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Abstract: The mean squared prediction error (MSPE) is an important measure

of uncertainty in small-area estimation. It is desirable to produce a second-order

unbiased MSPE estimator, that is, the bias of the estimator is o(m−1), where m

is the total number of small areas for which data are available. However, this is

difficult, especially if the estimator needs to be positive, or at least nonnegative. In

fact, very few MSPE estimators are both second-order unbiased and guaranteed

to be positive. We consider an alternative, easier approach of estimating the

logarithm of the MSPE (log-MSPE), thus avoiding the positivity problem. We

derive a second-order unbiased estimator of the log-MSPE using the Prasad–Rao

linearization method. The results of empirical studies demonstrate the superiority

of the proposed log-MSPE estimator over a naive log-MSPE estimator and an

existing method, known as McJack. Lastly, we demonstrate the proposed method

by applying it to real data.
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1. Introduction

The mean squared prediction error (MSPE) has been an important and

popular measure of uncertainty in small-area estimation (SAE; e.g., Rao and

Molina (2015)) ever since the seminal paper of Prasad and Rao (1990). It is

desirable to produce a second-order unbiased estimator of the MSPE, that is,

the bias of the MSPE estimator is o(m−1), where m is the total number of small

areas for which data are available; see Liu, Ma and Jiang (2022a,b) for some recent

advances. However, this is difficult, especially if the MSPE estimator needs to

be positive, or at least nonnegative. In fact, with very few exceptions (Prasad

and Rao (1990),Chen and Lahiri (2011)), existing second-order unbiased MSPE

estimators are not both second-order unbiased and guaranteed to be positive; see

Jiang, Lahiri and Nguyen (2018, p.408) for a detailed discussion.

As noted by the latter authors, typically, it is fairly easy to obtain a positive

MSPE estimator that is first-order unbiased. The complication arises when

*Corresponding author.

https://doi.org/10.5705/ss.202022.0043


984 WANG ET AL.

one tries to bias-correct the first-order unbiased MSPE estimator to make it

second-order unbiased, because the resulting second-order estimator is no longer

guaranteed to be positive. One option is to modify the value of the MSPE

estimator when it is negative, for example, by truncating the estimator at zero,

but this destroys the second-order unbiasedness. Jiang, Lahiri and Nguyen (2018)

use the work of Hall and Maiti (2006) as an example to illustrate this dilemma.

Intuitively, this is analogous to the problem of trying to cover two ants, both

moving fast in random directions, with two fingers of the same hand, which is

relatively difficult. However, the task becomes much easier if we use one finger

and there is just one ant, no matter how fast and randomly it moves.

Jiang, Lahiri and Nguyen (2018) propose estimating the logarithm of the

MSPE (log-MSPE), instead of the MSPE itself. The log-MSPE is a simple

one-to-one transformation of the MSPE. Thus, we can easily convert a log-

MSPE estimator to an MSPE estimator by taking the exponential. Furthermore,

reporting the log-MSPE results often saves space, there are advantages in terms

of hypothesis testing, and there is a linear association between the logarithm

and the square root of the MSPE. Most importantly, positivity is not a concern,

because the exponential of a log-MSPE estimator is always positive. Jiang, Lahiri

and Nguyen (2018) further propose a Monte Carlo (MC) jackknife method for

estimating the log-MSPE, called McJack, showing that their method produces a

second-order unbiased estimator of the log-MSPE.

In the SAE literature, two standard methods are used to produce a second-

order unbiased MSPE estimator, namely, the Prasad–Rao linearization method

(Prasad and Rao (1990) ) and the resampling method (e.g., Jiang, Lahiri and

Wan (2002),Hall and Maiti (2006)); see also Rao and Molina (2015). The McJack

method is a resampling method. The main objective of our study is to develop a

class of second-order unbiased estimators of the log-MSPE using the linearization

method, and to demonstrate its advantages over existing methods.

The method is described in general in Section 2. In Section 3, we consider a

special case of estimating the log-MSPE of the empirical best predictor (EBP),

based on generalized linear mixed models (GLMMs; e.g., Jiang and Nguyen

(2021)). We present our simulation results in Section 4, and discuss a real-data

example in Section 5. Section 6 concludes the paper.

