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Abstract: Ignoring measurement errors in conventional regression analyses can lead

to biased estimation and inference results. Reducing such bias is challenging when

the error-prone covariate is a functional curve. In this paper, we propose a new cor-

rected loss function for a partially functional linear quantile model with function-

valued measurement errors. We establish the asymptotic properties of both the

functional coefficient and the parametric coefficient estimators. We also demon-

strate the finite-sample performance of the proposed method using simulation stud-

ies, and illustrate its advantages by applying it to data from a children obesity

study.
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1. Introduction

Wearable devices are increasingly used in health research to monitor health

and wellbeing, and can be combined with lifestyle interventions to reduce obe-

sity. Wearable devices provide continuous granulated measurements of physical

activity (PA), with raw PA measured at a sub-second level. These measurements

can be viewed as functions or curves, rather than as vectors. Although recent

developments in functional data analysis (FDA) can be applied to such data, an-

alytical challenges need to be solved in order to draw more accurate inferences in

obesity prevention studies. First, the standard analytical methods employed in

obesity studies apply regression approaches to model the mean BMI, which could

potentially limit the detection of intervention effects among participants whose

weights differ from the mean (Koenker (2005); Geraci and Bottai (2014)). Second,

because the true patterns of PA behavior are not directly observable, wearable

devices are used to monitor PA, thus introducing measurement errors including

variability in predictions at various PA intensity levels and errors associated with
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the prediction equations (Bassett (2012); Crouter, Churilla and Bassett (2006);

Jacobi et al. (2007); Warolin et al. (2012); Rothney et al. (2008)). Failure to

account for such errors when assessing the effects of PA measures on health out-

comes often leads to bias and an underestimation of these effects (Tekwe et al.

(2019)). Third, the data collected from wearable devices are typically not discrete

vectors, but rather curvilinear functions of time, and require using the functional

data approaches of Ramsay and Silverman (2005).

However, while there is extensive research on measurement errors in tradi-

tional multivariate data analyses (Carroll et al. (2006); Fuller (1987)), few studies

have examined such errors in the context of FDA. When conducting an FDA, it

is usually assumed that measurement errors are independent and identically dis-

tributed (i.i.d.). However, this assumption is not feasible, because the functional

measurement errors tend to be correlated over time in practice. Therefore, there

is a need to consider functional measurement errors with more complex error

structures in FDAs. In this paper, we address these critical needs and analyt-

ical challenges. The proposed method provides a better understanding of how

measurement errors affect the evaluation of wearable-device-based PA patterns

in obesity studies.

Our research is motivated by a childhood obesity study in which stand-biased

desks were introduced to schools as an intervention to increase school day PA.

The original research goal was to assess the association between daily energy

expenditure (DEE) and subsequent progression toward obesity. Because DEE is

not directly observable, the investigators measured it using accelerometer arm-

bands provided to the children. In this project, we develop statistical methods

to model the DEE measurements obtained from these wearable devices as func-

tional data that are prone to measurement errors, and reduce the effects of DEE

measurement errors when predicting obesity. In addition, our methods are based

on a quantile regression and focus on the entire distribution of the body mass

index (BMI), rather than simply using the average BMI values.

Quantile regression (Koenker and Bassett (1978)) has emerged as an impor-

tant statistical method that offers a systematic approach for examining the effects

of covariates on the entire distribution of the response variable, in contrast to a

traditional mean regression. Researchers have recently applied quantile regres-

sion to functional data. Kato (2012) studied estimation in a functional linear

quantile model, and derived the rate of convergence for the functional coefficient

estimator. Yao, Sue-Chee and Wang (2017) proposed a regularized partially lin-

ear functional quantile regression for the simultaneous estimation and selection

of the important covariates. Both of the aforementioned works assume that the
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functional covariate is exactly observed at subject-specific sampling points.

When the covariates are not directly observable and are instead measured

using error-prone proxies, calibrating the measurement error in a quantile regres-

sion framework is challenging, for two reasons. First, a parametric assumption

of the regression error distribution is often unavailable in quantile regressions.

Second, the quantile function, unlike the mean function, does not inherit the ad-

ditive property (Wang, Stefanski and Zhu (2012)). As a result, only a few studies

have examined measurement errors in quantile regression settings, including the

works of Wang, Stefanski and Zhu (2012),Wei and Carroll (2009), He and Liang

(2000), and Hu and Schennach (2008). However, the aforementioned methods

are all restricted to cases in which the covariates are scalars of finite dimensions.

In particular, He and Liang (2000) introduced a consistent estimation procedure

based on orthogonal residuals under the assumption that the model error and the

measurement error follow a common distribution that is spherically symmetric.

Wei and Carroll (2009) introduced joint estimating equations that hold simulta-

neously for all quantile levels, although they require a general linear regression

structure assumption for all conditional quantiles. In addition, their method re-

quires estimating the conditional density of the responses, given the independent

variables. Firpo, Galvao and Song (2017) proposed a semiparametric two-step

estimator to improve the strong linearity assumption on all quantile levels and

the iterative algorithm in Wei and Carroll (2009). However, this requires non-

parametric estimations of the conditional density of the true variables, given a

response and other error-free covariates. It is difficult to obtain such estimates

when the dimensionality of the error-prone covariates is large. In contrast, Wang,

Stefanski and Zhu (2012) constructed a corrected-loss estimation only at specific

quantile levels, thus avoiding the strong assumption of a mutual symmetric error

and the nonparametric estimation of the conditional densities.

The idea of a correction for loss/score functions in the context of covariate

measurement errors was first introduced by Nakamura (1990), who constructed

the corrected log-likelihood/score function as an unbiased estimator of the con-

ditional expectation of the original log likelihood/score function, given measure-

ment errors. Estimating equations were also derived for generalized linear models

with normal measurement errors. However, the nondifferentiable loss function

in a quantile regression makes it difficult to construct such equations. Wang,

Stefanski and Zhu (2012) addressed this issue by using a smooth function to

approximate the indicator function, deriving the corrected loss function under

multivariate normal or Laplace distributions of the measurement errors.

In this study, we solve a more challenging problem in which the covariate of
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interest is functional and the associated unknown regression coefficient is non-

parametric and of infinite dimension. In this scenario, it is difficult to develop

algorithms and derive the asymptotic properties of the proposed methods. To the

best of our knowledge, this study is the first to address function-valued measure-

ment errors in functional quantile regression models. We propose a corrected loss

approach, as in Wang, Stefanski and Zhu (2012), for a partially functional linear

quantile regression when the functional covariate is contaminated with functional

measurement errors. In particular, our method identifies the measurement error

model by assuming a parametric form for the measurement error distribution,

and constructs a corrected objective function using a class of smoothed quan-

tile objective functions. The proposed method provides a consistent estimator of

the functional regression coefficient, and asymptotically normal estimates of the

parametric coefficients. In addition, our method does not require a specification

of the distribution of the regression error.

