbitrary candidate model, such that S ⊂ SF . Moreover, let θ̂S =

(θ̂k,S : k ∈ S) be the maximum likelihood estimator of θ0S = (θ0k : k ∈ S) ∈ R|S|.

In practice, the true model ST is unknown. Following Chen and Chen (2008), we

propose the following information criterion for selecting the similarity matrices:

EBICγ(S) = −2ℓ(θ̂S) + |S| log(nT ) + γ|S| log(d),

for some γ > 0. Based on this criterion, we can select the optimal model,

which is Ŝ = argminSEBICγ(S). Note that the third term in EBICγ(S) (i.e.,

γ|S| log(d)) represents the effect of assigning different prior probabilities to

candidate models with different numbers of weight matrices, and the tuning

parameter γ characterizes this strength; refer to Chen and Chen (2008) for a

more detailed discussion.

Define A0 = {S : ST ⊂ S, |S| ≤ q} and A1 = {S : ST ̸⊂ S, |S| ≤ q} as the sets

of overfitted and underfitted models, respectively, where the size of any candidate

model is no larger than the positive constant q defined in Condition (C7) in

Section S1 of the Supplementary Material. Then, we obtain the theoretical

properties of EBICγ , as follows.

Theorem 3. Under Conditions (C1)–(C7) in Section S1 of the Supplementary

Material, as nT → ∞, we have
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P
{
min
S∈A1

EBICγ(S) ≤ EBICγ(ST )
}
→ 0,

for any γ > 0, and

P
{

min
S∈A0,S̸=ST

EBICγ(S) ≤ EBICγ(ST )
}
→ 0,

for γ > q2C2
w/τ2cmin,3σ

4
0 − 4, where Cw, cmin,3, and τ2 are finite positive constants

defined in Conditions (C3) and (C7) and Lemma 3 (ii), respectively, in Section

S1 of the Supplementary Material.

The above theorem holds as long as either n or T go to infinity. Note that

the assumption mink∈ST
|λ0k|{nT/ log(nT )}1/2 → ∞ given in Condition (C6) is

modified from Chen and Chen (2008). This assumption is essential for showing

the selection consistency of the EBIC. Specifically, we demonstrate that λ̂k for

k /∈ ST converges to zero of order (nT )−1/2. Under some mild conditions, we

can further show that maxk/∈ST
|λ̂k| = Op(

√
log(d)/nT ) = Op(

√
log(nT )/nT ).

Thus, Condition (C6) indicates that mink∈ST
|λ0k| is larger than maxk/∈ST

|λ̂k|
asymptotically, even with the diverging number of similarity matrices. Our

simulation results indicate that γ = 2 performs satisfactorily under various

settings. Note that we employ the popular backward elimination method to

implement the EBIC (see, e.g., Zhang and Wang (2011) and Schelldorfer, Meier

and Bühlmann (2014)). This approach reduces the computational complexity

from 2d to O(d2). Thus, the EBIC is computable when d is large.

3.2. Influence matrix test

To examine the adequacy of model (2.1) for modeling the mutual influence

matrix Bt as a linear combination of weight matrices W
(t)
k (k = 1, . . . , d), we

consider the following hypotheses:

H0 : Bt = λ01W
(t)
1 + · · ·+ λ0dW

(t)
d , for all t = 1, . . . , T, vs.

H1 : Bt ̸= λ01W
(t)
1 + · · ·+ λ0dW

(t)
d , for some t = 1, . . . , T. (3.1)

Note that, under H0, we have Σt = σ2
0(In−Bt)

−1(In−B⊤
t )

−1, which is a nonlinear

function of the weight matrices W
(t)
k . This differs from the covariance structure

considered in Qu, Lindsay and Li (2000) and Zheng et al. (2019), which assumes

that Σt is a linear function of the weight matrices.

