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Abstract: In this study, we solve a class of multiple testing problems under a

Bayesian sequential decision framework. Our work is motivated by binary labeling

tasks in crowdsourcing, where a requestor needs to simultaneously choose a worker

to provide a label and decide when to stop collecting labels, under a certain budget

constraint. We begin by using a binary hypothesis testing problem to determine

the true label of a single object, and provide an optimal solution by casting it un-

der an adaptive sequential probability ratio test framework. Then, we characterize

the structure of the optimal solution, that is, the optimal adaptive sequential de-

sign, which minimizes the Bayes risk using a log-likelihood ratio statistic. We also

develop a dynamic programming algorithm to efficiently compute the optimal solu-

tion. For the multiple testing problem, we propose an empirical Bayes approach for

estimating the class priors, and show that the average loss of our method converges

to the minimal Bayes risk under the true model. Experiments on both simulated

and real data show the robustness of our method, as well as its superiority over

existing methods in terms of its labeling accuracy.

Key words and phrases: Bayesian decision theory, crowdsourcing, empirical Bayes,

sequential analysis, sequential probability ratio test.

1. Introduction

Crowdsourcing, an emerging technology for data-intensive tasks, leverages a

“large group of people in the form of an open call” to achieve a cumulative result

(Howe (2006)). Over the past 10 years, crowdsourcing has become an efficient

and economical way to obtain labels for tasks that are difficult for computers,

but easy for humans. For example, the requestor can post a large number of

images on a popular crowdsourcing platform (e.g., Amazon Mechanical Turk),

and then ask a crowd of workers to tag each picture as a portrait or a landscape,
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offering a small payment for each label. This technique has helped address a wide

range of challenges in scientific areas, such as understanding of the evolution of

galaxies using a crowd classifying galaxy morphology (Galaxy Zoo (Raddick et al.

(2010))), and diagnosing malaria epidemics by asking crowd workers to identify

malaria-infected red blood cells (MOLT (Mavandadi et al. (2012)) and Malari-

aSpot (Luengo-Oroz, Arranz and Frean (2012))); see Doan, Ramakrishnan and

Halevy (2011), Slivkins and Vaughan (2013), and Marcus and Parameswaran

(2015) for comprehensive reviews of crowdsourcing techniques and their applica-

tions.

Despite the efficiency of the technique and the immediate availability of the

data, the labels generated by nonexpert crowd workers are quite noisy. For

example, as reported in Yalavarthi, Ke and Khan (2017) and Ke et al. (2018),

“even considering answers from workers with high-accuracy statistics in Amazon

Mechanical Turk, we find that the average crowd error rate can be up to 25%.”

As a remedy, most requestors resort to repetitive labeling for each object (e.g.,

an image); that is, they collect multiple labels from different workers for a single

object. Then, the requestor aggregates the collected labels to infer the true

label. In general, a greater number of labels yields a more accurate inferred label.

However, each label incurs a fixed cost: the requestor has to pay a prespecified

monetary cost for each label, regardless of its correctness. Therefore, when using

a crowdsourcing service for large-scale labeling tasks, a requestor usually faces

two challenges:

1. The requestor needs to carefully balance the labeling accuracy and the cost

of collecting labels. That is, for each object, the requestor needs to decide

when to stop collecting the next label, based on the current information.

2. Crowd workers have different levels of quality/reliability. Thus, the re-

questor needs to adaptively choose the next worker to label the object,

based on the current information.

To address these challenges, we cast the problem as a general multiple testing

problem under a sequential analysis framework. In particular, we examine binary

labeling tasks, which are used to categorize, for example, an image as a portrait

or a landscape or a website as pornographic or not. We assume there are K

objects. For each object, we test whether its true label (denoted by θk ∈ {0, 1})
belongs to class zero or one. More specifically, this problem can be formulated
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as K hypothesis testing problems:

Hk0 : θk = 0 against Hk1 : θk = 1, for k = 1, 2, . . . ,K. (1.1)

Because the true classes of the objects might be highly unbalanced, it is natural

to assume a prior π1 (and π0 = 1− π1), such that

π0 = P(θk = 0) and π1 = P(θk = 1), for k = 1, . . . ,K. (1.2)

The parameter π1 models the imbalance between two classes, which is usually

unknown. To study this problem, we first assume that π1 is known, and consider

the following hypothesis testing problem:

H0 : θ = 0 against H1 : θ = 1. (1.3)

To solve this problem, we propose an adaptive sequential probability ratio test

(Ada-SPRT) under a Bayesian sequential analysis framework. We first formulate

a risk function, defined as the expected probability of making the wrong decision

plus the expected labeling cost. Here, we need to optimize three components:

1. Stopping time: This indicates when to stop collecting additional data (i.e.,

labels) under a certain budget constraint (e.g., given a prespecified maxi-

mum number of labels that can be collected). Cost-effective crowdsourcing

requires that the requestor stop when there is consensus on a label thus

avoiding unnecessary costs.

2. Adaptive experimental selection rule: We assume there are M possible ex-

periments (corresponding to heterogeneous workers), where different ex-

periments lead to different distributions from which to generate data (i.e.,

labels) under the true θ. The key question is how to select the next exper-

iment, given existing data.

3. Decision rule: Upon stopping, we need to decide whether H0 or H1 is true.

Note that our Ada-SPRT can be viewed as an extension of the classical SPRT

by Wald (1945) and Wald and Wolfowitz (1948), which optimizes the stopping

time and decision rule, but does not consider experiment selection.

In the sequential analysis literature, Chernoff (1959), among many others,

provided asymptotically optimal solutions for various sequential design problems

(see Section 2). However, the classical asymptotic regime is not suitable for our

problem, for two reasons:



522 LI ET AL.

1. In crowdsourcing applications, a requestor usually has a limited budget (e.g.,

at most 10 labels for each object), which translates into an upper bound

on the stopping time (i.e., a truncation length). Under this constraint,

the sample size cannot go to infinity and, thus, the theory related to the

asymptotically optimal experimental design no longer holds.

2. In (1.2), we need to estimate a class prior distribution π1, which plays an

important role in our problem, given the small truncation length. However,

classical asymptotically optimal results usually ignore the effect of the prior

probability distribution as the expected sample size goes to infinity.

