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Abstract: We propose an efficient two-step estimation procedure for a parametric
modal regression with autoregressive errors. The procedure relies on estimating a
parametric transformation of the dependent variable from data using a (penalized)
kernel-based objective function. We establish asymptotic normality for the resulting
estimator and demonstrate that it possesses oracle properties, as if the true
order of autoregressive error structure were known in advance. To numerically
estimate modal parameter and determine the order of error structure, two modified
(penalized) modal expectation-maximization (MEM) algorithms are developed.
Furthermore, we present a modal residual-based autocorrelation test and show
that the statistic is asymptotically distributed as a X2 distribution. Monte Carlo
simulations and an empirical analysis are conducted to illustrate the finite sample
performance of the resultant estimator. We also discuss the extension of the results

to a nonparametric modal regression model.
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oracle property, order selection, residual-based test.

1. Introduction

Modal regression has recently attracted much attention due to its robustness
for skewed and heavy-tailed data, which can be treated as a complement to mean
or median (quantile) regression; see Ullah, Wang and Yao| (2021, 2022, 2023).
The main objective of modal regression is to capture how covariates X affect the
“most likely” (mode) value of a response variable Y, as denoted by

Mode(Y | X) = argmax fyx (Y | X), (1.1)

where fyx(Y | X) represents the conditional density of Y given X. The
modal regression line can then be obtained by nonparametrically estimating
the aforementioned conditional density function (Chen et al., 2016). However,
because of the “curse of dimensionty”, such a density-based estimation is difficult
to implement. Similar to mean or median (quantile) regression, we can avoid
nonparametrically estimating conditional density and achieve different types
of modal regression models by directly imposing structural assumptions on
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Mode(Y | X); see|Yao and Li (2014), |Chen| (2018), |[Ullah, Wang and Yao (2021,
2022, 2023), and references therein for details.

For illustration, suppose that random samples {Y;, X;}{_, are collected in
order to establish a conditional modal regression model

Y= Mode(Y; | Xi)+e, t=1,...,n, (1.2)

where Y; € R, X; € R? (which may include lagged values of Y;), and {g;}7,
are random errors with Mode(e; | X;) = 0 almost surely. This construction of a
modal regression line allows for nonuniqueness, but all of the models considered in
this paper are assumed to have a global unique mode for convenience purposes.
According to [Ullah, Wang and Yao| (2023]), we can impose a linear regression
structure X760 on Mode(Y; | X;) to explain the mode relationship between
response and explanatory variables, where 6 is an unknown parameter vector
in the parameter space Oy C RP and T represents the transpose of a matrix
or a vector. Following that, the parameter 6 can be estimated using a kernel-
based objective function constructed from the density of error term e; (Kemp
and Santos Silvaj, [2012; [Yao and Li, 2014)

1 & Y, — X706
— ZK(t}Z’f) (1.3)

not=1

Qn(0) =

where K(-) is a kernel function with [, K(t)dt = 1 and h, is a non-stochastic
strictly positive bandwidth dependent on n. To acquire the reliable estimator
from , we need to assume that the error term e, denoted as Y; — Mode(Y; |
X}), is independent and identically distributed (i.i.d.).

The i.i.d. assumption, on the other hand, may be violated when data are
collected sequentially in time, such as the financial return, individual income, or
interest rate, which naturally imposes a correlated structure for error terms. As
a result, the error terms in will possess serial correlation and the conditional
mode of €; on X; is no longer zero due to the absence of mode additive property.
If such correlation is not taken into account, the modal estimator of 6 from
(1.3)—the “most likely” effect—may be inefficient or biased (when e; and X;
have dependence relationship), rendering any inference based on it invalid. [Ullah,
Wang and Yao| (2021)) mentioned that incorporating the information from error
autocorrelation structure can lead to a more efficient modal estimator, but they
did not address the critical issues related to practical implementation. The
question of how to best incorporate error correlation information to recover
modal coefficient # remains unanswered. To fill the literature gap, we in this
paper assume that {Y;, X;}7_; is a sequence of strictly stationary random vectors
and aim at estimating the conditional modal regression with autoregressive (AR)
error €; by directly modeling the error process. We show that the autocorrelation
function of the error process contains useful information for inferring and can be
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properly used to improve the performance of modal estimators.

Serial correlation in the error terms of mean or median (quantile) regression
has been investigated intensively as a main class of dynamic regression models;
see |[Opsomer, Wang and Yang| (2001), Xiao et al| (2003), |Su and Ullah| (2007)),
Wang, Li and Tsail (2007)), [Martins-Filho and Yao| (2009)), |Chen, Li and Li (2015),
among others. All of these studies can be viewed as extensions of the mean or
median (quantile) regression literature from the typical case where error terms are
i.i.d. to instances where specific parametric or nonparametric structures for error
terms are allowed. In light of these research, we study parametric linear modal
regression with errors represented by a stationary AR process with finite order d,
where we recover modal parameters by directly incorporating the autocorrelated
error process; see . However, the true AR order in the errors is rarely
available in advance and is simply assumed to be an upper bound in practice.
The misspecification of the lagged order will result in the reduction of estimation
precision and efficiency. Although information criterion-based methods can
usually identify the order, these methods are sensitive to small changes in the
data and ignore stochastic errors inherited in the process of determining order
(Qiu, Li and You, 2015). Furthermore, the existing information criterion in mean
or median (quantile) regression cannot be utilized for modal regression with a
kernel-based objective function. These motivate us to propose a modal variable
selection procedure through a penalty function based on the estimated residuals
to determine the AR order.