The rest of the paper is organized as follows. Section 2 introduces the par-

tially functional quantile model. The corrected loss and a practical implemen-

tation are provided in Section 3. Section 4 establishes the asymptotic property

of our proposed estimators. Simulation studies in Section 5 demonstrate the

finite-sample performance of the proposed method. Section 6 contains a real-

data application from a children obesity study. Section 7 concludes the paper.

The technical lemmas and proofs are included in the Supplementary Material.

2. Background and Notation

Suppose (Yi, Xi,Zi)
n
i=1 are independent realizations from the distribution of

(Y,X,Z), where Y is a scalar random variable, and X = {X(t), t ∈ T } is a

random function assumed to be square integrable on a bounded closed interval

T in R and possibly contaminated with measurement errors. Without loss of

generality, we assume T = [0, 1], and X is centered with E [X(t)] = 0, for t ∈ T .

Here, Z is a p-dimensional vector of error-free covariates, including the intercept

term. For a given τ ∈ (0, 1), the τth conditional quantile function QY |X,Z(τ)

is defined as F−1Y |X,Z(τ), where FY |X,Z(y) = P (Y ≤ y|X,Z) is the cumulative

distribution function of Y conditional on X and Z. For i = 1, . . . , n, we assume

QYi|Xi,Zi
(τ) = ZTi θ0(τ) +

∫ 1

0
β0(t, τ)Xi(t)dt, (2.1)

where θ0(τ), including a scalar-valued intercept term, represents the vector of

coefficients associated with the error-free covariates for the τth quantile, and
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β0(t, τ) ∈ L2[0, 1] is a functional coefficient that quantifies the effect of the func-

tional covariate. For each individual i, we assume the functional covariate Xi is

not directly observable. Instead, it is approximated using a surrogate Wi as

Wi(t) = Xi(t) + Ui(t). (2.2)

Here, Wi serves as an unbiased measure of Xi subject to a functional measure-

ment error Ui(t), where E [Ui(t)] = 0 for t ∈ T and Ui is independent of Xi,Zi,

and Yi. Studies on functional data often assume that the measurement errors

Ui(t) are i.i.d. with a common variance over time t. Here, we consider a func-

tional measurement error, and allow Ui(t) to have an unstructured covariance

function ΣU (t, s). When Ui(t) are i.i.d., its common variance can be estimated

using {Wi(t)} under the smoothness of the covariance function of Xi(t), which is

similar to the estimation of the nugget effect in spatial statistics. However, when

ΣU (t, s) is unstructured, additional information is needed to identify the covari-

ance structure of Ui(t), and measurement errors need to be taken into account

to ensure a consistent estimation and inference of the partially functional linear

quantile regression model (2.1).

The model in (2.1) is a useful generalization of both the classical linear quan-

tile regression model and the functional linear quantile regression model. For

mean regression models, recent studies (Shin (2009); Lu, Du and Sun (2014))

have considered estimating partially functional linear regression models when

the covariates are measured without a classical measurement error. Kong et al.

(2016) developed a penalized estimation procedure for variable selection in a high-

dimensional partially functional linear regression model. In terms of quantiles,

Kato (2012) studied the estimation of the model when the covariates are mea-

sured without errors. When the functional covariates are measured with errors,

the aforementioned methods are no longer applicable. Ignoring measurement

errors can lead to biased estimations and misleading inferences. When the func-

tional covariate is contaminated by errors, a consistent estimation of the model

in (2.1) is technically challenging. Existing methods require a complete specifi-

cation of the conditional distribution of the response given the true functional

covariates, which is often impractical. In addition, most existing methods focus

on a fixed number of scalar covariates measured with errors, whereas the model

in (2.1) involves a functional covariate of infinite dimension, which poses both

computational and theoretical difficulties.
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3. The Proposed Method

Functional principal component analysis (FPCA) plays an important role in

functional data analysis, because it provides an efficient mechanism to represent

random functions as a linear combination of basis functions. Our method is based

on the FPCA of the covariate process X(t). Suppose that
∫ 1
0 E[X2(t)]dt < ∞.

Denote the covariance kernel of X(t) as Kx(s, t) = Cov(X(s), X(t)). Then, the

Hilbert-Schmidt theorem entails that Kx(s, t) can be represented as Kx(s, t) =∑∞
j=1 κjφj(s)φj(t), where κ1 ≥ κ2 ≥ · · · ≥ 0 are ordered eigenvalues, and

{φj}∞j=1 is an orthonormal basis of L2[0, 1]. Thus, we have the following ex-

pansions in L2[0, 1], Xi(t) =
∑∞

j=1Xijφj(t), Ui(t) =
∑∞

j=1 Uijφj(t), β0(t, τ) =∑∞
j=1 b0j(τ)φj(t), where Xij , Uij and b0j(τ) are defined as Xij =

∫ 1
0 Xi(t)φj(t)dt,

Uij =
∫ 1
0 Ui(t)φj(t)dt, and b0j(τ) =

∫ 1
0 β0(t, τ)φj(t)dt. Thus, model (2.1) can

be represented by a linear quantile regression model with an infinite number of

“regressors”,

QYi|Xi,Zi
(τ) =

∞∑
j=1

b0j(τ)Xij + ZTi θ0(τ). (3.1)

If X(t) is observed without errors, a truncated version of (3.1) is often considered,

where
∑∞

j=1 b0j(τ)Xij is truncated by
∑m

j=1 b0j(τ)Xij with a large integer m, and

the unknown coefficients are estimated by(
b̃(τ), θ̃(τ)

)
= argmin

(b,θ)

n∑
i=1

ρτ
(
Yi −XT

i b(τ)− ZTi θ(τ)
)
, (3.2)

where ρτ (ε) = {τ − I(ε ≤ 0)} ε is the check loss at the τth quantile. Similar es-

timation procedures have been considered in quantile regressions involving func-

tional covariates without classic measurement errors. Kato (2012) systematically

investigated the asymptotic property of such an estimator in a functional lin-

ear quantile model. Yao, Sue-Chee and Wang (2017) considered a regularized

procedure for simultaneous variable selection and estimation.