2. Second-Order Unbiased log-MSPE Estimator

Let θ denote a mixed effect of interest, which may be a small-area mean,

and let θ̂ be a predictor of θ. For example, θ̂ may be the empirical best linear

unbiased predictor (EBLUP; e.g., Rao and Molina (2015)) or the observed best

predictor (OBP;Jiang, Nguyen and Rao (2011)). Define the MSPE of θ̂ as

MSPE ≡ MSPE(θ̂) = E(θ̂ − θ)2. (2.1)
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Let M̃SPE be an estimator of the MSPE that possesses the following properties:

(i) M̃SPE is positive with probability one;

(ii) M̃SPE is at least first-order unbiased; that is, E(M̃SPE−MSPE) = O(m−1);

and

(iii) M̃SPE−MSPE = OP(m
−1/2)

(see, e.g.,Jiang (2010, Sec. 3.4), for the definitions of OP and oP). More

specifically, suppose that we have the following expressions:

MSPE = a(ψ) + o(1), (2.2)

E(M̃SPE−MSPE) = m−1b(ψ) + o(m−1), (2.3)

E(M̃SPE−MSPE)2 = m−1c(ψ) + o(m−1), (2.4)

where a(·), b(·), and c(·) are continuous and may depend on m, but a(ψ), b(ψ),

and c(ψ) are bounded and a(ψ) has a positive lower bound for ψ that satisfies

(2.2)–(2.4). Note that (2.4) is a result of (iii) under regularity conditions. From

the Taylor series expansion, we have

log(M̃SPE)− log(MSPE) =
M̃SPE−MSPE

MSPE
− (M̃SPE−MSPE)2

2MSPE2

+OP(m
−3/2).

Thus, under regularity conditions, it can be shown that

E{log(M̃SPE)− log(MSPE)} =
2a(ψ)b(ψ)− c(ψ)

2ma2(ψ)
+ o(m−1). (2.5)

Let ψ̂ be a consistent estimator of ψ. Then, under regularity conditions, we have

2a(ψ)b(ψ)− c(ψ)

2ma2(ψ)
= E

{
2a(ψ̂)b(ψ̂)− c(ψ̂)

2ma2(ψ̂)

}

− 1

m
E

{
2a(ψ̂)b(ψ̂)− c(ψ̂)

2a2(ψ̂)
− 2a(ψ)b(ψ)− c(ψ)

2a2(ψ)

}

= E

{
2a(ψ̂)b̄(ψ̂)− c̄(ψ̂)

2a2(ψ̂)

}
+ o(m−1), (2.6)

where b̄(ψ) = b(ψ)/m and c̄(ψ) = c(ψ)/m. Note that {2a(ψ)b(ψ) −
c(ψ)}/2ma2(ψ) is nonrandom. Combining (2.5) and (2.6), we have

E{log(M̃SPE)− log(MSPE)} = E

{
2a(ψ̂)b̄(ψ̂)− c̄(ψ̂)

2a2(ψ̂)

}
+ o(m−1). (2.7)
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Thus, if we define a bias-corrected log-MSPE estimator as

l̂og(MSPE) = log(M̃SPE)− 2a(ψ̂)b̄(ψ̂)− c̄(ψ̂)

2a2(ψ̂)
, (2.8)

then, from (2.7), we have

E{l̂og(MSPE)− log(MSPE)} = o(m−1). (2.9)

Therefore, l̂og(MSPE) is a second-order unbiased estimator of log(MSPE).

The above derivation is quite general and, depending on the specifications

of M̃SPE, a(·), b̄(·), and c̄(·), leads to a class of second-order unbiased estimators

of the log-MSPE. However, note that the exponential of a second-order unbiased

log-MSPE estimator is not necessarily a second-order unbiased MSPE estimator,

because the back-transformation (exponential) results in a bias of O(m−1).

Next, we demonstrate the proposed method by considering a special case.