To test (3.1), we compare the estimates of Bt calculated under the null

and alternative hypotheses. Then, we reject the null hypothesis of (3.1) if

their difference is relatively large. However, the computation of Bt under

the alternative hypothesis is infeasible because it involves n(n − 1)T unknown

parameters. Hence, we propose testing (3.1) by comparing the covariance

matrix of Yt under the null and alternative hypotheses. Under H0, we have

cov(Yt) = Σt = σ2
0(In − Bt)

−1(In − B⊤
t )

−1. Based on Theorem 2, Bt can be
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consistently estimated as B̂t = Bt(λ̂). Accordingly, we can approximate cov(Yt)

using Σ̂t = σ̂2(In − B̂t)
−1(In − B̂⊤

t )
−1, where σ̂2 = (nT )−1

∑
t Y

⊤
t ∆⊤

t (λ̂)∆t(λ̂)Yt.

On the other hand, cov(Yt) can be approximated by its sample version under the

alternative, and we expect that E(YtY
⊤
t ) ≈ Σ̂t under the null hypothesis, Thus,

we use the quadratic loss function tr(YtY
⊤
t Σ̂−1

t − In)
2 to measure the difference

between YtY
⊤
t and Σ̂t. It is expected that, under H0, the difference should be

small across t = 1, . . . , T . Hence, we propose the following test statistic:

Tql = (nT )−1
T∑

t=1

tr(YtY
⊤
t Σ̂−1

t − In)
2,

to assess the adequacy of (2.1).

To show the asymptotic distribution of Tql, let µql = n+ µ(4) − 2 and

σ2
ql = (4µ(4) − 4)

n

T
+ 4n−2T−4σ4

0

∑
t1 ̸=t2 ̸=t3

∑
k1,l1

∑
k2,l2

[I−1
k1l1

(θ0)I−1
k2l2

(θ0)

×{tr(Ut1k1
Ut1k2

) + (µ(4) − 3)tr(Ut1k1
⊗Ut1k2

)}tr(Vt2l1)tr(Vt3l2)]

+(8µ(4) − 8)n−1T−3σ4
0

∑
t1 ̸=t2

∑
k,l

I−1
kl (θ0)tr(Ut1k)tr(Vt2l), (3.2)

where I−1
kl (θ0) is the klth element of I−1(θ0), Utk = s{W (t)

k ∆−1
t (λ0)}, Vtk =

{∆−1
t (λ0)}⊤Λ̃tk∆

−1
t (λ0), and Λ̃tk is the matrix form of ∂vec{Σ−1

t (θ0)}/∂θk, for
t1, t2, t3, t = 1, . . . , T , k1, k2, k = 1, . . . , d, and l1, l2, l = 1, . . . , d. Then, the next

theorem presents the asymptotic property of Tql.

Theorem 4. Under the null hypothesis of H0, Conditions (C1)–(C5) in Section

S1 of the Supplementary Material and assuming that n/T → c and σ2
ql > cσ for

some finite positive constants c and cσ, we have

Tql − µql

σql

→d N(0, 1),

as nT → ∞.

Unlike Theorems 1–3, the above result requires that both n and T tend to

infinity with n/T → c, for some finite positive constant c. This condition is

reasonable, because we need the replications of the similarity matrices to test

the adequacy of the MIR model. Note that this condition is commonly used

to test high-dimensional covariance structures (see, e.g., Ledoit and Wolf (2002)

and Zheng et al. (2019)). The above theorem indicates that the asymptotic

variance of Tql is σ2
ql, which is given in (3.2), and it includes three components.

The first component, (4µ(4) − 4)c, is the leading term of the variance of

(nT )−1
∑T

t=1 tr(YtY
⊤
t Σ−1

t − In)
2, obtained by assuming that λ0 is known. Th

final two components are of orders O(d2) and O(d), respectively, and cannot

be ignored. These two nonnegligible components are mainly induced by the
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estimator λ̂, which makes the proof of Theorem 4 more complicated. Thus, we

develop Lemma 4 in Section S1 of the Supplementary Material to resolve this

challenging task.

