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Abstract: Motivated by applications in phenome-wide association studies (Phe-

WAS), we consider in this paper simultaneous testing of columns of high-dimensional

cross-covariance matrices and develop a multiple testing procedure with theoretical

guarantees. It is shown that the proposed testing procedure maintains a desired

false discovery rate (FDR) and false discovery proportion (FDP) under mild regu-

larity conditions. We also provide results on the magnitudes of the signals that can

be detected with high power. Simulation studies demonstrate that the proposed

procedure can be substantially more powerful than existing FDR controlling proce-

dures in the presence of correlation of unknown structure. The proposed multiple

testing procedure is applied to a PheWAS of two auto-immune genetic markers

using a rheumatoid arthritis patient cohort constructed from the electronic medical

records of Partners Healthcare System.

Key words and phrases: Covariance, false discovery rate, multiple responses, mul-

tiple testing, PheWAS.

1. Introduction

Simultaneously assessing the associations among a large number of variables

is an important problem in statistics with a wide range of applications. For ex-

ample, large-scale testing tools are frequently needed for biomedical studies such

as genome-wide association studies (GWAS) (Bush and Moore (2012)); high

throughput gene expression profiling studies of microRNAs and mRNAs (Kata-

giri and Glazebrook (2009); Nelson et al. (2004)); and phenome-wide association

studies (PheWAS) which examine the relationships between a large number of

disease phenotypes and some candidate genomic markers (Denny et al. (2010)).

A critical step in performing a large-scale multiple testing is to control

the false discovery rate (FDR). Standard FDR control procedures, such as the

Benjamini-Hochberg (BH) procedure (Benjamini and Hochberg (1995)), typi-

cally built under the independence assumption, would fail to provide desired
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error controls in the presence of strong correlation. Alternative methods that

allow for the general dependency, including the Benjamini-Yekutieli (BY) proce-

dure (Benjamini and Yekutieli (2001)) and those proposed in Romano and Shaikh

(2006a,b) and Guo and Rao (2008), tend to be overly conservative (see simula-

tion results in Section 4). Furthermore, existing methods largely focus on the

association between a single outcome variable with a large number of candidate

covariates (Efron (2004, 2007); Owen (2005); Fan, Han and Gu (2012); Fan and

Han (2017), e.g.). However, multivariate outcomes are often of interest in many

applications such as the PheWAS. These aforementioned methods may not be

valid or powerful for such PheWAS settings due to the more complex correlation

structure of the test statistic and the exact null distribution being unknown.

In this paper, we formulate the problem of assessing the association between

a large number of variables and a vector of outcomes as the statistical problem of

simultaneous testing of columns of high-dimensional cross-covariance matrices;

and develop a general framework for such a testing problem without requiring

strong assumptions on the correlation structures.

1.1. The problem

We consider a problem of multiple testing for columns of high-dimensional

cross-covariance matrices. Let D = {(Y ′k ,X ′k)′, 1 ≤ k ≤ n}, where Yk = (Yk1,

. . . , Ykd)
′ and Xk = (Xk1, . . . , Xkp)

′, be a random sample consisting of n inde-

pendent and identically distributed copies of (Y ,X). In the PheWAS setting,

Y may be a vector of genomic markers and X represents all phenotypic disease

conditions of interest. For 1 ≤ i ≤ p, define the cross-covariance vector between

Y and Xi by σi = (σ
(i)
1 , . . . , σ

(i)
d )′, where σ

(i)
j = Cov(Yj , Xi). Thus, σi is the ith

column of the cross-covariance matrix

ΣY X ≡ Cov(Y ,X) = [σ1, . . . ,σp]

between Y and X. We wish to simultaneously test the collection of p hypotheses

H0i : σi = 0 versus H1i : σi 6= 0, 1 ≤ i ≤ p (1.1)

based on the random sample D , while controlling the overall false discovery rate

(FDR) and false discovery proportion (FDP). We are interested in multiple test-

ing of the columns, not individual entries, of the cross-covariance matrix ΣY X .

Here the ith hypothesis examines whether the marker vector Y is associated with

the ith disease condition. We are particularly interested in the setting where the

number of the true alternative hypotheses is relatively small as in the case of the

applications in PheWAS. Here, we consider linear associations between Y and
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X but note that transformations can be performed on the original data. For

example we typically transform the ICD9 code Xj as log(1 +Xj) to increase the

power of analysis since the count of ICD9 codes tend to be highly skewed.

Large-scale multiple testing of the columns of a high-dimensional cross-

covariance matrix is technically difficult due to the complex entrywise depen-

dence structures. No existing multiple testing procedures can be applied to this

problem to provide accurate FDR or FDP control. Available methods and theo-

retical results largely focus on z- or t-tests for univariate Y and commonly require

the knowledge of the null distribution. For example, Fan, Han and Gu (2012)

and Fan and Han (2017) considered multiple testing for normal means and re-

quired the covariance matrix to be known or well estimated. Efron (2004, 2007)

developed FDR controlling procedures for multiple t-tests. The cross-covariance

testing considered here is more complicated due to the involvement of multiple

outcomes and the unknown and complicated dependence structure of the entries

of the cross-covariance matrix. The current setting necessitates the use of test

statistics with only approximate null distributions. No existing theoretical results

can ensure accurate control of the FDR and FDP under such complex depen-

dence structure without assuming that the null distribution of the test statistics

is known.