3. EBP Based on GLMMs

In the context of SAE with discrete or categorical responses, Jiang (2003)

proposes an EBP method based on a GLMMs. The method assumes that,

conditional on the random-effect vectors vi = (vij)1≤j≤ni
, for 1 ≤ i ≤ m, the

responses yij, for 1 ≤ j ≤ ni, are independent, with the conditional pmf, or pdf,

given by

f(yij|vi) = exp

{(
wij
ϕ

)
(yijξij − r(ξij)) + s

(
yij,

ϕ

wij

)}
,

where r(·), and s(·, ·) are functions associated with the exponential family

(McCullagh and Nelder (1989, Chap. 2)), ϕ is a dispersion parameter, which

in some cases is known, and wij is a weight, such that wij = 1 for ungrouped

data, wij = lij for grouped data if the average is considered as a response (lij is

the group size), and wij = l−1
ij if the sum of individual responses is considered.

Furthermore, ξij is associated with a linear predictor, ηij = x′
ijβ+z

′
ijvi, through a

link function, g(ξij) = ηij, or ξij = h(ηij), where h = g−1. Here, xij = (xijk)1≤k≤p
and zij = (zijk)1≤k≤r are known vectors, and β is a vector of regression coefficients.

In the case of a canonical link, one has ξij = ηij. Finally, v1, . . . , vm are

independent with density fν(·), where ν is a vector of variance components. For

simplicity, we focus on cases where ϕ is known. This includes important cases

such as the binomial and Poisson families. Let ψ = (β′, ν ′)′.

Consider predicting a possibly nonlinear mixed effect in the form

ζ = ζ(β, vS) , (3.1)
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where S is a subset of {1, . . . ,m} and vS = (vi)i∈S. Let yS = (yi)i∈S, where

yi = (yij)1≤j≤ni
and yS− = (yi)i/∈S. According to Jiang (2003), the best predictor

(BP) of ζ in the sense of a minimum MSPE is given by

ζ̃ =

∫
ζ(β, vS) exp(ϕ

−1
∑

i∈S si(β, vi))
∏
i∈S fν(vi)

∏
i∈S dvi∏

i∈S
∫
exp(ϕ−1si(β, v))fν(v)dv

≡ u(yS, ψ), (3.2)

where si(β, v) =
∑ni

j=1wij[yijh(x
′
ijβ + z′ijv) − r(h(x′

ijβ + z′ijv))]. The integral in

(3.2) may be evaluated using numerical integration or MC methods. For the

unknown parameters ψ, in (3.2), Jiang (2003) suggests using method of moments

(MoM) estimators, which are consistent (Jiang (1998)). Let ψ̂ denote the MoM

estimator of ψ. If we replace ψ in (3.2) with ψ̂, we obtain the empirical BP, or

EBP,

ζ̂ = u(yS, ψ̂). (3.3)

The MSPE of the EBP is of primary concern. Jiang (2003) derived a second-

order unbiased MSPE estimator that is not guaranteed to be positive. We now

apply the general result of Section 2 to derive a second-order unbiased log-MSPE

estimator. Suppose that

E(ψ̂ − ψ)(ψ̂ − ψ)′ = m−1V (ψ) + o(m−1). (3.4)

Then, from Jiang (2003), we have the following expression:

MSPE ≡ MSPE(ζ̂) = d(ψ) +m−1e(ψ) + o(m−1), (3.5)

where d(ψ) = MSPE(ζ̃) = E(ζ2) − E(ζ̃2), with ζ̃ = E(ζ|y), and e(ψ) =

E{(∂u/∂ψ′)V (ψ)(∂u/∂ψ)}. We now obtain a further expression for V (ψ).

Following Jiang (1998), ψ̂ is a solution to the estimating equation

M(ψ) = M̂, (3.6)

where M̂ = (M̂k)1≤k≤q, with q = dim(ψ), is a vector of normalized statistics in

the sense that when ψ is the true parameter vector, we have E(M̂) = O(1) and

Var(M̂) = O(m−1); M(ψ) = [Mk(ψ)]1≤k≤q, with Mk(ψ) = Eψ(M̂k). It is known

that, under regularity conditions, ψ̂ is root-m consistent (Jiang (1998)), that is,

ψ̂ − ψ = OP(m
−1/2). Write M = M(ψ) when ψ is the true parameter vector.