Specifically, we propose an efficient two-step estimation procedure for es-
timating the modal regression parameters while accounting for the AR error
structure. In the first step, we select an arbitrary large value for d (upper bound)
to obtain the initial estimate of 8, and in the second step, we update the estimate
with order selection using penalized modal regression. Consequently, the final
modal estimator of # is based on a parametric transformation of the dependent
variable, which must be estimated from data using a (penalized) kernel-based
objective function. We establish asymptotic normality for the resulting estimator
and demonstrate that it has the oracle properties as if the true error structure
were known in advance. Following Li, Ray and Lindsay| (2007) and Yao| (2013), we
suggest two modified (penalized) MEM algorithms to numerically estimate modal
parameters. Monte Carlo simulations and an empirical analysis are conducted
to illustrate the finite sample performance of the resulting estimators, where we
show that accounting for autocorrelation in the errors can result in substantially
more accurate and efficient modal estimates. In spite of the extensive literature
on mode, there is little research on variable selection in modal regression. The
developed order selection procedure can also be considered as a contribution to
modal variable selection literature.

The proposed estimation methodology relies on the presence of autocorre-
lation in the error terms. If the modal regression model does not contain an
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autocorrelated error process, the developed method may lose efficiency. As a
result, it is particularly important to check for any signs of autocorrelation in
modal regression. To accomplish this objective, we suggest a residual-based test
for autocorrelation in modal regression models. In general, the Breusch-Godfrey
LM test can be applied to the residuals of a baseline modal regression. Furno
(2000), for example, recommended a LM test based on the least absolute deviation
residuals. Nevertheless, Huo et al.| (2017) argued that such a LM test could result
in potentially large size distortions for median (quantile) regression. Particularly,
the LM statistic either diverges to infinity or weakly converges to a distribution
that is different from the X? distribution. Given that modal regression can be
regarded as a special case of quantile regression, which is obtained by maximizing
the density function, such size distortions may also appear in modal regression
if the LM test is used. We thus extend the results in Huo et al. (2017) to
parametric modal regression to propose a modal residual-based test and show
that the statistic is asymptotically distributed as a X? distribution.

The layout of the remainder of this paper is as follows. In Section 2,
we propose an efficient two-step estimation procedure to estimate the modal
regression coefficients. In Section 3, we present the asymptotic properties of the
resulting modal estimators. In Section 4, we develop a modal residual-based
test for autocorrelation in parametric modal regression. We report an empirical
analysis in section 5 and conclude the paper in Section 6. All technical proofs
and Monte Carlo simulations are presented in the supplementary file, as well as
the extension to nonparametric modal regression.

2. Modal Regression with AR Errors

We begin this section by introducing the error structure of (|1.2)). Since
most Gaussian stationary processes can be approximated by an AR process of
sufficiently high order, we assume that ¢; is a stationary AR(d) series

Etzﬁlgt—l"i_"'"i_ﬁdgt—d_‘_nt, t:d+17"'7na (21)

where 1 — Z?Zl B;z" # 0 for all z such that |z|] < 1 on the complex plane,
B=(B1,...,Ba)" is adx 1 vector of unknown AR coefficients, and {n,},_,., are
i.i.d. random errors with zero mode. Because the conditional modal estimators
and their asymptotic properties are irrelevant to the moments of error terms,
compared to mean regression, we do not impose any moment conditions on 7,
i.e., allow AR(d) with E(e?) = oo and the distribution of 7, to be heavy-tailed or
asymmetric. Note that the distribution of the errors in practice can potentially
be heteroskedastic and asymmetric simultaneously, motivating the need of the
suggested modal estimation.
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Remark 1. As pointed out by the editor, with i.i.d. random errors, the difference
between the mode and the mean is a constant. Since all AR models can be written
as a M A(co) model, the modal regression and a zero-mean noise regression only
differ by a constant term. We can then combine modal and mean regressions to
achieve coefficient estimators, which has been utilized in [Ullah, Wang and Yao
(2021). However, compared to this combined estimation procedure, the proposed
modal estimation can increase efficiency and has better prediction performance
if the distribution of the error term or dependent variable is skewed; see the
simulation results in the supplementary file.

The model in (1.2)) can then be written as
Y, =X/0+ e+ + Bagi—a + m (2.2)

by incorporating the error structure information. If the values of {e}y .,
were available, would be a valid linear modal regression equation, and the
coefficients could be estimated directly using the kernel-based objective function
. In practice, however, they are not available (neither directly nor indirectly),
and need to be substituted with appropriate estimates.

To obtain the consistent estimate of 0, we replace ,_; with Y;,_; —0X,_; for
j=1,2,...,d and get

d
Mode (Y; | Fioy) = X0+ > 8; (Yie; — X[,0) (2.3)

j=1

provided that 7, is independent of F; i, where F; 1 = o({Ys, Xs} : s < t) is
the o-field generated by ({Yi, X} : s < t). If the value of order d were known,
the parameters can be identified and estimated by using straightforwardly.
However, we do not know the exact value of d practically. To improve estimation
performance and propose a modal residual-based autocorrelation test, we instead
use the estimate of 6 from with an arbitrary chosen d (e.g., upper bound
chosen by ACF and PACF) to construct a preliminary consistent estimate of &;.
We then plug it back into the AR model in and simultaneously estimate £
and select d by maximizing a penalized kernel-based objective function. Finally,
we plug the consistent penalized estimate of § into to define a new pseudo
response variable, converting the AR regression problem to a parametric modal
regression framework. The entire estimation procedure is built on

Mode (Yt - Bier; | Ft_1> =X70, (2.4)
j=1

where s < d is the selected order. Under some mild conditions, the final estimator
of 0 is shown to have similar asymptotic bias and variance as the estimator of
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linear modal regression with i.i.d. observations, except for the explicit value of
the density function for error terms (see Theorem 7).