The choice of the null distribution may substantially affect the simultane-

ous inference procedure (Efron (2004); Liu and Shao (2014)). In fact, Liu and

Shao (2014) showed that in multiple t-tests with the dimension much larger than

the sample size, if the p-values are calculated from the asymptotic distribution,

such as normal distribution or t-distribution, then the FDR and FDP of the BH

method can converge to one. It is thus critical to justify the use of asymptotic

null distribution for proper FDR control. If the number of true signals p1 ≥ cp

for some c > 0, the method in Storey, Taylor and Siegmund (2004) incorporates

the estimation of the proportion of the true nulls into the BH method. In the

PheWAS setting, the signal is sparse and p1 is of order o(p), which leads to the

equivalence of the Storey, Taylor and Siegmund (2004) and BH procedures. Due

to the sparsity, the strong and complex dependence between the test statistics as

well as the need to estimate the null distribution, neither of the Storey, Taylor

and Siegmund (2004) and BH procedures is able to control FDR or FDP in our

setting, as confirmed via our simulation studies.

We first discuss the motivating application of PheWAS with multiple out-

comes and then discuss the challenges in large-scale multiple testing of columns

of high-dimensional cross-covariance matrices and summarize the main contribu-
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tions of the paper.

1.2. PheWAS of a set of genomic markers

Complementary to GWAS, PheWAS investigates the association between a

set of candidate genomic markers and a diverse range of phenotypes. PheWAS

enables the discovery of genetic markers with pleiotropic effects, and thus may

provide a broader view of the relationship between genetic variation and networks

of phenotypes (Pendergrass et al. (2013); Hall et al. (2014)). This is highly de-

sirable since recent genetic studies have suggested that many genetic loci appear

to harbor variants associated with multiple traits (Solovieff et al. (2013)).

PheWAS has only recently become feasible due to the wide availability of the

electronic medical record (EMR) systems linked with biorepositories. The EMR

system provides detailed patient level phenotypic data including ICD9 codes for

a wide range of disease conditions. To enable efficient genetic research, research

institutions such as Partners Healthcare System (PHS) also link the EMR to

bio-specimen repositories that collect blood samples. Anonymized patient level

phenotype data linked with genotype data can be extracted and stored for clin-

ical research (Liao et al. (2015)). Through such a process, a cohort of 1,837

rheumatoid arthritis (RA) patients with their genomic and phenotypic informa-

tion available has been established at PHS for discovery research (Liao et al.

(2010); Kurreeman et al. (2011); Liao et al. (2013)).

Such linked EMR data enables us to conduct PheWAS to rigorously study

the association between a large number of disease phenotypes X and any given

set of candidate genomic markers Y . In contrast to GWAS, the large number of

phenotypic variables in PheWAS are often substantially correlated. The complex

yet unknown correlation along with the multi-dimensionality of Y contribute

significantly to the difficulty of the multiple testing problem. We translate the

PheWAS problem into the problem of testing high dimensional cross-covariance

matrices and our proposed procedures can overcome such difficulties to draw

valid conclusions from the PheWAS.

1.3. Our contributions

There are two main challenges for simultaneous testing of columns of high-

dimensional cross-covariance matrices: (i) the construction of suitable test statis-

tics for individual hypotheses and providing proper estimates for the null distri-

bution of the test statistics; (ii) the construction of a good procedure to account

for the multiplicity of the tests so that the overall FDR and FDP are controlled
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in the presence of dependency and additional approximation error due to the use

of the estimated null distribution. We summarize the main contributions of this

paper as follows.

1. We propose a test statistic Ti that mimics the Hotelling’s T 2 statistic for

testing an individual hypothesis H0i. It is shown that in the presence of

correlation induced by the observed data, the null distribution of this test

statistic can be well approximated by a χ2 distribution within an appropri-

ate range.

2. We develop a large-scale multiple testing procedure for {H0i, i = 1, . . . , p}
by thresholding the test statistics {Ti, i = 1, . . . , p} with theoretical guar-

antees for FDR and FDP control under flexible correlation structures. Both

theoretical and numerical properties are investigated.

It is proven that, under mild regularity conditions, the proposed multiple

testing procedure based on the asymptotic null distribution of Ti controls

both the FDR and FDP. In addition, we study the power property of the

procedure and provide results on the magnitudes of the signals that can be

detected with high power. Simulation studies demonstrate that the pro-

posed methods can be substantially more powerful than existing FDR con-

trolling procedures in the presence of correlation.

3. Our methods also contribute to the practice of PheWAS using EMR data.

Standard PheWAS defines each disease phenotype Xj based on whether

a patient has at least 1 or 2 ICD9 billing codes and then tests for the

association between the binary phenotype and a single marker Y (Denny

et al. (2010); Liao et al. (2013)). Our proposed procedures allow clinical

investigators to make use of the counts of ICD9 codes, which could be more

powerful and more robust since it is difficult to choose the appropriate

threshold for each disease as the ICD9 codes have varying degree of accuracy

(Liao et al. (2010)).