Then, from the Taylor series expansion at ψ, that is the true parameter vector,

under regularity conditions, we have

M̂ =M(ψ̂) =M +A(ψ̂ − ψ) +OP(m
−1), (3.7)
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where A = ∂M/∂ψ′. Here (3.7) implies the following asymptotic expansion:

ψ̂ − ψ = A−1(M̂ −M) +OP(m
−1), (3.8)

which, under regularity conditions, result in the following approximation:

E(ψ̂ − ψ)(ψ̂ − ψ)′ = A−1E(M̂ −M)(M̂ −M)′(A−1)′ + o(m−1). (3.9)

Note that E(M̂ −M)(M̂ −M)′ = Var(M̂). This leads to a further expression,

V (ψ) = mA−1Var(M̂)(A−1)′. (3.10)

Thus, combining (3.5) and (3.10), we have

MSPE = d(ψ) + b3(ψ) + o(m−1) = d(ψ) + o(1), (3.11)

where b3(ψ) = E{(∂u/∂ψ′)A−1Var(M̂)(A−1)′(∂u/∂ψ)}. In fact, b3(ψ) = O(m−1).

It follows that (2.2) holds, with a(ψ) = d(ψ).

Now, define M̃SPE = d(ψ̂). From the definition of d(ψ), condition (i) of

Section 2 is satisfied (assuming nonsingularity). Furthermore, from (3.11), we

have

E(M̃SPE−MSPE) = E{d(ψ̂)− d(ψ)} − b3(ψ) + o(m−1). (3.12)

Then, from the Taylor series expansion at the true ψ and (3.8), it can be shown

that

d(ψ̂)− d(ψ) =
∂d

∂ψ′ (ψ̂ − ψ) +
1

2
(M̂ −M)′(A−1)′

∂2d

∂ψ∂ψ′A
−1(M̂ −M)

+oP(m
−1). (3.13)

We can expand (3.8) to obtain a further expansion (see the Supplementary

Material):

ψ̂ − ψ = A−1(M̂ −M)

−1

2
A−1

[
(M̂ −M)′(A−1)′BkA

−1(M̂ −M)
]
1≤k≤q

+oP(m
−1), (3.14)

where Bk = ∂2Mk/∂ψ∂ψ
′. Combining (3.13) and (3.14), we have, under

regularity conditions, that
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E{d(ψ̂)− d(ψ)} =
b1(ψ)− b2(ψ)

2
+ o(m−1), (3.15)

where b1(ψ)=E{(M̂−M)′(A−1)′(∂2d/∂ψ∂ψ′)A−1(M̂−M)} and b2(ψ)=(∂d/∂ψ′)

A−1[E(M̂ − M)′(A−1)′BkA
−1(M̂ − M)]1≤k≤q. Combining (3.12) and (3.15), it

follows that (2.3) holds with

b̄(ψ) =
b1(ψ)− b2(ψ)

2
− b3(ψ).

Finally, from (3.11), (3.13), and (3.14), it can be shown that

M̃SPE−MSPE =
∂d

∂ψ′A
−1(M̂ −M) +OP(m

−1). (3.16)

Here, (3.16) implies that, under regularity conditions, (2.4) holds with

c̄(ψ) =
∂d

∂ψ′A
−1Var(M̂)(A−1)′

∂d

∂ψ
.

In conclusion, the general result of Section 2 applies, with M̃SPE = d(ψ̂),

a(ψ) = d(ψ), and b̄(ψ) and c̄(ψ) specified above and below (3.16), respectively.

The following expressions are computationally more convenient:

b1(ψ) = tr

(
(A−1)′

∂2d

∂ψ∂ψ′A
−1Var(M̂)

)
, (3.17)

b2(ψ) =
∂d

∂ψ′A
−1
[
tr
(
(A−1)′BkA

−1Var(M̂)
)]

1≤k≤q
, (3.18)

b3(ψ) = tr

(
A−1Var(M̂)(A−1)′E

(
∂u

∂ψ

∂u

∂ψ′

))
, (3.19)

where the expectation inside the trace is with respect to yS in (3.2).