2.1. Feasible estimation procedure

To efficiently account for the AR error structure, we in the first step estimate
6 in (2.3) by maximizing the following kernel-based objective function

n d d
1 K (Yt — XT3 BYe + BthT—J@> , (2.5)

Qno(evﬁ) - nOhl rd hl
where ng = n — d is the effective sample size and hy = hy(ng) > 0 is a scalar
bandwidth sequence satisfying h; — 0 as ny — 00. According to [Yao and Li
(2014) and Ullah, Wang and Yao| (2021} 2022, 2023]), the choice of kernel function
is less important in modal estimation than the choice of bandwidth. We thus
choose the Gaussian kernel in this paper for simple calculations; see the role
of the Gaussian kernel in the following MEM algorithms. We use 6 and S to
represent the first-step modal estimators from ([2.5]).

After obtaining the estimate 6, we in the second step use it to construct
the estimate &, with &, =Y, — X/ 6. We then conduct a modal variable selection
procedure to determine the AR order from the data by adding a penalty term
into the kernel-based objective function

1 Zn: K (ét - 2?21 Bi€i—;

()= > ) +3om, (5D, (@6)

nohs t=d+1

where hy = hy(ng) > 0 is a sequence of bandwidths that depends on ng satisfying
hy — 0 as ng — oo, and py,(-) is a penalty function with the tuning parameter
A; controlling the model complexity. In general, the larger the A;, the simpler
the modal regression model, with fewer variables selected. The penalty function
Py, (-) and the tuning parameter \; are not required to be identical for all j. We
denote the estimator from as BP . The selected AR order s < d is the highest
order whose corresponding coeflicient is not zero. In Section 3, we show that the
penalized modal estimator is consistent and enjoys selection consistency as well
as asymptotic normality.

Remark 2. To reduce model complexity, we concentrate on penalized method-
ology for selecting AR order. Aside from that, we can also utilize a modified
Bayesian information criterion (BIC) for finding the order, where

dopt = argmin BIC(d) = —Q,,, (0, 5) + (noh‘z’)_l log(nohi’)dfd
d

and df; denotes the number of coefficients. This approach, however, disregards
stochastic errors inherited in the stages of determining the AR process. It is also
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computationally intensive because BIC(d) depends on the estimates of § and S,
and it is challenging to compare all candidate subprocesses to choose the optimal
model when the maximal order is very large.

To obtain the final modal estimator of 6, we maximize the following kernel-
based objective function derived from (2.4])

. o K(yt_zj_lﬁfét_j—XtTH)
hs

Qo (0) = (2.7)

nohs t=d+1

by submitting e;_; and ; with the corresponding estimates, where hy = hs(ng) >
0 is a sequence of bandwidths that depends on n satisfying hs — 0 as ny — oo.
The final estimator from is denoted as 6. In Section 3, we show that under
appropriate assumptions, the final modal estimator 0 is asymptotically equivalent
to the infeasible estimator from ([2.4)).

Remark 3 (Variable and Order Selection). In the absence of prior knowl-
edge, a large number of variables may be included in model to reduce
potential model bias, but could result in less predictive power and greater
interpretation difficulty. In this case, we can apply the penalized objective
function @, (0, 8) + > r_, pa. (10k]) + Z;l:l Py, (185]) to simultaneously select the
significant explanatory variables and determine the order of autocorrelation with
the properly chosen penalty functions. A nature approach to obtain estimates is
to utilize an iterate procedure by maximizing the above objective function with
respect to 0 and (3, separately. We leave the specifics of such an investigation to
another research.

2.2. Practical algorithms

2.2.1. MEM algorithm

There exist both 6 and 8 in , implying that we need to maximize the
objective function with respect to (0, 3) iteratively. To be more specific, for a
given value /S’j, j=1,2,...,d, we maximize the following kernel-based objective
function to obtain the estimate of 8

1 & " <Yt — X1 -3 B+ Y0 @Xf_ﬁ)

2.
’I’Lohl h1 ( 8)

t=d+1

Then, we maximize the kernel-based objective function as outlined below to
achieve a new estimate of 8 given the estimate 6

. (Y —XTG-Y BY Y @X?_ﬁ)

2.
nohq ha ( 9)

t=d+1
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The above two functions are maximized iteratively until convergence. The choice
of bandwidths will be introduced later, whereas the initial values can be obtained
by running a mean or median (quantile) regression.

Algorithm 1 MEM Algorithm.

E-Step. Calculate the weight (¢ | #(9)) with the preliminary estimate of the modal
parameter as

K (Ve - X709 + 525, B,X7 ;69 /)

W(t|0(g)>: - _ — .
dotmarr K (Yt - X760 + Z_j:l ﬂjXEje(g)/hl)

M-Step. Update #(911) with the weight calculated in E-Step

" 1 (Y- XT0+Y9_ XL .0
9(g+1) = argmax Z {7-[- (t | 9(9)) log - K ( t t Z]*l BJ t—j
0 hy

t=d+1 h
— (){>~<T'[/‘/')()(*)71)(“kT'[/I/')(}/*7

where g is the iteration indicator, Y; = Y; — 2?21 BiYi_j, X = X[ — ijl Bixl

Xt = (X)X Y= (Yag1,...,Y,)T, and Wy is an (n — d) x (n — d) diagonal
matrix consisting of diagonal elements {r (¢ | 09)}7_, ;.

Nevertheless, because there is no explicit expression for the estimator in
modal regression, obtaining a modal estimator by maximizing the kernel-based
objective function is difficult. To numerically estimate the proposed models,
we develop a modified MEM Algorithm 1 by virtue of Gaussian kernel based
on [Li, Ray and Lindsay| (2007) and Yao (2013), which can provide an explicit
expression for the modal estimator in M-Step (log-maximization). Due to space
constraints, we only present the algorithm for , while other kernel-based
objective functions can be solved using the same procedures.

