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Abstract: This paper introduces a spatio-temporal statistical analysis approach ap-

propriate for monitoring or managing a physical system in which measurements are

taken over dense time resolution but at sparse locations. The proposed approach is

designed for implementation in an automated and efficient operation with manual

intervention required only for scenario analysis. The method is based on a mod-

eling framework for complex predictor-response and spatio-temporal relationships,

and issues model-based prediction intervals. To accommodate varying practical

situations, the method also includes an automated decision criterion for choosing

between parametric and nonparametric spatial covariance models. The approach

is illustrated using a data center thermal management problem.
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1. Introduction

With recent advances in computation and data storage technology, data are

often collected over automated monitoring networks. Service industries have been

widely involved in such applications, including building energy management, per-

formance analysis and forecasting for service branches, and public transportation

planning. The interest in such applications lies in monitoring the operations,

forecasting future behavior, issuing prediction at new locations, and providing

decision support for remedial or proactive interventions.

In this paper, we consider scenarios in which data are collected from a net-

work of monitoring sites with a fixed number of spatial locations. Deploying

new monitoring stations or sensors often results in considerable additional cost,

while the maintenance costs for existing sites are marginal. As a result, measure-

ments are often taken over time with dense temporal resolution at sparse spatial

locations.

In analyzing data for such applications, several challenges arise. First, com-

putational methods need to be expeditious for repeated model fitting and fore-

casting the future values as new data arrives continuously, while accommodating
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complex spatial relationships with minimal human intervention for operation.

Second, the model should be able to identify the factors affecting observations

and hence enable prediction for hypothetical scenarios, so that prescribing ac-

tions may be taken to achieve a desired future change to better manage the

system. Lastly, a flexible method is needed to select an appropriate spatial cor-

relation structure. Although assuming spatial correlation of a certain parametric

functional form facilitates computation, strong deviations from the assumed func-

tional pattern may lead to inaccurate spatial prediction, invalid inferences and

computational problems. The goal of this paper is to propose a spatio-temporal

prediction model to address these challenges.

In the spatio-temporal statistics literature, a process Y (s, t) observed over

space and time is often modeled through

Y (s, t) = µ(s, t) + Z(s, t), (1.1)

where µ(s, t) captures the mean trend, Z(s, t) is a mean zero Gaussian pro-

cess with covariance function C(s, s′; t, t′), and s and t denote the space and

time, respectively. Under this framework, we present a general modeling ap-

proach integrating a goodness-of-fit (GOF) test-based switching criterion which

can automatically choose between parametric and nonparametric spatial models.

In addition to the computation benefits, the separability assumption imposed

in the spatio-temporal covariance model provides a flexibility to allow for any

general form of spatial covariance incorporated in the model.

The existing work in this line can be generally grouped into two directions.

The first focuses on developing valid spatio-temporal covariance functions for

the error process, especially on valid non-separable spatio-temporal covariance

functions (e.g., see Gneiting (2002); Stein (2005); Rodrigues and Diggle (2010);

Fonseca and Steel (2011)). Excellent reviews of such modeling approaches can

be found in Gneiting and Schlather (2002) and Gneiting, Genton, and Guttorp

(2007). The spatio-temporal models developed in this direction view time as

continuous rather than discrete and more emphasis is put on spatial prediction

but less on forecasting future values.

The other research direction takes a dynamic modeling approach and explic-

itly considers a discrete time domain. It extends multivariate time-series models

to spatio-temporal problems. Mardia et al. (1998) proposed a kriged Kalman

filter approach which combines kriging and dynamic linear model for spatial

interpolation and temporal forecasting, respectively. Cressie and Wikle (2011)

advocated a dynamic spatio-temporal model (DSTM) which models spatial de-

pendence via a set of spatial basis functions and the temporal autocorrelation

through the evolution of state vectors. Nobrea, Sansob, and Schmidtc (2011)
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proposed a spatially varying autoregressive (AR) processes to allow AR coeffi-

cients to vary over space. Existing methods in this direction utilize Markov chain

Monte Carlo as computational tools, which are not computationally affordable

for our applications.