3.1. Computational/Practical notes

1. In theory, d(ψ) = MSPE(ζ̃) should be positive for any ψ. However,

depending on the method used to evaluate it, the value of d(ψ) can

occasionally be negative. For example, in the next section, we use numerical

integration to evaluate d(ψ). Then, owing to the integral approximations,

d(ψ̂) can occasionally take negative values. When the value of d(ψ̂) is

negative, we suggest evaluating it using an MC method, as in Jiang, Lahiri

and Nguyen (2018). The latter is computationally more time consuming

than numerical integration, but is guaranteed to produce a positive number.

2. The matrix A can occasionally be singular. In this case, we suggest using

the Moore–Penrose generalized inverse of A in place of A−1.
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3. In some cases, there are known bounds for the value of the MSPE. Such

bounds should be used, in practice, to improve the precision of the log-

MSPE estimate. For example, in the case considered in the next section,

the MSPE is bounded by one, and hence the log-MSPE is bounded by zero.

Thus, the value of the log-MSPE estimate is taken as zero (hence, the MSPE

estimate is equal to one) when it is greater than zero.

4. Example and Simulation

Consider a mixed logistic model for SAE (e.g., Jiang and Lahiri (2001)).

Suppose that, conditional on pi, yij are independent Bernoulli, with P (yij =

1|pi) = pi, for i = 1, . . . ,m and j = 1, . . . , ki. In addition, we have

logit(pi) = log(pi/(1−pi)) = µ+vi, where µ is a known parameter. Furthermore,

v1, . . . , vm are independent random effects. Two distributions of the random

effects are considered: (a) vi ∼ N(0, σ2), where σ2 is an unknown variance;

and (b) vi ∼ LP(σ), where LP(σ) denotes the Laplace distribution with pdf

f(x|σ) = (2σ)−1e−|x|/σ, for −∞ < x <∞.

For simplicity, let ki = k > 1, for 1 ≤ i ≤ m. It is convenient to use

the expression vi = σξi, where ξi ∼ N(0, 1) in case (a) and ξi ∼ LP(1) in case

(b). Consider a prediction of the conditional probability, pi = h(µ+ σξi), where

h(x) = ex/(1 + ex). According to Jiang (2003), the BP of pi is

p̃i = eµ
E{exp((yi· + 1)σξ − (k + 1) log(1 + eµ+σξ))}

E{exp(yi·σξ − k log(1 + eµ+σξ))}
≡ u(yi·, ψ), (4.1)

where ψ = (µ, σ)′, yi· =
∑k

j=1 yij, and the expectations are with respect to ξ,

which is N(0, 1) in case (a) and LP(1) in case (b). The EBP, p̂i, is p̃i, replacing

ψ with ψ̂, the MoM estimator. The latter is the solution to (3.6) with q = 2,

M̂1 = (mk)−1y··, where y·· =
∑m

i=1

∑k
j=1 yij, M̂2 = {mk(k− 1)}−1

∑m
i=1(y

2
i· − yi·),

and Ms(ψ) = E{hs(µ+ σξ)}, for s = 1, 2 (Jiang (1998)). We have the following

expression (see the Supplementary Material):

d(ψ) = E{h2(µ+ σξ)}

−
k∑
l=0

u2(l, ψ)

(
k

l

)
E
{
exp

(
l(µ+ σξ)− k log

(
1 + eµ+σξ

))}
, (4.2)

where u(l, ψ) is u(yi·, ψ) [see (4.1)] with yi· = l.

For notational simplicity, we write h = h(µ+σξ) when ψ is the true parameter

vector and ξ is as above. Similarly, we write h′ = h′(µ + σξ), h′′ = h′′(µ + σξ),

and g = (h′)2 + hh′′. It is easy to derive the following:

A =

[
E(h′) E(h′ξ)

2E(hh′) 2E(hh′ξ)

]
, B1 =

[
E(h′′) E(h′′ξ)

E(h′′ξ) E(h′′ξ2)

]
,
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B2 = 2

[
E(g) E(gξ)

E(gξ) E(gξ2)

]
.

