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Abstract: Sliced inverse regression is a valuable tool for dimension reduction. One

can replace the predictor vector with a few linear combinations of its components

without loss of information on the regression. This paper is about richer nonlinear

dimension reduction. Each direction of sliced inverse regression is simply a slope

vector of multiple linear regression applied to an optimally transformed response.

Using this connection, we propose a nonlinear version of sliced inverse regression by

replacing linear function by an additive function of the predictors. Our procedure

has a clear interpretation as sliced inverse regression on a set of adaptively chosen

transformations of the predictors. The flexibility of our method is illustrated via a

simulation study and a data application.
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1. Introduction

Transformation is a commonly used technique in statistics. Regarding re-

gression, transformation of the response variable can often simultaneously achieve

normally distributed errors with a constant variance and a linear regression func-

tion. This methodology, pioneered by Box and Cox (1964), is perhaps the most

common. Then too, transformation of the predictors can convert a complex non-

linear regression relation into a simple and often linear one. For example, if it

appears in a problem that many predictors are likely to need transformation, it-

erative fitting of additive models should be considered. More generally, nonlinear

multivariate techniques, such as alternating conditional expectations (Breiman

and Friedman (1985)) and monotone spline regression (Ramsay (1988)), allow

transformation on both the response variable and the predictors. One transfor-

mation on the response variable is allowed in these algorithms for the purpose of

model fitting.

A fairly common practice is to apply first either marginal transformations or

a joint transformation to multivariate data to induce normality, elliptical symme-
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try, or other appropriate distributions, and then carry out model-based regres-

sion, in most cases linear regression, on the transformed data. This often leads to

model mis-specification giving biased estimators. In principle, any use of trans-

formations requires that the effects of them on the error structure be understood.

The story is different, however, in the context of dimension reduction.

Regarding dimension reduction in regression, transformation of variables

plays two roles. Response transformations, such as slicing (Duan and Li (1991);

Li (1991)) and spline transformation (He and Shen (1997); Fung et al. (2002)),

serve as an intermediate tool for finding interesting patterns in the data, instead

of being used to improve the goodness of model fitting in a traditional way. See

also Zhu et al. (2010); Wu and Li (2011); Yin and Li (2011), and references

therein. Predictor transformations are also useful for reducing the structural

dimension of the regression when the data are concentrated on a nonlinear low-

dimensional space ((Cook, 1998, Chap. 14)). In many cases, it is preferable to use

predictor transformations rather than response transformations, because trans-

formation of the predictors does not change the interpretation of the response

variable. This is particularly the case when we are not assuming a model for the

regression.

Related to the present work is Wang et al. (2014), who present a frame-

work for dimension reduction in regression that lies between linear and fully

nonlinear dimension reduction. Suppose Y is a univariate response variable

and X = (X1, . . . , Xp)
> is a p-vector of predictors. The main idea is to first

transform each of the raw predictors marginally and monotonically, in the form

f (X ) = {f1(X1), . . . , fp(Xp)}>, and then search for a low-dimensional projec-

tion in the space defined by the transformed predictors. Toward this end, they

assume that, given B>f (X ), Y is independent of f (X ), where B is a p× d ma-

trix with d ≤ p. The aim of the analysis is to characterize the subspace spanned

by the columns of B, and for this purpose they propose a two-step procedure by

combining probability integral transformation and sliced inverse regression (Li

(1991)). Although f (X ) or its distribution is user-specified, probability integral

transformed sliced inverse regression suffers from mis-specification of transfor-

mations.

We propose a new nonlinear dimension-reduction method to overcome this

problem. This is primarily motivated by observing the close connection between

sliced inverse regression and multiple linear regression. Our procedure estimates

predictor transformations in a data-driven way, and thus can be regarded as an

adaptive version of probability integral transformed sliced inverse regression.
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2. Methodology

2.1. Sliced inverse regression by optimal scoring

The basic idea of sliced inverse regression by optimal scoring (Wang and

Zhu (2013)) is to linearise a response transformation T (Y ) by φ(Y )>θ, where

φ = (φ1, . . . , φK)> is a K-vector of basis functions, and θ = (θ1, . . . , θK)> is a K-

vector of unknown scores. The scored data is then predicted by linear regression

on X . The simultaneous estimation of the scores and the linear parameters

constitutes the optimal scoring problem.

Suppose that {(x 1, y1), . . . , (xn, yn)} is a random sample on (X , Y ). Let X =

(x 1, . . . ,xn)> and Φ = {φ(y1), . . . ,φ(yn)}> be the two data matrices containing

the predictor values and the basis function values, respectively. Write X = (X1,

. . . ,Xp) with Xk = (x1k, . . . , xnk)> as its k-th column. Without loss of generality,

we assume that the columns of X are centered. In the sample, the criterion of

sliced inverse regression by optimal scoring takes the form

minimize
θi∈RK ,βi∈Rp

‖Φθi −Xβi‖22

subject to θ>i Φ>Φθi = n,θ>i Φ>Φθj = 0, j = 1, . . . , i− 1,
(2.1)

where i = 1, . . . , d ≤ K.

There are various choices for the basis functions. We concentrate on slice

indicator functions. Since the columns of X are centered to have mean zero, one

can see that the constant score vector 1 of length K is trivial, and hence there

are at most K − 1 nontrivial solutions to (2.1).

Remark 1. In the population, sliced inverse regression by optimal scoring se-

quentially solves

minimize
Ti,ai∈R,bi∈Rp

E(Ti − ai −X>bi)
2

subject to var{Ti(Y )} = 1, cov{Ti(Y ), Tj(Y )} = 0, j = 1, . . . , i− 1.
(2.2)

The i-th optimal transformation Ti(Y ) is identical up to a scalar multiplication

to E(η>i X |Y ) and bi(Ti) is proportional to ηi, where ηi is the i-th sliced inverse

regression direction such that

cov{E(X |Y )}ηi = λicov(X )ηi.

