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Abstract: We propose an efficient two-step estimation procedure for a parametric

modal regression with autoregressive errors. The procedure relies on estimating a

parametric transformation of the dependent variable from data using a (penalized)

kernel-based objective function. We establish asymptotic normality for the resulting

estimator and demonstrate that it possesses oracle properties, as if the true

order of autoregressive error structure were known in advance. To numerically

estimate modal parameter and determine the order of error structure, two modified

(penalized) modal expectation-maximization (MEM) algorithms are developed.

Furthermore, we present a modal residual-based autocorrelation test and show

that the statistic is asymptotically distributed as a X 2 distribution. Monte Carlo

simulations and an empirical analysis are conducted to illustrate the finite sample

performance of the resultant estimator. We also discuss the extension of the results

to a nonparametric modal regression model.

Key words and phrases: Autoregressive error, MEM algorithm, modal regression,

oracle property, order selection, residual-based test.

1. Introduction

Modal regression has recently attracted much attention due to its robustness

for skewed and heavy-tailed data, which can be treated as a complement to mean

or median (quantile) regression; see Ullah, Wang and Yao (2021, 2022, 2023).

The main objective of modal regression is to capture how covariates X affect the

“most likely” (mode) value of a response variable Y , as denoted by

Mode(Y | X) = argmax
Y

fY |X(Y | X), (1.1)

where fY |X(Y | X) represents the conditional density of Y given X. The

modal regression line can then be obtained by nonparametrically estimating

the aforementioned conditional density function (Chen et al., 2016). However,

because of the “curse of dimensionty”, such a density-based estimation is difficult

to implement. Similar to mean or median (quantile) regression, we can avoid

nonparametrically estimating conditional density and achieve different types

of modal regression models by directly imposing structural assumptions on
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Mode(Y | X); see Yao and Li (2014), Chen (2018), Ullah, Wang and Yao (2021,

2022, 2023), and references therein for details.

For illustration, suppose that random samples {Yt, Xt}nt=1 are collected in

order to establish a conditional modal regression model

Yt = Mode(Yt | Xt) + εt, t = 1, . . . , n, (1.2)

where Yt ∈ R, Xt ∈ Rp (which may include lagged values of Yt), and {εt}nt=1

are random errors with Mode(εt | Xt) = 0 almost surely. This construction of a

modal regression line allows for nonuniqueness, but all of the models considered in

this paper are assumed to have a global unique mode for convenience purposes.

According to Ullah, Wang and Yao (2023), we can impose a linear regression

structure XT θ on Mode(Yt | Xt) to explain the mode relationship between

response and explanatory variables, where θ is an unknown parameter vector

in the parameter space Θθ ⊂ Rp and T represents the transpose of a matrix

or a vector. Following that, the parameter θ can be estimated using a kernel-

based objective function constructed from the density of error term εt (Kemp

and Santos Silva, 2012; Yao and Li, 2014)

Qn(θ) =
1

nhn

n∑
t=1

K

(
Yt −XT

t θ

hn

)
, (1.3)

where K(·) is a kernel function with
∫
R K(t)dt = 1 and hn is a non-stochastic

strictly positive bandwidth dependent on n. To acquire the reliable estimator

from (1.3), we need to assume that the error term εt, denoted as Yt −Mode(Yt |
Xt), is independent and identically distributed (i.i.d.).

The i.i.d. assumption, on the other hand, may be violated when data are

collected sequentially in time, such as the financial return, individual income, or

interest rate, which naturally imposes a correlated structure for error terms. As

a result, the error terms in (1.2) will possess serial correlation and the conditional

mode of εt on Xt is no longer zero due to the absence of mode additive property.

If such correlation is not taken into account, the modal estimator of θ from

(1.3)—the “most likely” effect—may be inefficient or biased (when εt and Xt

have dependence relationship), rendering any inference based on it invalid. Ullah,

Wang and Yao (2021) mentioned that incorporating the information from error

autocorrelation structure can lead to a more efficient modal estimator, but they

did not address the critical issues related to practical implementation. The

question of how to best incorporate error correlation information to recover

modal coefficient θ remains unanswered. To fill the literature gap, we in this

paper assume that {Yt, Xt}nt=1 is a sequence of strictly stationary random vectors

and aim at estimating the conditional modal regression with autoregressive (AR)

error εt by directly modeling the error process. We show that the autocorrelation

function of the error process contains useful information for inferring and can be
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properly used to improve the performance of modal estimators.

Serial correlation in the error terms of mean or median (quantile) regression

has been investigated intensively as a main class of dynamic regression models;

see Opsomer, Wang and Yang (2001), Xiao et al. (2003), Su and Ullah (2007),

Wang, Li and Tsai (2007), Martins-Filho and Yao (2009), Chen, Li and Li (2015),

among others. All of these studies can be viewed as extensions of the mean or

median (quantile) regression literature from the typical case where error terms are

i.i.d. to instances where specific parametric or nonparametric structures for error

terms are allowed. In light of these research, we study parametric linear modal

regression with errors represented by a stationary AR process with finite order d,

where we recover modal parameters by directly incorporating the autocorrelated

error process; see (2.3). However, the true AR order in the errors is rarely

available in advance and is simply assumed to be an upper bound in practice.

The misspecification of the lagged order will result in the reduction of estimation

precision and efficiency. Although information criterion-based methods can

usually identify the order, these methods are sensitive to small changes in the

data and ignore stochastic errors inherited in the process of determining order

(Qiu, Li and You, 2015). Furthermore, the existing information criterion in mean

or median (quantile) regression cannot be utilized for modal regression with a

kernel-based objective function. These motivate us to propose a modal variable

selection procedure through a penalty function based on the estimated residuals

to determine the AR order.

Specifically, we propose an efficient two-step estimation procedure for es-

timating the modal regression parameters while accounting for the AR error

structure. In the first step, we select an arbitrary large value for d (upper bound)

to obtain the initial estimate of θ, and in the second step, we update the estimate

with order selection using penalized modal regression. Consequently, the final

modal estimator of θ is based on a parametric transformation of the dependent

variable, which must be estimated from data using a (penalized) kernel-based

objective function. We establish asymptotic normality for the resulting estimator

and demonstrate that it has the oracle properties as if the true error structure

were known in advance. Following Li, Ray and Lindsay (2007) and Yao (2013), we

suggest two modified (penalized) MEM algorithms to numerically estimate modal

parameters. Monte Carlo simulations and an empirical analysis are conducted

to illustrate the finite sample performance of the resulting estimators, where we

show that accounting for autocorrelation in the errors can result in substantially

more accurate and efficient modal estimates. In spite of the extensive literature

on mode, there is little research on variable selection in modal regression. The

developed order selection procedure can also be considered as a contribution to

modal variable selection literature.