To address these challenges and to solve the general multiple testing problem in

(1.1), we propose an empirical Bayes approach and a dynamic programming algo-

rithm to solve the single hypothesis testing problem in (1.3), using a prespecified

truncation length T . For a single truncated test, the sequential decision problem

can be formulated as a Markov decision process (MDP) problem, where the state

space is characterized by a log-likelihood ratio statistic and the current sample

size. To solve this MDP, we first provide a few structural results:

1. The optimal stopping time is a boundary hitting time based on the log-

likelihood ratio statistic. The upper boundary curve is nonincreasing with

respect to (w.r.t.) the sample size n = 1, . . . , T , and the lower boundary

curve is nondecreasing w.r.t. the sample size n.

2. The optimal decision for the true label is determined by whether the log-

likelihood ratio hits the upper or lower boundary.

3. The experiment/worker selection rule is determined by the current log-

likelihood ratio and the sample size.

Using these structural results, we develop a dynamic programming algorithm

to solve the MDP. We also characterize the relationship between the simpler

nontruncated test (i.e., the truncation length T = ∞) and the truncated test,

and show that one can treat the nontruncated test as a limiting version of the

truncated test as T goes to infinity.

Using the Ada-SPRT to solve (1.3), we then solve the multiple testing prob-

lem in (1.1) using an empirical Bayes approach that estimates the class prior π1.

We prove that as long as the class prior estimate is consistent, the averaged loss

converges to the minimal Bayes risk under the true model. We demonstrate the
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robustness of the proposed method, as well as its superior performance for dif-

ferent setups of the true prior distribution (e.g., unbalanced class setting) using

empirical studies.

Finally, note that although our study is motivated by a crowdsourcing ap-

plication, the proposed empirical Bayes and Ada-SPRT approach is a general

method that can be used to solve the multiple testing problem given in (1.1).

The proposed method can be applied to a wide class of problems. For example,

computerized mastery testing (Lewis and Sheehan (1990); Chang (2004, 2005);

Bartroff, Finkelman and Lai (2008)) has become an important part of educa-

tional assessment. These tests are based on item response theory models (e.g.,

Embretson and Reise (2000)) and are used to classify examinees into “mastery”

and “nonmastery” categories. The Ada-SPRT can be extended to provide an

optimal adaptive mastery test design (in terms of the Bayes risk).

The rest of the paper is organized as follows. In Section 2, we discuss related

works on crowdsourcing, sequential analysis, and the empirical Bayes method.

In Section 3, we present the crowdsourcing model and the Bayesian decision

framework, along with our Bayes risk function. In Section 4, we provide the

optimal adaptive sequential design, and develop numerical algorithms for opti-

mal worker selection, stopping times and decisions for both truncated and non-

truncated tests. In Section 5, we extend the algorithm to the multiple testing

problem, and present an empirical Bayes approach to estimate class priors. In

Section 6, we demonstrate the performance of the proposed algorithm using real

crowdsourcing data sets. Section 7 concludes the paper. The proofs of the the-

oretical results and additional simulated experiments are provided in the online

Supplementary Material.

2. Related Works

Crowdsourcing is a popular and effective method of collecting labels at low

cost and, as a result, has received much attention from researchers in the fields of

statistics and machine learning. Many works in this field attempt to solve static

problems, such as inferring true labels and workers’ quality parameters, based

on a static set of labels (see, e.g., Raykar et al. (2010); Karger, Oh and Shah

(2013); Liu, Peng and Ihler (2012); Gao and Zhou (2013); Ertekin, Rudin and

Hirsh (2014); Zhang et al. (2016); Khetan and Oh (2016); Shah, Balakrishnan

and Wainwright (2016); Ok et al. (2016)). To monitor worker quality, most of

these works adopt the Dawid–Skene model (Dawid and Skene (1979)), also known
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as the two-coin model for binary labeling tasks. As such, we assume the same

model. Several recent works (e.g., Shah, Balakrishnan and Wainwright (2016);

Khetan and Oh (2016)) have examined more general models, such as the gen-

eralized Dawid–Skene and permutation models. However, relatively few studies

have investigated the adaptive worker selection problem. Karger, Oh and Shah

(2013) proposed assigning workers based on a random bipartite graph. Chen,

Lin and Zhou (2015) considered a fixed-budget problem, which they formulated

as a Bayesian MDP. They investigated two greedy policies that provide approx-

imate solutions to the MDP: (1) the knowledge gradient (KG) policy, which

chooses the best experiment/action that maximizes the expected reward for the

next stage; and (2) the optimistic knowledge gradient (Opt-KG) policy, where

the best action maximizes the reward for collecting a positive or a negative label.

We compare these greedy policies in our experiments (see Section 6). In addition,

Ertekin, Rudin and Hirsh (2014) proposed a confidence-score based algorithm,

called CrowdSense, for budget allocation. Khetan and Oh (2016) investigated

the sample complexity (minimum expected number of labels) for a classification

error less than a small threshold, with high probability.

Note that instead of pre-fixing a total budget, as in some works (e.g., Chen,

Lin and Zhou (2015)), our goal is to simultaneously select a worker and decide

on an optimal stopping time. To achieve this goal, we formulate the problem

as a Bayesian sequential testing problem and propose a framework (Ada-SPRT).

Sequential testing has been well researched, beginning with the seminal works of

Wald (1945) and Wald and Wolfowitz (1948) for testing two simple hypotheses,

see Lai (2001) for a survey, and Siegmund (1985) and Tartakovsky, Nikiforov

and Basseville (2014) for a comprehensive review. Sequential tests are widely

applied in areas such as industrial quality control, the design of clinical trials,

finance, educational testing, among others (Lai (2001); Bartroff and Lai (2008);

Bartroff, Finkelman and Lai (2008); Bartroff, Lai and Shih (2013); Tartakovsky,

Nikiforov and Basseville (2014)). The problem of sequential adaptive experiment

selection was initially treated in Chernoff (1959), who considers a Bayes risk de-

fined similarly to that in Wald and Wolfowitz (1948). Another related work is

that of Robbins and Siegmund (1974), who present Monte Carlo and theoretical

analyses of several adaptive treatment selection rules for clinical trials. Their

aim is to reduce the expected number of observations made on the inferior treat-

ment. The current work provides theoretical results in a sequential hypothesis

testing framework that simultaneously considers optimal stopping times, worker

decisions, and experiments.