Here η1, . . . ,ηp are eigenvectors satisfying η>i cov(X )ηj = 1 if i = j, and 0 if

i 6= j, and λ1 ≥ · · · ≥ λp ≥ 0 are the corresponding eigenvalues. Details can be

found in Chen and Li (1998) and Wang and Zhu (2013).

To study the relationship between a set of predictors and a categorical re-
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sponse, it is known that Fisher’s linear discriminant analysis, canonical correla-

tion analysis, and optimal scoring are equivalent from the dimension-reduction

point of view (Hastie, Buja and Tibshirani (1995)). These data-analytic tools,

popular for classification, are also useful in the regression setting. First, the

original sliced inverse regression method is formally equivalent to Fisher’s linear

discriminant analysis (Kent (1991)), and it is tantamount to sliced inverse regres-

sion by optimal scoring by using the slice indicator functions obtained from slicing

the response variable. Second, Fung et al. (2002) proposed a dimension-reduction

method based on canonical correlation, which can be viewed as a variant of sliced

inverse regression. The latter estimates the kernel matrix cov{E(X |Y )} using

the slice indicator functions, while the former produces a spline-based estimate

by using the B-spline basis functions generated for the response variable. Clearly,

optimal scoring and canonical correlation analysis are equivalent without regard

to classification or regression. Therefore, sliced inverse regression by optimal

scoring includes the original sliced inverse regression method and the canonical

correlation method as special cases.

In typical applications, the number of basis functions K needed is very small

(He and Shen (1997); Fung et al. (2002)), and it is well known that the original

sliced inverse regression method is not overly sensitive to the number of slices.

Remark 2. Due to the equivalence between optimal scoring and canonical corre-

lation analysis, sliced inverse regression by optimal scoring should have the same

theoretical properties as those of the canonical correlation method. Further,

sliced inverse regression by optimal scoring can be interpreted as a method for

estimating the canonical correlations between the columns of X and the columns

of Φ, and thus the directions found by it are useful in their own right in iden-

tifying some important features of the regression of Y on X . In particular, if

the linearity condition of Li (1991) holds, the directions ηi in Remark 1 belong

to the central dimension-reduction subspace, an essential concept of sufficient

dimension reduction (Cook (1998)).

2.2. Flexible dimension reduction

We introduce some notation and definitions. We call span(B) a transformed

dimension-reduction subspace with respect to f if

Y⊥⊥X | B>f (X ). (2.3)

span(B) is called a transformed central dimension-reduction subspace if it satis-

fies (2.3) for some f , and at the same time it has the smallest dimension. The
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following proposition shows that the transformed central dimension-reduction

subspace is well defined.

Proposition 1. If there is a p-vector x∗ = (x∗1, . . . , x
∗
p)
>, such that for all j =

1, . . . , p, f ′j(x
∗
j ) = 1 and f ′j(xj) is continuous at x∗j , where f ′j(xj) denotes the

derivative of fj(xj) with respective to xj, then the transformed central dimension-

reduction subspace is identifiable.

Remark 3. While Wang et al. (2014) requires the transformations fj to be

pre-specified, we propose to simultaneously estimate fj and perform sufficient

dimension reduction. One consequence of this difference is that fj may not

be identifiable, even if the structural dimension is given. For example, if Y =

X3
1 + ε, then f1(x) can be the identity map x or x3, or any other monotone

function. Sufficient dimension reduction is often considered as the first step in

statistical analyses. After that, graphical tools or nonparametric methods can

be used to further investigate the relationship between the response variable and

the reduced set of variables. Suppose g = {g1, . . . , gp} is an alternative set of

transformations such that span(B) is a transformed central subspace with respect

to g . Theoretically, B>f (X ) and B>g(X ) can be treated equally, because

each of them is a minimal and sufficient reduced predictor; numerically, it is

possible that the identifiability issue of transformation functions affects speed

and convergence.

Sliced inverse regression by optimal scoring is a linear dimension-reduction

method. However, our interest in this approach is that it includes linear regres-

sion as a building block. Many techniques exist for generalizing linear regression

to more flexible, nonlinear and/or nonparametric forms of regression. This in

turn leads to more flexible forms of dimension reduction. One simple and ef-

fective approach is to augment the set of predictors to include quadratic and

bilinear terms, and then carry out sliced inverse regression by optimal scoring in

the enlarged space which, in effect, results in nonlinear dimension reduction in

the original predictor space. More flexible approaches use adaptive nonparamet-

ric regression or kernels (Hastie, Tibshirani and Buja (1994); Hastie, Tibshirani

and Friedman (2009)).

The procedure has a clear interpretation as a linear dimension-reduction

method on a set of marginally and adaptively transformed predictors. Specifi-

cally, we transform the raw predictors X = (X1, . . . , Xp)
> in the form f (X ) =

{f1(X1), . . . , fp(Xp)}>, or simply f = (f1, . . . , fp)
>, for a set of smooth univari-

ate functions {f1, . . . , fp} and, at the same time, consider the optimal scoring
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problem with the transformed data as follows.

minimize
f ,{θi},{βi}

H∑
i=1

‖Φθi −Xfβi‖22

subject to θ>i Φ>Φθi = n,θ>i Φ>Φθj = 0, j = 1, . . . , i− 1, i = 1, . . . ,H,

(2.4)

where 1 ≤ H ≤ K is a working dimension, Xf = (Xf1 , . . . ,Xfp) with Xfk =

{fk(x1k), . . . , fk(xnk)}> as its k-th column. Since the fk’s in (2.4) are up to scale

and shift, we demand that
∑n

i=1 fk(xik) = 0 and
∑n

i=1{fk(xik)}2 = n.

The restriction to component-wise monotone transformations is not always

necessary. Our procedure thus permits as much flexibility in the estimated trans-

formations as the data require, and can be interpreted as a method for estimat-

ing the canonical correlations between the transformed predictors and the basis

functions generated for the response variable. This makes it different from the

probability integral transformed sliced inverse regression in Wang et al. (2014).