The proposed estimation methodology relies on the presence of autocorre-

lation in the error terms. If the modal regression model does not contain an
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autocorrelated error process, the developed method may lose efficiency. As a

result, it is particularly important to check for any signs of autocorrelation in

modal regression. To accomplish this objective, we suggest a residual-based test

for autocorrelation in modal regression models. In general, the Breusch-Godfrey

LM test can be applied to the residuals of a baseline modal regression. Furno

(2000), for example, recommended a LM test based on the least absolute deviation

residuals. Nevertheless, Huo et al. (2017) argued that such a LM test could result

in potentially large size distortions for median (quantile) regression. Particularly,

the LM statistic either diverges to infinity or weakly converges to a distribution

that is different from the X 2 distribution. Given that modal regression can be

regarded as a special case of quantile regression, which is obtained by maximizing

the density function, such size distortions may also appear in modal regression

if the LM test is used. We thus extend the results in Huo et al. (2017) to

parametric modal regression to propose a modal residual-based test and show

that the statistic is asymptotically distributed as a X 2 distribution.

The layout of the remainder of this paper is as follows. In Section 2,

we propose an efficient two-step estimation procedure to estimate the modal

regression coefficients. In Section 3, we present the asymptotic properties of the

resulting modal estimators. In Section 4, we develop a modal residual-based

test for autocorrelation in parametric modal regression. We report an empirical

analysis in section 5 and conclude the paper in Section 6. All technical proofs

and Monte Carlo simulations are presented in the supplementary file, as well as

the extension to nonparametric modal regression.

2. Modal Regression with AR Errors

We begin this section by introducing the error structure of (1.2). Since

most Gaussian stationary processes can be approximated by an AR process of

sufficiently high order, we assume that εt is a stationary AR(d) series

εt = β1εt−1 + · · ·+ βdεt−d + ηt, t = d+ 1, . . . , n, (2.1)

where 1 −
∑d

j=1 βjz
j ̸= 0 for all z such that |z| ≤ 1 on the complex plane,

β = (β1, . . . , βd)
T is a d× 1 vector of unknown AR coefficients, and {ηt}nt=d+1 are

i.i.d. random errors with zero mode. Because the conditional modal estimators

and their asymptotic properties are irrelevant to the moments of error terms,

compared to mean regression, we do not impose any moment conditions on ηt,

i.e., allow AR(d) with E(ε2t ) = ∞ and the distribution of ηt to be heavy-tailed or

asymmetric. Note that the distribution of the errors in practice can potentially

be heteroskedastic and asymmetric simultaneously, motivating the need of the

suggested modal estimation.
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Remark 1. As pointed out by the editor, with i.i.d. random errors, the difference

between the mode and the mean is a constant. Since all AR models can be written

as a MA(∞) model, the modal regression and a zero-mean noise regression only

differ by a constant term. We can then combine modal and mean regressions to

achieve coefficient estimators, which has been utilized in Ullah, Wang and Yao

(2021). However, compared to this combined estimation procedure, the proposed

modal estimation can increase efficiency and has better prediction performance

if the distribution of the error term or dependent variable is skewed; see the

simulation results in the supplementary file.

The model in (1.2) can then be written as

Yt = XT
t θ + β1εt−1 + · · ·+ βdεt−d + ηt (2.2)

by incorporating the error structure information. If the values of {ε}nt=d+1

were available, (2.2) would be a valid linear modal regression equation, and the

coefficients could be estimated directly using the kernel-based objective function

(1.3). In practice, however, they are not available (neither directly nor indirectly),

and need to be substituted with appropriate estimates.

To obtain the consistent estimate of θ, we replace εt−j with Yt−j − θXt−j for

j = 1, 2, . . . , d and get

Mode (Yt | Ft−1) = XT
t θ +

d∑
j=1

βj

(
Yt−j −XT

t−jθ
)

(2.3)

provided that ηt is independent of Ft−1, where Ft−1 = σ({Ys, Xs} : s ≤ t) is

the σ-field generated by ({Ys, Xs} : s ≤ t). If the value of order d were known,

the parameters can be identified and estimated by using (2.3) straightforwardly.

However, we do not know the exact value of d practically. To improve estimation

performance and propose a modal residual-based autocorrelation test, we instead

use the estimate of θ from (2.3) with an arbitrary chosen d (e.g., upper bound

chosen by ACF and PACF) to construct a preliminary consistent estimate of εt.

We then plug it back into the AR model in (2.3) and simultaneously estimate β

and select d by maximizing a penalized kernel-based objective function. Finally,

we plug the consistent penalized estimate of β into (2.2) to define a new pseudo

response variable, converting the AR regression problem to a parametric modal

regression framework. The entire estimation procedure is built on

Mode

(
Yt −

s∑
j=1

βjεt−j | Ft−1

)
= XT

t θ, (2.4)

where s ≤ d is the selected order. Under some mild conditions, the final estimator

of θ is shown to have similar asymptotic bias and variance as the estimator of
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linear modal regression with i.i.d. observations, except for the explicit value of

the density function for error terms (see Theorem 7).

2.1. Feasible estimation procedure

To efficiently account for the AR error structure, we in the first step estimate

θ in (2.3) by maximizing the following kernel-based objective function

Qn0
(θ, β) =

1

n0h1

n∑
t=d+1

K

(
Yt −XT

t θ −
∑d

j=1 βjYt−j +
∑d

j=1 βjX
T
t−jθ

h1

)
, (2.5)

where n0 = n − d is the effective sample size and h1 = h1(n0) > 0 is a scalar

bandwidth sequence satisfying h1 → 0 as n0 → ∞. According to Yao and Li

(2014) and Ullah, Wang and Yao (2021, 2022, 2023), the choice of kernel function

is less important in modal estimation than the choice of bandwidth. We thus

choose the Gaussian kernel in this paper for simple calculations; see the role

of the Gaussian kernel in the following MEM algorithms. We use θ̃ and β̃ to

represent the first-step modal estimators from (2.5).