To make the above theorem practically useful, one needs to estimate the

two unknown terms µql and σql. Note that µ(4) in µql can be consistently

estimated using µ̂(4), which is defined in the explanation of Theorem 1. As a

result, µ̂ql = n + µ̂(4) − 2 is a consistent estimator of µql. Furthermore, Utk,

Vtk, and I−1
kl (θ0) can be consistently estimated using Ûtk = s(W

(t)
k ∆−1

t (λ̂)),

V̂tk = {∆−1
t (λ̂)}⊤Λ̂tk∆

−1
t (λ̂), and I−1

kl (θ̂), respectively, for t = 1, . . . , T and

k, l = 1, . . . , d, where Λ̂tk is the matrix form of ∂vec{Σ−1
t (θ̂)}/∂θk, and s(A) =

(A + A⊤)/2 for any arbitrary matrix A, defined in Section 2.2. Accordingly,

σ̂ql, obtained by replacing the unknown parameters with their corresponding

estimators, is a consistent estimator of σql. Consequently, for a given significance

level α, we are able to reject the null hypothesis of H0 if |Tql − µ̂ql| > σ̂qlz1−α/2,

where zα stands for the αth quantile of the standard normal distribution.

4. Simulation Studies

To demonstrate the finite-sample performance of our proposed MIR

model, we conduct the following simulation studies. The similarity matrices

A
(t)
k = (a(Z

(t)
kj1

, Z
(t)
kj2

)) ∈ Rn×n with zero diagonal elements, and a(Z
(t)
kj1

, Z
(t)
kj2

) =

exp{−(Z
(t)
kj1

− Z
(t)
kj2

)2} if |Z(t)
kj1

− Z
(t)
kj2

| < ϕ
(t)
k , and is zero otherwise, where j1 and

j2 range from one to n, and Z
(t)
k = (Z

(t)
k1 , . . . , Z

(t)
kn)

⊤ are i.i.d. according to a

multivariate normal distribution with mean zero and covariance matrix In, for

k = 1, . . . , d and t = 1, . . . , T , and ϕ
(t)
k is selected to control the density of A

(t)
k

(i.e., the proportion of nonzero elements), defined as 10/n for any k and t (see,

e.g., Zou et al. (2017)). Accordingly, we obtain W
(t)
k = (w(Z

(t)
kj1

, Z
(t)
kj2

))n×n, with

w(Z
(t)
kj1

, Z
(t)
kj2

) = a(Z
(t)
kj1

, Z
(t)
kj2

)/
∑

j2
a(Z

(t)
kj1

, Z
(t)
kj2

). The random errors ϵit are i.i.d.

and simulated from three distributions: (i) the standard normal distribution

N(0, 1); (ii) the standardized exponential distribution; and (iii) the mixture

distribution 0.9N(0, 5/9) + 0.1N(0, 5). The latter two distributions allow us to

examine the robustness of the parameter estimates to other distributions. Finally,

the response vectors Yt are generated using Yt = (In−λ1W
(t)
1 −· · ·−λdW

(t)
d )−1ϵt,

for t = 1, . . . , T . Note that the random error ϵt is independent of Z
(t)
k , for any

k = 1, . . . , d and t = 1, . . . , T .

For each of the random error distributions, we consider three numbers of

observations, T = 25, 50, and 100, three numbers of actors n = 25, 50, and 100,

and all of the results are generated with 500 realizations. Because the results for

all three error distributions are qualitatively similar, we present only those for the

standard normal distribution; the results for the mixture normal and standardized

exponential distributions are relegated to the Supplementary Material.
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To assess the performance of the parameter estimators, we consider three

numbers of covariates, d = 2, 6, and 12, where d = 2 is borrowed from Zou

et al. (2017)), d = 6 is used in our real-data analysis, and d = 12 is an

exploration of larger similarity matrices. Because the simulation results for

d = 12 are qualitatively similar to those for d = 2 and 6, we report them

in the Supplementary Material. The regression coefficients are λk = 0.1, for

k = 1, . . . , d. In addition, let λ̂(m) = (λ̂
(m)
1 , . . . , λ̂

(m)
d )⊤ ∈ Rd be the parameter

estimate in the mth realization, obtained using the proposed QMLE. For each

k = 1, . . . , d, we evaluate the average bias of λ̂
(m)
k as BIAS = 500−1

∑
m(λ̂

(m)
k −λk).