Expressions of the elements of Var(M̂) are given in Section S2.2 of the

Supplementary Material, and those of the partial derivatives in (3.17)–(3.19)

are given in Section S2.3 of the Supplementary Material. Note that, in this case,

we have

E

(
∂u

∂ψ

∂u

∂ψ′

)
=

k∑
l=0

(
k

l

)
∂u

∂ψ

∂u

∂ψ′

∣∣∣∣
(l,ψ)

E{s(l, k, µ+ σξ)},

where s(a, b, w) = exp(aw−b log(1+ew)). All of the expectations are evaluated by

means of numerical integration, using the integrate() function in R (lower bound

= −5; upper bound = 5). Furthermore, in this case, the MSPE is naturally

bounded by one, and hence the log-MSPE is bounded by zero. Thus, the value

of the log-MSPE estimate is taken as zero when it is positive (see Note 3 at the

end of the previous section).

Simulation studies are carried out to evaluate the performance of the

proposed bias-corrected log-MSPE estimator given in (2.8). We compare

the proposed estimator with a naive log-MSPE estimator, which is simply

log(M̃SPE), the first term on the right-hand side of (2.8). Consider predicting

p1 using the EBP. Here, we let m = 25, 50, 100 and ki = 4, for 1 ≤ i ≤ m. The

true parameters are µ = −1.0 and σ = 2.0. The MC sample size used to evaluate

d(ψ̂) when it is occasionally negative (see Note 1 of Section 3.1) is Nmc = 1000.

We consider the following performance measures:

(1) Bias, E(log-MSPE estimator)−log-MSPE;

(2) Percentage relative bias (%RB), given by 100× (Bias/|log-MSPE|); and

(3) Coefficient of variation (CV), which is the standard deviation (s.d.) of

the log-MSPE estimator divided by the absolute value of the mean of the

log-MSPE estimator.

Here, the mean and s.d. are the simulated mean and s.d., respectively, and

the (true) MSPE is evaluated from the simulation runs.

The results, based on Nsim = 2000 simulation runs, are presented in Table 1,

showing that the bias-corrected estimator, l̂og(MSPE), performs best especially

in terms of %RB, in both case (a) and case (b).

Next, we compare our log-MSPE estimator with the McJack estimator of

Jiang, Lahiri and Nguyen (2018). The latter is also used to estimate the

log-MSPE. Because the McJack method is computationally intensive, and the

computational burden increases quickly with m, the comparison is limited to the

case of m = 25, and k = 4. In addition to the above performance measures, we

also consider the average computing time (ACT; in seconds) per simulation run.
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Table 1. Comparison with the naive log-MSPE estimator.

Case Sample Simulated log(M̃SPE) l̂og(MSPE)

Size log-MSPE Bias %RB CV Bias %RB CV

(a) m = 25, k = 4 -3.54 -0.34 -9.64 0.50 -0.03 -0.87 0.08

m = 50, k = 4 -3.63 -0.10 -2.70 0.02 -0.02 -0.46 0.02

m = 100, k = 4 -3.68 -0.03 -0.90 0.02 0.00 0.12 0.02

(b) m = 25, k = 4 -3.61 -0.22 -6.09 0.19 -0.02 -0.46 0.07

m = 50, k = 4 -3.66 -0.10 -2.76 0.02 -0.03 -0.86 0.03

m = 100, k = 4 -3.71 -0.03 -0.74 0.02 0.01 0.14 0.02

Table 2. Comparison with the McJack method.

Case Method Bias %RB CV ACT

(a) l̂og(MSPE) -0.03 -0.87 0.08 0.03

McJack (Kmc = 50) -0.07 -1.97 0.14 13.14

McJack (Kmc = 100) -0.05 -1.32 0.11 25.71

(b) l̂og(MSPE) -0.02 -0.46 0.07 0.02

McJack (Kmc = 50) -0.04 -1.09 0.14 9.69

McJack (Kmc = 100) -0.03 -0.73 0.11 19.57

Because the McJack method depends on the MC sample size used to evaluate

the expectations, we consider two MC sample sizes, Kmc = 50, 100. Owing to

the computational intensity of the McJack method, we set Nsim = 500 (instead

of Nsim = 2000, as in the previous case). The results are reported in Table 2, in

which the results for l̂og(MSPE), with the exception of those for the ACT, are

copied from Table 1.