After obtaining the estimate θ̃, we in the second step use it to construct

the estimate ε̂t with ε̂t = Yt −XT
t θ̃. We then conduct a modal variable selection

procedure to determine the AR order from the data by adding a penalty term

into the kernel-based objective function

QP
n0
(β) =

1

n0h2

n∑
t=d+1

K

(
ε̂t −

∑d
j=1 βj ε̂t−j

h2

)
+

d∑
j=1

pλj
(|βj|) , (2.6)

where h2 = h2(n0) > 0 is a sequence of bandwidths that depends on n0 satisfying

h2 → 0 as n0 → ∞, and pλj
(·) is a penalty function with the tuning parameter

λj controlling the model complexity. In general, the larger the λj, the simpler

the modal regression model, with fewer variables selected. The penalty function

pλj
(·) and the tuning parameter λj are not required to be identical for all j. We

denote the estimator from (2.6) as β̂P . The selected AR order s ≤ d is the highest

order whose corresponding coefficient is not zero. In Section 3, we show that the

penalized modal estimator is consistent and enjoys selection consistency as well

as asymptotic normality.

Remark 2. To reduce model complexity, we concentrate on penalized method-

ology for selecting AR order. Aside from that, we can also utilize a modified

Bayesian information criterion (BIC) for finding the order, where

dopt = argmin
d

BIC(d) = −Qn0
(θ, β) + (n0h

3
1)

−1 log(n0h
3
1)dfd

and dfd denotes the number of coefficients. This approach, however, disregards

stochastic errors inherited in the stages of determining the AR process. It is also
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computationally intensive because BIC(d) depends on the estimates of θ and β,

and it is challenging to compare all candidate subprocesses to choose the optimal

model when the maximal order is very large.

To obtain the final modal estimator of θ, we maximize the following kernel-

based objective function derived from (2.4)

Qn0
(θ) =

1

n0h3

n∑
t=d+1

K

(
Yt −

∑d
j=1 β̂

P
j ε̂t−j −XT

t θ

h3

)
(2.7)

by submitting εt−j and βj with the corresponding estimates, where h3 = h3(n0) >

0 is a sequence of bandwidths that depends on n satisfying h3 → 0 as n0 → ∞.

The final estimator from (2.7) is denoted as θ̂. In Section 3, we show that under

appropriate assumptions, the final modal estimator θ̂ is asymptotically equivalent

to the infeasible estimator from (2.4).

Remark 3 (Variable and Order Selection). In the absence of prior knowl-

edge, a large number of variables may be included in model (2.2) to reduce

potential model bias, but could result in less predictive power and greater

interpretation difficulty. In this case, we can apply the penalized objective

function Qn0
(θ, β)+

∑p
k=1 pλk

(|θk|)+
∑d

j=1 pµj
(|βj|) to simultaneously select the

significant explanatory variables and determine the order of autocorrelation with

the properly chosen penalty functions. A nature approach to obtain estimates is

to utilize an iterate procedure by maximizing the above objective function with

respect to θ and β, separately. We leave the specifics of such an investigation to

another research.

2.2. Practical algorithms

2.2.1. MEM algorithm

There exist both θ and β in (2.5), implying that we need to maximize the

objective function with respect to (θ, β) iteratively. To be more specific, for a

given value β̃j, j = 1, 2, . . . , d, we maximize the following kernel-based objective

function to obtain the estimate of θ

1

n0h1

n∑
t=d+1

K

(
Yt −XT

t θ −
∑d

j=1 β̃jYt−j +
∑d

j=1 β̃jX
T
t−jθ

h1

)
. (2.8)

Then, we maximize the kernel-based objective function as outlined below to

achieve a new estimate of β given the estimate θ̃

1

n0h1

n∑
t=d+1

K

(
Yt −XT

t θ̃ −
∑d

j=1 βjYt−j +
∑d

j=1 βjX
T
t−j θ̃

h1

)
. (2.9)
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The above two functions are maximized iteratively until convergence. The choice

of bandwidths will be introduced later, whereas the initial values can be obtained

by running a mean or median (quantile) regression.

Algorithm 1 MEM Algorithm.

E-Step. Calculate the weight π(t | θ(g)) with the preliminary estimate of the modal
parameter as

π
(
t | θ(g)

)
=

K
(
Ỹt −XT

t θ
(g) +

∑d
j=1 β̃jX

T
t−jθ

(g)/h1

)
∑n

t=d+1 K
(
Ỹt −XT

t θ
(g) +

∑d
j=1 β̃jXT

t−jθ
(g)/h1

) .
M-Step. Update θ(g+1) with the weight calculated in E-Step

θ(g+1) = argmax
θ

n∑
t=d+1

{
π
(
t | θ(g)

)
log

1

h1
K

(
Ỹt −XT

t θ +
∑d

j=1 β̃jX
T
t−jθ

h1

)}
= (X∗TWXX∗)−1X∗TWXY ∗,

where g is the iteration indicator, Ỹt = Yt −
∑d

j=1 β̃jYt−j , X
∗
t = XT

t −
∑d

j=1 β̃jX
T
t−j ,

X∗ = (X∗
d+1, . . . , X

∗
n)

T , Y ∗ = (Ỹd+1, . . . , Ỹn)
T , and WX is an (n− d)× (n− d) diagonal

matrix consisting of diagonal elements {π
(
t | θ(g)

)
}nt=d+1.

Nevertheless, because there is no explicit expression for the estimator in

modal regression, obtaining a modal estimator by maximizing the kernel-based

objective function is difficult. To numerically estimate the proposed models,

we develop a modified MEM Algorithm 1 by virtue of Gaussian kernel based

on Li, Ray and Lindsay (2007) and Yao (2013), which can provide an explicit

expression for the modal estimator in M-Step (log-maximization). Due to space

constraints, we only present the algorithm for (2.8), while other kernel-based

objective functions can be solved using the same procedures.

We iterate E-Step and M-Step until the total error of the estimate approaches

the preassigned constraint. In practice, a tolerance ϵ is set as 10−5 and the

algorithm is iterated until ∥θ̃(g+1) − θ̃(g)∥ < ϵ = 10−5, where ∥ · ∥ denotes the

Euclidean norm, defined as ∥A∥ = {tr(AAT )}1/2. Consistent with the result

in Yao and Li (2014), the proposed MEM algorithm has the ascending property,

which means that at each iteration Qn0
(θ(g+1), β̃) ≥ Qn0

(θ(g), β̃) and the equality

holds if and only if θ(g+1) = θ(g), ensuring the convergence of MEM algorithm.