Using the results of Theorem 1, we compute the standard error of λ̂
(m)
k using

its asymptotic distribution, and denote it as SE(m). Then, the average of the

estimated standard errors is SE = 500−1
∑

m SE(m). To assess the validity of

the estimated standard errors, we also calculate the true standard error using

the 500 realizations, and denote it as SE∗ = 500−1
∑

m(λ̂
(m)
k − λ̄k)

2, where

λ̄k = 500−1
∑

m λ̂
(m)
k .

Table 1 presents the results for BIAS, SE, and SE∗ over 500 realizations for

k = 1, . . . , d and d = 2 and 6. The results show that the biases of the parameter

estimates are close to zero for any n and T , and they become smaller as either n

or T increases. In addition, the variation of the parameter estimate, SD, shows

similar findings to those of BIAS. Moreover, the difference between SD and SD∗

is quite small when either n or T is large. In summary, Table 1 demonstrates

that the asymptotic results obtained in Theorem 1 are reliable and satisfactory.

We next assess the performance of the proposed EBIC by considering three

sizes of the full model, d = 6, 8, and 12, with the size of the true model |ST | = 3.

We set λk = 0.2, for any k ∈ ST , and λk = 0 otherwise. To implement the EBIC,

we set γ = 2 in this simulation study. Four performance measures are used: (i)

the average size (AS) of the selected model |Ŝ|; (ii) the average percentage of

the correct fit (CT), I(Ŝ = ST ); (iii) the average true positive rate (TPR), |Ŝ ∩
ST |/|ST |; and (iv) the average false positive rate (FPR), |Ŝ ∩ Sc

T |/|Sc
T |. Because

the results for all three values of d exhibit a quantitatively similar pattern, we

present only the results for d = 8.

Table 2 shows that the average percentage of correct fit, CT, increases toward

100% when either n or T becomes large. Note that the CTs are larger than 70%,

even when both n and T are small, that is, n = 25 and T = 25. Furthermore,

the average TPR is 100%, which indicates that the EBIC is unlikely to select an

underfitted model, even when both n and T are small. In contrast, the average

FPR decreases toward zero when either n or T becomes large. Moreover, the AS

of the selected model, |Ŝ|, approaches the true model size. These results indicate

that the EBIC performs satisfactorily in finite samples.

Lastly, we examine the performance of the proposed goodness of fit test. We

consider a generative model Bt = λ1W
(t)
1 + · · ·+ λdW

(t)
d + κEE⊤, where E ∈ Rn

is a random normal vector of dimension n, with elements that are i.i.d. and are
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Table 1. The bias and standard error of the parameter estimates when the true
parameters are λk = 0.1, for k = 1, . . . , d, and the random errors follow a normal
distribution. BIAS: the average bias; SE: the average of the estimated standard errors
from Theorem 1; SE∗: the standard error of the parameter estimates calculated from 500
realizations.