We consider a scenario in which the functional covariate is not fully observed,

but is instead contaminated by a classic measurement error. This means that the

measurement error is additive and independent of the responses and covariates in

the regression model. Our goal is to construct consistent estimators of the regres-

sion coefficients in (2.1) in the presence of a classic measurement error. Applying

similar basis expansions on both sides of the measurement error equation (2.2),

we have, for j = 1, . . . ,m,

Wij = Xij + Uij , (3.3)
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where Wij =
∫ 1
0 Wi(t)φj(t)dt.

When Xi(t) is contaminated by a measurement error, naively replacing Xij

with Wij in the objective function (3.2) can lead to biased and inconsistent esti-

mators of the unknown parameters. Instead, we adopt the corrected loss approach

proposed in Wang, Stefanski and Zhu (2012) for linear quantile regression models,

and extend it to partially functional quantile regression models. Our estimation

strategy is based on a corrected objective or loss function, which leads to an un-

biased estimation of a smooth approximation of ρτ (Yi−XT
i b(τ)−ZTi θ(τ)). The

corrected objective function uses a property of Gaussian random variables (Ste-

fanski and Cook (1995)) that E {E [φ(Z1 + iσZ2|Z1)]} = φ(µ), where i =
√
−1, for

two independent Gaussian random variables Z1 ∼ N(µ, σ2) and Z2 ∼ N(0, 1),

as long as φ(·) is a sufficiently smooth function. Another key element in the

construction of the corrected loss function is that we use an infinitely smooth

function ρh(·) to approximate the check loss ρτ (·) in quantile regression with

ρh(ε) = ε[τ − 1/2 + π−1
∫ ε/h
0 sin(t)/tdt]. Here, h controls the goodness of the

approximation with limh→0 ρh(ε) = ρτ (ε).

Motivated by Wang, Stefanski and Zhu (2012), when the measurement er-

rors follow a normal distribution, we consider the following corrected quantile

objective function:(
b̂(τ), θ̂(τ)

)
= argmin

(b,θ)

n∑
i=1

ρ∗h(Yi −WT
i b(τ)− ZTi θ(τ),bTΣub), (3.4)

where ρ∗h(ε, σ2) = π−1
∫ 1/h
0

{
y−1ε sin(yε)− σ2 cos(yε)

}
exp

(
y2σ2/2

)
dy + ε(τ −

1/2) and Σu = Cov(Ui). The function ρ∗h is constructed so that it is an unbiased

estimator of ρh. In particular, Wang, Stefanski and Zhu (2012) showed that

E
[
ρ∗h(Y −WTb(τ) −ZTθ(τ),bTΣub)|Y,X,Z

]
= ρh

(
Y −XTb(τ)− ZTθ(τ)

)
≈

ρτ
(
Y −XTb(τ) −ZTθ(τ)

)
, where the parameter h controls the goodness of the

approximation, with a better approximation for a smaller h. Thus, consistent

estimators of the coefficients θ(τ) and β(t, τ) can be obtained from (3.4), with

β̂(t, τ) =
∑m

j=1 b̂j(τ)φ̂j(t) and {φ̂j(t)}mj=1 an orthonormal basis of the estimated

Kx(s, t), as in subsection 3.1.

3.1. Implementation

Note that (b̂(τ), θ̂(τ)) in (3.4) is not feasible in practice, because it re-

lies on Kx(s, t), which is generally unavailable when the functional covariate

X is not fully observed. Therefore, additional data are needed to estimate

and identify Kx(s, t). In this study, we use repeated observations to estimate
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Kx(s, t) and Ku(s, t) due to measurement errors. Suppose we have R repeated

observations of Wi(t), denoted as W r
i (t), for r = 1, . . . , R and i = 1, . . . , n.

After a simple interpolation rule as in Kato (2012), Kx(s, t) is estimated as

K̂x(s, t) = K̂w(s, t) − K̂u(s, t), where K̂w(s, t) =
∑n

i=1[Wi(s) − W̄ (s)][Wi(t) −
W̄ (t)]/(n− 1), K̂u(s, t) =

∑n
i=1

∑R
r=1[W

r
i (s)− W̄i(s)][W

r
i (t)− W̄i(t)]/(nR − n),

with W̄i(t) = (1/R)
∑R

r=1W
r
i (t) and W̄ (t) = (1/n)

∑
i W̄i(t). Let the em-

pirical eigen-decomposition of K̂x(s, t) be K̂x(s, t) =
∑m

j=1 κ̂xjφ̂j(s)φ̂j(t). Let

Ŵij =
∫ 1
0 Wi(t)φ̂j(t)dt and Ŵ r

ij =
∫ 1
0 W

r
i (t)φ̂j(t)dt be the empirical projections

of Wi(t) and W r
i (t), respectively, onto φ̂j(t) for j = 1, . . . ,m. Furthermore,

let Ŵr
i = (Ŵ r

i1, . . . , Ŵ
r
im)T be the m-dimensional vector composed of the em-

pirical components of W r
i (t). Then, Σu can be estimated using the within-

subject covariance of the repeated empirical components Ŵr
i . Specifically, Σ̂u =∑n

i=1

∑R
r=1(Ŵ

r
i−W̄∗

i )(Ŵ
r
i−W̄∗

i )
T /(nR−n), with W̄∗

i = (1/R)
∑R

r=1 Ŵ
r
i . Now,

we can obtain our estimators using

(
b̌(τ), θ̌(τ)

)
= argmin

n∑
i=1

ρ∗h(Yi − ŴT
i b(τ)− ZTi θ(τ),bT Σ̂ub, h), (3.5)

and the functional coefficient is estimated as β̌(t, τ) =
∑m

j=1 b̌j(τ)φ̂j(t).

Another practical issue is to determine m, the number of eigen functions,

and the tuning parameter h. In our simulation, we use the Bayesian infor-

mation criterion (BIC) to determine m, which is more stable, as suggested in

(Kato (2012)). When there is no measurement error, the oracle estimation gives

BIC(m) = log[(1/n)
∑n

i=1 ρτ (Yi−ZTi θ̂(τ)−
∑m

j=1 b̂j(τ)X̂ij)] + (m+ p) log(n)/n.

The BIC can be defined similarly for the naive method by replacing X̂ij with

Ŵij . As shown in Table 1 in the Supplementary Material, the number of selected

scores using the naive and oracle methods are close. Thus, we propose using the

naive method to choose m, which is also used for the proposed corrected loss

method.