In general, the MEM algorithm leads to optimization problems suffering from

the local maximum with small bandwidths. To address this issue, we can try

different starting points of parameters (i.e., mean, median, or quantile estimates)

on each occasion to obtain a stable estimate. If the Qn0
(·) function is assumed

to be unimodal, the initial values for the algorithm will not produce much effect

on the results of estimation. Accordingly, the algorithm will not be trapped at a

local maximum.



MODAL REGRESSION WITH AUTOCORRELATED ERRORS 465

2.2.2. Penalized MEM algorithm

There are numerous penalty functions available in the literature, including

LASSO, adaptive LASSO, ridge, elastic net, among others (Fan and Lv, 2010).

In this paper, we choose the smoothly clipped absolute deviation (SCAD) penalty

because of its unbiasedness for a true coefficient, sparsity to reduce model

complexity, and continuity to avoid unnecessary variation. The first derivative of

pλ(|βj|) for the SCAD penalty is defined as

p
(1)
λ (|β|) = λ

{
I(|β| ≤ λ) +

(aλ− |β|)+
(a− 1)λ

I(|β| > λ)

}
(2.10)

for β > 0, where (t)+ = tI(t > 0) with I(·) being the indicator function and

a = 3.7 suggested by Fan and Li (2001) from a Bayesian point of view. Notice

that the SCAD penalty is a quadratic spline with knots at ±λ and ±aλ. With

the proper choice of tuning parameter, we can shrinkage some coefficients to

zero with probability converging to one, providing the theoretical support for AR

order choice.

The maximization of the SCAD penalized objective function is not easy

because it is irregular at the origin and lacks a second derivative at some points.

To circumvent this difficulty, we take the local quadratic approximation for the

SCAD penalty function suggested by Fan and Li (2001). Suppose we can obtain

an estimate β
(g)
j in the gth step that is close to the true parameter βj. If |β(g)

j |
is close to 0, then set β̂P

j = 0. Otherwise, the SCAD penalty can be locally

approximated by a quadratic function as

{
pλj

(|βj|)
}(1)

= p
(1)
λj

(|βj|) · sgn (βj) ≈
p
(1)
λj

(
|β(g)

j |
)

|β(g)
j |

βj, (2.11)

which is equivalent to

pλj
(|βj|) ≈ pλj

(|βj0|) +
1

2

p
(1)
λj

(
|β(g)

j |
)

|β(g)
j |

(β2
j − β

(g)2
j

)
. (2.12)

We then propose a penalized MEM algorithm for (2.6). Starting from an ini-

tial estimate, we iterate the E-Step and M-Step until some convergence criterion

is met (we explain more about convergence property in the supplementary file).

In contrast to Algorithm 1, we now need to select the tuning parameter λj. Since

the magnitude of λj is proportional to the standard error of the estimate of βj,

we follow Fan and Li (2004) to set λj = λSE(β̂j), where λ is a scalar variable

and SE(β̂j) is the standard error from (2.6) that can be acquired by a modal

Bootstrap procedure; see Ullah, Wang and Yao (2021). After that, the original

d-dimensional optimization is reduced to a one dimensional problem. We select
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λ based on the BIC-type criterion relying on the kernel-based objective function.

The simulation results in the supplementary file suggest that the correct order of

AR error terms could be identified by setting some of coefficients to zero if d is

chosen large.

Algorithm 2 Penalized MEM for Order Selection.

Selection of λj . Set λj = λSE(β̃j). Utilize a modified BIC to select λ

min
λ

BIC(λ) = − 1

n0h2

n∑
t=d+1

K

(
ε̂t −

∑d
j=1 β̂

P
j ε̂t−j

h2

)
+

log(n0h
3
2)

n0h3
2

edfλ,

where edfλ represents the effective degrees of freedom (as measured by the number of

nonzero coefficients of β̂P and n0h
3
2 indicates the effective sample size (consistent with

the modal convergence rate).
E-Step. Calculate the weight π(t | β(g)) with the preliminary estimate of the modal
parameter as

π
(
t | βP (g)

)
=

K
(
ε̂t −

∑d
j=1 ε̂t−jβ

P (g)
j /h2

)
∑n

t=d+1 K
(
ε̂t −

∑d
j=1 ε̂t−jβ

P (g)
j /h2

) .
M-Step. Update βP (g+1) with the weight calculated in E-Step

βP (g+1) =argmax
β

n∑
t=d+1

[
π
(
t | βP (g)

)
log

{
1

h2
K

(
ε̂t −

∑d
j=1 ε̂t−jβj

h2

)}

− n0

2

d∑
j=1

{
p
(1)
λj

(|βP (g)
j |)

|βP (g)
j |

}
β2
j

]
= {êTWeê+ n0Σλ(β

P (g))}−1êTWeε̂,

where ê = (ε̂−1, . . . , ε̂−d), ε̂−j = (ε̂d+1−j , . . . , ε̂n−j), ε̂ = (ε̂d+1, . . . , ε̂n)
T , We is an

(n − d) × (n − d) diagonal matrix with diagonal elements {π(t | βP (g))}nt=d+1, and

Σλ(β
(g)) = diag{p(1)λ1

(|βP (g)
1 |)/|βP (g)

1 |, . . . , p(1)λd
(|βP (g)

d |)/|βP (g)
d |} for nonvanished βP (g).

3. Asymptotic Properties

Since the AR order does not necessarily increase with sample size (Wang,

Li and Tsai, 2007), we do not assume an increasing d (i.e., being independent of

n) when investigating the theoretical properties of the proposed estimators. To

facilitate the asymptotic analysis, we make the following assumptions.

C1. Parameter Space: The true values of parameters θ0 and β0 are in the

interior of the known compact parameter space Θθ ×Θβ, which is a subset

of Euclidean space Rp × Rd.

C2. Stationary: The strictly stationary process {(XT
t , εt)

T} is strong mixing

with mixing coefficients α(j) that satisfy
∑∞

j=1 j
2α(j)δ/(1+δ) < ∞ for some
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δ > 0, where α(n) = supA∈F0
−∞,B∈F∞

n
|P (A ∩ B) − P (A)P (B)| with F0

−∞

being a σ-field generated by {(XT
t , εt) : t ≤ 0} and F∞

n being a σ-filed

generated by {(XT
t , εt) : t ≥ n}.