d = 2 d = 6

n T λ1 λ2 λ1 λ2 λ3 λ4 λ5 λ6

25 25 BIAS -0.009 0.006 -0.001 -0.004 0.001 0.000 -0.002 -0.006

SE 0.054 0.054 0.055 0.055 0.055 0.055 0.055 0.055

SE∗ 0.058 0.055 0.056 0.055 0.054 0.056 0.052 0.052

25 50 BIAS -0.002 -0.004 0.001 -0.006 0.001 -0.002 0.001 -0.001

SE 0.038 0.038 0.039 0.039 0.039 0.039 0.039 0.039

SE∗ 0.039 0.041 0.039 0.042 0.042 0.039 0.038 0.039

25 100 BIAS -0.001 -0.002 0.002 -0.002 -0.000 -0.002 -0.000 0.001

SE 0.027 0.027 0.027 0.027 0.027 0.027 0.027 0.027

SE∗ 0.027 0.029 0.028 0.027 0.024 0.026 0.027 0.027

50 25 BIAS -0.002 -0.003 -0.003 -0.003 -0.001 -0.000 0.001 -0.000

SE 0.038 0.038 0.037 0.037 0.037 0.037 0.037 0.037

SE∗ 0.038 0.037 0.035 0.034 0.038 0.037 0.033 0.036

50 50 BIAS -0.001 0.000 0.000 -0.000 -0.001 0.001 0.001 -0.005

SE 0.027 0.027 0.026 0.026 0.026 0.026 0.026 0.026

SE∗ 0.025 0.028 0.026 0.028 0.028 0.027 0.027 0.028

50 100 BIAS -0.001 -0.002 -0.001 -0.001 -0.000 -0.000 0.001 0.001

SE 0.019 0.019 0.018 0.018 0.018 0.018 0.018 0.018

SE∗ 0.019 0.019 0.018 0.020 0.019 0.018 0.017 0.019

100 25 BIAS 0.000 -0.001 -0.001 -0.000 -0.003 0.000 0.001 -0.002

SE 0.026 0.027 0.026 0.026 0.026 0.026 0.026 0.026

SE∗ 0.026 0.028 0.026 0.026 0.028 0.026 0.028 0.026

100 50 BIAS -0.001 0.001 0.000 -0.001 0.000 0.001 0.001 0.000

SE 0.019 0.019 0.018 0.018 0.018 0.018 0.018 0.018

SE∗ 0.019 0.018 0.017 0.016 0.018 0.019 0.016 0.018

100 100 BIAS -0.001 -0.001 -0.000 -0.001 0.001 0.002 -0.000 0.001

SE 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013

SE∗ 0.013 0.013 0.012 0.013 0.014 0.012 0.013 0.013

simulated from a standard normal distribution. The parameter κ is a measure

of departure from the null model of H0. Specifically, κ = 0 corresponds to the

null model, and κ > 0 represents alternative models. Accordingly, the results for

κ = 0 represent empirical sizes, whereas the results for κ > 0 denote empirical

powers.

Table 3 indicates that the empirical sizes are slightly conservative when both

n and T are small. However, they approach the significance level of 5% when

either n or T becomes large. Furthermore, the empirical powers increase as either

n or T becomes larger. Moreover, they become stronger when κ increases; in

particular the empirical power approaches one when either n or T is equal to 100

and κ = 0.2. The above findings are robust to nonnormal error distributions; see
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Table 2. Model selection using the EBIC when d = 8 and the random errors are normally
distributed. AS: the average size of the selected model; CT: the average percentage of
the correct fit; TPR: the average true positive rate; FPR: the average false positive rate.

n T AS CT TPR FPR

25 25 3.3 72.6 91.8 9.8

50 3.2 77.1 95.7 8.5

100 3.1 81.2 100.0 5.9

50 25 3.2 78.2 94.0 7.9

50 3.1 80.8 97.2 5.8

100 3.1 84.7 100.0 5.1

100 25 3.1 82.3 100.0 6.7

50 3.1 83.8 100.0 5.1

100 3.0 87.7 100.0 4.2

Table 3. The empirical sizes and powers of the goodness-of-fit test. Here, κ = 0
corresponds to the null model, and κ > 0 represents alternative models. The random
errors are normally distributed, and the full model sizes are d = 2 and 6.