Remark 4. One advantage of the proposed method over the original sliced

inverse regression is that it can capture marginal symmetry between X and Y ,

such as in the model Y = X2
1 + X2

2 + ε, where ε is the error independent of X ,

and X follows a symmetric distribution. This is related to the robustness of

sliced inverse regression against violation of the linearity condition, given that f

is correctly specified. Our method also inherits one drawback of sliced inverse

regression: it fails when the functional relation is jointly symmetric in the sense

that E(f | Y ) is zero, such that in the model Y = (X3
1 +X3

2 )2 + ε.

The proposed procedure allows multiple transformations on the response

variable for the purpose of dimension reduction. It is closely related to the

monotone spline canonical correlation of Ramsay (1988), which is a tool for com-

parison between two sets of marginally and monotonically transformed variables

via canonical correlation. The difference is that our procedure is concerned with

dimension reduction in regression based on both response transformations and

predictor transformations and, in particular, the response transformations (or

the set of basis functions) and the predictor transformations are not restricted

to be monotone.

2.3. Algorithm

To estimate f , {θi}, and {βi} in (2.4), we use an iterative approach: we first

fix {θi} and {βi} and estimate f , then we fix f and estimate {θi} and {βi}, and

we iterate between these two steps until the algorithm converges.
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When {θi} and {βi} are fixed, minimizing (2.4) with respect to f = (f1,

. . . , fp)
> is similar to fitting an additive model (Wood (2006)). To this end, we

use a variant of the back-fitting procedure. Write βi = (βi1, . . . , βip)
>. For each

k = 1, . . . , p, consider the one-dimensional smoothing problem

minimize
fk

H∑
i=1

∥∥∥∥∥∥Φθi −
∑
l 6=k

βilXfl − βikXfk

∥∥∥∥∥∥
2

2

. (2.5)

Let x̃ k = (x̃>1k, . . . , x̃
>
Hk)>,wk = (w>1k, . . . ,w

>
Hk)>, and ỹk = (ỹ>1k, . . . , ỹ

>
Hk)>,

where

x̃ ik = (x1k, . . . , xnk)>,w ik = (β2ik, . . . , β
2
ik)> ∈ Rn,

ỹ ik =
Φθi −

∑
l 6=k βilXfl

βik
.

Let ñ = Hn and write x̃ k = (x̃1k, . . . , x̃ñk)>,wk = (w1k, . . . , wñk)>, and ỹk =

(ỹ1k, . . . , ỹñk)>. One can show that (2.5) is equivalent to

minimize
fk

ñ∑
s=1

wsk{ỹsk − fk(x̃sk)}2. (2.6)

The criterion adopted here is slightly different from that used in the back-

fitting procedure. Specifically, in each (inner) iteration we identify and update

the function that most reduces the objective function, but that function is kept

fixed and is not further updated in the next iteration. We stop the algorithm if

convergence or when all the functions are updated. In our implementation, each

fk is represented using penalized regression splines with smoothing parameters

selected by restricted maximum likelihood. Specifically, we use the function gam

in the R package mgcv.

When f is fixed, (2.4) is the standard optimal scoring problem

minimize
θi∈RK ,βi∈Rp

‖Φθi −Xfβi‖22

subject to θ>i Dθi = 1,θ>i Dθj = 0, j = 1, . . . , i− 1,
(2.7)

where D = n−1Φ>Φ and i = 1, . . . ,H. The standard way to solve an optimal

scoring problem is to use a suitable eigenvalue decomposition. However, we

propose to update {θi} and {βi} separately, as follows. For fixed {βi}, the

optimal scores {θi} sequentially solve

minimize
θi∈RK

‖Φθi −Xfβi‖22

subject to θ>i Dθi = 1,θ>i Dθj = 0, j = 1, . . . , i− 1.
(2.8)
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Let Qi = (1,θ1, . . . ,θi−1) denote the K × i matrix consisting of the previous

i − 1 solutions including the trivial score vector of all ones. One can show that

the i-th solution is given by

θi = ci(IK −QiQ
>
i D)D−1Φ>Xfβi,

where IK is the K×K identity matrix and ci is a constant such that θ>i Dθi = 1.

For fixed {θi}, we obtain H linear least squares problems

minimize
βi∈Rp

‖Φθi −Xfβi‖22, (2.9)

with solutions βi = (X>f Xf )−1X>f Φθi.

Our proposed algorithm for solving (2.4) is as follows.

1. Standardization and initialization: Center and normalize X. Let Xf = X.

Initialize θi and βi with some plausible values. Let w ik = (β2ik, . . . , β
2
ik)> ∈

Rn and wk = (w>1k, . . . ,w
>
Hk)>. Write wk = (w1k, . . . , wñk)>.

2. Iterate until convergence in terms of {βi} or until a maximum number of

iterations is reached.

2.1. Update f = (f1, . . . , fp)
>: Set C = {1, . . . , p} and y̆ i = Φθi.

2.1.1. For each k ∈ C, let

ỹ ik =
y̆ i −

∑
l∈C,l 6=k βilXfl

βik
,

ỹk = (ỹ>1k, . . . , ỹ
>
Hk)> = (ỹ1k, . . . , ỹñk)>.

Solve

minimize
fk

ñ∑
s=1

wsk{ỹsk − fk(x̃sk)}2.

2.1.2. Choose the function fk′ , k′ ∈ C, that most reduces the objective

function. Update

fk′ ← fk′ , y̆ i ← y̆ i − βik′Xfk′ and C ← C \ {k′}.

2.1.3. Continue until the change in the objective function falls below a

prespecified threshold, or until all p functions have been updated.

Center Xf .

2.2. Update {θi}: Let Qi = (1,θ1, . . . ,θi−1) and

θi = (IK −QiQ
>
i D)D−1Φ>Xfβi.

Normalize θi so that θ>i Dθi = 1. Normalize Xf .
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2.3. Update {βi}: Let

βi = (X>f Xf )−1X>f Φθi.

2.4. Update {wk}: Let w ik = (β2ik, . . . , β
2
ik)> ∈ Rn and wk = (w>1k, . . . ,

w>Hk)>. Write wk = (w1k, . . . , wñk)>.