OPTIMAL STOPPING AND WORKER SELECTION IN CROWDSOURCING 525

The current work is also related to the multi-armed bandit problem (Robbins

(1952)), which has been studied in areas such as clinical trials (Press (2009)), on-

line advertising (Chakrabarti et al. (2009); Babaioff, Sharma and Slivkins (2009)),

and portfolio design (Hoffman, Brochu and de Freitas (2011)); see Lai (1987),

Auer, Cesa-Bianchi and Fischer (2002); Auer et al. (2002), Li et al. (2010), and

the survey paper by Bubeck and Cesa-Bianchi (2012). In a typical stochastic

multi-armed bandit problem, there are n alternative arms, where each arm is

associated with an unknown reward distribution. Upon pulling a particular arm,

the reward is an independent and identically distributed (i.i.d.) sample from the

underlying reward distribution. One needs to sequentially decide which arm to

pull next, and then collect the random reward. The goal is to maximize the

expected total reward over a finite time horizon. Similarly, our problem requires

sequential decisions on the worker selection. However, there are two unique

challenges in our problem, which prevent a direct application of existing bandit

algorithms from the machine learning literature. First, previous works usually

assume an intermediate reward after each action, and have as their goal to max-

imize the total reward (or discounted reward over time). In our problem, each

answer from a worker provides some information. However, the noise of these

answers means their usefulness is only vaguely related to the final testing error.

Therefore, there is no clear intermediate “reward” associated with a new sam-

ple. Second, instead of fixing the length of the time horizon, we optimize over

the random stopping time. In crowdsourcing applications, the optimal stopping

time provides a flexible trade-off between learning accuracy and cost, and can

be controlled using the relative cost parameter c in our objective function; see

equation (3.2).

Another related subject is the design problem for A/B testing (Bhat et al.

(2019); Johari, Pekelis and Walsh (2015)), which is a form of randomized con-

trolled trial that compares treatment effects across groups. It is possible to apply

the proposed adaptive sequential method to design an A/B testing strategy. In

contrast to existing works in this area, our method incorporates an early stopping

strategy and provides an optimal design under the Dawid–Skene model. How-

ever, we do not consider covariate information (as, for example, Bhat et al. (2019)

do). In crowdsourcing applications, workers’ personal information is usually quite

sensitive, and might not be readily available. However, contextual information

may be available and useful in other applications. Adding such information is

left to future research.

The empirical Bayes method has recently gained prominence, both theoret-
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ically and in practice (e.g., Jiang and Zhang (2009, 2010); Koenker and Mizera

(2014); Brown and Greenshtein (2009); Efron (2013)); see Zhang (2003), Efron

(2013), and the references therein for a comprehensive review. In particular,

Karunamuni (1988) combines the empirical Bayes method and a sequential test,

and then provides a theoretical analysis of the asymptotic behavior of a spe-

cific stopping rule. The current work extends this idea to an optimal design of

experiment selection and early stopping. To the best of our knowledge, this is

the first result to include the empirical Bayes method, sequential analysis, and

experiment selection simultaneously.

We examine our contribution to the literature by comparing the proposed

method with existing methods on adaptive sequential testing, which, in general,

fall into one of three classes: 1) sequential hypothesis testing with an adaptive se-

quential design in an asymptotic regime; 2) sequential hypothesis testing without

an adaptive design in a nonasymptotic regime; and 3) sequential hypothesis test-

ing with an adaptive design in a nonasymptotic regime. The major differences

between our work and existing methods are summarized below.

1) Hypothesis testing using a sequential design in an asymptotic regime was

first studied in Chernoff (1959), followed by Albert (1961), Tsitovich (1985),

Naghshvar and Javidi (2013a,b), Bessler (1960), and Nitinawarat and Veer-

avalli (2015), among others. This line of research focuses on the behavior

of sequential designs when their expected sample sizes grow large. Asymp-

totically optimal properties for different procedures have been derived. Mo-

tivated by the crowdsourcing application, we consider a different regime,

where the sample size is not allowed to go to infinity (i.e., we set a fixed

cost c and a maximum test length constraint T ). Thus, methods and tech-

niques for the asymptotic regime are not applicable to our problem.

2) Sequential hypothesis testing in a nonasymptotic regime was first consid-

ered by Wald (1947), followed by Wald and Wolfowitz (1948), Wald and

Wolfowitz (1950), Sobel and Wald (1949), Arrow, Blackwell and Girshick

(1949), Bussgang and Middleton (1955), Irle and Schmitz (1984), Niki-

forov (1975), Bertsekas and Shreve (1978), and Shiryaev (1978). Under a

nonasymptotic regime, SPRT is shown to be optimal, from a nonBayesian

point of view (Wald and Wolfowitz (1948)). Optimal truncated and non-

truncated Bayesian sequential tests have been developed by Arrow, Black-

well and Girshick (1949).

Our Theorem 1 extends the results for the optimal Bayesian sequential
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test in Arrow, Blackwell and Girshick (1949) by incorporating an adaptive

design, in which we adaptively select the next experiment based on current

information.

3) The study of general stochastic control problems under nonasymptotic regimes

dates back to Bertsekas and Shreve (1978), Bellman (1957), and Shiryaev

(1978). Recent works, including Bai and Gupta (2016) and Naghshvar

and Javidi (2010), establish theoretical properties of the optimal proce-

dure for specific hypothesis testing problems with experiment design under

nonasymptotic regimes. In particular, Naghshvar and Javidi (2010) consider

the problem of a single nontruncated sequential test with M ≥ 2 hypothe-

ses (among which, only one holds). In this study, we examine a multiple

testing problem and develop an empirical Bayes approach. For each single

test with M = 2 hypotheses, we provide a refined result on the continuation

region, either with or without a maximum test length constraint.

3. Model and Problem Setup

In this section, we first introduce the general problem setup, followed by a

specific application to crowdsourcing.

3.1. Problem setup

For ease of exposition, we first consider the case where there is only one

object with a known prior probability. Then, we extend the result to the case

with K objects. For a single object with true label θ ∈ {0, 1}, we investigate the

hypothesis testing problem in (1.3). Let X1, X2, . . . be the observed responses.

The selection of the nth experiment depends on all previous responses. In par-

ticular, let I = {1, . . . ,M} be the experiment pool, and let δn ∈ I be the selected

nth experiment. Then, we have δn = jn(X1, . . . , Xn−1), where the function jn(·)
is the experiment selection rule that needs to be learned. We use J to denote

the sequence of experiment selection rules {jn : n = 1, 2, . . .}.
Given θ and δn, we denote the probability mass or density function of Xn ∈

Rd by fθ,δn . We assume there exists at least one experiment δ ∈ I, such that the

Kullback–Leibler divergence is bounded away from zero and infinity; that is,

0 < E
[
log

f0,δ(X)

f1,δ(X)

∣∣∣θ = 0

]
<∞ and 0 < E

[
log

f1,δ(X)

f0,δ(X)

∣∣∣θ = 1

]
<∞.