d=2 d=6

n T κ=0 κ=0.1 κ=0.2 κ=0 κ=0.1 κ=0.2

25 25 0.030 0.296 0.664 0.024 0.242 0.584

50 0.034 0.528 0.838 0.030 0.424 0.748

100 0.042 0.660 0.910 0.042 0.560 0.822

50 25 0.028 0.434 0.772 0.022 0.342 0.654

50 0.037 0.582 0.878 0.036 0.476 0.786

100 0.044 0.706 0.974 0.048 0.654 0.954

100 25 0.034 0.510 0.976 0.030 0.452 0.964

50 0.040 0.738 1.000 0.034 0.588 0.996

100 0.048 0.910 1.000 0.046 0.830 1.000

Tables S.4 and S.7 in the Supplementary Material. Consequently, our proposed

goodness-of-fit test not only controls the size well, but is also consistent. Note that

the above estimation, selection, and test findings are also robust to nonnormal

error distributions; see Tables S.2 to S.7 in the Supplementary Material.

5. Real-Data Analysis

5.1. Background and data

To demonstrate the practical use of our proposed MIR model, we present

an empirical example in whch we explore the mechanism of spillover effects in

Chinese mutual funds. The income and profit of a mutual fund are largely

compensated by management fees, which are charged as a fixed proportion of

the total net assets under management. As a result, the variation in cash flow
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over time is one of the most influential indices, and is closely monitored by fund

managers. Thus, exploring the cash flow mechanism is essential (see, e.g., Spitz

(1970); Nanda, Wang and Zheng (2004); Brown and Wu (2016)). However, past

studies have focused mainly on the characteristics of mutual funds that affect their

cash flow from a cross-sectional prospective (see, e.g., Brown and Wu (2016)).

In this study, we employ our proposed MIR model to identify mutual fund

characteristics that yield a mutual influence on fund cash flows (i.e., a spillover

effect), from a network perspective.

To proceed with our study, we collect quarterly data from 2010–2017 on

actively managed open-ended mutual funds from the WIND financial database,

one of the most authoritative databases on the Chinese financial market. After

removing funds with missing observations or that had existed for less than one

year, we have n = 90 mutual funds in this empirical study, with T = 32. The

response variable, namely, the cash flow rate of fund i at time t, is calculated as

follows (Nanda, Wang and Zheng (2004)):

Cit =
TAit − TAi,t−1(1 + rit)

TAit

,

where TAit and rit are the total net assets and the return of fund i at time t,

respectively.

We next generate the similarity matrices to explore the mechanism of

spillover effects among mutual funds. To this end, we consider the following

five covariates, following Spitz (1970): (i) Size, the logarithm of the total net

assets of fund i at time t− 1; (ii) Age, the logarithm of the age of fund i at time

t−1; (iii) Return, the return of fund i at time t−1; (iv) Alpha, the risk-adjusted

return of fund i at time t − 1, measured by the intercept of the Carhart (1997)

four-factor model; and (v) Volatility, the standard deviation of the weekly return

of fund i and time t − 1. We next generate the similarity matrices. For the

Size covariate, we standardize the data to have zero mean and unit variance,

and denote it as SIZEit for i = 1, . . . , n and t = 1, . . . , T . Then, the similarity

matrix induced by Size is A
(t)
1 = (a(Z

(t)
1j1

, Z
(t)
1j2

)), with zero diagonal elements, and

a(Z
(t)
1j1

, Z
(t)
1j2

) = exp{−(Z
(t)
1j1

− Z
(t)
1j2

)2} when |Z(t)
1j1

− Z
(t)
1j2

| < ϕ
(t)
1 for a prespecified

finite positive constant ϕ
(t)
1 , and a(Z

(t)
1j1

, Z
(t)
1j2

) = 0 otherwise. As in the simulation

studies, ϕ
(t)
1 is selected so that the proportion of nonzero elements of A

(t)
1 is

10/n. Subsequently, we obtain W
(t)
1 = (w(Z

(t)
1j1

, Z
(t)
1j2

))n×n and w(Z
(t)
1j1

, Z
(t)
1j2

) =

a(Z
(t)
1j1

, Z
(t)
1j2

)/
∑

j2
a(Z

(t)
1j1

, Z
(t)
1j2

), which is the row-normalized version of A
(t)
1 .