C3. Kernel Function: The kernel function K(·) : R → R is a nonnegatively

symmetric density function. In addition, it is Lipschitz continuous on R
and

∫
R t

2K2(t)dt < ∞.

C4. Density Function: The density function of η, denoted by gη(·) : R → R, is
bounded away from zero and infinity and continuous at η for all η. Also,

gη(·) is assumed to have the fourth continuous derivative and the global

unique mode zero, i.e., gη(·) < gη(0) for all η ̸= 0.

C5. Moment: The covariates Xt are strictly stationary and ergodic with

E∥X∥2s < ∞ for some s > 2. The matrices Jβ0
, Jβ, and Jθ defined in

the following theorems are positive definite.

Although a little bit lengthy, these assumptions are actually quite mild; see

Kemp and Santos Silva (2012), Yao and Li (2014), and Ullah, Wang and Yao

(2021, 2022, 2023). C1 is common and can be easily satisfied in practice. When

the estimators take values in the parameter space that is bounded and closed,

calculating modal estimators is more useful since all mean estimators are biased

at extreme boundary points. Under the mixing condition imposed in C2, the

dependence among {(XT
t , εt)

T} will diminish as the distance between indices

increases and is thus asymptotically ignorable. Similar to Ullah, Wang and Yao

(2021), we can show that the α-mixing condition will make estimator behave

in the same way as the independence case, which is typical in nonparametric

problems. We do not impose a bounded support condition for the kernel function

K(·) in C3. As argued by a large number of research (Ullah, Wang and Yao, 2023),

it is not indispensable for the kernel function to have a bounded support as long

as its tails are thin. For example, the Gaussian kernel, which is the default kernel

utilized in this paper, is allowed. C4 is employed to ensure the existence of the

global unique mode, which is the same as that in Kemp and Santos Silva (2012)

and Ullah, Wang and Yao (2021, 2022, 2023). Such a condition can be released

to capture the multimodal estimators by using different initial estimates in the

MEM algorithm. C5 is necessary when deriving asymptotic distributions for

estimators. All conditions related to bandwidths are illustrated in the following

theorems.

We primarily show the asymptotic properties of the initial estimator θ̃, while

the results for β̃ can be obtained accordingly (i.e., ∥β̃ − β0∥ = Op{(n0h
3
1)

−1/2 +

h2
1}). In what follows, we let g(c)η (·) denote the cth derivative of gη(·) with

∥g(c)η (·)∥∞ bounded from above.



468 WANG

Theorem 1. Under the regularity Conditions C1.–C5. and the restriction ∥β̃ −
β0∥/h2

1 → 0, with probability approaching one, as n0 → ∞, h1 → 0, and

n0h
5
1 → ∞, there exists a consistent maximizer θ̃ of (2.5) such that ∥θ̃ − θ0∥ =

Op{(n0h
3
1)

−1/2 + h2
1}.

Theorem 2. With n0h
7
1 = O(1), under the same conditions as Theorem 1,

the estimator satisfying the consistency result in Theorem 1 has the following

asymptotic result√
n0h3

1

(
θ̃ − θ0 −

h2
1

2

g(3)η (0)

g
(2)
η (0)

J−1
β0

Mβ0

)
d→ N

(
0,

gη(0)

g
(2)
η (0)2

∫
t2K2(t)dtJ−1

β

)
.

Furthermore, under the assumption that n0h
7
1 → 0, we have

√
nh3

2

(
θ̃ − θ0

)
d→ N

(
0,

gη(0)

g
(2)
η (0)2

∫
t2K2(t)dtJ−1

β

)
,

where
d→ denotes convergence in distribution, Jβ0

= E(Xβ0
XT

β0
), Mβ0

= E(Xβ0
),

XT
β0

= (Xβ0,d+1, . . . , Xβ0,n)
T , and Xβ0,t = XT

t −
∑d

j=1 β0jX
T
t−j.

Theorem 2 shows that the asymptotic properties of the first-step estimators

are the same as those of the Yule-Walker estimators based on modal estimation

for the AR model, implying that θ̃ is as efficient as if the true regression parameter

β were known in advance. In contrast to mean estimation, the modal estimator

has an asymptotic bias term associated with bandwidth h1 as a result of mode

estimation and the use of local data. To control the bias in estimation and satisfy

the condition ∥β̃ − β0∥/h2
1 → 0, the norm of the estimator of β should be of a

smaller order than h2
1, which can be achieved through undersmoothing.

Remark 4 (Optimal Bandwidth). The asymptotic bias of θ̃, according to

Theorem 2, is 2−1h2
1g

(3)
η (0){g(2)η (0)}−1J−1

β0
Mβ0

, whereas the asymptotic variance

is gη(0)g
(2)
η (0)−2

∫
t2K2(t)dtJ−1

β . The asymptotically optimal bandwidth h1

can be obtained by minimizing the asymptotic weighted mean squared errors,

i.e., E{(θ̃ − θ0)
TWβ0

(θ̃ − θ0)} ≈ g(3)η (0)2{g(2)η (0)}−2MT
β0
J−1
β0

Wβ0
J−1
β0

MT
β0
h4
1/4 +

(n0h
3
1)

−1tr(J−1
β )gη(0)g

(2)
η (0)−2

∫
t2K2(t)dt, where tr(·) denotes the trace and Wβ

represents a weight matrix. Accordingly, the asymptotically optimal bandwidth

is

ĥ1 =

[
3tr(J−1

β )gη(0)g
(2)
η (0)−2

∫
t2K2(t)dt

g
(3)
η (0)2{g(2)η (0)}−2MT

β0
J−1
β0

Wβ0
J−1
β0

MT
β0

]1/7
n
−1/7
0 .

If we letWβ0
= Jβ0

, which is proportional to the inverse of the asymptotic variance

of θ̃, we can have
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ĥ1 =

[
3dgη(0)g

(2)
η (0)−2

∫
t2K2(t)dt

g
(3)
η (0)2{g(2)η (0)}−2MT

β0
J−1
β0

MT
β0

]1/7
n
−1/7
0 .

As a result, the asymptotically optimal bandwidth value in modal regression is

larger than that in nonparametric mean regression with order n
−1/5
0 .