The results show that l̂og(MSPE) performs better in terms of both %RB

and CV, although the results are comparable. The biggest difference is in terms

of the computational efficiency, where l̂og(MSPE) performs significantly better.

For example, in case (a), the ACT of the McJack method is 438 times that of

l̂og(MSPE) when Kmc = 50, and 857 times that of l̂og(MSPE) when Kmc = 100.

Keep in mind that, owing to the computational intensity, we consider only the

case of m = 25. When m is larger, the computing time needed for the McJack

method may become impractical. This leaves l̂og(MSPE) as the only feasible

method capable of producing a second-order unbiased log-MSPE estimator when

m is large.

5. A Real-Data Example

Brooks et al. (1997) present six data sets on recording fetal mortality in

mouse litters. As an application, we consider the HS2 data set from Table 4

of their paper, which reports the number of dead implants in litters of mice
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from untreated experimental animals. Jiang and Zhang (2001) analyzed the data

using a GLMM (see also Jiang and Nguyen (2021, Sec. 4.4.1)). Let yij, for

i = 1, . . . ,m, and j = 1, . . . , ki be binary responses, such that yij = 1 if the jth

implant in the ith litter is dead, and yij = 0 otherwise. Here, m = 1328 is the

total number of litters. The yij are assumed to satisfy the same mixed logistic

model with normally distributed random effects described at the beginning of

Section 4. We also considered the mixed logistic model with Laplacian random

effects, as described in Section 4. The results are very similar, and therefore

omitted.

Note that the data are unbalanced in this case (i.e., the ki are not equal).

Thus, the definition of M̂s, for s = 1, 2 differs from those in the previous section.

Specifically, we have M̂1 = k−1
· y··, where k· =

∑m
i=1 ki, and M̂2 = {

∑m
i=1 ki(ki −

1)}−1
∑m

i=1(y
2
i· − yi·). Following Jiang and Nguyen (2021, Sec. 4.4.1), the MoM

estimates are µ̂ = −2.276 and σ̂ = 0.644. The expression for Var(M̂) in this

case and additional expressions in terms of the current data structure are given

in Section S3 of the Supplementary Material.

Once again, we are interested in predicting the conditional probability, pi =

h(µ + σξi), for all m = 1328 litters. The values of the EBP, as well as the

corresponding log-MSPE estimates, depend only on the values of µ̂, σ̂, ki, and yi·.

In this case, the McJack estimates are computationally intensive (m = 1328 in

this case); see the discussion in the last paragraph of Section 4. On the other

hand, it is fairly easy to obtain the log-MSPE estimates using our method. As

in the previous section, the EBP and log-MSPE estimates are computed using

numerical integration. The results, including the EBP and corresponding square

root of the MSPE (RMSPE) estimate, obtained from a simple transformation

of the log-MSPE estimate, are reported in Table 3. The table is constructed in

a way similar to Table 4 of Brooks et al. (1997). The RMSPE is often used as

a measure of uncertainty, in a way similar to the standard error in parameter

estimation.

The results show that the EBP decreases as ki increases, and increases as

yi· increases. Although both trends can be shown theoretically, there are also

intuitive explanations. Recall that the EBP predicts the conditional probability

that the implant is dead, given the observed count, yi·. For example, take consider

ki = 7. If yi· is zero, that is, no implant is dead, the predicted probability of death

is 0.084. If yi· = 1, that is, one implant is dead, one would expect the conditional

probability of death to increase; this is indeed the case, because the predicted

probability of death is now 0.112. Now, let yi· be fixed, say, yi· = 1. As ki
increases, we expect more death; therefore, the probability of exactly one death

should decrease.

Note that the RMSPE depends only on ki. This is reasonable because the

MSPE is unconditional, that is, it does not depend on the value of yi·. In fact,

under the assumed model, yi·, for i = 1, . . . ,m, are independent and identically
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Table 3. Analysis of mice mortality data: for each number of implants, the first row
shows the observed number of cases, and the second row show the RMSPE (Column
RMSPE) and EBPs (Columns 0–9).