Our methods allow one to identify the subset of phenotypes that are as-

sociated with multiple, say d, related markers as a group. An alternative

strategy is to perform FDR-controlled marginal testing of dp hypotheses to

identify the set of phenotype and marker pairs that are associated. How-

ever, this approach is generally less powerful than the proposed approach

based on Hotelling T statistics. Similar patterns have been previously re-

ported when comparing entry-wise testing versus group level testing (Xia,

Cai and Cai (2017), e.g.).
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4. The proposed procedure is applied to a PheWAS of two important auto-

immune genetic markers using the EMR RA cohort described above. The

goal is to comprehensively evaluate how these genetic variations may con-

tribute to comorbidities of RA. The results show that these risk alleles are

potentially associated with RA severity, chronic fatigue syndrome, back

pain and anemia.

1.4. Structure of the paper

The rest of the paper is organized as follows. The proposed methodology

detailing the test statistics for individual hypotheses as well as the simultaneous

testing procedure is introduced in Section 2. A theoretical analysis of the multiple

testing procedure, presented in Section 3 and proved in the supplementary mate-

rials, shows that the proposed method controls the FDR and the false discovery

proportion (FDP) at a desired nominal level asymptotically. We discuss how the

proposed procedure relates to and differs from existing FDR controlling methods

in Section 3.3. Results from simulation studies are given in Section 4, along with

those of the application of the proposed procedures to the aforementioned RA

cohort. Section 5 discusses a few related issues. Proofs for the theoretical results

are given in the Supplementary Materials.

2. Methodology

We detail the proposed multiple testing procedure in this section. We first

introduce the test statistics for testing the individual hypothesis H0i : σi = 0.

Let Ẑki =
(
Yk− Ȳ

)(
Xki−X̄i

)
where Ȳ = n−1

∑n
k=1 Yk and X̄i = n−1

∑n
k=1Xki

for 1 ≤ i ≤ p and 1 ≤ k ≤ n. Then

σ̂i = n−1
n∑
k=1

Ẑki

is a consistent and asymptotically unbiased estimator of σi, the covariance vector

between Y and Xi. A test for H0i may be constructed based on the observed

n1/2σ̂i along with its covariance matrix that can be approximated using the

sample covariance matrix of
{
Ẑki, k = 1, . . . , n

}
,

Σ̂Zi = n−1
n∑
k=1

(
Ẑki − σ̂i

)(
Ẑki − σ̂i

)′
.

Inspired by the Hotelling’s T 2 statistic for testing a multivariate normal mean

vector, we propose to test H0i using the test statistic
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Ti = n(σ̂i)
′(Σ̂Zi

)−1
σ̂i. (2.1)

Let H0 = {i : σi = 0} be the index set of all null hypotheses, H1 = {i : σi 6= 0},
and p0 = Card(H0). As indicated in Lemma 1 in the Supplementary Materials,

under the conditions of Theorem 1,

max
i∈H0

∣∣∣∣P(Ti ≥ t)
G(t)

− 1

∣∣∣∣→ 0

uniformly in t ∈ [0, ap], where G(t) = P
(
χ2
d ≥ t

)
and

ap = 2 log p+ (d− 1) log log p. (2.2)

Hence, when n is large, the chi-squared distribution provides an accurate approx-

imation to the null distribution of Ti in the range [0, ap].

We next propose an FDR-controlled multiple testing procedure by thresh-

olding the test statistics {Ti, i = 1, . . . , p}. Specifically, let t > 0 be a rejection

threshold so that H0i is rejected if and only if Ti ≥ t. For any given threshold

t > 0, the false discovery proportion (FDP) based on the random sample D is

FDP(t) =

∑
i∈H0

I(Ti ≥ t)
max{

∑p
i=1 I(Ti ≥ t), 1}

. (2.3)

To maximize the power of the test or equivalently the rejection rate among H1

while maintaining an FDP level of α, the optimal threshold t is then

t̂0 = inf{t : FDP(t) ≤ α}.

Since the denominator of FDP(t) in (2.3) is observable, the key to empirically

control the FDP is to find a good estimate of the numerator
∑

i∈H0
I(Ti ≥ t).

We will show that

sup
0≤t≤bp

∣∣∣∣
∑

i∈H0
I(Ti ≥ t)

p0G(t)
− 1

∣∣∣∣→ 0 in probability,

where

bp = 2 log p+ (d− 3) log(log p).

The range [0, bp] is nearly optimal. When t ≥ bp + log(log p), G(t) may not

consistently estimate p−10

∑
i∈H0

I(Ti ≥ t). Here p0 can be further estimated

by p due to the sparsity in the number of alternative hypotheses in many data

applications. Based on this analysis, we propose a multiple testing procedure for

simultaneously testing the hypotheses in (1.1):

FDR control procedure. Calculate Ti in (2.1) and, for any given nominal

FDR level α ∈ (0, 1), reject H0i whenever Ti ≥ t̂, where
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t̂ = inf

{
0 ≤ t ≤ bp : G(t) ≤

αmax
{∑

1≤i≤p I(Ti ≥ t), 1
}

p

}
(2.4)

if the righthand side of (2.4) exists; and t̂ = ap otherwise.