We iterate E-Step and M-Step until the total error of the estimate approaches
the preassigned constraint. In practice, a tolerance € is set as 107° and the
algorithm is iterated until ||[#0t) — )| < e = 1075, where || - || denotes the
Euclidean norm, defined as ||A| = {tr(AAT)}¥/2. Consistent with the result
in [Yao and Li (2014)), the proposed MEM algorithm has the ascending property,
which means that at each iteration Q,,, (6¢9+%, B) > Qn, (09, ﬁN) and the equality
holds if and only if #9t1) = 9 ensuring the convergence of MEM algorithm.
In general, the MEM algorithm leads to optimization problems suffering from
the local maximum with small bandwidths. To address this issue, we can try
different starting points of parameters (i.e., mean, median, or quantile estimates)
on each occasion to obtain a stable estimate. If the @,,(-) function is assumed
to be unimodal, the initial values for the algorithm will not produce much effect
on the results of estimation. Accordingly, the algorithm will not be trapped at a
local maximum.
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2.2.2. Penalized MEM algorithm

There are numerous penalty functions available in the literature, including
LASSO, adaptive LASSO, ridge, elastic net, among others (Fan and Lv, 2010).
In this paper, we choose the smoothly clipped absolute deviation (SCAD) penalty
because of its unbiasedness for a true coefficient, sparsity to reduce model

complexity, and continuity to avoid unnecessary variation. The first derivative of
pA(|B;]) for the SCAD penalty is defined as

wmm > A)} (2.10)

w80 = A 1181 < 3) +
for 8 > 0, where (t); = tI(t > 0) with I(-) being the indicator function and
a = 3.7 suggested by |[Fan and Li (2001) from a Bayesian point of view. Notice
that the SCAD penalty is a quadratic spline with knots at A and £aX. With
the proper choice of tuning parameter, we can shrinkage some coefficients to
zero with probability converging to one, providing the theoretical support for AR
order choice.

The maximization of the SCAD penalized objective function is not easy
because it is irregular at the origin and lacks a second derivative at some points.
To circumvent this difficulty, we take the local quadratic approximation for the
SCAD penalty function suggested by [Fan and Li (2001)). Suppose we can obtain
an estimate Bj(-g) in the gth step that is close to the true parameter ;. If \Bj(g)\
is close to 0, then set Bf = 0. Otherwise, the SCAD penalty can be locally
approximated by a quadratic function as

1
ns) (18571)

{or, (1B} = (185]) - sen (8) ~ 50|

Bj, (2.11)

which is equivalent to

[P (|5§g)|)

2, (80 ~ s, (Bl) + 53 == (B =877). @12

We then propose a penalized MEM algorithm for . Starting from an ini-
tial estimate, we iterate the E-Step and M-Step until some convergence criterion
is met (we explain more about convergence property in the supplementary file).
In contrast to Algorithm 1, we now need to select the tuning parameter A;. Since
the magnitude of A, is proportional to the standard error of the estimate of 3;,
we follow [Fan and Li| (2004) to set \; = ASE(B;), where X is a scalar variable
and SE(Bj) is the standard error from that can be acquired by a modal
Bootstrap procedure; see [Ullah, Wang and Yao (2021)). After that, the original
d-dimensional optimization is reduced to a one dimensional problem. We select



466 WANG

A based on the BIC-type criterion relying on the kernel-based objective function.
The simulation results in the supplementary file suggest that the correct order of
AR error terms could be identified by setting some of coefficients to zero if d is
chosen large.

Algorithm 2 Penalized MEM for Order Selection.
Selection of \;. Set \; = ASE(f;). Utilize a modified BIC to select A

) 1 <& € — Z;l:l B]Pétfj log(noh3)
In;nBIC’(/\)—anh2 Z K( s + noh3 edf,

t=d+1
where edfy represents the effective degrees of freedom (as measured by the number of
nonzero coefficients of ¥ and noh3 indicates the effective sample size (consistent with
the modal convergence rate).
E-Step. Calculate the weight 7(t | 49)) with the preliminary estimate of the modal
parameter as

oy K (ét - ét,jﬂf@/hQ)
T (t | B4 ) Shan K (gt - Z;l:l ét—jﬁf(g)/hz)'

M-Step. Update S70+D) with the weight calculated in E-Step

P(g+1) - P(g) 1 € — Zj:1 Et—iBj
B = argmax Z T (t | B ) log h—K "

B Zan 2 2

1) 4P
oy {p&juﬁj )

P
250 15

}B? ] = {eTWee+nZA (879} e W,

where ¢ = (é_l,...,é_d), é_j = (éd+1_]’,...,én_j), £ = (éd+1,...,én)T, We is an
(n —d) x (n — d) diagonal matrix with diagonal elements {m(¢ | ,BP(Q))}?:dH, and

EA(B9) = diag{p$ (187N /187 ), ..o (18791 /185 9|} for nonvanished 7).

3. Asymptotic Properties

Since the AR order does not necessarily increase with sample size (Wang,
Li and Tsai, [2007)), we do not assume an increasing d (i.e., being independent of
n) when investigating the theoretical properties of the proposed estimators. To
facilitate the asymptotic analysis, we make the following assumptions.

C1. Parameter Space: The true values of parameters 6, and [, are in the
interior of the known compact parameter space ©y x O3, which is a subset
of Euclidean space R? x R,

C2. Stationary: The strictly stationary process {(X] ,at)T} is strong mixing
with mixing coefficients a(j) that satisfy Y>°7, j%a(j)*/+? < oo for some
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d > 0, where a(n) = supacro_ per|P(AN B) — P(A)P(B)| with 72
being a o-field generated by {(X[,e;) : t < 0} and F2° being a o-filed
generated by {(X[,e;) : t > n}.