Since the value of the objective function decreases at each step, the algorithm

converges to a unique solution. However, there is no guarantee that the solution

minimizes the objective function, because the overall problem is not convex.

This is the price paid for computational efficiency, in view of the difficulty of

carrying out the simultaneous minimization of (2.4). Our limited experience in

simulation studies shows that the algorithm converges quickly, and that it works

well empirically.

2.4. Theoretical properties

We assume that for each j, there is a known finite-dimensional envelope

{gj1, . . . , gjqj} such that fj is a linear combination of gj1, . . . , gjqj . Let g j(Xj) =

{gj1(Xj), . . . , gjqj (Xj)}>. Under this assumption, fj = c>j g j for some cj ∈ Rqj .

We can write f = Cg , where C = diag(c>1 , . . . , c
>
p ) and g = (g>1 , . . . , g

>
p )>. Let

c0j ∈ Rqj , C0 = diag(c>01, . . . , c
>
0p), and f 0 = C0g . To study the asymptotic

behavior of our procedure, we require that

Y = G(B>0 f 0, ε), (2.10)

where G(·, ·) is an unknown function, B0 ∈ Rp×d0 with d0 ≥ 1, and ε is indepen-

dent of g .

Remark 5. span(B0) and f 0 are generally not identifiable, since B>0 f 0 =

(ΓB0)
>Γf 0 for any p × p diagonal matrix Γ containing 1 or -1 in its diago-

nal. This makes our procedure different from sliced inverse regression when f 0 is

known. If the ultimate goal is the reduction B>0 f 0 itself, then it is unnecessary

to impose identifiability constraints. In particular, the structural dimension d0
remains estimable.

Let B̂ ∈ Rp×d0 , Ĉ ∈ Rp×q, and f̂ = Ĉg denote our estimates of B0, C0, and

f 0, respectively.

Theorem 1. Suppose d0 ≤ H ≤ K. If (A1) E(g|B>0 C0g) is linear in B>0 C0g

and (A2) span[cov{E(f0|Y )}] = span(B0), then for some p × p diagonal matrix

Γn containing 1 or −1 in its diagonal, we have ΓnĈ − C0 = OP (n−1/2) and

span{B̂} is a
√
n-consistent estimator of span{ΓB0}.
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The linearity condition (A1) and the coverage condition (A2), assumed to

hold at the true parameters, are common in regression studies based on methods

such as sliced inverse regression. In particular, the linearity condition holds to a

reasonable approximation in many problems (Hall and Li (1993)). Nevertheless,

these conditions are restrictive due to the effects of predictor transformations,

and are imposed mainly for ease and simplification of theory investigation. Cur-

rently, we are not able to develop the theory in the general case. Without the

linearity condition, our procedure can be interpreted as a method for estimating

the canonical correlations between the transformed predictors and the basis func-

tions generated for the response variable, and thus the directions found by it are

useful in their own right in identifying some important features of the regression.

We plan to conduct theoretical research along this direction.

Let {(θ̂i, β̂i), i = 1, . . . ,H} denote the solution to (2.4). Our procedure pro-

duces two sets of linear combinations: {Φθ̂i} for the response and {Xf̂ β̂i} for

the predictors. From the dimension-reduction viewpoint, it is always desirable

to have a reduced rank solution, although this is in general a challenging task.

Fortunately, under (2.10), the problem reduces to that of determining the struc-

tural dimension d0. To this end, we propose a BIC-type criterion: let r2i denote

the squared correlation between Φθ̂i and Xf̂ β̂i, with

BICd =

∑d
i=1 r

4
i∑H

i=1 r
4
i

− log n

n
× d(d+ 1)

2
,

the estimated structural dimension is

d̂ = arg max
1≤d≤H

BICd.

Remark 6. Consider the linear regression of a transformed response T (Y ) on

X . Let R2(T ) = [cor{T (Y ),X>b(T )}]2, where b(T ) is the least squares solu-

tion. Theorem 3.2 of Chen and Li (1998) showed that, at the population level,

R2(Ti) = λi, i = 1, . . . , d. The same applies to the regression of Y on f 0. Con-

sequently, r2i as defined above is an estimator of δi, the i-th largest eigenvalue

of cov{E(f 0|Y )}. Using the equivalence of the optimal scoring problem and the

eigen-decomposition problem, our BIC-type criterion is equivalent to that of Zhu

et al. (2010) when f 0 is assumed to be known. The degrees of freedom should

be modified accordingly when f 0 is unknown. However, the use of the proposed

BIC-type criterion remains feasible, since the estimation of f 0 is independent of

the dimension d.

Corollary 1. Under the conditions of Theorem 1, r2i − δi = OP (n−1/2) for
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i = 1, . . . ,H, and d̂ converges to d0 in probability.

Throughout the numerical studies, we initialize βi and θi with the ordinary

sliced inverse regression estimates (2.1). The BIC criterion works well, even in

cases where sliced inverse regression fails. Nevertheless, taking the identifiability

of transformations into account, we recommend to the use of multiple initial

values, and choice of the f̂ and B̂ that correspond to the smallest d̂.

3. Simulation Study

In this section, we present some simulation results to illustrate the perfor-

mance of the proposed nonlinear dimension-reduction method.

Let 0p be a p-vector of zeros and Σ = (Σij) with Σij = ρ|i−j| for 1 ≤ i, j ≤ p.
Throughout the simulation study, we took n = 400, p = 10, and ρ = 0.5. Five

simulation examples were considered.

Example 1. Let β01 = (1, 1, 0, . . . , 0)> ∈ Rp and β02 = (0, 0, 1, 1, 0, . . . , 0)> ∈
Rp, with

Y =
f >0 β01

(f >0 β02 + 1.5)2 + 0.5
+ 0.5× ε,

where f 0 ∼ N(0p,Σ), ε ∼ N(0, 1), and f 0 and ε are independent. To generate

X , we explored two cases: (i) Xj = sign(f0j) × f20j and (ii) Xj = F−1C {Φ(f0j)},
where FC(·) is the standard Cauchy distribution function and Φ(·) the standard

normal.