Here, X is a generic notation for an observation with the probability mass or
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density function fθ,δ(x). Under this assumption, the model is identifiable and

the standard SPRT has a finite expected sample size. Note that our results are

applicable to both continuous and discrete observations.

We further consider a random sample size denoted by N ; that is, the test

stops once sufficient observations have been collected. Here, we consider a de-

terministic upper bound, or truncation length T , on the stopping time; that is,

N ≤ T . Given all the responses and the stopping rule, we can decide whether

to continue collecting at least one more response or to stop the test. Upon stop-

ping, we then choose H0 or H1. We denote the decision rule by D, where D = 1

indicates that H1 is chosen, and D = 0 means H0 is chosen.

The test procedure with experiment selection rule J , stopping rule N , and

decision rule D is called as an adaptive sequential design. Our goal is to determine

the optimal J†, N †, and D† that minimize the composite risk of making a wrong

test decision and the expected total labeling cost, as defined below.

To define the risk, we adopt a Bayesian decision framework. In particular,

we introduce the class prior

π0 = P(θ = 0) and π1 = P(θ = 1), (3.1)

with π0 + π1 = 1. We assume that π1 is known for the single hypothesis testing

problem, because it is not possible to estimate π1 when there is only one object.

Let c ∈ [0, 1] be the relative cost of collecting one response/label. The Bayes risk

of an adaptive sequential test with experiment selection rule J , stopping time

N , and decision rule D is defined by Wald and Wolfowitz (1948) as the expected

probability of making a wrong decision plus the expected labeling cost:

R(J,N,D) = π0P(D = 1|θ = 0) + π1P(D = 0|θ = 1) (3.2)

+ c{π0E(N |θ = 0) + π1E(N |θ = 1)}.

Note that the relative cost c, which is used to balance the labeling accuracy and

cost, needs to be set between zero and one. Because P(D = 1|θ = 0) ≤ 1 and

P(D = 0|θ = 1) ≤ 1, we minimize the Bayes risk in (3.2) by stopping collecting

labels when c > 1. In practice, the requestor usually chooses c depending on the

nature of the labeling task (e.g., a smaller c for more challenging data) and the

budget (e.g., a large c for a limited budget). We demonstrate the effect of c in

our experiments in Section 6.

We denote by AT the set of all adaptive sequential designs (J,N,D), such

that the stopping time N ≤ T . We call the test procedure (J†, N †, D†) an optimal
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test among a class of adaptive sequential testing procedures AT (depending on

the truncation length T ) if

R(J†, N †, D†) = min
(J,N,D)∈AT

R(J,N,D). (3.3)

Now, for K objects with true label θk ∈ {0, 1}, for 1 ≤ k ≤ K, we consider

K hypothesis testing problems. Given θ1, . . . , θK , we assume that the responses

(Xkj ; j = 1, 2, . . .) obtained for the kth object are independent across k. Let

D = {Dk}Kk=1 be the set of decisions and N = {Nk}Kk=1 be the set of stopping

times. The performance of the method is evaluated using the following averaged

loss over K objects:

LK =
1

K

K∑
k=1

[
1{Dk 6=θk} + cNk

]
. (3.4)

Our goal is to provide a consistent procedure, such that LK converges to the min-

imal Bayes risk under the true model (i.e., min(J,N,D)∈AT R(J,N,D)) in proba-

bility as K goes to infinity.

3.2. Applications to crowdsourcing

Here, we briefly illustrate how this general sequential testing framework is

connected to our motivating crowdsourcing application. We assume there are M

workers (i.e., experiments), and denote the set of workers by I = {1, . . . ,M},
which is our experiment pool.

For an object with the true label θ ∈ {0, 1}, let θ̂i be the label provided by

worker i, for i ∈ I. The quality of worker i is characterized by two quantities:

τ i00 = P(θ̂i = 0|θ = 0) and τ i11 = P(θ̂i = 1|θ = 1). (3.5)

Here, τ i00 is the probability that worker i will provide the correct label to an object

when the true label is zero, and τ i11 is that when the true label is one. This model

is widely used in modeling crowd worker quality, and is usually referred to as the

“two-coin model” or Dawid–Skene model (Dawid and Skene (1979); Raykar et al.

(2010); Zhang et al. (2016)). For ease of presentation, we assume τ i00 and τ i11 are

given; in Section 5, we discuss how to estimate these parameters online as the

labeling process continues.

The observed responses Xn, for n = 1, 2, . . ., are the labels provided by the

selected nth worker δn, according to the worker selection rule jn(X1, . . . , Xn−1).
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Under the two-coin model in (3.5), each response takes a binary value, with the

following probability mass function:

fθ,δn(1) = P(Xn = 1|δn, θ) = τ δn11 1{θ=1} + (1− τ δn00 ) 1{θ=0}, (3.6)

fθ,δn(0) = P(Xn = 0|δn, θ) = (1− τ δn11 ) 1{θ=1} + τ δn00 1{θ=0},

where 1{·} denotes the indicator function.

4. Optimal Ada-SPRT

In this section, we explore the structure of the optimal adaptive sequential

design for the single hypothesis testing problem in (1.3), and provide a dynamic

programming algorithm to numerically solve such a problem.

4.1. Structure of optimal adaptive sequential designs

We consider the class of truncated adaptive sequential tests with the con-

straint that the sample size N is no greater than a pre-fixed truncation length

T . The optimization problem (3.3) is challenging because both the experiment

selection and the stopping rule lie in infinite-dimensional function spaces. Our

approach reduces the number of dimensions by exploring the relationship between

optimal adaptive sequential design and a log-likelihood ratio statistic.

In particular, under the optimal selection rule J† = {j†1, j
†
2, . . .}, the nth

selected experiment (for n ≤ N †) is

δ†n = j†n(X1, . . . , Xn−1).

The corresponding log-likelihood ratio statistic is defined by

l†n = log

(∏n
i=1 f1,δ†i (Xi)∏n
i=1 f0,δ†i (Xi)

)
, for n = 1, 2, . . . , (4.1)

where f1,δ†i (·) and f0,δ†i (·) are the probability density/mass functions, respectively,

when θ = 1 and θ = 0 in experiment δ†n. The next theorem characterizes the

structure of the optimal adaptive sequential design.

Theorem 1. Let (J†, N †, D†) be an optimal adaptive truncated sequential design,

as defined in (3.3). Then, (J†, N †, D†) has the following properties.