For the tuning parameter h in the corrected quantile objective function, we

apply the simulation and extrapolation method (SIMEX), as in Wang, Stefan-

ski and Zhu (2012) and Delaigle and Hall (2008). For a given m, let γ̂(h) =

(b̂T (h), θ̂(h)) be the corrected loss estimator associated with h. Here, we omit

τ for notational simplicity. An optimal h0 minimizes the mean squared error

of γ̂(h), defined as E[(γ̂(h) − γ0)
TΣ−1γ̂ (γ̂(h) − γ0)], where γ0 denotes the true

regression coefficients and Σγ̂ is the covariance matrix of γ̂(h). Because the

mean squared error depends on an unknown covariate X(t), it cannot be cal-

culated directly. Instead, we estimate it using the simulation and extrapola-
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tion method. In the simulation step, we generate additional independent error

terms {Ui,1}ni=1 and {Ui,2}ni=1 from N(0, Σ̂u), and obtain new surrogate vari-

ables {W∗
i,1 = Wi + Ui,1}ni=1 and {W∗

i,2 = W∗
i,1 + Ui,2}ni=1, with increasing

levels of measurement errors. Based on the simulated data sets {Yi,Zi,W∗
i,1}ni=1

and {Yi,Zi,W∗
i,2}ni=1, we obtain the corrected loss estimators γ̂1(h) and γ̂2(h),

respectively. We repeat the simulation step Ns times. Using {γ̂1,s(h)}Ns

s=1 and

{γ̂2,s(h)}Ns

s=1, we can estimate the mean squared error of γ̂1(h) and γ̂2(h), respec-

tively, as

M1(h) = N−1s

Ns∑
s=1

[γ̂1,s(h)− γ̂(h)]T Σ̂−1γ̂1 [γ̂1,s(h)− γ̂(h)],

M2(h) = N−1s

Ns∑
s=1

[γ̂2,s(h)− γ̂1,s(h)]T Σ̂−1γ̂2 [γ̂2,s(h)− γ̂1,s(h)],

where Σ̂γ̂1 and Σ̂γ̂2 are the sample covariance matrices of {γ̂1,s(h) − γ̂(h)}Ns

s=1

and {γ̂2,s(h) − γ̂1,s(h)}Ns

s=1, respectively. Let ĥ1 = argminhM1(h) and ĥ2 =

argminhM2(h). For the extrapolation step, note that {Wi,2}ni=1 measures

{Wi,1}ni=1 in the same way that {Wi,1}ni=1 measures {Wi}ni=1, and {Wi}ni=1

measures {Xi}ni=1. Therefore, the relationship between ĥ1 to ĥ2 is similar to

that between ĥ0 to ĥ1. Here, ĥ0 = ĥ is the optimal tuning parameter under the

observed surrogate {Wi}ni=1. In particular, Delaigle and Hall (2008) considered a

linear back-extrapolation with log(ĥ1) − log(ĥ2) ≈ log(ĥ0) − log(ĥ1). Therefore

h0 can be approximated by ĥ = ĥ21/ĥ2.

4. Theoretical Properties

We first introduce the following notation. For any z ∈ Rp, let ‖z‖ and

‖z‖∞ be the vector L2 and the supremum norm of z, respectively. For any

K : [0, 1]2 → R, let ‖K‖2 =
∫ 1
0

∫ 1
0 K

2(s, t)dsdt. For any two positive sequences

rn and sn, rn � sn denotes that rn/sn is bounded away from zero and infinity.

In addition, En denotes the sample mean operator. Moreover, we use the same

letters c and C for any positive constants, without distinction in each case. To

establish the asymptotic results, we need the following assumptions.

Let Kx(s, t) be the covariance kernel of X(t) with {κj}∞j=1, and {φj}∞j=1 be

the eigenvalue and eigen function sequences. Then, {φj}∞j=1 forms an orthonormal

basis of L2([0, 1]). For j ≥ 1, let Xj =
∫
X(t)φj(t)dt be the projection scores.

Similarly, define {κuj}∞j=1, {φuj}∞j=1 and {Uuj}∞j=1 for U(t). To establish the

asymptotic results, we need the following assumptions.



2266 ZHANG ET AL.

(A1) {Yi, Xi(t), Zi, Ui(t)}ni=1 are i.i.d. copies of {Y,X(t), Z, U(t)}, in which the

functional measurement error {U(t)} is a zero-mean Gaussian process on

[0, 1] and independent of {Y,X(t), Z}.

(A2) The functional covariate satisfies
∫ 1
0 E[X4(t)]dt ≤ c and E[X4

j ] ≤ cκ2j , where

c−1j−αx ≤ κj ≤ cj−αx and κj − κj+1 ≥ c−1j−αx−1, for some αx > 1 and

all j ≥ 1. Similarly, assume
∫ 1
0 E[U4(t)]dt ≤ c and E[U4

uj ] ≤ cκ2uj with

c−1j−αu ≤ κuj ≤ cj−αu , for some αu > 1 and all j ≥ 1.

(A3) There exist constants ν1, ν2 ∈ (0, 2] such that E[(X(t)−X(s))2] ≤ c|t− s|ν1
and E[(U(t)− U(s))2] ≤ c|t− s|ν2 , for all s, t ∈ [0, 1].

(A4) Let A = (X̃T ,ZT ), where X̃j = κ
−1/2
j Xj , for each j. Assume c−1 ≤

λmin(E(ATA)) ≤ λmax(E(ATA)) ≤ c for all n, where λmax and λmax
are the smallest and largest eigenvalues.

(A5) For some β > αx/2 + 1, supτ∈(0,1) |b0j(τ)| ≤ cj−β, for all j ≥ 1.

(A6) For i = 1, . . . , n, the functional curve is observed only at discrete points 0 =

ti1 ≤ ti2 ≤ · · · ≤ ti,Li+1 = 1. Define ∆n = max1≤i≤n max1≤l≤Li
(ti,l+1 − til).

Assume ∆n → 0, nm2αx∆ν0
n = O(1) as n→∞, where ν0 = min(ν1, ν2).

(A7) The vector θ0 is an interior point of the parameter space Θ, which is a

compact subset of Rp.

(A8) Let ε0(τ) = Y − Qτ (Y |X(t), Z). The conditional density f(ε0(τ)|X(t), Z)

is continuously differentiable and bounded away from zero almost surely. In

addition, E(ε40(τ)|X(t), Z) is bounded as a function of τ .