When t̂ in (2.4) does not exist, the FDR control procedure simply thresholds

the test statistics at the value ap given in (2.2). Unlike the conventional BH

procedure, the proposed thresholding rule enables the corresponding multiple

testing procedure to control both the FDR and the FDP. As shown numerically

in Section 4, if the number of alternatives p1 is small, then t̂ in (2.4) may not

exist and the true FDP of the BH method can be much higher than α. In this

case, the proposed method uses ap as the thresholding level adaptively and is

able to control the FDP efficiently. See more discussion in Section 5.

3. Theoretical Results

We investigate in this section the theoretical properties of the proposed mul-

tiple testing procedure and discuss its relation to existing methods. Proof of these

results can be found in the Supplementary Materials. Numerical performance of

the procedure will be studied in Section 4. We first state some conditions on

the correlation structure. Let Zi = (Y − µY )(Xi − µi), ΣZi = Cov(Zi) and

ξi = Σ
−1/2
Zi (Zi − σi). As in canonical correlation analysis, define the maximum

correlation coefficients ρ∗ij = max‖a‖=1,‖b‖=1 |corr
(
a′ξi, b

′ξj
)
|, where ‖ · ‖ denotes

the Euclidean norm. ρ∗ij characters the dependence between Ti and Tj .

Define

B(δ) = {(i, j) : i ∈ H0, j ∈ H0, ρ
∗
ij ≥ δ, i 6= j} with δ ∈ (0, 1).

The set A(ε) = B{(log p)−2−ε} includes the pairs ξi and ξj that are strongly

correlated for i, j ∈ H0. The first condition requires the number of strongly

correlated pairs to be not too large.

(C1). There exist some ε > 0 and some δ > 0 such that∑
(i,j)∈A(ε)

p{2ρ
∗
ij/(1+ρ

∗
ij)}+δ = O

(
p2(log p)−2

)
. (3.1)

Remark 1. When (Y ′,X ′) has an elliptically contoured distribution, it is easy

to see that ρ∗ij ≤ |ρij | for i, j ∈ H0, where (ρij)1≤i,j≤p is the correlation matrix of

X. In this case, (3.1) is reduced to∑
(i,j)∈A1(ε)

p{2|ρij |/(1+|ρij |)}+δ = O
(
p2(log p)−2

)
, (3.2)
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where A1(ε) is defined as A(ε) with ρ∗ij replaced by |ρij |. Condition (3.1) holds

if Card{B(δ)} = O(pρ) for any 0 < δ < 1 and some ρ < 2/(1 + δ), and

Card{A(ε)} = O(pρ) for some ρ < 2 and ε > 0. The correlation condition

(3.1) can be further weakened if the number of signals becomes larger and can be

easily satisfied in many applications. For example, in the scale-free network, only

a few variables are associated with many variables and most of variables are only

associated with a few others. In PheWAS settings, most diseases only have a few

co-morbidities and hence these assumptions for Card{B(δ)} and Card{A(ε)} are

reasonable.

Remark 2. When i ∈ H0 and j ∈ H0, we have Y uncorrelated with (Xi, Xj).

If we assume that Y is independent from (Xi, Xj) for i ∈ H0 and j ∈ H0, then

ρ∗ij = |ρij |. In this case, (C1) is reduced to a correlation condition on X which

is quite natural.

3.1. FDR and FDP control

For the multiple testing procedure defined in Section 2, the FDP and FDR

are given by

FDP =

∑
i∈H0

I
(
Ti ≥ t̂

)
max

{∑
1≤i≤p I

(
Ti ≥ t̂

)
, 1
} and FDR = E(FDP).

The next two theorems show that the proposed multiple testing procedure

controls FDR and FDP asymptotically. Furthermore, the actual FDR and FDP

converge to αp0/p asymptotically when the number of non-trivial signals,

m1(c) = Card

{
i : 1 ≤ i ≤ p, σ′iΣ−1Ziσi ≥

c(log p)

n

}
,

is not too small for some c. Let λi1 and λid be the largest and smallest eigenvalues

of ΣZi, respectively.

Theorem 1. Suppose that p ≤ nβ for some β > 0, E‖Y − µY ‖8β+4+ε ≤ K,

max1≤i≤p E|Xi − µi|8β+4+ε ≤ K and c1 ≤ λid ≤ λi1 ≤ c2 for all 1 ≤ i ≤ p and

some ε > 0, K > 0, c1 > 0 and c2 > 0. Under (C1), we have, for any ε > 0,

lim
(n,p)→∞

P(FDP ≤ α+ ε) = 1 and lim sup
(n,p)→∞

FDR ≤ α.

Theorem 2. Suppose the conditions in Theorem 1 hold. If

m1(c) ≥ log p for some c > 2, (3.3)

then
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lim
(n,p)→∞

FDR

αp0/p
→ 1 and

FDP

αp0/p
→ 1 in probability as (n, p)→∞. (3.4)

When additional assumptions are imposed on the sparsity and strength of

the signals, the condition on the correlation matrix R can be further relaxed.

For example, under

m1(c) ≥ pθ for some 0 < θ < 1 and c > 2(1− θ), (3.5)

(C1) can be weakened as follows.