(i) The stopping time N † is described using the hitting boundary of the log-

likelihood ratio and current sample size. In particular, there exist two se-
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quences of real values A†(n) and B†(n), for 1 ≤ n ≤ T , such that

log
π0
π1

= A†(T ) ≤ A†(T − 1) ≤ · · · ≤ A†(1) ≤ log
π0(1− c)
π1c

, (4.2)

log
π0c

π1(1− c)
≤ B†(1) ≤ B†(2) ≤ · · · ≤ B†(T ) = log

π0
π1
, (4.3)

and the optimal stopping for the truncated test is determined by

N † = inf{n : l†n ≥ A†(n) or l†n ≤ B†(n)}. (4.4)

(ii) If N † < T , then the decision rule is

D† = 1 if l†N† ≥ A
†(N †) and D† = 0 if l†N† ≤ B

†(N †).

If N † = T , where A†(T ) = B†(T ), then

D† = 1 if l†T ≥ A
†(T ) and D† = 0 if l†T < B†(T ).

(iii) There exists an experiment selection function j† : R× {1, 2, . . .} → I, such

that for n = 1, 2, . . . , T ,

δ†n = j†(l†n−1, n),

where δ†n is the nth selected experiment under the optimal selection rule J†.

Remark 1. According to Corollary 8.5.1 in Bertsekas and Shreve (1978), an op-

timal sequential adaptive design (J†, N †, D†) always exists (but is not necessarily

unique) for the truncated test. Note too that the existence of an optimal design

for nontruncated problems when T = ∞ (see Proposition 1) is guaranteed by

Corollary 9.17.1 in Bertsekas and Shreve (1978).

The proof of Theorem 1 is provided in the Supplementary Material. State-

ments (i) and (ii) are extensions of the SPRT (Wald and Wolfowitz (1948)) to

adaptive experiment selection. In contrast to the classical SPRT, where the hit-

ting boundaries are flat, the hitting boundaries of the truncated adaptive test

include a nonincreasing curve (i.e., the upper boundary A†(T ) ≤ A†(T − 1) ≤
· · · ≤ A†(1)) and a nondecreasing curve (i.e., the lower boundary B†(1) ≤
B†(2) ≤ · · · ≤ B†(T )). Note that because A†(T ) and B†(T ) take the same

value log π0/π1, the optimal stopping time N † defined in (4.4) automatically sat-

isfies the constraint N † ≤ T . The experiment selection rule depends on both the

log-likelihood ratio statistic in (4.1) and the current sample size.
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4.2. Dynamic programming algorithm

Given the structure of the optimal adaptive sequential design, we present

a dynamic programming algorithm for finding the optimal experiment selection

rule and the hitting boundaries.

To describe the algorithm, we first introduce some necessary notation. Let

G(l, n) be the conditional risk associated with the log-likelihood ratio l and the

current sample size n ∈ {1, . . . , T}. When the sample size n reaches the trunca-

tion length T , the testing procedure has to stop. For each l, we have

G(l, T ) = min{π(θ = 0|l), π(θ = 1|l)}+ Tc, (4.5)

where π(θ = 0|l) and π(θ = 1|l) are the posterior probabilities under the current

log-likelihood ratio l, and min{π(θ = 0|l), π(θ = 1|l)} is the Bayes risk of making

a wrong decision. The term Tc is the cost of collecting T responses. From stan-

dard Bayesian decision theory (see, e.g., Tartakovsky, Nikiforov and Basseville

(2014), §3.2.2.),

π(θ = 0|l) =
π0

π0 + π1el
and π(θ = 1|l) =

π1e
l

π0 + π1el
.

Given the definition of G(l, n), for any current sample size n < T and log-

likelihood ratio l, the optimal selection rule j†(l, n+1) should choose the (n+1)th

experiment δn+1 ∈ I to minimize the expected conditional risk of the next stage;

that is,

j†(l, n+ 1) = argmin
δ∈I

El,δG
(
l + log

f1,δ(X)

f0,δ(X)
, n+ 1

)
, (4.6)

where the expectation is taken with respect to the next response X when the

next selected experiment is δ ∈ I.

As an illustration, we compute El,δG(l + log(f1,δ(X)/f0,δ(X)), n+ 1) when

n = T − 1 (corresponding to the first step in the dynamic programming al-

gorithm). In particular, we consider the two-coin model in (3.6) for the ith

experiment. That is, δ = i. Then, we have

log
f1,i(X)

f0,i(X)
= X log

(
τ i11

1− τ i00

)
+ (1−X) log

(
1− τ i11
τ i00

)
.

To compute the conditional expectation of interest, we also need

Pl,i(X = 1) = π(θ = 0|l)f0,i(1) + π(θ = 1|l)f1,i(1)
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=
π0

π0 + π1el
(1− τ i00) +

π1e
l

π0 + π1el
τ i11.

Combining the above two equations and (4.5), we have

El,δG
(
l + log

f1,δ(X)

f0,δ(X)
, n+ 1

)
= Pl,i(X = 1)G

(
l + log

(
τ i11

1− τ i00

)
, T

)
+ (1− Pl,i(X = 1))G

(
l + log

(
1− τ i11
τ i00

)
, T

)
.

Now, we are ready to provide the recursive equation for G(l, n), which is known as

the Bellman equation in Markov decision processes (see, e.g., Puterman (2005);

Bertsekas and Shreve (1978)). In particular, under the current sample size n and

log-likelihood ratio l, the action for the next stage has two possible choices:

1) Stopping the testing procedure: the corresponding Bayes risk is

min{π(θ = 0|l), π(θ = 1|l)}+ nc;

2) Collecting the next response from the experiment j†(l, n + 1), and the ex-

pected conditional risk becomes

El,j†(l,n+1)G
(
l + log

f1,j†(l,n+1)(X)

f0,j†(l,n+1)(X)
, n+ 1

)
.

Combining these two cases, one should choose the best possible action (either stop

or continue) that leads to the minimum risk, resulting in the following recursive

equation for G(l, n):

G(l, n) = min

{
El,j†(l,n+1)G

(
l + log

f1,j†(l,n+1)(X)

f0,j†(l,n+1)(X)
, n+ 1

)
,

min

{
π0

π0 + π1el
,

π1e
l

π0 + π1el

}
+ nc

}
.

Finally, let C(n) be the set of log-likelihood ratios at which one should stop when

the current sample size is n.