Example 2. We proceed as in Example 1 except that f 0 has a multivariate t-

distribution with location vector zero, scale matrix Σ, and five degrees of freedom.

We explored two cases: (i) Xj = sign(f0j) × f20j and (ii) Xj = F−1C {Ft5(f0j)},
where Ft5(·) is the common marginal distribution function of f 0.

Example 3. We proceed as in Example 1 except that f 0 = Σ1/2U , where U

is uniformly distributed in the hypercube [−
√

3,
√

3]p. To generate X , we set

Xj = sign(f0j)× f20j .

Example 4. Let β01 = (1, 0, . . . , 0)> ∈ Rp and β02 = (0, 1, 0, . . . , 0)> ∈ Rp. We

first generated X ∼ N(0p,Σ) and then set f01 = (X2
1 − 1)/

√
2 and f0j = Xj for

j = 2, . . . , p. Here

Y =
f >0 β01

(f >0 β02 + 1.5)2 + 0.5
+ 0.5× ε,

where ε ∼ N(0, 1) is independent of X .
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Example 5. We proceed as in Example 4 except that

Y = (f >0 β01 + 1)× f >0 β02 + 0.5× ε.

In these examples, B0 = (β01,β02) and the structural dimension d0 = 2. In

Examples 1-3, each component f0j(Xj) is a monotone increasing function of Xj ;

in Examples 4 and 5, f01(X1) is symmetric in X1 and B0 is a sub-matrix of Ip.

Examples 1-3 have also been used in Wang et al. (2014), in which proba-

bility integral transformed sliced inverse regression (T-SIR) was shown to per-

form comparatively to the oracle sliced inverse regression (O-SIR) assuming f 0 is

known. The T-SIR is based on the assumption that f 0 is multivariate Gaussian,

f0j = Φ−1{Fj(Xj)} with Fj(·) the marginal distribution function of Xj . This

assumption holds in Example 1, but is violated in Examples 2-5. Since the prob-

ability integral transformation is monotonic, we expect T-SIR to fail in Examples

4 and 5. The linearity condition on the distribution of f 0 holds in Examples 1

and 2, but is not satisfied in Examples 3-5.

We also examined the performance of T-SIR and O-SIR. For each competitor,

we adopted slice indicator functions as transformation functions of the response

and fixed the number of slices, K, at 10. The numerical results in Wang and

Zhu (2013) show that slice indicator functions are quite competitive with B-

spline basis functions. In our flexible dimension-reduction method (FDR), two

values of the working dimension H were explored: H = 4 and H = K. The

corresponding methods are denoted by P-FDR and F-FDR, respectively. F-FDR

is computationally more intensive than P-FDR. For each example, we generated

200 replications.

For any matrix A, let Ao be the orthonormalized version of A. Assume, for

the moment, that d0 = 2 is known. To evaluate the accuracy of an estimator

span(B̂) of span(B0), we use both the vector correlation coefficient, defined by

(
∏2

l=1 φ
2
l )

1/2, and the trace correlation coefficient, defined by (2−1
∑2

l=1 φ
2
l )

1/2,

where 1 ≥ φ21 ≥ φ22 ≥ 0 are the eigenvalues of the matrix B̂>o BoB
>
o B̂o. To assess

how well T-SIR and FDR estimate f 0, we calculated the sample Pearson’s corre-

lation coefficient between f̂j and f0j . For simplicity, we concentrate on the set of

active transformations, {f01, f02, f03, f04} in Examples 1-3, and {f01, f02} in Ex-

amples 4 and 5. The absolute value of this measure is reported for f01 in Examples

4 and 5. To assess the accuracy of each method in terms of dimension reduction,

we used the multiple correlation coefficient (Li and Dong (2009)). Suppose V 1

and V 2 are two d-dimensional random vectors. Let ΣV i
= cov(V i), i = 1, 2 and

ΣV 1V 2
= cov(V 1,V 2). The multiple correlation coefficient between V 1 and
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Table 1. Means and standard deviations (in parentheses) of the vector correlation coef-
ficient (VCC) and the trace correlation coefficient (TCC) for subspace estimation, the
Pearson’s correlation coefficient (PCC) for component estimation and the multiple cor-
relation coefficient (MCC) for dimension reduction, based on 200 data replications, are
reported for Example 1.

VCC TCC PCC (f̂1) PCC (f̂2) PCC (f̂3) PCC (f̂4) MCC

Case (i) O-SIR 0.817 (0.081) 0.910 (0.037) 0.956 (0.021)

T-SIR 0.825 (0.077) 0.914 (0.036) 0.998 (0.001) 0.998 (0.001) 0.998 (0.001) 0.997 (0.001) 0.956 (0.020)

P-FDR 0.815 (0.078) 0.909 (0.036) 0.960 (0.026) 0.932 (0.043) 0.872 (0.104) 0.867 (0.104) 0.878 (0.032)

F-FDR 0.804 (0.093) 0.904 (0.040) 0.959 (0.030) 0.929 (0.048) 0.889 (0.094) 0.882 (0.093) 0.882 (0.032)

Case (ii) O-SIR 0.825 (0.083) 0.914 (0.038) 0.959 (0.019)

T-SIR 0.830 (0.080) 0.916 (0.037) 0.998 (0.001) 0.998 (0.001) 0.998 (0.001) 0.998 (0.001) 0.959 (0.018)

P-FDR 0.824 (0.086) 0.913 (0.039) 0.961 (0.024) 0.931 (0.042) 0.880 (0.097) 0.858 (0.099) 0.880 (0.032)

F-FDR 0.822 (0.090) 0.912 (0.041) 0.960 (0.026) 0.929 (0.045) 0.898 (0.087) 0.877 (0.089) 0.887 (0.032)

Table 2. Means and standard deviations (in parentheses) of the vector correlation coef-
ficient (VCC) and the trace correlation coefficient (TCC) for subspace estimation, the
Pearson’s correlation coefficient (PCC) for component estimation and the multiple cor-
relation coefficient (MCC) for dimension reduction, based on 200 data replications, are
reported for Example 2.