The proposed modeling approach is different from both existing research

directions in the sense that it aims at issuing temporal forecasting and spatial

prediction simultaneously with a fast and stable computation algorithm. The

modeling and its computational algorithm are designed for automated and effi-

cient operation with minimal manual intervention. External factors are incorpo-

rated as covariates in the model for system diagnosis and future scenario anal-

ysis. Our spatio-temporal model can also accommodate any spatial covariance

structure flexibly, and our GOF test is applicable for any proposed structure in-

cluding non-stationary cases (e.g., Sampson and Guttorp (1992), Higdon, Swall,

and Kern (1999), Nychka, Wikle, and Royle (2002), Jun and Stein (2008)).

The remainder of the article is organized as follows. Section 2 introduces

our model and describes the model fitting procedure. Section 3 derives the pro-

posed decision criterion to choose between the modeling alternatives. Section 4

gives prediction method within the proposed framework. Section 5 illustrates the

proposed method with a simulation study and an application from the informa-

tion technology industry. We conclude with a short summary and discussion in

Section 6.

2. Model

In our model, we consider a spatio-temporal process over discrete time and

continuous space domain and hence notate Y (s, t) in (1.1) as Yt(s). As in (1.1),

the process is decomposed into mean trend and error process, where the mean

trend is modeled with a set of covariates, µ(s, t) = µ(xt(s)). The following

spatio-temporal model is then

Yt(s) = µ(xt(s)) + Zt(s), (2.1)

where Yt(s) is the observed measurement at location s ∈ {s1, . . . , sn} and time

t = 1, . . . ,m, µ(xt(s)) is a deterministic mean trend of q known factors xt(s) =

(x1,t(s), . . . , xq,t(s))
′ at location s and time t, and Zt(s) is a mean-zero space-time

correlated random process.

The role of µ(xt(s)) is crucial in forecasting to incorporate impact of external

factors, system settings, or seasonal trends that may happen in the future. The

mean trend can be modeled flexibly, but a common model is a linear model

µ(xt(s)) =

D∑
d=1

βdx̃d,t(s), (2.2)
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where x̃d,t(s) is the dth regressor of x after an appropriate transformation at

location s and time t, and βd is the corresponding regression coefficient.

Despite its intuitive and simple form, it is not always straightforward to

use (2.1) for forecasting purposes, because future xt(s) may not be available.

But, thanks to recent advances in computer modeling in engineering and science,

these predictors can be obtained based on computational models. Moreover,

since computer model outputs can be generated on an arbitrarily fine grid in

space, we can assume that xt(s) are available not only at limited locations but

also at every desired location.

In our model, we assume that current value of the spatio-temporal process

Zt(s) is a function of past values,

Zt(s) = M({ϵu(s)}u<t), (2.3)

whereM is a general class of models and {ϵu(s)}u<t are spatially correlated errors

at time points prior to t. A model for (2.3) allowing computational efficiency is

an AR model of order L, given by

Zt(s) =

L∑
l=1

ρlZt−l(s) + ϵt(s), (2.4)

where ρl is the l-th autoregressive coefficient reflecting the correlation between

Zt and Zt−l. The AR residual vectors ϵt = (ϵt(s1), . . . , ϵt(sn))
′ = (ϵt1, . . . , ϵtn)

′,

with E(ϵt) = 0 and Var (ϵt) = Σ, are assumed to be spatially correlated but

independent of each other. For simplicity, we illustrate our approach using (2.2)

and (2.4), although it can be more generally applied under (2.1) and (2.3).

Under (2.4), the spatio-temporal process Y = (Y ′
1 , . . . ,Y

′
m)′ is of separable

form Var (Y ) = Γ ⊗ Σ, where Σ = (Σij) is an n × n spatial covariance ma-

trix, Γ = (Γij) is the m × m AR(L) covariance matrix whose elements are the

autocovariance generating function γ(t − t′) for t, t′ = 1, . . . ,m (Brockwell and

Davis (2002)) and ⊗ denotes Kronecker product. Using (2.4) is a practical way

to handle Γ because it allows a straightforward forecasting without any compli-

cated optimization or iterative computation. The separability assumption here

not only facilitates the computation for forecasting, but also allows Σ to be any

general form. As detailed in the next section, we proposed a goodness-of-fit test

to automatically choose the form of Σ.