Assumptions on the response and functional covariate similar to (A1)-(A3),

(A5)-(A6), and (A8) can also be found in Kato (2012), which are needed to estab-

lish the estimation consistency of the functional coefficient function when there

is no measurement error. In particular, (A2)-(A3) determine the smoothness of

the random functions X(t) and U(t), while (A5) controls the smoothness of the

regression function. Similar assumptions can also be found in Hall and Horowitz

(2007). (A6) implies that the sampling points are dense in [0, 1] as the sample size

increases. The positive-definite matrix assumption in (A4) is similar to that in

Kong et al. (2016). For identifiability purposes, we assume that the measurement

error is a Gaussian process. The upper bound for {E[(Uuj)
4]}∞j=1 in assumption

(A3) is a sufficient condition for bounded moments of {Uj}∞j=1.
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Theorem 1. Under assumptions (A1)-(A8), if m2αx+2/n → 0, then as n → ∞
and h→ 0,∫ 1

0
{β̂(t, τ)− β0(t, τ)}2dt = Op

[
h−1 exp(ch−2)mαx+1/2[log(m+ n)]1/2

n1/2
+ hmαx

]
+Op(mn

−1) +Op(m
−2β+1).

Remark 1. Theorem 1 shows that our functional estimator is consistent in prob-

ability. The rate of convergence is composed of three terms, which arise from the

truncation and estimation errors associated with approximating the functional

coefficient β0(t, τ) with the orthonormal basis {φj}mj=1, and the approximation of

the check function in the quantile regression using a smooth differentiable func-

tion to incorporate the measurement errors. Often, the second term is dominated

by the third term for some m, of which m � n1/(αx+2β) in Kato (2012) is such an

example. Let h = c(log n)−δ and m = c(log n)δ/(2β+αx−1), for some 0 < δ < 1/2.

Then, the rate of convergence simply reduces to Op(m
−2β+1). This rate of con-

vergence can also be found in Kato (2012), although it requires a higher order of

the number of eigen functions with m � n1/(αx+2β).

To establish the asymptotic normality of θ̂, we require additional assump-

tions.

(A9) For l = 1, . . . , p, there exists gl(t) such that Z∗l = Zl−E(Zl)−
∫ 1
0 X(t)gl(t)dt

satisfying E [Z∗l |X(t)] = 0 and |glj | ≤ cj−β with glj =
∫ 1
0 gl(t)φj(t)dt, for

each l and j ≥ 1. In addition, denote Z̃l = Zl − E(Zl)−
∫ 1
0 W (t)gl(t)dt.

(A10) Denote Z∗ = (Z∗1 , . . . , Z
∗
p)T and Z̃ = (Z̃1, . . . , Z̃p)

T . There exist posi-

tive definite matrices B and D such that E{Z̃Z̃T [(∂ρ∗h/∂ε)(ε0 − UTb0,

bT0 Σub0)]
2} → B and E

[
Z∗Z∗T (∂2ρ∗h/∂ε

2)(ε0 −UTb0,b
T
0 Σub0)

]
→ D

as n → ∞ and h → 0. Furthermore, we assume (∂2ρ∗h/∂ε∂σ
2)(ε0 −

UTb0,b
T
0 Σub0) and [(∂2ρh/∂ε

2)(ε0)]
2 have bounded expectations condi-

tional on Z and X(t).

Remark 2. Assumptions similar to (A9) can be found in Lu, Du and Sun (2014)

and Shin (2009), and it is introduced to adjust the dependence between Z and

X(t). The first part of assumption (A10) is the same as Assumption 7 in Wang,

Stefanski and Zhu (2012) in the case of error-free covariates. A bounded expec-

tation of the second-order derivatives is need for the partially linear functional

model.

Theorem 2. Under the same assumptions as Theorem 1 and Assumptions (A9)

and (A10), we have
√
n(θ̂ − θ0)→ N(0,D−1BD−1) in distribution.
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5. Simulation Studies

In this section, we conduct simulation studies to assess the finite-sample

performance of the proposed corrected-loss method (CL), and compare it with

that of the naive method (NAIVE), which ignores measurement errors by simply

replacing Xij with Wij in (3.2). As a benchmark, we also consider the oracle esti-

mator (ORACLE), which assumes that the functional covariate X(t) is fully ob-

served. The data are generated independently from the models Y =
∫ 1
0 b(t)X(t)+

(Z1, Z2)θ + ε and W (t) = X(t) +U(t), where b(t) =
∑50

j=1 bjφj(t), with b1 = 0.3,

bj = 5(−1)j+1/j3.5 for j ≥ 2, X(t) =
∑50

j=1 γjZjφj(t) with γj = (−1)j+1j−α/2,

Zj ∼ U [−
√

3,
√

3], U(t) =
∑50

j=1 νjUjφj(t) with νj = (−1)j+1j−α/2, Uj ∼ N(0, 1),

and the regression error ε = {1+η
∫ 1
0 cos(πt)X(t)dt}N(0, 1). We consider the two

values η = 0 and 0.5 in Case 1 and Case 2, respectively, corresponding to homo-

geneous and heteroscedastic regression models. In Case 3, ε is generated from

a t distribution with five degrees of freedom, but is normalized to have mean

zero and variance one. We consider the basis functions φj(t) =
√

2 cos(πjt) and

the parameter α = 1.1 or 2, which controls the effective number of basis func-

tions needed for functional data. For the parametric part, we consider the re-

gression coefficients θ = (0.3, 0.5)T and the covariates Z1 ∼ Binomial(1, 0.6)

and Z2 ∼ N(µ, 0.25), where µ depends on the functional covariate X(t) by

µ = 1 +
∫ 1
0

∑5
j=1(−1)j+1(1/j2)φj(t)X(t)dt. We set n = 200, 400, 600, and repeat

the experiment 100 times. In the following, we consider the proposed estimation

method at both the 50th and the 75th quantiles.

For our method, we assume X(t) is unobserved. Instead, several replications

of W (t) are observed to estimate the covariance function KU (s, t) of the mea-

surement error. Here, we estimate KU (s, t) based on three replications of W (t),

and the average of three replications is taken as the observed W (t). Then, for

any two time points s and t, the covariance function of X(t) can be estimated

as K̂X(s, t) = K̂W (s, t) − K̂U (s, t). We then calculate {φ̂j(t)}mj=1 as the first m

eigen functions of K̂X(s, t). The number of eigen functions m is selected using the

BIC in subsection 3.1. For the selection of h, the SIMEX method in subsection

3.1 is used with Ns = 20 in the simulation step. To save computational time,

the SIMEX selection is performed on only 30 experiments, and the average of

30 values ĥsimex is used for each of the 100 replications. The average number of

selected eigen functions, with standard deviations and the tuning parameter h,

are reported in Tables 1 and 2 of the Supplementary Material.

Figure 1 shows box plots of θ̂k(τ)−θk(τ) (k = 0, 1, 2), and Table 1 summarizes

the MSE values of θ̂k(τ) (k = 0, 1, 2) at τ = 0.75 from three different methods.
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Figure 1. Box plots of θ̂k(τ) − θ̂k0(τ), k = 0, 1, 2 at τ = 0.75, but for different α values
and sample sizes from the data generated in Case 1. In each figure, the box plots from
left to right show CL, NAIVE, and ORACLE respectively.