(C1∗).
∑

(i,j)∈A(ε)

p{2(1−θ)ρ
∗
ij/(1+ρ

∗
ij)}+δ = O

(
p2

(log p)2

)
, for some ε > 0 and δ > 0.

Under these alternative conditions, we have similar results on the FDR and FDP

control.

Theorem 3. Suppose that p ≤ nβ for some β > 0, E‖Y − µY ‖8β+4+ε ≤ K,

max1≤i≤p E|Xi − µi|8β+4+ε ≤ K and c1 ≤ λid ≤ λi1 ≤ c2 for all 1 ≤ i ≤ p and

some ε > 0, K > 0, c1 > 0 and c2 > 0. Under (C1∗) and (3.5), we have (3.4)

holds.

When the number of non-trivial signals increases to the magnitude ofm1(c) =

p/(log p)λ for some λ > 0 and c > 0, we only require Card{A(ε)} ≤ p2−δ for some

δ > 0. The number of pairs (ξi, ξj) with non-trivial correlations can be as large

as p2−δ.

When d = 1, Owen (2005) considered multiple tests assessing the associa-

tion between Y and Xi for i = 1, . . . , p based on the sample correlation coeffi-

cients. He developed the variance of the number of falsely rejected hypotheses∑
i∈H0

I{|ρ̂i| ≥ t} for a fixed t > 0. He showed that the variance can be affected

significantly by the correlations between Xi, 1 ≤ i ≤ p. No FDR controlling

procedures were provided. When considering FDR control, our results obtained

under different sets of conditions suggest that the effect of the correlations from

X is related to the number of signals. As θ in (3.5) increases, the total number

of signals increases and the condition on the correlation becomes weaker.

3.2. Power properties

We now consider the power of the procedure. Define the power by

P̂O =

∑
i∈H1

I(Ti ≥ t̂)
Card(H1)

.

Suppose (3.5) holds and the magnitude of all signals in H1 satisfies
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σ′iΣ
−1
Ziσi ≥

c log p

n
for i ∈ H1. (3.6)

Theorem 4. Suppose that p ≤ nβ for some β > 0, E‖Y − µY ‖8β+4+ε ≤ K,

max1≤i≤p E|Xi − µi|8β+4+ε ≤ K and c1 ≤ λid ≤ λi1 ≤ c2 for all 1 ≤ i ≤ p and

some ε > 0, K > 0, c1 > 0 and c2 > 0. If (3.5) and (3.6) hold, then

P̂O → 1 in probability.

Theorem 4 shows that the proposed multiple testing procedure has over-

whelming power in detecting the signals whose magnitudes satisfy (3.6). The

constant factor c in (3.6) cannot be replaced by o(1). Otherwise, it is not even

possible to detect the global signals (σi 6= 0 for some i); see Donoho and Jin

(2004) in the setting of signal detection under a sparse normal mixture model.

3.3. Relation with the existing FDR control methods

Under the PheWAS setting with multi-dimensional Y , controlling the FDR

or FDP is more complicated due to the non-trivial dependence among the test

statistics, the need to estimate the null distribution of the test statistics or p-

values and the sparsity of the signals. Most existing FDR control procedures

require the exact p-values. When the number of the true signals is fixed as

the dimension p → ∞, Proposition 2.1 in Liu and Shao (2014) shows that the

BH procedure is unable to control the FDP. The PheWAS setting is even more

challenging with the additional complication of strong and complex dependence

among the test statistics.

Compared with the BH procedure, the proposed method differs in the ad-

ditional thresholding step, which is critical in controlling the FDR and FDP. To

see the differences in the properties of the two procedures, we investigate the

theoretical performance of the BH procedure. Let the p-values pi = G(Ti). The

BH procedure rejects H0i if pi ≤ p(
k̂
), where the p-values {pi, 1 ≤ i ≤ p} are

sorted as p(1) ≤ · · · ≤ p(p) and k̂ satisfies

k̂ = max

{
k : p(k) ≤

αk

p

}
.

The BH procedure is equivalent to rejecting H0i if Ti ≥ t̂BH , where t̂ is defined

by

t̂BH = inf

{
t ≥ 0 : G(t) ≤

αmax
{∑

1≤i≤p I(Ti ≥ t), 1
}

p

}
. (3.7)

The FDR and FDP of the BH procedure are given by
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FDPBH =

∑
i∈H0

I
{
Ti ≥ t̂BH

}
max

(
1,
∑

1≤i≤p I
{
Ti ≥ t̂BH

}) and FDRBH = E(FDPBH).

We show that the BH method cannot control the FDP if the number of true

alternatives |H1| is fixed as p→∞. To simplify the proof, we illustrate the point

in the case that Σ = Cov(X) is diagonal.

Proposition 1. Suppose the conditions in Theorem 3.1 hold and Σ is diagonal.

If |H1| is fixed as p→∞, then for any 0 < ξ < 1, we have

lim inf
(n,p)→∞

P(FDPBH ≥ ξ) ≥ η (3.8)

for some η > 0 which may depend on ξ and |H1|.

This proposition indicates that in the extremely sparse case, the BH method

is not suitable for the control of FDP. In contrast, Theorem 3.1 shows that our

procedure can still control the FDP when |H1| is fixed.