The upper hitting boundary A†(n) and lower hitting boundary B†(n) should

then be the supremum and infimum, respectively, of the log-likelihood ratio in

C(n). Based on the discussion thus far, we present a dynamic programming

algorithm for the truncated test in Algorithm 1.
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Algorithm 1 Dynamic Programming for truncated Ada-SPRT

Inputs:
T , c, π0, π1, {f1,δ(·)}δ∈I , {f0,δ(·)}δ∈I

Initialize:
G(l, T )← min

(
π0

π0+π1el
, π1e

l

π0+π1el

)
+ Tc, for each l.

for n = T − 1 to 0 do

j†(l, n+ 1)← arg minδ∈I El,δG
(
l + log

f1,δ(X)
f0,δ(X) , n+ 1

)
G(l, n)←min

{
El,j†(l,n+1)G

(
l + log

f1,j†(l,n+1)(X)

f0,j†(l,n+1)(X)
, n+ 1

)
,

min

{
π0

π0 + π1el
,

π1e
l

π0 + π1el

}
+ nc

}
.

C(n)←

{
l : min

{
π0

π0 + π1el
,

π1e
l

π0 + π1el

}
+ nc

≥ El,j†(l,n+1)G

(
l + log

f1,j†(l,n+1)(X)

f0,j†(l,n+1)(X)
, n+ 1

)}
.

A†(n)← arg sup{l : l ∈ C(n)}.
B†(n)← arg inf{l : l ∈ C(n)}.

end for
Outputs:

j†, A†(n), B†(n) for n = 1, . . . , T .

Remark 2. To implement Algorithm 1 and to solve for function G(l, n), for

n = 1, . . . , T , we need to discretize l and interpolate G(·, n), for n = 1, . . . , T .

That is, we approximate G(·, n), for n = 1, . . . , T , using piecewise linear func-

tions corresponding to the discretization over l. To justify this approximation,

note that G(l, n) is the minimum of finitely many continuous functions, for

n = 1, . . . , T . Therefore, G(l, n) is a continuous function in l, for n = 1, . . . , T .

Remark 3. The computational complexity of the dynamic programming (DP)

grows at an order T times the discretization size of the likelihood ratio, where

T is the truncation length. Note that the computation of the DP is done of-

fline, before collecting any data and running the test. Given the computational

power currently available, the offline computation is usually not considered a

computational burden.
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4.3. Nontruncated test

In this subsection, we investigate the relationship between the nontruncated

(T =∞) and the truncated test (T <∞). The structure of the optimal adaptive

sequential design for a nontruncated test is simpler than that for a truncated test.

In particular, we extend the result in Shiryaev (1978, Chapter 4.1, Lemma 1 and

Theorem 1) by adding an experiment selection component. Then, we prove the

following proposition on the structure of an optimal adaptive sequential design

(J∗, N∗, D∗). Let A∗ be the set of all adaptive sequential designs, such that both

E(N |θ = 0) and E(N |θ = 1) are finite. Note that the assumptions E(N |θ = 0) <

∞ and E(N |θ = 1) < ∞ are common in sequential analyses; see, for example,

Wald and Wolfowitz (1948).

Proposition 1. Let (J∗, N∗, D∗) be an optimal adaptive sequential design for a

nontruncated test, such that

R(J∗, N∗, D∗) = min
(J,N,D)∈A∗

R(J,N,D). (4.7)

Then, (J∗, N∗, D∗) has the following properties:

(i) The optimal stopping time N∗ is a boundary hitting time. That is, there

exist real values A∗ and B∗, such that B∗ ≤ A∗ and

N∗ = inf{n : l∗n ≥ A∗ or l∗n ≤ B∗}.

(ii) The optimal decision rule D∗ chooses between H0 and H1 according to

whether the log-likelihood ratio statistic hits the upper or the lower boundary;

that is,

D∗ = 1 if l∗N∗ ≥ A∗ and D∗ = 0 if l∗N∗ ≤ B∗.

(iii) Each j∗n in the optimal experiment selection rule J∗ can be expressed as a

single experiment selection function j∗ : R → I, such that, for any n =

1, 2, . . . , N∗,

δ∗n = j∗(l∗n−1).

The proof of the Proposition 1 is provided in the Supplementary Material.

Remark 4. Wald and Wolfowitz (1948) show that if the stopping time is de-

fined by the first passage time toward two flat boundaries, then the expected
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sample size is minimized under each hypothesis when the error probabilities are

controlled. With adaptive experiment selection, such an optimal solution usually

does not exist. The main reason is that the best experiment selection rules are

different under the null and alternative hypotheses, because the Kullback–Leibler

information is not a symmetric function. Thus, an informative experiment for

one hypothesis may contain little information about the other. Consequently,

the expected sample sizes under the two hypotheses may not be minimized si-

multaneously.

In contrast to the truncated case in Theorem 1, the boundaries for nontrun-

cated tests are flat. Moreover, the selection function j∗ is independent of the

current sample size n − 1, and it depends on previous responses X1, . . . , Xn−1
only through the log-likelihood ratio statistic l∗n−1.

The next theorem shows that in terms of the minimum Bayes risk, the non-

truncated test is a limiting version of the truncated test as T →∞.

Theorem 2. Let AT denote the set of all adaptive sequential designs (J,N,D),

such that N ≤ T , and let A∗ be the set of all sequential adaptive designs that

have a finite expected sample size. Then,

lim
T→∞

min
(J,N,D)∈AT

R(J,N,D) = min
(J,N,D)∈A∗

R(J,N,D).

The proof of Theorem 2 is provided in the Supplementary Material.

5. Multiple Hypothesis Testing and Empirical Bayes Approach

Thus far, we have discussed optimal Ada-SPRT for a single object. Now, we

are ready to address our target problem in (1.1), which contains K hypothesis

testing problems. We assume θk ∈ {0, 1}, for k = 1, . . . ,K, are i.i.d. following

a Bernoulli distribution with parameter π1. Given θ1, . . . , θK , we assume that

(Xkj ; j = 1, 2, ..) are responses (assumed independent across k) obtained for the

kth object, which has a density function given by fθk,δkj (·), and that δkj denotes

the jth experiment selected for the kth object.

Recall that D = {Dk}Kk=1 is the set of decisions and N = {Nk}Kk=1 is the set

of stopping times. The averaged loss LK is defined in (3.4).

If the class prior π1 is known, then, according to Theorem 1, the optimal

design that minimizes ELK runs Algorithm 1 independently for each object k. In

this way, we obtain the optimal experiment selection rule (denoted by j(k)) and

boundaries, or sequence of boundaries, for the truncated case (denoted by A(k)
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Algorithm 2 Ada-SPRT for multiple objects using empirical Bayes method

Inputs:
c, {f1,δ(·)}δ∈I , {f0,δ(·)}δ∈I , T

Initialize:
π̂
(0)
0 = π̂

(0)
1 = 0.5

for k=1 to K do
Run Algorithm 1 with Inputs c, π̂

(k−1)
0 , π̂

(k−1)
1 , {f1,δ(·)}δ∈I , {f0,δ(·)}δ∈I , and T .