VCC TCC PCC (f̂1) PCC (f̂2) PCC (f̂3) PCC (f̂4) MCC

Case (i) O-SIR 0.709 (0.128) 0.859 (0.056) 0.926 (0.036)

T-SIR 0.782 (0.095) 0.893 (0.043) 0.979 (0.015) 0.979 (0.018) 0.977 (0.018) 0.979 (0.013) 0.926 (0.029)

P-FDR 0.788 (0.094) 0.895 (0.043) 0.913 (0.040) 0.890 (0.046) 0.804 (0.111) 0.781 (0.131) 0.813 (0.043)

F-FDR 0.786 (0.101) 0.895 (0.045) 0.912 (0.041) 0.890 (0.045) 0.827 (0.103) 0.804 (0.117) 0.821 (0.041)

Case (ii) O-SIR 0.719 (0.127) 0.863 (0.055) 0.924 (0.038)

T-SIR 0.789 (0.091) 0.896 (0.041) 0.977 (0.015) 0.976 (0.018) 0.978 (0.015) 0.979 (0.014) 0.924 (0.028)

P-FDR 0.788 (0.089) 0.895 (0.042) 0.909 (0.033) 0.881 (0.052) 0.782 (0.129) 0.803 (0.118) 0.808 (0.040)

F-FDR 0.784 (0.108) 0.894 (0.048) 0.909 (0.033) 0.884 (0.049) 0.819 (0.117) 0.814 (0.115) 0.818 (0.040)

Table 3. Means and standard deviations (in parentheses) of the vector correlation coef-
ficient (VCC) and the trace correlation coefficient (TCC) for subspace estimation, the
Pearson’s correlation coefficient (PCC) for component estimation and the multiple cor-
relation coefficient (MCC) for dimension reduction, based on 200 data replications, are
reported for Example 3.

VCC TCC PCC (f̂1) PCC (f̂2) PCC (f̂3) PCC (f̂4) MCC

O-SIR 0.844 (0.069) 0.923 (0.032) 0.962 (0.017)

T-SIR 0.801 (0.086) 0.902 (0.040) 0.988 (0.002) 0.991 (0.001) 0.991 (0.002) 0.991 (0.002) 0.949 (0.019)

P-FDR 0.836 (0.086) 0.919 (0.038) 0.983 (0.019) 0.947 (0.042) 0.895 (0.084) 0.885 (0.088) 0.899 (0.031)

F-FDR 0.831 (0.094) 0.917 (0.042) 0.982 (0.021) 0.949 (0.043) 0.907 (0.075) 0.904 (0.079) 0.904 (0.031)

V 2 is defined as {d−1trace
(
Σ−1V 1

ΣV 1V 2
Σ−1V 2

Σ>V 1V 2

)
}1/2. We employed the sample

version of this measure based on Xf̂ B̂ and Xf B0.

The means and standard deviations of the various measures are summarized
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Table 4. Means and standard deviations (in parentheses) of the vector correlation coef-
ficient (VCC) and the trace correlation coefficient (TCC) for subspace estimation, the
Pearson’s correlation coefficient (PCC) for component estimation and the multiple cor-
relation coefficient (MCC) for dimension reduction, based on 200 data replications, are
reported for Example 4.

VCC TCC PCC (f̂1) PCC (f̂2) MCC
O-SIR 0.807 (0.095) 0.906 (0.042) 0.935 (0.030)
T-SIR 0.562 (0.209) 0.787 (0.088) 0.064 (0.048) 0.998 (0.001) 0.643 (0.034)
P-FDR 0.823 (0.099) 0.914 (0.043) 0.742 (0.070) 0.906 (0.051) 0.776 (0.050)
F-FDR 0.834 (0.102) 0.919 (0.044) 0.739 (0.084) 0.908 (0.049) 0.782 (0.049)

Table 5. Means and standard deviations (in parentheses) of the vector correlation coef-
ficient (VCC) and the trace correlation coefficient (TCC) for subspace estimation, the
Pearson’s correlation coefficient (PCC) for component estimation and the multiple cor-
relation coefficient (MCC) for dimension reduction, based on 200 data replications, are
reported for Example 5.

VCC TCC PCC (f̂1) PCC (f̂2) MCC
O-SIR 0.959 (0.017) 0.979 (0.008) 0.987 (0.005)
T-SIR 0.691 (0.216) 0.867 (0.073) 0.073 (0.053) 0.997 (0.001) 0.691 (0.008)
P-FDR 0.929 (0.049) 0.965 (0.022) 0.665 (0.140) 0.945 (0.028) 0.824 (0.043)
F-FDR 0.935 (0.049) 0.967 (0.022) 0.661 (0.155) 0.945 (0.031) 0.826 (0.047)

in Tables 1-5. Not surprisingly, O-SIR performs very well in all five examples.

The relative insensitivity of sliced inverse regression to the non-linearity of the

distribution of the predictors has long been observed in the sufficient dimension-

reduction literature. We also see that in terms of subspace estimation, the per-

formance of FDR is similar to that of O-SIR. However, FDR is outperformed by

O-SIR because FDR involves the estimation of p component functions, some of

which are redundant. Generally, the estimates of the active component functions

are more accurate for monotonic functions than for symmetric ones. The T-SIR

performs comparably to O-SIR in Examples 1-3. Here the degree of the similar-

ity between the true transformations and the corresponding probability integral

transformations is very high: in Tables 1-3 the average Pearson’s correlation co-

efficients of T-SIR are very close to 1. The T-SIR fails in Examples 4 and 5,

where probability integral transformations severely mis-specify transformations

that are symmetric. From Tables 4 and 5, the Pearson’s correlation coefficients of

T-SIR are almost zero for symmetric component functions. The T-SIR inherits

the drawback of sliced inverse regression by failing to capture any symmetrical

structure. Generally, F-FDR outperforms P-FDR, but the differences are often
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Table 6. Percentages of estimated structural dimensions d̂ smaller than, equal to, and
larger than d0, based on 200 data replications, are reported for Example 1.