To investigate the asymptotic properties of the shrinkage modal estimator,

we decompose the AR regression coefficient vector β0 into β0 = (βT
0′ , β

T
0′′)

T ∈ Rd

without loss of generality, where β0′ = (β01, . . . , β0s)
T ∈ Rs consists of all nonzero

components of β0 and β0′′ = (β0s+1, . . . , β0d)
T ∈ Rd−s includes all zero components

of β0. Define

an = max
1≤j≤d

{
|p(1)λj

(|β0j|)| : β0j ̸= 0
}
, bn = max

1≤j≤d

{
|p(2)λj

(|β0j|)| : β0j ̸= 0
}
,

Ψλ =
(
p
(1)
λ1

(|β01|) , . . . , p(1)λs
(|β0s|)

)T
, Φλ = diag

{
p
(2)
λ1

(|β01|) , . . . , p(2)λs
(|β0s|)

}
,

where p
(2)
λj
(.) indicates the second derivative of penalty. We can establish

the following theoretical properties about the consistency and sparsity of the

penalized modal estimator of the AR model.

Theorem 3 (Consistency). Under the conditions in Theorem 2, with probabil-

ity approaching one, as bn → 0 with n0 → ∞, there exists a consistent maximizer

β̂P of (2.6) such that ∥β̂P − β0∥ = Op{(n0h
3
2)

−1/2
+ h2

2 + an}.

Theorem 4 (Sparsity). Under the same conditions in Theorem 3, let δn = h2
2+

(n0h
3
2)

−1/2
and λmin = minj{λj}, if λmax = maxj{λj} → 0, δ−1

n λmin → ∞ when

n → ∞, and lim infn→0 lim infβj→0+ p
(1)
λj
(|βj|)/λj > 0 for all j, then the penalized

modal estimator can correctly identify all zero elements; that is P (β̂P
0′′ = 0) → 1.

Theorem 3 demonstrates the existence of the penalized modal estimator β̂P

that converges to the true parameter at the rate Op{(n0h
3
2)

−1/2
+h2

2+an}. In other

words, by choosing an approximate regularization parameter λj, there exists a√
n0h3

2-consistent penalized modal estimator. It also indicates that the difference

between the SCAD penalty estimate and the true parameter is asymptotically

negligible when λj is small enough such that an = Op(h
2
2). Theorem 4 states that

the proposed penalized modal regression is consistent in order selection; that

is, by selecting an appropriate regularization parameter λj, the penalized modal

estimation procedure estimates a zero coefficient exactly as zero with probability

tending to one.

We establish the asymptotic distribution of the modal estimator for nonzero

coefficients under suitable conditions in Theorem 5, which demonstrates that

β̂P
0′ has oracle properties, i.e., performs as well as if we knew the submodel. In

what follows, we define e = (ε−1, . . . , ε−d)
T and ε−j = (εd+1−j, . . . , εn−j) for

j = 1, 2, . . . , d.
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Theorem 5 (Asymptotic Normality). With n0h
7
2 = O(1) and n0h

3
2Ψ

2
λ =

O(1), under the same conditions in Theorem 4, the estimator satisfying the

consistency result in Theorem 3 has the following asymptotic result√
n0h3

2(J(1) +Φλ)

[
β̂P
0′ − β0′ + (J(1) +Φλ)

−1

{
Ψλ −

h2
2

2

g(3)η (0)

g
(2)
η (0)

M(1)

}]
d→ N

(
0,

gη(0)

g
(2)
η (0)2

∫
t2K2(t)dtJ−1

(1)

)
.

In addition, if
√
n0h3

2Ψλ = op(1) and Φλ = op(1), we can obtain

√
n0h3

2J(1)

{
β̂P
0′ − β0′ −

h2
2

2

g(3)η (0)

g
(2)
η (0)

J−1
(1)M(1)

}
d→ N

(
0,

gη(0)

g
(2)
η (0)2

∫
t2K2(t)dtJ−1

(1)

)
.

Furthermore, if n0h
7
2 → 0, we have

√
n0h3

2J(1)

(
β̂P
0′ − β0′

)
d→ N

(
0,

gη(0)

g
(2)
η (0)2

∫
t2K2(t)dtJ−1

(1)

)
,

where J(1) and M(1) are the s × s submatrices of Jβ = E(eeT ) and Mβ = E(e)
corresponding to the nonzero components β0′.

If the lags considered are not equally significant, the preceding asymptotic

result instantly alleviates the constraint on the magnitude of the order d, because

increasing d will no longer impose proportionally greater burden on the estimating

efficiency. Consequently, the developed SCAD penalty procedure can be utilized

to determine the complexity of the AR process. This result provides underlying

support for choosing an arbitrary upper bound in the first step estimation.

The following asymptotic theorems are for the final modal estimator of θ

based on the transformation of the dependent variable.

Theorem 6. Under the conditions in Theorem 5 and the restriction h2/h3 → 0,

with probability approaching one, as n0 → ∞, h3 → 0, and n0h
5
3 → ∞, there exists

a consistent maximizer θ̂ of (2.7) such that ∥θ̂ − θ0∥ = Op{(n0h
3
3)

−1/2 + h2
3}.

Theorem 7. With n0h
7
3 = O(1), under the same conditions as Theorem 6,

the estimator satisfying the consistency result in Theorem 6 has the following

asymptotic result√
n0h3

3

{
θ̂ − θ0 −

h2
3

2

g(3)η (0)

g
(2)
η (0)

J−1
θ Mθ

}
d→ N

(
0,

gη(0)

g
(2)
η (0)2

∫
t2K2(t)dtJ−1

θ

)
.

Furthermore, under the assumption that n0h
7
3 → 0, we have
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√
n0h3

3

(
θ̂ − θ0

)
d→ N

(
0,

gη(0)

g
(2)
η (0)2

∫
t2K2(t)dtJ−1

θ

)
,

where Jθ = E(XXT ), Mθ = E(X), and XT = (XT
d+1, . . . , X

T
n )

T .

By undersmoothing the previous estimator (h2/h3 → 0), the bias term

from preliminary estimation will be smaller than the leading bias term. As a

consequence, we have a sort of oracle property, in which the modal estimator θ̂

is asymptotically equivalent to the estimator where the true values of {εt−j}dj=1

were known. Note that the asymptotic bias and variance are comparable to those

from parametric modal regression with i.i.d. observations. The main difference is

that under i.i.d. errors, g(·) is the density function of εt evaluated at 0, whereas

in the current work, g(·) is the density of ηt. Compared to the initial estimator

θ̃, we do not need to account for uncertainty in lag terms, resulting in a potential

increase in efficiency. Following the same procedure as in Remark 4, we can show

the asymptotically optimal bandwidth h3 = O(n
−1/7
0 ). With undersmoothing

limn0→∞ n0h
7
3 = 0, the estimator can be asymptotically centered at the true

value.