When |H1| goes to infinity at certain rates, we will have t̂ ≤ bp with probabil-

ity tending to one. In this case, t̂ in (2.4) exists and our procedure is equivalent to

the BH method. So the BH method can control the FDP/FDR asymptotically.

Proposition 2. Suppose the conditions in Theorem 3.1 hold. If (3.3) holds, we

have

lim
(n,p)→∞

FDRBH

αp0/p
= 1 and

FDPBH
αp0/p

→ 1 in probability as (n, p)→∞.

When t̂BH ≤ bp, our procedure coincides with the BH procedure; if t̂BH > bp,

then our procedure rejects hypotheses with test statistics exceeding ap. This

threshold is necessary since the asymptotic null distribution G(t) = P
(
χ2
d ≥ t

)
may not approximate p−10

∑
i∈H0

I(Ti ≥ t) sufficiently well for large t in that

p−10

∑
i∈H0

I(Ti ≥ t)/G(t) 9 1 when t ≥ bp + log(log p). As shown in our

simulation studies, the probability of t̂BH > bp approaches 1 under extreme

sparsity, and is non-trivial under moderate sparsity. This also sheds light on why

the proposed procedure controls the FDR and FDP while the BH procedure fails

under the PheWAS setting. As shown in Theorem 3.1, our thresholding rule

based procedure adaptively controls the FDR and FDP without prior knowledge

of the degree of sparsity.

4. Numerical Results

We investigated the numerical performance of the proposed multiple testing

procedure through simulation studies. Numerical comparison with alternative
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methods is given. The proposed procedure was applied to an RA cohort to

comprehensively evaluate how two important genetic markers for auto-immune

diseases can contribute to comorbidities of RA.

4.1. Simulation Studies

We performed extensive simulations to examine the performance of the pro-

cedure in finite sample with practical sample sizes and p. We let d = 4 for

the outcome Y , considered p = 500, 1,000 and 2,000 for X, and the sample size

n = 100 and 150. Under each configuration, the results are summarized based on

500 simulated datasets for FDR estimates and 100 simulated datasets for power

calculations. For each dataset, we performed testing based on our methods and

several existing methods In addition to to the BH, BY methods, we compared

to the Storey, Taylor and Siegmund (2004) (JS) procedure, the Romano and

Shaikh (2006b) step-up procedure controlling FDP at 50% with probability at

least 1−α (RSuFDP), the Romano and Shaikh (2006a) step-down procedure con-

trolling FDP at 50% with probability at least 1 − α (RSdFDP) and controlling

FDR at α (RSdFDR), as well as the Guo and Rao (2008) procedure (GR).

We generated the entire data vector W := (Y1, . . . , Y4, X1, . . . , Xp)
′ from

W = Σ1/2ε, with two settings of Σ, as described below, were chosen to reflect

different correlation structures, and ε = (ε1, . . . , εp+4)
′ are independent and iden-

tically distributed. The distribution of εi is taken to be (i) the standard normal

N(0, 1); (ii) the exponential with mean 1; and (iii) a mixture of N(−1, 0.52)

with probability 0.1 and N(0, 0.52) with probability 0.9. As our test statistics

are invariant to the variances, we take the diagonal entries of Σ to be 1. Let

Σ1 = (σij1) ∈ R(p1+4)×(p1+4) and Σ2 = (σij2) ∈ R(p−p1)×(p−p1). In all models, we

let Σ = diag(Σ1,Σ2) and σij1 = {(2 + δ) log p/n}I(i 6=j)/2.

Model 1: σij2 = ℘|j−i|. Here ℘ = 0.5 in Model (1A) and ℘ = 0.8 in Model

(1B).

Model 2: Σ2 = diag(D1, . . . , Dm, I), where m = {(p − p1)/10}, Dk ∈
R10×10, 1 ≤ k ≤ m. I is the identity matrix. All off-diagonal entries of Dk

are taken to be ℘. We let ℘ = 0.8 in Model (2A) and ℘ = 0.5 in Model

(2B).

Under these models, only X1, X2, . . . , Xp1 are correlated with Y .

We examined the probability that t̂ in (2.4) exists under different settings,

which reflects the degree to which our procedure differs from the BH procedure.

Figure 1 summarizes the frequency that t̂ in (2.4) exists when δ = −0.5, α = 0.05



996 CAI ET AL.

α = 0.05 α = 0.10

Figure 1. The frequency that t̂ exists when n = 100, p = 1,000 with normal error.

and 0.10, n = 100 and p = 1,000. The probability that t̂ does not exist approaches

1 when the signals are extremely sparse, is non-trivial under moderate sparsity

and gradually decreases to near 0 as p1 further increases. These results demon-

strate that the proposed procedure differs substantially from the BH procedure

under sparse settings.