C3. Kernel Function: The kernel function K(-) : R — R is a nonnegatively
symmetric density function. In addition, it is Lipschitz continuous on R
and [, t*K?(t)dt < oo.

C4. Density Function: The density function of 7, denoted by g¢,(-) : R — R, is
bounded away from zero and infinity and continuous at n for all n. Also,
g,(+) is assumed to have the fourth continuous derivative and the global
unique mode zero, i.e., g,(-) < g,(0) for all n # 0.

Ch. Moment: The covariates X; are strictly stationary and ergodic with
E||X|* < oo for some s > 2. The matrices Jg,, Jz, and Jy defined in
the following theorems are positive definite.

Although a little bit lengthy, these assumptions are actually quite mild; see
Kemp and Santos Silval (2012)), Yao and Li (2014]), and Ullah, Wang and Yao
(2021} 2022, [2023)). C1 is common and can be easily satisfied in practice. When
the estimators take values in the parameter space that is bounded and closed,
calculating modal estimators is more useful since all mean estimators are biased
at extreme boundary points. Under the mixing condition imposed in C2, the
dependence among {(X[ ,Et)T} will diminish as the distance between indices
increases and is thus asymptotically ignorable. Similar to |[Ullah, Wang and Yao
(2021)), we can show that the a-mixing condition will make estimator behave
in the same way as the independence case, which is typical in nonparametric
problems. We do not impose a bounded support condition for the kernel function
K (-)in C3. As argued by a large number of research (Ullah, Wang and Yaol 2023),
it is not indispensable for the kernel function to have a bounded support as long
as its tails are thin. For example, the Gaussian kernel, which is the default kernel
utilized in this paper, is allowed. C4 is employed to ensure the existence of the
global unique mode, which is the same as that in Kemp and Santos Silva; (2012)
and \Ullah, Wang and Yao (2021, 2022, 2023|). Such a condition can be released
to capture the multimodal estimators by using different initial estimates in the
MEM algorithm. C5 is necessary when deriving asymptotic distributions for
estimators. All conditions related to bandwidths are illustrated in the following
theorems.

We primarily show the asymptotic properties of the initial estimator é, while
the results for 5 can be obtained accordingly (i.e., ||3 — fol| = Op{(noh?)~/2 +
hi}). In what follows, we let g{(-) denote the cth derivative of g,(-) with
197(-) | bounded from above.
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Theorem 1. Under the regularity Conditions C1.-C5. and the restriction ||ﬁ~ —
Boll/h? — 0, with probability approaching one, as ng — oo, hy — 0, and
noh® — oo, there exists a consistent mazimizer 0 of such that ||0 — 60| =
Op{(noh?)~1% + hi}.

Theorem 2. With noh] = O(1), under the same conditions as Theorem 1,
the estimator satisfying the consistency result in Theorem 1 has the following
asymptotic result

. h3 g0 (0) d 9,(0) _
\/ noht (9 —bo— 5 0 Jo Mg, | = N |0, 97(72?;(0)2 /tsz(t)dtJﬁl :

Furthermore, under the assumption that noh] — 0, we have

\/7113 (é— 90) LN (0, 9(92")((?)))2 /t2K2(t)dtJﬁ1> :

where 2% denotes convergence in distribution, Ja, = E(X5,X3,), Mg, = E(Xg,),
d
X5, = (Xpgasrs -y Xpgn) ', and X, o = X =375, Bo; X[-

Theorem 2 shows that the asymptotic properties of the first-step estimators

are the same as those of the Yule-Walker estimators based on modal estimation
for the AR model, implying that 6 is as efficient as if the true regression parameter
8 were known in advance. In contrast to mean estimation, the modal estimator
has an asymptotic bias term associated with bandwidth h; as a result of mode
estimation and the use of local data. To control the bias in estimation and satisfy
the condition || — fo||/h? — 0, the norm of the estimator of 3 should be of a
smaller order than h?, which can be achieved through undersmoothing.

Remark 4 (Optimal Bandwidth). The asymptotic bias of 5, according to
Theorem 2, is 2_1hfgr(]3)(0){g7(72) (0)}~*J5, Mg,, whereas the asymptotic variance
is gn(O)gﬁf)(O) 2 [t2K?(t)dtJ;"'. The asymptotically optimal bandwidth hy
can be obtained by minimizing the asymptotic weighted mean squared errors,
., E{(6 — 00)W;, (0 — 90>} ~ g (0) gD (0)} M, T3 Wiy 5 ME Y /4 +
(noh?)~'tr(J5 1) g,(0)g%? ( ft2K2 t)dt, where tr(-) denotes the trace and Wy
represents a weight matrlx. Accordingly, the asymptotically optimal bandwidth
is
[ (092 0) 2 f R 1T
PO O ML Wa Ty ME |

If we let W3, = J3,, which is proportional to the inverse of the asymptotic variance

of 8, we can have
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B 1/7
.| 3dg,(0)g{P(0)* [2K7(t)dt Yy

PP oM ME |

As a result, the asymptotically optimal bandwidth value in modal regression is
1/5

larger than that in nonparametric mean regression with order n,

To investigate the asymptotic properties of the shrinkage modal estimator,
we decompose the AR regression coefficient vector 3y into 8y = (8L, L) € R?

without loss of generality, where By = (Bo1,- -, B0s)” € R* consists of all nonzero
components of 3y and Byr = (Bosi1,---,B0a)” € RY™* includes all zero components
of By. Define

an = max, {Ip3) (1Bosl: Bo; # 0}, b = max {IpY (1B0;1)| : B, # 0}

1<5;<d

(5 (Borl) -2 (180s)) ,<1>A=dmg{p&iwwon),..m (180s]) }

Wy

where pE\QJ)() indicates the second derivative of penalty. We can establish
the following theoretical properties about the consistency and sparsity of the
penalized modal estimator of the AR model.