Remark 5. The limiting distributions given in the preceding theorems cannot

be used directly for inference or constructing confidence intervals because of

the presence of many unknown terms. Although we can apply nonparametric

estimation to achieve the corresponding density estimates, we have to introduce

additional tuning parameters. The alternative method we can utilize is bootstrap

resampling on the basis of mode, facilitating statistical inference about the

parameter of interest; see Ullah, Wang and Yao (2021).

Remark 6 (Bandwidth Selection). The bandwidth in modal regression not

only plays an essential role in the trade-off between reducing bias and variance,

but also affects the target objective (either modal or mean estimate). In addition,

when undersmoothing is used, choosing bandwidths is difficult because it does

not allow for data-driven selection, and the traditional cross-validation method

based on mean squared errors cannot be applied directly to modal regression. In

such a case, we can work with the undersmoothing assumption on bandwidths

following Ullah, Wang and Yao (2023) to apply the grid search method to select

a number of potential bandwidths for h1, h2, and h3. Specifically, we compute

the mean regression residual first and then select 50 values of bandwidth between

50MAD and 0.5MADn
−λhj

0 (λh1
= 0.16, λh2

= 0.15, λh3
= 0.143), where MAD is

the median value of the absolute deviation of the mean regression residual from

the corresponding median value. Based on simulation experience, the selected

bandwidths are appropriate for the model developed in this paper. For empirical

analysis, we simply set the bandwidth to 1.6MADn
−λhj

0 .
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4. Modal Autocorrelation Test

When applying modal regression on data with serial correlation, it is partic-

ularly important to check for any signs of autocorrelation in order to make valid

inferences and estimate more efficiently. However, no formal investigation into

this important issue has been conducted thus far. By extending the results in

Huo et al. (2017), we propose a residual-based test for autocorrelation in modal

regression models. Notice that the error terms {εt}nt=1 are allowed to exhibit

autocorrelation unless βj = 0 for all j = 1, . . . , d. Therefore, the primary null

hypothesis that we wish to test for is given by

H0 : β1 = β2 = · · · = βd = 0, (4.1)

whereas the alternative hypothesis is H1 : βj ̸= 0 for some 1 ≤ j ≤ d. The

developed autocorrelation test is based on the modal error εt = Yt − Mode

(Yt | Xt) in (1.2) and the assumption that the mode version of the orthogonality

condition E{Qn(Yt, Xt) | Xt} = 0 almost surely for every t, where Qn(Yt, Xt)

is the corresponding kernel-based objective function. With the available modal

residuals {ε̂t}nt=1 from (1.3), the auxiliary regression of ε̂t on Xt and {εt−l}dl=1 by

linear mean regression can be carried out

ε̂t = XT
t γ + β1ε̂t−1 + · · ·+ βdε̂t−d + vt, (4.2)

in which γ ∈ Rp is the parameter and vt is the error term in the auxiliary

regression. We then have the following test statistic

ModeT =

∑n
t=d+1 ṽ

2
t −

∑n
t=d+1 v̂

2
t∑n

t=d+1 v̂
2
t /(n− d− p)

, (4.3)

where v̂t is the residual from the unrestricted auxiliary regression and ṽt is the

residual from the restricted auxiliary regression with the null hypothesis imposed.

The suggested test can be treated as the usual F test for the null hypothesis.

When H0 is true, we can show that the proposed statistic is asymptotically

distributed as the X 2 distribution with d degrees of freedom (X 2
d ). The order

d is unimportant when testing the null hypothesis since the suggested test does

not have size distortions (see simulation results in the supplementary file). Once

the null hypothesis is rejected, we can utilize the developed penalty methodology

to select an appropriate model

Theorem 8. Under the conditions in Theorem 2, with the restriction that εt is

homoskedastic with a constant variance, we have ModeT
d−→ X 2

d as n → ∞,

provided that the null hypothesis is correct.

If the errors are heteroskedastic, we can use the typical robust variance-

covariance estimator and achieve the same result. To prove the preceding
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theorem, we rewrite the ModeT statistic in a form of the Wald statistic

ModeT =
(
√
n− d(0d,p, Id)γ̂m)((0d,p, Id)M

−1(0d,p, Id))
−1(

√
n− d(0d,p, Id)γ̂m)

s2
,

(4.4)

where Id is the d × d identity matrix, M = (n − d)−1
∑n

t=d+1 ZtZ
T
t , Zt =

(XT
t , ε̂t−1, . . . , ε̂t−d)

T , γm = (γT , β1, . . . , βd)
T , and s2 =

∑n
t=d+1 v̂

2
t /(n − d− p).

Combined with the result that the estimator γ̂m is asymptotically normally

distributed, we can straightforwardly show that ModeT follows a X 2 distribution.

If ModeT > X 2
d,α, the null hypothesis H0 is rejected at significance level α, where

X 2
d,α is the 100(1− α)% quantile of the X 2

d distribution.

Remark 7 (Bootstrap Implementation). Although the asymptotic level of

ModeT is available, it may not perform well in practice if the sample size is

insufficient. The parametric wild bootstrap approach built on mean can then

be used to evaluate the p-value. First, we generate the wild bootstrap residuals

{ṽ∗t }n−d
t=1 from the mean-centered parametric residuals {v̂∗t }n−d

t=1 , where v̂∗t = v̂t −
Mean(v̂t), and define the bootstrap sample ε̂∗t = XT

t γ̂ +
∑d

j=1 β̂m,j ε̂t−j + ṽ∗t , in

which γ̂ and β̂m,j are the corresponding mean estimates from (4.2). Based on the

bootstrap sample {ε̂∗t , Xt}, we can calculate the bootstrap test statistic Mode∗T
and reject the null hypothesis H0 when ModeT is greater than the upper α point

of the conditional distribution of Mode∗T given {ε̂t, Xt}. The p-value of the test

is then evaluated using the relative frequency of the event {Mode∗T ≥ ModeT} in

the replications of the bootstrap sampling.