We next investigated the performance of various procedure in controlling

for the FDR in finite samples. Figures 2 and 3 present the empirical FDR for

α = 0.05 and 0.1when δ = −0.5 with various choices of p, p1 and n. The results

show that the proposed procedures maintain the desired FDR levels well when

p1 = 30. For p1 = 10, our method also generally maintains the FDR level but

with slight inflation for a few scenarios when n = 100. On the other hand, the

BH procedure tends to result in inflated FDR under a variety of settings and the

inflation can be quite substantial for some scenarios. The JS procedure, requiring

an estimate of the null proportion, tends to give substantially inflated FDR, due

to the inaccurate estimate of the null proportion. All other procedures, including

the BY and FDP controlling procedures are able to control the FDR but tend

to be conservative with empirical FDR substantially lower than the target levels.

For example, when p = 2,000, p1 = 10, n = 100, and α = 0.1, the empirical FDR

was 0.110, 0.111 and 0.068 for the proposed procedure, and 0.144, 0.151 and 0.097

for the BH procedure, under Model (1A) with mixture, normal and exponential

error distributions, respectively. To better preserve the FDR, our procedure also
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Figure 2. Empirical FDR of various procedures, including the proposed, BH, BY,
Storey, Taylor and Siegmund (2004) (JS), Guo and Rao (2008) (GR), the Romano and
Shaikh (2006b) step-up procedure controlling FDP at 50% with probability at least
1−α (RSuFDP), the Romano and Shaikh (2006a) step-down procedure controlling FDP
at 50% with probability at least 1 − α (RSdFDP) as well as the Romano and Shaikh
(2006a) step-down FDR controlling procedure (RSdFDR), under the very sparse setting
with p1 = 10.

demonstrates superior performance in maintaining the FDP when compared to

the BH and the JS procedure, as illustrated in Figure 4.

We now turn to the comparison of powers between our procedure and existing

procedures that are robust to the dependence structure. We varied the signal

strength by letting δ in σij1 vary from −0.5 to 1. Figure 5 summarizes the

empirical power of various procedures over different values of δ when n = 100,
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Figure 3. Empirical FDR of various procedures, including the proposed, BH, BY, Storey,
Taylor and Siegmund (2004) (JS), Guo and Rao (2008) (GR), the Romano and Shaikh
(2006b) step-up procedure controlling FDP at 50% with probability at least 1 − α
(RSuFDP), the Romano and Shaikh (2006a) step-down procedure controlling FDP at
50% with probability at least 1−α (RSdFDP) as well as the Romano and Shaikh (2006a)
step-down FDR controlling procedure (RSdFDR), under the moderately sparse setting
with p1 = 30.

p = 2,000 and α = 0.1. Across all settings, the power of our procedure is

substantially higher than that of competing methods, with the advantage even

more significant under the very sparse setting of p1 = 10.

These numerical results are consistent with the theoretical analysis discussed

earlier. Both the BH and the Storey procedures fail to control for the FDR or

FDP due to the complex correlation structure and the estimated null distribution
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Figure 4. Empirical survival distribution of the FDP under different models with p1 = 30
or 10 when n = 100, p = 1,000, α = 0.1 and the error is normal.

−

Proposed

BY
GR

RSdFDP

RSuFDP

RSdFDR

− − −

− − − −

Figure 5. Comparing power of different procedures under different models with p1 = 30
or 10 when n = 100, p = 2,000, α = 0.1 and the error is normal.

under the sparse setting. On the other hand, the BY procedure along with other

competing FDR and FDP controlling procedures are overly conservative with

substantially lower power compared to our method.
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4.2. Application to PheWAS of autoimmune risk alleles with EMR

We applied our procedure to an EMR cohort of 1837 RA subjects (Liao

et al. (2010)). Blood samples were collected for these RA cases using the BWH

Specimen Bank from 2009–2010 and a range of single nucleotide polymorphisms

(SNPs) associated with various auto-immune diseases were genotyped (Kurree-

man et al. (2011)). We limited our study to 1,237 individuals of European ances-

try, this was the majority (80%) of our cohort. For this analysis, we focused on

the two major genetic risk factors for RA, the human leukocyte antigen shared

epitope (HLA-SE) region (tag SNP rs6910071) and a loci in the PTPN22 gene

(rs2476601). We were interested in conducting a PheWAS using these two SNPs

to determine whether carriage of these risk alleles are associated with RA comor-

bidities. To perform the PheWAS, the ICD9 codes were grouped into clinically

relevant diseases, termed as PheWAS code, as suggested in Denny et al. (2010).

For each of the PheWAS codes, the value of the variable represents total count

of ICD9 codes a patient received across all hospital encounters. This analysis

included 352 PheWAS codes that have a prevalence of ≥ 2%, where the preva-

lence is calculated as the fraction of patients with non-zero counts. Since these

counts are highly skewed, a log(x + 1) transformation was applied to each of

the code count to obtain the p = 352 dimensional vector X for the association

analysis. The 2-dimensional vector Y consists of the allele counts of the HLA-SE

and PTPN22 SNPs, taking values 0, 1 or 2.