Table 1. MSEs of the parametric coefficient estimators from the proposed method (CL),
naive method (NAIVE), and oracle method (ORACLE) at τ = 0.75 in Case 1.

MSE(θ̂0) MSE(θ̂1) MSE(θ̂2)

α n CL NAIVE ORACLE CL NAIVE ORACLE CL NAIVE ORACLE

1.1 200 0.0944 0.0767 0.0554 0.0209 0.0389 0.0331 0.0793 0.0567 0.0424

400 0.0385 0.0507 0.0322 0.0124 0.0184 0.0180 0.0328 0.0387 0.0209

600 0.0268 0.0416 0.0165 0.0096 0.0158 0.0143 0.0256 0.0429 0.0116

2 200 0.1049 0.0955 0.0668 0.0195 0.0360 0.0379 0.0867 0.0556 0.0389

400 0.0272 0.0538 0.0304 0.0104 0.0181 0.0163 0.0276 0.0431 0.0240

600 0.0311 0.0485 0.0239 0.0080 0.0141 0.0134 0.0255 0.0376 0.0159

The data are generated with regression errors in Case 1 and α = 1.1 or 2. Table 1

shows that the CL, NAIVE, and ORACLE approaches all give similar estimation

results for θ1, with negligible bias under all scenarios, because Z1 is independent

of the functional covariate that is contaminated with errors. However, because

the distribution of Z2 is affected by measurement errors, the naive estimates of

θ0 and θ2 have obvious biases. In contrast, our method is effective in reducing

the estimation bias, and results in much smaller biases than that of the NAIVE

method. The NAIVE approach gives the smallest estimation variances, because

of the extra variability in the observed covarites due to measurement errors.
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Table 2. Bias, Variance, and IMSE of the functional coefficient estimators at τ = 0.75 in
Case 1.

CL NAIVE ORACLE

α n Bias2 Var IMSE Bias2 Var IMSE Bias2 Var IMSE

1.1 200 0.0439 0.2015 0.2454 0.1240 0.0660 0.1900 0.0136 0.1176 0.1312

400 0.0124 0.0812 0.0936 0.0862 0.0280 0.1142 0.0106 0.0486 0.0592

600 0.0100 0.0594 0.0693 0.0770 0.0173 0.0943 0.0086 0.0296 0.0382

2 200 0.1135 0.1841 0.2976 0.1802 0.0603 0.2405 0.0357 0.1818 0.2175

400 0.0420 0.1172 0.1592 0.1114 0.0543 0.1656 0.0197 0.0913 0.1109

600 0.0159 0.0831 0.0990 0.0840 0.0322 0.1162 0.0139 0.0428 0.0567

However, Table 1 shows that the CL approach has better overall performance,

with a smaller MSE than that of the NAIVE method when the sample size is

larger (n = 400, 600), and the overall performance of CL is comparable with that

of the ORACLE approach. In addition, the MSEs for both CL and ORACLE

decrease as n increases, supporting our asymptotic results. However, for θ̂0 and

θ̂2, the NAIVE method has nondiminishing MSEs due to nonignorable bias.

The integrated mean squared error (IMSE) is used to assess the accuracy

of the functional coefficient estimators. Let b̂l(t, τ) be an estimated coefficient

from the lth experiment, for l = 1, . . . , 100. Let b̄(t, τ) =
∑100

l=1 b̂l(t, τ)/100. We

define Bias2 =
∫ 1
0 [b̄(t, τ)−b(t, τ)]2dt, Var =

∫ 1
0

∑100
l=1[b̂l(t, τ)− b̄(t, τ)]2/100dt, and

IMSE =
∫ 1
0

∑100
l=1[b̂l(t, τ)− b(t, τ)]2/100dt.

Table 2 reports the Bias2, Var, and IMSE of the three functional coefficient

estimates. It again shows the effectiveness of the proposed method in reducing

the estimation bias due to the measurement error. The size of the Bias2 under

the CL is smaller than that under the NAIVE approach, and is close to the

ORACLE estimator, particularly when n is large. For larger n, our proposed

method obtains smaller IMSE values than those of the naive method. In addition,

when α increases from 1.1 to 2, the IMSE of b̂(t, τ) increases which is consistent

with Remark 1. The same phenomenon was also observed in Kato (2012). Figure

2 plots the average of the functional coefficient estimates over 100 replications

for each of three methods. The curves of the oracle estimator and our proposed

estimator are closer to the true line than is the naive curve at each α and sample

size n. Other results, not provided here, show the same conclusions.

To investigate the performance of the proposed estimator under different re-

gression error distributions, we generate data from the above model with n = 400

and α = 1.1, but with three different regression error distributions, as described

in cases 1, 2, and 3. We also compare the performance of the proposed method
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Figure 2. Estimated functional coefficients at τ = 0.75 for α = 1.1 or 2 with the data
generated in Case 1. Top to bottom show n = 200, 400, 600 for each α. In each plot,
the solid line represents the true functional coefficient, the dotted and dashed line shows
ORACLE, the longer dashed line shows CL, the dotted line shows NAIVE, and the
shorter dashed lines show the 95% interval of CL.

at the 50th and 75th quantiles. Tables 3 and 4 in the Supplementary Material re-

port the estimation results. Under all error distributions and both quantile levels,

the NAIVE approach gives nonignorable biases when estimating both parametric

and nonparametric regression coefficients. In contrast, the proposed method is

effective in reducing the estimation bias under all scenarios.

We also use a simulation to verify the asymptotic variance formula for the

parametric part given in Theorem 2. Data of sizes n = 200, 400, 600 are generated

from Case 1, with τ = 0.5 and α = 2. Table 3 compares the empirical standard

errors with the theoretical values calculated using the asymptotic formula in

Theorem 2 for θ̂0, θ̂1, and θ̂2. The results show that the empirical and theoretical

standard errors are close for all three parametric regression coefficients, thus

supporting the asymptotic results in Theorem 2.
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Table 3. Empirical and theoretical standard errors for the data generated in Case 1.

n Empirical SE Theoretical SE
θ0 200 0.279 0.248

400 0.172 0.177
600 0.166 0.147

θ1 200 0.152 0.150
400 0.109 0.106
600 0.074 0.086

θ2 200 0.258 0.220
400 0.158 0.158
600 0.147 0.131

Table 4. Empirical coverage probabilities (in %) of the bootstrap confidence intervals
with a nominal level of 95% for Case 1 at τ = 0.5, α = 2.

n θ0 θ1 θ2 b(t)
200 97 99 94 95
400 96 96 96 95
600 95 98 96 93

However, it is challenging to use the theoretical standard errors to make an

inference on the regression coefficients, because the calculation of former relies on

the true data-generating process, which is unavailable and needs to be estimated

in practice. In addition, it involves projecting error free covariates on {X(t)},
which is not feasible in practice because {X(t)} is unobserved due to the mea-

surement error. Therefore, we propose using the bootstrap method to construct

confidence intervals for the unknown regression coefficients. Table 4 provides

the empirical coverage probabilities of the 95% confidence intervals based on 500

bootstrap samples for τ = 0.5 and α = 2 of Case 1. For the functional coeffi-

cient, the coverage probability of the pointwise confidence interval is calculated

by averaging the coverage probabilities at 201 observed time points in the interval

[0, 1]. Table 4 shows that the bootstrap approach performs reasonably well, with

empirical coverage probabilities close to 95%.