Obtain Outputs A(k), B(k), j(k).
Collect responses according to the experiment selection rule j(k) and obtain the

decision Dk according to the boundary hitting.

Update π̂
(k)
0 and π̂

(k)
1 with the newly collected responses.

end for
Outputs:

Decision Dk and sample size Nk for each hypothesis k = 1, . . . ,K.

and B(k), respectively). Given j(k), A(k), and B(k), the requestor collects labels

according to the selection rule j(k) for each object k, and then makes decision

Dk according to the hitting boundary. Although such a procedure is easy to

implement, the class prior π1 and π0 = 1 − π1 in (1.2) are unknown in many

real-world applications. With multiple objects, we can estimate the class prior

using the following empirical Bayes approach.

For each k, we estimate π1 using some estimator π̂1, based on the collected

responses for the previous hypotheses 1, 2, . . . , k − 1. In principle, any estimator

can be applied to estimate π1; here, we adopt the maximum likelihood estimator.

Then, for the kth hypothesis, we use Algorithm 1 with the estimated parameters

π̂
(k)
1 and π̂

(k)
0 = 1 − π̂(k)1 to solve for the experiment selection rule and stopping

time for the kth hypothesis. The algorithm is presented in Algorithm 2; here, we

initialize the estimate for π1 as 0.5, for simplicity.

As the number of hypotheses K grows large and the estimate π̂1 becomes

more accurate, the resulting averaged loss LK in (3.4) converges to the minimal

Bayes risk corresponding to the true π1. We characterize this asymptotic result

in the next theorem.

Theorem 3. Assume c < π1 < 1− c, π̂1 → π1 in probability as K →∞, and the

sequential adaptive design Dk and Nk are determined using the empirical Bayes

procedure described in Algorithm 2. Then,

LK → min
(J,N,D)∈A

R(J,N,D) in probability as K →∞,

where R(J,N,D) is the minimal Bayes risk of a single object defined in (4.7).
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That is, the averaged loss LK in (3.4) converges to the minimal Bayes risk under

the true model.

The proof of Theorem 3 is provided in the Supplementary Material. Note

that in Theorem 3, the assumption c < π1 < 1 − c is a necessary condition for

the optimal test procedure to be nontrivial, because without it, the optimal test

will always stop with no sample.

Remark 5. In crowdsourcing applications, the classification results are usually

not accurate, owning to the limited number of labels. Thus, the average perfor-

mance LK (defined as in (3.4)) is a common choice of error metric in practice

when there are many labeling tasks. The metric treats type-I and type-II errors

symmetrically, as in many classification problems.

Other error metrics have been considered in the literature. For example,

the false discovery rate (FDR), positive false discovery rate (pFDR), marginal

false discovery rate (mFDR), and family-wise error rate (FWER) are used to

measure the accuracy of multiple testing procedures (Benjamini and Hochberg

(1995); Storey (2003)). As a result, numerous corresponding sequential proce-

dures have been developed (Bartroff (2018); Song and Fellouris (2019)). Because

our proposed method yields an individualized decision and posterior probability

for each labeling task as output, we can estimate the local FDR (Efron (2007))

and control the global FDR by adjusting the stopping boundaries. Another error

metric employs the maximum loss (or sample size), rather than the averaged

loss, which corresponds to an analysis of the worst case scenario. Heuristically,

the maximum loss grows to infinity as the number of tasks increases, and its

asymptotic order is determined by its tail probability, as per extreme value the-

ory. Overall, optimal procedures for various choices of error metrics are worth

further investigation.

In the sequential analysis literature, the distributions {f1,δ(·)}δ∈I and {f0,δ(·)
}δ∈I are typically assumed to be known. However, in real crowdsourcing appli-

cations, it is quite often the case that no prior knowledge on workers’ quality

parameters {τ i00}i∈I , {τ i11}i∈I in (3.6) is available. Therefore, one cannot directly

compute the likelihood ratio statistics in terms of {f1,δ(·)}δ∈I and {f0,δ(·)}δ∈I .
To address this issue, we estimate the workers’ quality parameters using a reg-

ularized maximum likelihood estimate under the two-coin model in (3.6) after

finishing the labeling process for each object k. In particular, after each for-loop

in Algorithm 2 (i.e., when the labeling process and the decision for the kth ob-

ject are complete), we have collected all responses {Zji}, where each Zji is a
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binary label from worker i ∈ I to object j ∈ {1, . . . , k}. A regularized minus

log-likelihood is defined as follows:

hk
(
π1, {τ i00}i∈I , {τ i11}i∈I

)
= −

∑
1≤j≤k

log

(
(1− π1)

∏
i

(τ i00)
1−Zji(1− τ i00)Zji

+π1
∏
i

(1− τ i11)1−Zji(τ i11)Zji
)

+
∑
i∈I

(
(α− 1) log(τ i00)

+(β − 1) log(1− τ i00)+(α− 1) log(τ i11)

+(β − 1) log(1− τ i11)
)
. (5.1)

The regularization term comes from the beta priors on τ i00 and τ i11, for each

i ∈ I, with parameters α and β, that make the estimation stable when a worker

has labeled only a small number of objects. We minimize hk(π1, {τ i00}i∈I , {τ i11}i∈I)
at the end of the kth iteration in Algorithm 2 using the expectation maxi-

mization (EM) algorithm (Dempster, Laird and Rubin (1977)). This simulta-

neously estimates the class prior π1 (i.e., π̂
(k)
1 ) and the workers’ quality param-

eters, {τ i00}i∈I and {τ i11}i∈I (see Dawid and Skene (1979)). These estimates are

used to construct the optimal adaptive sequential designs for the next object

k+ 1. After the decision for the (k+ 1)th object has been made, we re-optimize

hk+1

(
π1, {τ i00}i∈I , {τ i11}i∈I

)
using all previously collected responses. We also

adopt the estimate from the kth iteration as the starting point (so-called warm-

start) so that the EM algorithm converges within a few iterations.

6. Experimental Results

In this section, we demonstrate the performance of the proposed Ada-SPRT

using two benchmark binary labeling crowdsourcing data sets. We also conduct

extensive simulation studies in the Supplementary Material. A brief summary of

the two real data sets is provided below.