O-SIR T-SIR P-FDR F-FDR

Case (i) d̂ < d0 0 0 0 0

d̂ = d0 0.99 0.995 0.94 0.98

d̂ > d0 0.01 0.005 0.06 0.02

Case (ii) d̂ < d0 0 0 0 0

d̂ = d0 0.99 0.995 0.93 0.975

d̂ > d0 0.01 0.005 0.07 0.025

Table 7. Percentages of estimated structural dimensions d̂ smaller than, equal to, and
larger than d0, based on 200 data replications, are reported for Example 2.

O-SIR T-SIR P-FDR F-FDR

Case (i) d̂ < d0 0.01 0.005 0 0

d̂ = d0 0.98 0.995 0.97 0.995

d̂ > d0 0.01 0 0.03 0.005

Case (ii) d̂ < d0 0.005 0.005 0 0

d̂ = d0 0.985 0.985 0.925 0.98

d̂ > d0 0.010 0.010 0.075 0.02

Table 8. Percentages of estimated structural dimensions d̂ smaller than, equal to, and
larger than d0, based on 200 data replications, are reported for Example 3.

O-SIR T-SIR P-FDR F-FDR

d̂ < d0 0 0 0 0

d̂ = d0 1 0.995 0.965 0.98

d̂ > d0 0 0.005 0.035 0.02

Table 9. Percentages of estimated structural dimensions d̂ smaller than, equal to, and
larger than d0, based on 200 data replications, are reported for Example 4.

O-SIR T-SIR P-FDR F-FDR

d̂ < d0 0 0 0 0

d̂ = d0 0.98 0.265 0.88 0.92

d̂ > d0 0.02 0.735 0.12 0.08

small. Unreported results show that the estimation accuracy of FDR improves

as the sample size increases.

The performance of each competitor here relies heavily on the correct de-

termination of the structural dimension d0. Tables 6-10 shows the results of

applying the BIC-type criterion. There, O-SIR-BIC and FDR-BIC are roughly
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Table 10. Percentages of estimated structural dimensions d̂ smaller than, equal to, and
larger than d0, based on 200 data replications, are reported for Example 5.

O-SIR T-SIR P-FDR F-FDR

d̂ < d0 0 0.89 0 0

d̂ = d0 1 0.11 0.995 0.995

d̂ > d0 0 0 0.005 0.005

Table 11. Ozone data. Estimated directions by T-SIR and F-FDR.

T-SIR F-FDR

β̂1 β̂2 β̂1 β̂2

X1 0.454 0.472 0.349 0.619
X2 −0.102 −0.302 −0.230 −0.352
X3 0.122 0.082 0.231 0.052
X4 −0.081 −0.043 −0.110 −0.058
X5 −0.059 −0.093 0.065 −0.173
X6 0.129 −0.214 0.042 −0.218
X7 0.242 −0.732 0.188 −0.784
X8 0.012 −0.049 −0.014 −0.007

equally powerful, with O-SIR-BIC performing slightly better, while T-SIR-BIC

has an alarmingly low rate of correctly identifying the true dimension d0 in Ex-

amples 4 and 5.

4. Data Analysis

We applied T-SIR and F-FDR to the Ozone data used in Breiman and Fried-

man (1985). The goal is to study the relationship between atmospheric ozone

concentration and meteorology in the Los Angeles basin. The dataset, available

from the R package mlbench, consists of daily measurements of maximum one-

hour-average ozone reading (Y ) and eight meteorological variables for n = 330

days, in 1976. The p = 8 predictors used in the study were the Sandburg Air

Force Base temperature (X1), inversion base height (X2), Daggett pressure gra-

dient (X3), visibility (X4), Vandenburg 500 millibar height (X5), humidity (X6),

inversion base temperature (X7), and wind speed (X8). All the predictors were

scaled to the unit interval [0, 1]. Let X = (X1, . . . , X8)
>.

Using the BIC-type criterion, both T-SIR and F-FDR find two directions.

The coefficient estimates from either method, denoted by β̂i for i = 1, 2, are

shown in Table 11. The relatively important predictors are X1, X2, X3, X5, X6,

and X7. Let Zi = β̂
>
i X . The first T-SIR predictor and the first F-FDR predictor
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Figure 1. Ozone concentration against the first T-SIR predictor (left panel) and Ozone
concentration against the first F-FDR predictor (right panel).

are almost identical to the predictor found by the linear least squares fitting (not

shown). A linear trend is visible from Figure 1. To check whether the second

predictor Z2 from each method has a significant effect on the response Y , we

considered

E(Y |Z1, Z2) = g1(Z1) + g2(Z2) + g12(Z1, Z2),

where g1(·) and g2(·) are smooth main effect functions, and g12(·, ·) is a smooth

interaction term. We used the gam function from the R package mgcv to fit this

model, and found that for both T-SIR and F-FDR, g1(Z1) is highly significant

(p-values < 10−15) and g2(Z2) is not significant (p-values > 0.1). At the 0.01

significance level, the interaction term g12(Z1, Z2) for F-FDR is significant (p-

value = 0.004), while that for T-SIR is not (p-value = 0.021). The adjusted R2

values were 71.6% and 75% for T-SIR and F-FDR, respectively. Using a full two-

dimensional smooth did not improve the fit by much (not shown). The second T-

SIR direction is likely to be spurious. For F-FDR, the presence of the interaction

term is the key to the estimated structural dimension of 2. The adjusted R2

value from fitting an additive model is 73.8%. Given the transformations of
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Figure 2. Plots of the estimated transformation functions by F-FDR.

predictors, additive models are essentially one-dimensional. This is also true

for alternating conditional expectations of Breiman and Friedman (1985). As

a dimension-reduction method, our method is more flexible. Figure 2 shows

the estimated transformations from F-FDR of the six important predictors. We

can see that the transformation function of X5 (or X6) is symmetric over at

least some of the range of observation. This suggests that there may be some

symmetric pattern that T-SIR fails to handle. Li (1992) used the same dataset to

demonstrate how other dimension-reduction methods are needed to complement

the original SIR in symmetric cases. We used K = 10 slices for T-SIR and

F-FDR, but other choices yield almost identical scenes.
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5. Appendix

Proof of Proposition 1. Without loss of generality, assume that B = (Id,B
>
l )>,

where Bl is the lower (p− d)× d sub-matrix of B. By definition, the conditional

distribution of Y given B>f (X ) equals that of Y given X :

F{y | B>f (X )} = F (y | X ).