6. Real Data Analysis

In this section, we apply the proposed method to data from a childhood

obesity study. About 20% of children in the United States are obese, and the

prevalence of childhood obesity has more than tripled in the last 40 years. Child-

hood obesity negatively affects children’s physiological, behavioral, and psycho-

logical development. To combat the obesity epidemic, researchers have begun
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implementing behavioral school-based interventions aimed at increasing physical

activity in children. In this section, we apply our proposed method to a data

set from a children obesity study conducted by Dr. Mark Benden and colleagues

from 2012 to 2014.

In this study, a total of 230 students from three different elementary schools

in the College Station Independent School District were enrolled and followed

over a six-month period. The students were randomly assigned to receive either

stand-biased desks (treatment) or traditional desks (control) in their classrooms.

The purpose of the study was to evaluate the effect of stand-biased desks as

an intervention aimed at increasing energy expenditure and reducing obesity in

elementary school-aged children. In our application, daily energy expenditure,

X(t), is defined as the total number of calories or energy used by the body to

perform everyday bodily functions. The true values of X(t) are not directly ob-

servable. Instead a surrogate measure for daily energy expenditure, W (t), was

collected per minute using the Sense Wear Armbandr (BodyMedia, Pittsburgh,

PA) for students who wore accelerometers while in school for one week (five days)

at baseline. When energy expenditure measurements have missing values, cubic

splines are applied to smooth each individual energy expenditure curve, which

is then used to impute the missing values. In addition to accelerometry-based

energy expenditure data, other covariates collected at baseline include each sub-

ject’s school, age, sex, ethnicity, height, and treatment. The covariate treatment

is a binary variable used to indicate desk assignment, taking the value one for

a stand-biased desks and zero for a traditional desk. BMI values are measured

both at baseline and after six months for all 230 students in the study. We take

the average of the two BMI values to reflect the overall BMI level during the

six-month period for each student. Table 5 provides a summary of the variables.

Students from different schools enrolled in the study at different time points.

To eliminate any potential effect of enrollment time on students’ daily energy

expenditure patterns, we center the measured energy expenditure data by sub-

tracting the daily averaged energy expenditure from each individual curve. In

addition, the daily energy expenditure curve is averaged for every five minutes to

reduce the variability, which leaves 52 data points in each curve. Furthermore, the

time interval is scaled to [0, 1]. Because some students have only three days’ mea-

surements of energy expenditure, we randomly pick three days’ data to estimate

the covariance kernel of X(t) and variance of the measurement errors. Figure 3

provides plots of the three-day data, where W1(t), W2(t), and W3(t) are plotted

against time for all subjects. The gray lines are individual energy expenditure

observations, and the black solid line is the mean energy expenditure.



2274 ZHANG ET AL.

Table 5. Descriptive statistics for the children obesity study; “Other” = Hispan-
ics/Asians/Native Americans.

Variable mean(sd)/N(%)

log(BMI) 2.846(0.159)

Age 8.378(0.754)

Treatment 134(58.261)

Control 96(41.026)

Blacks 25(10.870)

Other 42(18.260)

Whites 163(70.870)

Boys 120(52.174)

Girls 110(47.826)

School 1 57(24.783)

School 2 89(38.696)

School 3 84(36.522)

−
−

−

Figure 3. Plots of observed energy expenditure {W1(t),W2(t),W3(t)} versus time for all
subjects at baseline.

We consider the following models for Qτ , the τth conditional quantile of

log(BMI), and the measurement errors, Qτ = θ0 + θ1S1 + θ2S2 + θ3Trt+ θ4Sex+

θ5R1 + θ6R2 + θ7Age +
∫
X(t)β(t)dt, and Wj(t) = X(t) + Uj(t), for j = 1, 2, 3,
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Figure 4. Plots of proposed (solid line) and naive (dashed line) estimates of β(t) at
τ = 0.2, 0.5, 0.8 from left to right. The two dotted lines are the 95% pointwise bootstrap
confidence intervals with 500 boostrap samples.

where S1 and S2 are binary indicators for School 1 and School 2, respectively, and

School 3 is set as the baseline. In addition, Trt is a binary treatment indicator

for desk assignment, and Sex is a binary variable, taking the value one for male,

and zero for female students. For ethnicity, R1 and R2 are binary indicators for

Other Ethnicity and Black respectively and White is the reference category. For

illustration, we consider τ = 0.2, 0.5, 0.8, and compare our proposed method

with the naive method, which ignores measurement errors. The number of bases

used to represent the functional data is selected using the BIC criterion based on

the naive method. It selected one basis (m = 1) for all three levels of τ . Using

SIMEX, we choose h as 2.116, 3.462,1.900 at τ = 0.2, 0.5, 0.8, respectively, for

our method.

The estimated functional coefficients are provided in Figure 4. For each

quantile level, the 95% nonparametric bootstrap confidence intervals do not con-

tain the zero line, indicating that energy expenditure has a significant effect on

the 20th, 50th, and 80th quantiles of log(BMI). In addition, the estimated coeffi-

cient functions are positive, indicating more daily energy expenditures associated

with higher BMI values. This may be because a higher energy cost is needed to

perform weight-bearing activities for individuals with higher BMI values. This

positive association was also observed in Maffeis et al. (1996). In addition, Figure
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Table 6. Parametric regression coefficient estimates by the proposed (CL) and naive
methods at τ = 0.2, 0.5, 0.8. Standard errors from 500 bootstrap samples are included
in parentheses, and significance at 5% level is shown in bold face.