1) Recognizing textual entailment (RTE data set (Snow et al. (2008))): there

are K = 800 objects, and each object is a sentence pair. Each sentence pair

is presented to 10 workers to acquire binary choices on whether the second

hypothesis sentence can be inferred from the first one. There are M = 164

workers and 8,000 available labels. Because each object receives 10 labels,

we use the truncated Ada-SPRT with a truncation length of T = 10.
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Table 1. Performance comparison on real data sets in terms of the mean and standard
deviation of the accuracy of different approaches. KG and Opt-KG correspond to the
knowledge gradient and optimistic knowledge gradient worker selection policy, respec-
tively, with the same stopping time as that of Ada-SPRT. KG Avg and Opt-KG Avg
correspond to the knowledge gradient and optimistic knowledge gradient worker selec-
tion policy with the average stopping time for all objects. The accuracies in bold are the
best accuracies for each choice of c.

RTE (Accuracy) c = 2−6 c = 2−8 c = 2−10 c = 2−12

Total queried labels 3,438(60) 3,949 (46) 4,365 (28) 4,660(28)

Ada-SPRT 92.1% (0.4%) 92.6% (0.3%) 92.5% (0.3%) 92.6% (0.2%)

KG 86.9% (1.3%) 87.4% (0.9%) 88.0% (1.3%) 88.9% (1.3%)

Opt-KG 82.5% (2.2%) 84.3% (2.7%) 85.2% (1.5%) 88.5% (1.7%)

KG Avg 86.1% (2.9%) 86.0% (2.4%) 87.7% (1.1%) 87.9% (1.3%)

Opt-KG Avg 82.2% (4.3%) 83.2% (3.2%) 86.7% (2.0%) 88.0% (2.2%)

Bird (Accuracy) c = 2−6 c = 2−8 c = 2−10 c = 2−12

Total queried labels 1,253 (37) 1,392 (40) 1,523 (47) 1,672 (57)

Ada-SPRT 85.7% (4%) 87.5% (2%) 87.4% (2%) 87.1% (1%)

KG 74.6% (5.8%) 75.9% (3.6%) 77.6% (4.4%) 77.4% (3.2%)

Opt-KG 71.3% (5.5%) 74.4% (5.1%) 77.1% (4.5%) 78.1% (3.9%)

KG Avg 80.4% (3.5%) 78.8% (4.6%) 80.0% (2.9%) 80.8% (2.4%)

Opt-KG Avg 83.9% (2.5%) 84.7% (2.8%) 85.9% (1.8%) 85.0% (2.4%)

2) Labeling bird species (Bird data set (Liu, Peng and Ihler (2012); Welinder

et al. (2010))): there are K = 108 objects, and each object is an image of

a bird. Each image receive 39 binary labels (either indigo bunting or blue

grosbeak) from all M = 39 workers, and there are 4,212 labels. We use the

truncated Ada-SPRT with a truncation length of T = 39.

Note that the true labels are available for both data sets from domain experts.

As a result, we can evaluate the labeling accuracy of the decision Dk for each

object k ∈ {1, . . . ,K}.
For both data sets, we use the truncated Ada-SPRT algorithm with an EM

algorithm to estimate the class prior and the workers’ quality parameters, as

described in Section 5. We set α = 4 and β = 2 in the regularized likelihood

function in (5.1). Because α and β reflect the prior belief of workers’ accuracy,

α = 4 and β = 2 correspond to a prior accuracy of alpha/(α+ β) = 4/(4 + 2) =

66.7%. Other settings of α and β lead to similar performance, as long as α > β

(i.e., a worker is believed to perform better than a random guess).

Because different orderings of objects in Algorithm 2 lead to slightly different
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results, we report the average over 20 random orderings. In addition, the first

quarter of the objects (i.e., the first 200 objects for RTE, and the first 27 objects

for Bird) will be used as a “calibration” set. In particular, for those objects,

we use all T responses (i.e., setting Nk = T ), without selecting workers so that

good initial estimates of the class prior and workers’ quality parameters can be

obtained based on the “calibration” set. For the objects not in the “calibration”

set, the averaged stopping times as c ranges from 2−6 to 2−12 are 2.4, 3.2, 3.9,

and 4.4, respectively, for the RTE data set. For the bird data set, the averaged

stopping times as c ranges from 2−6 to 2−12 are 2.5, 4.2, 5.8, and 7.6, respectively.

We compare Ada-SPRT with two state-of-the-art worker selection policies,

described in Chen, Lin and Zhou (2015): (1) the knowledge gradient (KG) policy;

and (2) the optimistic knowledge gradient (Opt-KG) policy. Note that both are

myopic index policies for worker selection, but not for optimal stopping. To

make a fair comparison, we consider different ways of adding stopping times for

KG and Opt-KG: (1) using the same stopping time Nk from Ada-SPRT for each

object k; and (2) using the average stopping time dK−1
∑K

i=1Nke for all objects.

Recall that Nk is the stopping time obtained using Ada-SPRT in Algorithm 2

for the kth object. We vary the cost parameter c and report the mean and

standard deviation of the total number of queried labels (i.e.,
∑K

i=1Nk) and

labeling accuracies for the different approaches.

The comparison results are provided in Table 1 for the RTE and Bird data

sets. As shown in Table 1, Ada-SPRT outperforms the other approaches on

both data sets. Under the two-coin model, when using all available labels, the

labeling accuracy is 92.88% (with 8,000 labels) for the RTE data set and 89.1%

(for 4, 212 labels) for the Bird data set. Therefore, from Table 1, Ada-SPRT

achieves, on average, 92.1/92.88 = 99% of the best possible labeling accuracy

using only 3,438/8,000 = 43% of the total labels for RTE, and 85.7/89.1 = 96%

of the best possible labeling accuracy using only 1,253/4,212 = 30% of the total

labels for Bird.

7. Conclusion

We have proposed an adaptive sequential probability ratio test (Ada-SPRT)

for determining the optimal experimental selection rule, stopping time, and deci-

sion rule for a single hypothesis testing problem. For multiple testing problems,

we propose an empirical Bayes approach that estimates the class prior. We

demonstrate the effectiveness of our methods on real crowdsourcing applications.
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There are several directions in which this work may be extended. First,

we consider only simple versus simple hypotheses for the binary labeling tasks.

It would be worth extending the current framework to include composite hy-

potheses. Second, although we mainly consider crowdsourcing applications, with

a brief mention of computerized mastery testing, our Ada-SPRT is a general

framework for adaptive sequential tests. Thus, future research will identify and

investigate additional applications.

Supplementary Material

In the online Supplementary Material, we present proofs of the theoretical re-

sults, including Proposition 1, Theorems 1, 2, and 3, and the supporting lemmas,

as well as additional simulated experiments.
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