5. Real Data Application

We now illustrate the proposed method through an application to analyze

spirit consumption data in the United Kingdom from 1870 to 1938, which can be

found in Fuller (1996). The dataset contains 69 daily observations of the annual

per capita consumption of spirits (Yt), per capital income (X1,t), and the price of

spirits (X2,t). In this illustration, we fit the data with the following parametric

modal regression model

Yt = constant + θ1X1,t + θ2X2,t + θ3X3,t + θ4X4,t + εt, (5.1)

where variables X3,t = t/100 and X4,t = (t − 35)2/10000 for t = 1, . . . , 69, and

the error terms {εt}69t=1 are assumed to be a stationary process.

We first use the mean regression to obtain the initial estimate of θ by ignoring

the AR structure, yielding the following equation

E(Yt | Xt) = 2.1209
(0.2707)

+0.6975
(0.1323)

X1,t − 0.6322
(0.0529)

X2,t − 0.9555
(0.0837)

X3,t − 1.1525
(0.1539)

X4,t, (5.2)

where the numbers in brackets represent standard errors. We can then calculate
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the estimated mean residuals. The autocorrelation plot of the residuals in Figure

1 clearly shows that the independence assumption for residuals is questionable

and there exists a periodic structure in residuals. The partial-autocorrelation

plot suggests that an AR(d) with d ≤ 10 may fit the errors well. The blue lines

in Figure 1 indicate the confidence intervals.

The autocorrelation check presented above is based on the mean. To further

demonstrate the existence of autocorrelation, we run the parametric modal

regression and plot the corresponding autocorrelation and partial-autocorrelation

functions in Figure 1. The results follow a pattern similar to mean regression.

Nevertheless, the modal estimates are different from the mean estimates

(although not much), which is expected given that the distribution of Y is not

symmetric. The standard errors for modal coefficients are calculated through the

bootstrap procedure, which are generally smaller than those in mean regression

(Figure 2).

Mode(Yt | Xt) = 2.4735
(0.2094)

+0.5873
(0.0898)

X1,t − 0.7177
(0.0671)

X2,t − 0.7939
(0.0804)

X3,t − 1.3232
(0.1235)

X4,t.

(5.3)

Since the order d is unimportant when testing the null hypothesis (see Section

4 and simulation results in the supplementary file), we apply the proposed test

to validate the autocorrelation structure with the AR(1) error process. The

relative frequency of the event {Mode∗T ≥ ModeT} we obtain is 0.025, which

strongly suggests that the null hypothesis of no autocorrelation should be rejected.

According to the partial-autocorrelation plot in Figure 1, we then assume an

AR(10) model on errors and apply the penalized modal regression with SCAD

penalty to select order and estimate modal coefficients. The estimation results

are shown as follows (Figure 2)

Mode(Yt | Ft−1) = 1.9592
(0.0384)

+0.8302
(0.0182)

X1,t − 0.6792
(0.0096)

X2,t − 0.9409
(0.0127)

X3,t

− 1.2215
(0.0350)

X4,t + 0.6558
(0.0243)

εt−1 − 0.2379
(0.0257)

εt−10,
(5.4)

where standard errors are calculated using bootstrap procedure.

After inspection, we confirm that the estimates satisfy the stationarity

condition. In comparison to the traditional modal regression results in (5.3),

the “most likely” effect of per capital income on annual per capital consumption

of spirits is larger, while the effect of price of spirits is smaller, demonstrating

that ignoring the AR error structure may result in not only inefficient but

also inconsistent estimators (heteroskedasticity). Furthermore, after taking the

information in the error structure into consideration, the modal estimators

become more efficient. We plot the autocorrelation and partial autocorrelation

functions in Figure 1 for (5.4). The new residuals do not have any significant

pattern and appear to be a white process.
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Figure 1. Correlogram of Residuals.

For comparison, we further report the results of mean estimation when

autocorrelation information is taken into account. By applying the penalized

mean regression with SCAD penalty, we obtain the following result

E(Yt | Ft−1) = 2.0546
(0.2551)

+0.6378
(0.1224)

X1,t − 0.6880
(0.0516)

X2,t − 0.9523
(0.0753)

X3,t

− 0.9826
(0.1449)

X4,t + 0.4795
(0.1218)

εt−1 − 0.2568
(0.1177)

εt−8.
(5.5)

It is interesting to observe that the mean estimation results differ from the modal

estimation results. Especially, mean regression selects the AR model with lags
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Figure 2. Bootstrap Results and Empirical Density.

1 and 8, and produces estimates with larger standard errors. In addition, the

magnitudes of mean coefficients of X1,t and X4,t are smaller than those obtained

from modal estimation. All of these suggest that modal estimation can provide

some additional data information that mean estimation may ignore. Moreover, to

compare the prediction ability, we utilize both mean and modal regressions with

AR errors to predict the last five data points (out-of-sample prediction). The

mean absolute prediction errors we obtain are 0.2853 (mean) and 0.1926 (mode),

respectively. Therefore, modal regression also has better prediction performance,

which is consistent with the simulation results in the supplementary file.

6. Concluding Remarks

As one of the center measures, the mode preserves some important features of

the underlying distribution function and provides a reliable estimate of location.

Built on mode value, we in this paper propose an efficient estimation procedure

for parametric linear modal regression with AR errors by applying the kernel-

based objective functions. We utilize a penalized objective function to select the

order of the AR process and construct a computationally simple residual-based

test for detecting autocorrelation in modal regression models. We investigate

the asymptotic properties of the resultant modal estimators under some mild

conditions. Two modal algorithms are introduced to arithmetically estimate

models. The numerical results show that the developed method is superior to

parametric modal regression without considering AR error structure and can

effectively improve estimation and prediction accuracy in moderate-sized samples

compared to mean regression. We also discuss the extension of the estimation

procedure to nonparametrically established modal regression models.

We in this paper concentrate on the strictly stationary case. In practice, this

assumption may be difficult to justify since time series are frequently observed

with trends. We can combine the proposed estimation procedure with the
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technique that removes the deterministic trend, or we can consider a locally

stationary time series model. In addition, the dimension of covariates in this

paper is fixed. It would be appealing to extend the results to high dimensional

case, where the dimension of covariates depends on sample size, i.e., d = O(nα),

α > 1. Nevertheless, with growing d, sparseness generally refers to the proportion

of zero parameters, and the initial modal estimator is not consistent. Also, with

the d > n setting, it is necessary to choose λ > log(n0h
3) to obtain model selection

consistency with BIC-type criterion. We leave all of these interesting research for

the future.

Supplementary Material

The online supplementary file contains all simulation results and technical

proofs, the extension to nonparametric modal regression with autocorrelated error

process, and the convergence of the penalized MEM algorithm.
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