Theorem 3 (Consistency). Under the conditions in Theorem 2, with probabil-
ity approaching one, as b, — 0 with ng — oo, there exists a consistent mazximizer

B of ([@6) such that |37 — ol = O {(noh3)™""* + h2 + a,}.

Theorem 4 (Sparsity). Under the same conditions in Theorem 3, let 6,, = h3+
(n 0h3)71 % and Amin = min;{A\; }, if )\mw = max;{\;} = 0, d,, " N\nin — 00 when
n — oo, and lim inf, o liminfg, o+ p/\ (|BJ|)/)\ > 0 for all j, then the penalized

modal estimator can correctly identify all zero elements; that is P(BO,, =0) — 1.

Theorem 3 demonstrates the existence of the penalized modal estimator ﬁp
that converges to the true parameter at the rate O,{(noh3) /> +h2+a,}. In other
words, by choosing an approximate regularization parameter A;, there exists a
\/ngh3-consistent penalized modal estimator. It also indicates that the difference
between the SCAD penalty estimate and the true parameter is asymptotically
negligible when ), is small enough such that a,, = O,(h3). Theorem 4 states that
the proposed penalized modal regression is consistent in order selection; that
is, by selecting an appropriate regularization parameter );, the penalized modal
estimation procedure estimates a zero coefficient exactly as zero with probability
tending to one.

We establish the asymptotic distribution of the modal estimator for nonzero
coeflicients under suitable conditions in Theorem 5, which demonstrates that
35 has oracle properties, i.e., performs as well as if we knew the submodel. In
what follows, we define e = (e_1,...,e_4)" and e_; = (a41-j,..-,En—;) for
j=1,2,....d.
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Theorem 5 (Asymptotic Normality). With nohl = O(1) and noh3¥3 =
O(1), under the same conditions in Theorem 4, the estimator satisfying the
consistency result in Theorem 3 has the following asymptotic result

3 AP —1 h3 97(73)(0)
\/noh3(Jay + @) | By — Bor + (Jay + @) U, — ?g(z)(O)M(l)
n

4 (0,929 [ e past) .
{0 g | PR

In addition, if \/noh3¥, = 0,(1) and ®, = 0,(1), we can obtain
: 3 h3 g (0) 1 d 95(0) 1
ok {5{; — By — 2T i 8 b (o, -2 /tzKQ(t)dtJ‘ .
270" a5 (0)? v

Furthermore, if nohy — 0, we have

. 0
noh3Jo <ﬂ5 - 60,) 4N (0, gi@((o))z /t2K2(t)dtJ(1)1> ;
n

where Jiy and Mgy are the s x s submatrices of Jz = E(ee”) and My = E(e)
corresponding to the nonzero components By .

If the lags considered are not equally significant, the preceding asymptotic
result instantly alleviates the constraint on the magnitude of the order d, because
increasing d will no longer impose proportionally greater burden on the estimating
efficiency. Consequently, the developed SCAD penalty procedure can be utilized
to determine the complexity of the AR process. This result provides underlying
support for choosing an arbitrary upper bound in the first step estimation.

The following asymptotic theorems are for the final modal estimator of 6
based on the transformation of the dependent variable.

Theorem 6. Under the conditions in Theorem 5 and the restriction hy/hs — 0,
with probability approaching one, as ng — 0o, hy — 0, and nghj — oo, there exists
a consistent mazimizer 0 of [2.7) such that ||0 — 6o|| = O, {(noh3)~1/2 + h2}.

Theorem 7. With nohl = O(1), under the same conditions as Theorem 6,
the estimator satisfying the consistency result in Theorem 6 has the following
asymptotic result

A 2g9(0
\/noh 0—00_@9" ( )ngMg 4N o, 9n(0) /tzKQ(t)dtJa‘l :
2 g2 (0) g7 (0)2

Furthermore, under the assumption that nohli — 0, we have
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\/th (é - 90> £V (0, (92")((?)2 /t2K2(t)dtJ9—1> ’

9n
where Jp = E(XXT), My =E(X), and X' = (X1, ,,...,X)".

By undersmoothing the previous estimator (hy/h; — 0), the bias term
from preliminary estimation will be smaller than the leading bias term. As a
consequence, we have a sort of oracle property, in which the modal estimator 0
is asymptotically equivalent to the estimator where the true values of {e,_; }31:1
were known. Note that the asymptotic bias and variance are comparable to those
from parametric modal regression with i.i.d. observations. The main difference is
that under i.i.d. errors, g(+) is the density function of &, evaluated at 0, whereas
in the current work, g(-) is the density of ;. Compared to the initial estimator
6, we do not need to account for uncertainty in lag terms, resulting in a potential
increase in efficiency. Following the same procedure as in Remark 4, we can show
the asymptotically optimal bandwidth h; = O(n, 1/ 7). With undersmoothing
lim,,, 00 nohi = 0, the estimator can be asymptotically centered at the true
value.

Remark 5. The limiting distributions given in the preceding theorems cannot
be used directly for inference or constructing confidence intervals because of
the presence of many unknown terms. Although we can apply nonparametric
estimation to achieve the corresponding density estimates, we have to introduce
additional tuning parameters. The alternative method we can utilize is bootstrap
resampling on the basis of mode, facilitating statistical inference about the
parameter of interest; see Ullah, Wang and Yao| (2021)).