# of implants (ki) # of dead implants (yi·)

RMSPE 0 1 2 3 4 5 6 7 8 9

1 15 1

0.062 0.103 0.144

2 6 1 2

0.061 0.099 0.137 0.184

3 6 6

0.060 0.096 0.131

4 7 2 3 2

0.059 0.092 0.125 0.166 0.27

5 16 9 3 3 1

0.057 0.089 0.121 0.159 0.203 0.255

6 57 38 17 2 2

0.056 0.087 0.116 0.152 0.194 0.241

7 119 81 45 6 1 1

0.056 0.084 0.112 0.146 0.185 0.23 0.385

8 173 118 57 16 3 1

0.055 0.082 0.109 0.141 0.178 0.219 0.417

9 136 103 50 13 6 1 1

0.054 0.08 0.106 0.136 0.171 0.210 0.252 0.298

10 54 51 32 5 1 1

0.053 0.078 0.102 0.131 0.164 0.201 0.425

11 13 15 12 3 1

0.052 0.076 0.100 0.127 0.159 0.194

12 4 3 1

0.051 0.097 0.123 0.153

13 1 1

0.051 0.120 0.290

distributed, with a distribution that depends only on ki and ψ. It is also observed

that the RMSPE decreases as ki increases. This also makes sense, because ki is

part of the sample size. As ki increases, more information is available for better

prediction; as a result, the MSPE should decrease.

6. Conclusion

We have derived a linearization-based method for producing a second-order

unbiased estimator of the log-MSPE of a predictor of a mixed effect of interest.

We apply the method to the special case of predicting a (possibly) nonlinear

mixed effect using the EBP under a GLMM. We demonstrate the superiority of

our method over a naive predictor and the McJack method, especially in terms

of the computational efficiency. We use a real-data example to illustrate the

practical relevance of our method.
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The computational disadvantage of the McJack method makes it difficult

to evaluate its performance in large-scale simulation studies, which need many

simulation runs to produce accurate results, even when m is moderately large.

it may also be inconvenient in practice when measure-of-uncertainty results need

to be produced in a timely manner. Our proposed log-MSPE estimator does

not have any of these issues, and it is as accurate as the McJack method, and

sometimes more accurate.

The current approach is similar to the Prasad–Rao linearization method for

estimating the MSPE (Prasad and Rao (1990)). Thus, it does not result in any

simplification in terms of the analytic derivations compared with the Prasad–Rao

method. However, there is potentially a middle ground between the analytically

tedious Prasad–Rao method and the computationally intensive McJack method.

Recently, Jiang and Totabi (2020) proposed a Sumca method for estimating

the MSPE of a complex predictor. The method may be viewed as a hybrid

of the linearization and resampling methods: it uses the linearization method

to obtain the leading term of the MSPE estimator, and MC method to obtain

a bias correction to achieve the second-order unbiasedness. The linearization is

(much) simpler to derive than that of the Prasad–Rao method (because one does

not need to achieve the second-order unbiasedness for the leading term), and

the MC bias correction is computationally much faster than those of the McJack

or double bootstrap methods (Hall and Maiti (2006)). In future work, we shall

explore extending the Sumca method to the log-MSPE estimation.

As mentioned in Section 1, most existing second-order unbiased MSPE

estimators may take negative values. In particular, Liu, Ma and Jiang (2022b)

propose a modified Prasad–Rao (PR) estimator for estimating the MSPE of

the OBP (Jiang, Nguyen and Rao (2011)). Empirical studies suggest that the

modified PR estimator does not take negative values; however, so far, there is no

theoretical proof that this estimator is guaranteed to be positive. Furthermore,

we explored the recently proposed Sumca method (Jiang and Totabi (2020)) in

our simulation study, finding that it did not take any negative values in our case.

Although Liu et al. (2023) show that it can take negative values, the probability

of this occurring is very low.

In our opinion (and this is also suggested by Jiang, Lahiri and Nguyen (2018),

the log-MSPE is more convenient to estimate than the MSPE, similarly to show

the log-likelihood is often easier to handle than the likelihood. Once we have a

log-MSPE estimate, it can be converted easily into an MSPE estimate, which

is guaranteed to be positive. In particular, log-MSPE estimation should be

encouraged in SAE.
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Supplementary Material

Technical derivations and expressions are provided in the online Supplemen-

tary Material.
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