At an FDR level of 0.05, our testing procedures identified 4 phenotypes as

significantly associated with the HLA-SE and PTPN22: RA (p-value = 3.8E-7),

chronic fatigue syndrome (p-value = 1.1E-4), back pain (p-value = 1.2E-4) and

anemias (p-value = 7.0E-4). It is interesting here that all 4 phenotypes are re-

lated to severity of the disease. Patients with more severe RA tend to have a

higher number of RA ICD9 codes, suggesting more visits related to RA. Anemia

of chronic disease is also frequently associated in RA patients with high disease

activity and higher levels of inflammation (Masson (2011)). Our findings are

consistent with previous studies demonstrating an association between carriage

of the HLA-SE and RA disease severity (Weyand et al. (1992); Jaraquemada

et al. (1986)) and hence is likely to be associated with the phenotypes associated

with RA severity. Chronic fatigue syndrome (CFS), a multifactorial condition,

is highly related to autoimmune diseases. High levels of inflammation result

in symptoms of profound fatigue and may explain the association with chronic

fatigue syndrome (CFS). In addition, recent gene expression studies have con-
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firmed that several immune function related genes are candidate markers of CFS

(Fang et al. (2006)). Since both the HLA-SE and PTPN22 genes are important

in immune function and both predispose to other autoimmune diseases (Criswell

et al. (2005); Davidson and Diamond (2001)), it is interesting to see their asso-

ciation with CFS. When we applied the BY method to this example, only RA

was deemed as significant at FDR level of 0.05. This again demonstrates that

our proposed method is more powerful than the BY method.

5. Discussion

We introduced in this paper a multiple testing procedure for simultaneously

testing columns of high-dimensional cross-covariance matrices. There is an im-

portant difference between our FDR control procedure given in (2.4) and the

well-known BH procedure. When the test statistics Ti are used and the p-values

are calculated from P(χ2
d ≥ t), the BH procedure is equivalent to rejecting H0i

whenever Ti ≥ t̂BH . For our procedure, if tBH > bp we do not use t̂BH but

instead threshold at ap = 2 log p+(d−1) log(log p) to control the FDP and FDR.

Thus, for t > bp, we do not use pG(t) to estimate R̂0(t) ≡
∑

i∈H0
I{Ti ≥ t} while

the BH method does. When pG(t) is bounded or converges to infinity slowly, it

is not a good estimator for R̂0(t) and can even be inconsistent. For example, if

we treat Ti as i.i.d. random variables with the cumulative distribution function

1−G(t), then R̂0(t) is a binomial random variable with success probability G(t).

So if pG(t) is bounded, then R̂0(t) approximately follows a Poisson distribution

with rate p0G(t) and pG(t) is no longer a consistent estimator for R̂0(t). Thus

thresholding test statistics at t̂BH would lead to unstable behavior of the FDP

and ultimately fail to control the FDR when the signals are very sparse.

We next argue that, if t̂ in (2.4) does not exist, then thresholding the test

statistics at ap = 2 log p+ (d− 1) log(log p) is a reasonable way to control FDP.

To explain, we assume the number of true alternative p1 = 10. Let m̂0 be

the number of wrong rejections by any multiple tests procedure. Then FDP ≥
m̂0/(10 + m̂0). So, if we want to control FDP ≤ 0.05, for example, then it

is necessary to make sure m̂0 = 0. In this case, control FDP is equivalent to

controlling FWER. For general fixed p1, controlling FDP at level 1/(p1 + 1) is

essentially equivalent to controlling FWER. When p1 is fixed as p → ∞, t̂ in

(2.4) does not exist with probability tending to one and our procedure would

simply threshold the test statistics at ap to control FDP. In fact, when p1 is

fixed, Liu and Shao (2014) showed that the BH method is unable to control FDP
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at any level 0 < α < 1. Specifically, consider p tests with independent p-values

P1, . . . ,Pp. If mini∈H1
Pi = oP (p−1), then for any 0 < α < 1, there exists c0 > 0

such that lim infp→∞ P(FDP ≥ α) ≥ c0.
Owen (2005) investigated the variance of the number of falsely rejected hy-

potheses under the assumption that all ρj = 0, 1 ≤ j ≤ p, where ρj is the

correlation coefficient between the univariate response Y and the covariates Xi.

This work is related to the control of false discovery number (FDN) which is

different from the control of FDR. In addition, Owen (2005) used the sample

correlation coefficients as the test statistics so that the dependence structure be-

tween the test statistics can be calculated explicitly. Our test statistics are more

complicated. It is difficult to calculate the correlation between Ti and Tj . Hence,

the results in Owen (2005) are not applicable in our setting.

Our procedure tests for correlatedness between Y and Xi’s, which is an easier

task than testing for independence, especially in the setting of high dimension

and low sample size. In the Gaussian case, uncorrelatedness is equivalent to

independence. When data are not Gaussian, we can take transformations of the

data prior to testing such that the transformed data are approximately normal.

The covariance testing is also valid for detecting dependency under other models.

For example, if

h(Xi) = βT

i Y + εi, εi ⊥ Y , h(·) strictly increasing

then it is not difficult to show that

βT

i σ = cov(βT

i Y , Xi) = cov(h(Xi), Xi) = E[{h(Xi)− h(µi)}(Xi − µi)] > 0

under mild conditions on the distribution of Xi. Thus, our test based on σi
can in fact detect non-linear relationships although proper transformation may

increase power. Future research is warranted to test for more complex non-linear

associations in the high dimensional setting.

Supplementary Materials

The proofs of our theoretical results are shown in the Supplementary Mate-

rials.
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