Remark 6 (Bandwidth Selection). The bandwidth in modal regression not
only plays an essential role in the trade-off between reducing bias and variance,
but also affects the target objective (either modal or mean estimate). In addition,
when undersmoothing is used, choosing bandwidths is difficult because it does
not allow for data-driven selection, and the traditional cross-validation method
based on mean squared errors cannot be applied directly to modal regression. In
such a case, we can work with the undersmoothing assumption on bandwidths
following [Ullah, Wang and Yao (2023) to apply the grid search method to select
a number of potential bandwidths for hy, hs, and hs. Specifically, we compute
the mean regression residual first and then select 50 values of bandwidth between
50MAD and 0.5MADng " (An, = 0.16, A, = 0.15, A, = 0.143), where MAD is
the median value of the absolute deviation of the mean regression residual from
the corresponding median value. Based on simulation experience, the selected
bandwidths are appropriate for the model developed in this paper. For empirical
analysis, we simply set the bandwidth to 1.6MADn, =3
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4. Modal Autocorrelation Test

When applying modal regression on data with serial correlation, it is partic-
ularly important to check for any signs of autocorrelation in order to make valid
inferences and estimate more efficiently. However, no formal investigation into
this important issue has been conducted thus far. By extending the results in
Huo et al.| (2017), we propose a residual-based test for autocorrelation in modal
regression models. Notice that the error terms {g,}}, are allowed to exhibit
autocorrelation unless §; = 0 for all j = 1,...,d. Therefore, the primary null
hypothesis that we wish to test for is given by

Hy:p=8=---=p;=0, (4~1)

whereas the alternative hypothesis is H; : 8; # 0 for some 1 < j < d. The
developed autocorrelation test is based on the modal error ¢, = Y, — Mode
(Y; | Xi) in and the assumption that the mode version of the orthogonality
condition E{Q,(Y:, X;) | X;} = 0 almost surely for every ¢, where Q,(Y;, X;)
is the corresponding kernel-based objective function. With the available modal
residuals {¢,}7_, from (L.3)), the auxiliary regression of &, on X, and {e,_;}{_, by
linear mean regression can be carried out

& =X'y+Biéi 1+ + Bafia+ vi, (4.2)

in which v € RP is the parameter and v; is the error term in the auxiliary
regression. We then have the following test statistic

Z::dJrl ’Dt2 - Z::dJr] ’0152
Yicar1 07/(n—d—p)’

where 0, is the residual from the unrestricted auxiliary regression and o, is the
residual from the restricted auxiliary regression with the null hypothesis imposed.
The suggested test can be treated as the usual F' test for the null hypothesis.
When Hj is true, we can show that the proposed statistic is asymptotically
distributed as the X? distribution with d degrees of freedom (X7). The order
d is unimportant when testing the null hypothesis since the suggested test does
not have size distortions (see simulation results in the supplementary file). Once
the null hypothesis is rejected, we can utilize the developed penalty methodology

Moder =

(4.3)

to select an appropriate model

Theorem 8. Under the conditions in Theorem 2, with the restriction that €; is
homoskedastic with a constant variance, we have Moder <, X? as n — oo,
provided that the null hypothesis is correct.

If the errors are heteroskedastic, we can use the typical robust variance-
covariance estimator and achieve the same result. To prove the preceding
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theorem, we rewrite the Moder statistic in a form of the Wald statistic

(V' — d(0a,p; La)Fm) (Od,p, Id)Mil(Od,pa 1))~ (vn — d(0ap; L) Ym)

Moder = 5
s

(4.4)
where I; is the d x d identity matrix, M = (n —d)"' Y} 1 Z:.2], Z, =
(X[ 61,6 vm = (7, B, Ba)T, and 8% = Yo, 07/ (n — d— p).
Combined with the result that the estimator #,, is asymptotically normally
distributed, we can straightforwardly show that Mode follows a X? distribution.
If Moder > Xd%a, the null hypothesis Hj is rejected at significance level «, where
A7, is the 100(1 — @)% quantile of the X7 distribution.

Remark 7 (Bootstrap Implementation). Although the asymptotic level of
Moder is available, it may not perform well in practice if the sample size is
insufficient. The parametric wild bootstrap approach built on mean can then
be used to evaluate the p-value. First, we generate the wild bootstrap residuals
{9372 from the mean-centered parametric residuals {0} ;L_ld, where 0 = 0, —
Mean(d,;), and define the bootstrap sample & = X4 + Z] 1 ,ijst ;o
which 4 and BAmJ are the corresponding mean estimates from (4.2)). Based on the
bootstrap sample {£;, X;}, we can calculate the bootstrap test statistic ModeZ.
and reject the null hypothesis Hy when Moder is greater than the upper a point
of the conditional distribution of Mode%. given {&;, X;}. The p-value of the test
is then evaluated using the relative frequency of the event {Mode} > Moder} in
the replications of the bootstrap sampling.

5. Real Data Application

We now illustrate the proposed method through an application to analyze
spirit consumption data in the United Kingdom from 1870 to 1938, which can be
found in [Fuller| (1996). The dataset contains 69 daily observations of the annual
per capita consumption of spirits (Y;), per capital income (X3 ,), and the price of
spirits (Xs2.). In this illustration, we fit the data with the following parametric
modal regression model

}/; = constant + 91X17t + 92X27t + 03X37t + 94X47t + Et, (51)

where variables X3, = t/100 and X,, = (¢t — 35)%/10000 for t = 1,...,69, and
the error terms {&;}%?, are assumed to be a stationary process.
We first use the mean regression to obtain the initial estimate of 8 by ignoring
the AR structure, yielding the following equation
E(Y; | X;) =2.1209+0.6975 X; ; — 0.6322 X5, — 0.9555 X5, — 1.1525 X, ;, (5.2)

(0.2707)  (0.1323) (0.0529) (0.0837) (0.1539)

where the numbers in brackets represent standard errors. We can then calculate
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the estimated mean residuals. The autocorrelation plot of the residuals in Figure
1 clearly shows that the independence assumption for residuals is questionable
and there exists a periodic structure in residuals. The partial-autocorrelation
plot suggests that an AR(d) with d < 10 may fit the errors well. The blue lines
in Figure 1 indicate the confidence intervals.