τ Method Inter S1 S2 Trt Sex R1 R2 Age
0.2 CL 1.788 -0.098 -0.071 -0.052 -0.035 0.031 0.075 0.014

(0.267) (0.061) (0.040) (0.029) (0.034) (0.046) (0.074) (0.033)
NAIVE 2.493 -0.054 -0.019 -0.013 -0.025 0.010 -0.009 0.035

(0.092) (0.022) (0.018) (0.015) (0.014) (0.018) (0.042) (0.011)
0.5 CL 2.539 -0.069 -0.023 0.005 -0.044 0.039 0.049 0.040

(0.146) (0.024) (0.019) (0.019) (0.018) (0.023) (0.035) (0.017)
NAIVE 2.562 -0.069 -0.038 -0.000 -0.032 0.020 0.048 0.036

(0.147) (0.028) (0.028) (0.026) (0.026) (0.029) (0.044) (0.017)
0.8 CL 3.058 -0.143 -0.043 0.000 -0.037 0.017 -0.029 0.093

(0.191) (0.040) (0.027) (0.027) (0.024) (0.033) (0.044) (0.024)
NAIVE 2.785 -0.080 -0.049 -0.024 -0.071 0.004 -0.011 0.029

(0.163) (0.044) (0.031) (0.023) (0.027) (0.047) (0.072) (0.021)

4 shows that the naive estimates attenuate its effects toward zero compared with

the proposed estimates. Table 6 reports the estimation results of the parametric

regression coefficients. As expected, the estimates of the interceptor increase with

the quantile level τ , and all are significantly different from zero. Our proposed

estimates indicate significant school effects at the 50th and 80th quantiles, but

no statistically significant school effect is found at the 20th quantile due to the

larger variability of the proposed method. For desk assignment (Trt), there are

no statistically significant findings at any quantile levels for both methods. This

is possibly because its effect is mediated by the inclusion of energy expenditure

in the model. For Sex, our proposed estimates show significant effects at the

50th quantile, rather than at the 80th quantile indicated by the naive estimates.

Both methods reveal no significant effects of ethnicity on log(BMI) at the three

quantile levels. For age, both methods find a significant positive effect for me-

dian BMI. However, the proposed method finds age to be significant at the 80th

quantile, while naive method found it to be significant at the 20th quantile.
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7. Discussion

We have established consistent estimators for a partially functional linear

quantile model when the functional covariate is contaminated by a function-

valued error. The nondifferentiable check loss in the quantile regression and the

functional measurement error impose additional challenges. Our method does not

require a specification of the conditional distribution of the response given the true

covariates, and does not assume independence between measurement errors at

different time points. We assume the functional measurement error is a Gaussian

process, and develop the corrected loss function based on a smooth function of

the check loss function, where a smoothing parameter needs to be determined for

a bias and variance trade-off. We show the consistency and asymptotic normality

of the proposed functional estimator and the parametric estimator. Simulations

and a real-data analysis show that our method outperforms the naive method.

The proposed model allows for only one functional predictor. However, it

can be extended to allow multiple functional predictors. With the basis represen-

tation, it leads to more terms in either Z and/or X, depending on whether the

functional predictors are measured with or without errors. While the algorithm

proposed in this paper can be extended to obtain resulting estimators, the proofs

for establishing the asymptotic results require additional work, owing to the extra

functional predictors.

In our implementation, we determine the number of eigen functions by sim-

ply ignoring the existence of measurement errors. A more precise method should

be investigated to determine the number of eigen functions in the presence of

measurement errors. Furthermore, we could consider a more general measure-

ment error model, such as, the multiplicative measurement error, or relaxing the

Gaussian assumption of the measurement error used in the proposed method.

In addition, the Laplace distribution is another popular distribution for the

measurement errors. In fact, Wang, Stefanski and Zhu (2012) considered the cor-

rected score approach for measurement error models with a Laplace distribution

in a linear quantile regression. However, one challenge to extending it to the

functional covariate case is that the Laplace distribution does not have the linear

additive property. That is, a linear combination of Laplace random variables does

not necessarily follow the Laplace distribution. Therefore, if the functional mea-

surement errors are assumed to follow a multivariate Laplace distribution, the

individual scores may no longer follow the same distribution. Thus, an extension

to Laplace functional measurement errors is not straightforward, and is left to

future research.
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Supplementary Material

The online Supplementary Material includes additional simulation results

and detailed proofs of the main theorems and necessary lemmas.

Acknowledgments

The authors thank Mark Benden for providing the data used in the ap-

plication section. The authors also thank the reviewers, associate editor, and

co-editor for their helpful suggestions and comments. Research reported in this

publication was supported by the National Institute Of Diabetes And Digestive

And Kidney Diseases of the National Institutes of Health under Award Number

R01DK132385. The content is solely the responsibility of the authors and does

not necessarily represent the official views of the National Institutes of Health. In

addition, Xue’s research was supported by National Science Foundation (DMS-

1812258). Tekwe’s research was supported by National Cancer Institute Supple-

mental Award U01-CA057030-29S2. Bai’s research was supported by the Natural

Science Foundation of China (11771268). Qu’s research was supported by the Na-

tional Science Foundation (DMS-1821198).

References

Bassett, D. R. (2012). Device-based monitoring in physical activity and public health research.

Physiological Measurement 33, 1769–1783.

Carroll, R. J., Ruppert, D., Stefanski, L. A. and Crainiceanu, C. M. (2006). Measurement Error

in Nonlinear Models: A Modern Perspective. 2nd Edition. Chapman and Hall/CRC, New

York.

Crouter, S. E., Churilla, J. R. and Bassett, D. R. (2006). Estimating energy expenditure using

accelerometers. European Journal of Applied Physiology 98, 601–612.

Delaigle, A. and Hall, P. (2008). Using simex for smoothing-parameter choice in errors-in-

variables problems. Journal of the American Statistical Association 103, 280–287.

Firpo, S., Galvao, A. F. and Song, S. (2017). Measurement errors in quantile regression models.

Journal of Econometrics 198, 146–164.

Fuller, W. (1987). Measurement Error Models. John Wiley & Sons, New York.

Geraci, M. and Bottai, M. (2014). Linear quantile mixed models. Statistics and Computing 24,

461–479.

Hall, P. and Horowitz, J. L. (2007). Methodology and convergence rates for functional linear

regression. The Annals of Statistics 35, 70–91.

He, X. and Liang, H. (2000). Quantile regression estimates for a class of linear and partially

linear errors-in-variables models. Statistica Sinica 10, 129–140.

Hu, Y. and Schennach, S. (2008). Instrumental variable treatment of nonclassical measurement

error models. Econometrica 76, 195–216.



PARTIALLY FUNCTIONAL LINEAR QUANTILE REGRESSION 2279
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