If span(B) is not identifiable, then there is another set of univariate functions

{g1, . . . , gp} and a p × d matrix M, such that F{y | M>g(X )} = F (y | X ).

Write B = (Bij) and M = (Mij). Then

F{y | B>f (X )} = hB{f1(x1) +B(1+d)1f1+d(x1+d) + · · ·+Bp1fp(xp), . . . ,

fd(xd) +B(1+d)df1+d(x1+d) + · · ·+Bpdfp(xp), y},
F{y |M>g(X )} = hM{g1(x1) +M(1+d)1g1+d(x1+d) + · · ·+Mp1gp(xp), . . . ,

gd(xd) +M(1+d)dg1+d(x1+d) + · · ·+Mpdgp(xp), y}.

Here, hB and hM are (d+ 1)-dimensional functions. Consequently,

hB{f1(x1) +B(1+d)1f1+d(x1+d) + · · ·+Bp1fp(xp), . . . ,

fd(xd) +B(1+d)df1+d(x1+d) + · · ·+Bpdfp(xp), y}
= hM{g1(x1) +M(1+d)1g1+d(x1+d) + · · ·+Mp1gp(xp), . . . ,

gd(xd) +M(1+d)dg1+d(x1+d) + · · ·+Mpdgp(xp), y}.

Taking derivatives with respect to x1, . . . , xp on both sides, we get h′Bjf
′
j = h′Mjg

′
j ,

for j = 1, . . . , d, and

(h′B1B(j+d)1 + · · ·+ h′BdB(j+d)d)f ′j+d = (h′M1M(j+d)1 + · · ·+ h′MdM(j+d)d)g′j+d,

for j = 1, . . . , p−d, where h′Bj stands for the derivative of hB with respect to the

jth argument, and similarly for h′Mj . Write h ′B = (h′B1, . . . , h
′
Bd)> and h ′M =

(h′M1, . . . , h
′
Md)>. Set Df1 = diag{f ′1, . . . , f ′d},Df2 = diag{f ′1+d, . . . , f

′
p},Dg1 =

diag{g′1, . . . , g′d}, and Dg2 = diag{g′1+d, . . . , g
′
p}. Then Df1h

′
B = Dg1h

′
M and

Df2Blh
′
B = Dg2Mlh

′
M . By the condition of Proposition 1, for x in a neighbor-

hood of x ∗,

Blh
′
B = D−1f2 Dg2MlD

−1
g1 Df1h

′
B.

Hence,

(Bl −Ml)h
′
B + (Ml −D−1f2 Dg2MlD

−1
g1 Df1)h

′
B = 0.

Again by the condition of Proposition 1, as x → x ∗, (Ml−D−1f2 Dg2MlD
−1
g1 Df1)→

0, and hence (Bl−Ml)h
′
B = 0. Since d = d0, none of the components of h ′B are

zero, and there is at most one constant component. This implies that Bl = Ml.
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The proof is complete.

Proof of Theorem 1. Without loss of generality, assume that cov(f ) =

Ccov(g)C> = Ip. By the equivalence of linear discriminant analysis and optimal

scoring (Hastie, Buja and Tibshirani (1995)), our method amounts to estimating

cov{E(g |Y )} and then maximizing

trace[cov{E(f |Y )}] = trace[Ccov{E(g |Y )}C>]

with respect to C.

From (2.10) we know that Y⊥⊥g |B>0 C0g . Then

E(f |Y ) = E{E(f |Y,B>0 C0g)|Y } = CE{E(g |B>0 C0g)|Y }.

Under the linearity condition (A1), E(g |B>0 C0g) = cov(g)C>0 B0(B
>
0 B0)

−1B>0
C0g . Hence,

E(f |Y ) = Ccov(g)C>0 B0(B
>
0 B0)

−1B>0 E(f 0|Y ).

Setting C = C0 yields E(f 0|Y ) = B0(B
>
0 B0)

−1B>0 E(f 0|Y ). This implies that

cov{E(f |Y )} = Ccov(g)C>0 cov{E(f 0|Y )}C0cov(g)C>.

It is easy to check that

trace[Ccov(g)C>0 cov{E(f 0|Y )}C0cov(g)C>]

≤ trace[{cov(g)}1/2C>0 cov{E(f 0|Y )}C0{cov(g)}1/2]
= trace[cov{E(f 0|Y )}].

Consequently, one population solution of C is ΓC0 and, by the coverage condition

(A2), the corresponding solution of span{B} is span{ΓB0}. At the sample level,

following Li (1991) and Fung et al. (2002), it is easily verified that ĉov{E(g |Y )}−
cov{E(g |Y )} = OP (n−1/2). This completes the proof.

Proof of Corollary 1. The first part follows from Theorem 1. For a proof of

the second part, see Zhu et al. (2010).
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Zhu, L., Wang, T., Zhu, L. and Ferré, L. (2010). Sufficient dimension reduction through

discretization-expectation estimation. Biometrika 97, 295–304.

Department of Bioinformatics and Biostatistics, Shanghai Jiao Tong University, Shanghai,

China

SJTU-Yale Joint Center for Biostatistics, Shanghai Jiao Tong University, Shanghai, China

E-mail: neowangtao@hotmail.com

Department of Mathematics, Hong Kong Baptist University, Hong Kong

School of Statistics, Beijing Normal University, Beijing, China

E-mail: lzhu@hkbu.edu.hk

(Received February 2016; accepted January 2017)

mailto:neowangtao@hotmail.com
mailto:lzhu@hkbu.edu.hk