Analogously, we can construct the similarity matrices W
(t)
2 , . . . ,W

(t)
5 associated

with the remaining four covariates.
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Table 4. The QMLE parameter estimates and associated standard errors and p-values
for the five covariates.

Estimate Standard-Error p-Value

Alpha 0.005 0.027 0.853

Return 0.569 0.019 0.000

Size 0.330 0.014 0.000

Age 0.036 0.018 0.046

Volatility 0.209 0.020 0.000

5.2. Empirical results

We first use the adequacy test to assess whether the five covariates are

sufficient to explain the mutual influence matrix. The resulting p-value for testing

the null hypothesis of H0 in (3.1) is 0.660, which is not statistically significant

under the significance level of 5%. This indicates that one or more of the five

covariates in the MIR model provide a good fit to the data.

We next use the proposed QMLE method to estimate the model. Table 5

presents the parameter estimates, standard errors, and their associated p-values.

The results show that the covariates Return, Age, and Volatility are statistically

significant and positive. Note that these three covariates are all related to the

funds’ performance and operating capacity. Hence, we conclude that the funds’

cash flows are influenced by other funds with similar performance and operating

capacity. Furthermore, the estimate of Size is positive and statistically significant,

which implies that the funds’ cash flows are influenced by other funds of similar

size. In other words, investors tend to invest in larger mutual funds. Moreover,

the estimate of Alpha is positive, but not statistically significant. Hence, investors

pay more attention to raw returns than they do to risk-adjusted returns when

judging the performance of a fund. This may be because raw returns are easier

to observe.

Subsequently, we use the EBIC to determine the most relevant covariates

related to the cash flow, with γ = 2, as in the simulation studies. The resulting

model consists of the covariates Return and Size. This implies that fund managers

tend to learn relevant information from other funds with a large size and good

performance. This finding is consistent with those of existing studies (see, e.g.,

Brown, Harlow and Starks (1996)). To check the robustness of our results

against the selection of ϕ
(t)
k , we also consider ϕ

(t)
k , so that the proportion of

nonzero elements of the weight matrices are 5/n and 20/n. The results yield

similar findings to those for 10/n. Moreover, we consider the two alternative

nondecreasing functions of a(·), namely, a(x) = 1/(1+x2) and a(x) = 1/(1+x2)2.

The estimation results (not reported here) are almost identical to those in Table

4. Hence, our results are not affected by these two alternatives. In summary, the

MIR model can provide valuable insight into the mechanism of mutual influence
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among mutual funds.

6. Conclusion

We have proposed the MIR model to explore the mechanism of mutual

influence by establishing a relationship between the mutual influence matrix and

a set of similarity matrices induced by their associated attributes among the

actors. In addition, we allow the number of similarity matrices to diverge, and

establish the theoretical properties of the MIR model’s estimations, selections,

and assessments. The results of our Monte Carlo studies support our theoretical

findings, and we use an empirical example to show how to use the proposed model

in practice.

To broaden the usefulness of the MIR model, we identify six possible avenues

for future research. The first is to allow the regression coefficients to change

with t in order to increase the model flexibility. The second is to generalize

the model by accommodating discrete responses. The third is to extend the

linear regression structure of the MIR model to nonparametric or semiparametric

settings by changing λkW
(t)
k to g(λk,W

(t)
k ), for some unknown smooth function

g(·). The fourth is to develop a fast algorithm with a theoretical justification

for implementing the MIR model when n or d is large, such as the one-step

estimate proposed by Gupta (2021). The fifth is to develop a criterion to obtain

the optimal γ for the EBIC. Finally, we would like to introduce a method for

choosing the thresholds or cut-off points of the weight matrices. We believe that

these efforts would further increase the applicability of the MIR model.

Supplementary Material

The online Supplementary Material contains the conditions and proofs of the

theorems, as well as additional simulation settings and results.
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