The autocorrelation check presented above is based on the mean. To further
demonstrate the existence of autocorrelation, we run the parametric modal
regression and plot the corresponding autocorrelation and partial-autocorrelation
functions in Figure 1. The results follow a pattern similar to mean regression.
Nevertheless, the modal estimates are different from the mean estimates
(although not much), which is expected given that the distribution of Y is not
symmetric. The standard errors for modal coefficients are calculated through the
bootstrap procedure, which are generally smaller than those in mean regression
(Figure 2).

Mode(Y; | X;) =2.4735+0.5873 X, , — 0.7177 X5, — 0.7939 X5, — 1.3232 Xy
(0.2094)  (0.0898) (0.0671) (0.0804) (0.1235)

(5.3)

Since the order d is unimportant when testing the null hypothesis (see Section

4 and simulation results in the supplementary file), we apply the proposed test

to validate the autocorrelation structure with the AR(1) error process. The

relative frequency of the event {Mode}. > Moder} we obtain is 0.025, which

strongly suggests that the null hypothesis of no autocorrelation should be rejected.

According to the partial-autocorrelation plot in Figure 1, we then assume an

AR(10) model on errors and apply the penalized modal regression with SCAD

penalty to select order and estimate modal coefficients. The estimation results
are shown as follows (Figure 2)

Mode(Y; | Fi—1) =1.9592+0.8302 X ; — 0.6792 X5 ; — 0 9409 X3,y
(0.0384)  (0.0182) (0.0096) 0127)

—1.2215 X, , + 0 6558 €r—1 — 0.2379¢;_19,
(0.0350) (0.0257)

(5.4)

where standard errors are calculated using bootstrap procedure.

After inspection, we confirm that the estimates satisfy the stationarity
condition. In comparison to the traditional modal regression results in ,
the “most likely” effect of per capital income on annual per capital consumption
of spirits is larger, while the effect of price of spirits is smaller, demonstrating
that ignoring the AR error structure may result in not only inefficient but
also inconsistent estimators (heteroskedasticity). Furthermore, after taking the
information in the error structure into consideration, the modal estimators
become more efficient. We plot the autocorrelation and partial autocorrelation
functions in Figure 1 for . The new residuals do not have any significant
pattern and appear to be a white process.
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Figure 1. Correlogram of Residuals.

For comparison, we further report the results of mean estimation when
autocorrelation information is taken into account. By applying the penalized
mean regression with SCAD penalty, we obtain the following result

E(Y; | Fi—1) =2.0546 4 0.6378 X ; — 0.6880 X5 ; — 0 9523 X
(0.2551)  (0.1224) (0.0516) 0753)

—0.9826 X, , + 0 4795 €r—1 — 0.2568 ¢;_s.
(0.1449) (0.1177)

(5.5)

It is interesting to observe that the mean estimation results differ from the modal
estimation results. Especially, mean regression selects the AR model with lags
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Figure 2. Bootstrap Results and Empirical Density.

1 and 8, and produces estimates with larger standard errors. In addition, the
magnitudes of mean coefficients of X;; and X, , are smaller than those obtained
from modal estimation. All of these suggest that modal estimation can provide
some additional data information that mean estimation may ignore. Moreover, to
compare the prediction ability, we utilize both mean and modal regressions with
AR errors to predict the last five data points (out-of-sample prediction). The
mean absolute prediction errors we obtain are 0.2853 (mean) and 0.1926 (mode),
respectively. Therefore, modal regression also has better prediction performance,
which is consistent with the simulation results in the supplementary file.

6. Concluding Remarks

As one of the center measures, the mode preserves some important features of
the underlying distribution function and provides a reliable estimate of location.
Built on mode value, we in this paper propose an efficient estimation procedure
for parametric linear modal regression with AR errors by applying the kernel-
based objective functions. We utilize a penalized objective function to select the
order of the AR process and construct a computationally simple residual-based
test for detecting autocorrelation in modal regression models. We investigate
the asymptotic properties of the resultant modal estimators under some mild
conditions. Two modal algorithms are introduced to arithmetically estimate
models. The numerical results show that the developed method is superior to
parametric modal regression without considering AR error structure and can
effectively improve estimation and prediction accuracy in moderate-sized samples
compared to mean regression. We also discuss the extension of the estimation
procedure to nonparametrically established modal regression models.

We in this paper concentrate on the strictly stationary case. In practice, this
assumption may be difficult to justify since time series are frequently observed
with trends. We can combine the proposed estimation procedure with the
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technique that removes the deterministic trend, or we can consider a locally
stationary time series model. In addition, the dimension of covariates in this
paper is fixed. It would be appealing to extend the results to high dimensional
case, where the dimension of covariates depends on sample size, i.e., d = O(n®),
a > 1. Nevertheless, with growing d, sparseness generally refers to the proportion
of zero parameters, and the initial modal estimator is not consistent. Also, with
the d > n setting, it is necessary to choose A > log(ngh?) to obtain model selection
consistency with BIC-type criterion. We leave all of these interesting research for
the future.

Supplementary Material

The online supplementary file contains all simulation results and technical
proofs, the extension to nonparametric modal regression with autocorrelated error
process, and the convergence of the penalized MEM algorithm.
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