Our modeling approach can be extended to other non-separable spatio-

temporal model. For example, allowing AR coefficients to vary over space leads

to a non-separable spatio-temporal model. Still, the test procedure in Section 3

can be applied to decide between a computationally efficient parametric model,

and a flexible but computationally more demanding unstructured spatial model.
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Under (2.2) and (2.4), the model can be fitted using a multi-step estima-

tion procedure. Let X = (x′
1, . . . ,x

′
m)′ be the mn × q matrix containing the

vector of covariates x′
t = (x1,t, . . . , xq,t)

′ in (2.1), and Y = (Y ′
1 , . . . ,Y

′
m)′, an mn-

vector. First, assuming no spatio-temporal dependence, estimate β̂ and obtain

the residuals Ẑ = Y −Xβ̂ using ordinary least squares (OLS). Then, assuming

no spatial correlation, take a regression approach on Ẑt to estimate AR coef-

ficients ρ = (ρ1, . . . , ρL), to estimate the autocovariance matrix Γ̂. Once Γ̂ is

available, one can obtain ϵ̂1, . . . , ϵ̂m where ϵ̂t = (ϵ̂t1, . . . , ϵ̂tn) is the AR residual

vector after removing temporal dependence. The spatial covariance Σ̂ then can

be estimated based on ϵ̂t. The next step is to re-estimate Γ̂, accounting for this

spatial dependence using generalized least squares (GLS). Finally, the regression

parameters β̂ can be re-estimated by taking into account the spatio-temporal

correlation in the data using GLS.

Although the spatial covariance Σ̂ is important in fitting this model, we have

so far omitted its selection and estimation. A detailed discussion on this aspect

follows.

3. Inference on Spatial Covariance

In this section, we describe the inference on spatial covariance, including a

GOF test for the parametric models. The proposed approach can be applied

generally to any parametric spatial covariance including the Matérn class. De-

spite its generality, it can be computationally intensive. Thus, we also present a

two-step alternative test tailored for a popular class of covariance models.

Spatial covariance modeling is a topic that has been extensively studied; see,

for example, Cressie (1993), Stein (1999), or Cressie and Wikle (2011). However,

relatively little work has been done on a GOF test on spatial covariance models.

We use large sample theory to develop a general test procedure.

Under our model, using the estimated residuals ϵ̂t from the AR model over

time, we can estimate the spatial covariance matrix Σ by a non-parametric

method of moment estimator

S = (sij), sij =
1

m

m∑
t=1

ϵ̂tiϵ̂tj , (3.1)

for i, j = 1, . . . , n. Let sL be the vectorized lower triangular of S including the

diagonal elements. Note that length of sL is NL = n(n+ 1)/2.

To test whether a particular spatial covariance model is adequate, we con-

sider the hypotheses H0: Σ follows a parametric spatial covariance versus H1:

Σ does not have the structure in H0. Let Σ̂0 be the estimated covariance ma-

trix under a parametric spatial covariance model assumption, Σ̂L the vectorized
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lower triangular of Σ̂0, and Λ = Var (Σ̂L). Then a test statistic for testing the

hypotheses is given by

m
(
Σ̂L − sL

)′
Λ̂−1

(
Σ̂L − sL

)
. (3.2)

Under H0, for a sufficiently large m, the distribution of this test statistic can

be approximated by χ2 distribution. The alternative model always has NL pa-

rameters while the null model has the number of parameters depending on the

assumed model; the degrees of freedom of the χ2 distribution is the difference.

An intuitive estimator for Λ is available from its sample second moments. Let

ξt = (ξ1t, . . . , ξNLt)
′ be the vectorized lower triangular of ϵ̂tϵ̂

′
t, which is of length

NL. Then Λ̂ is available with its i, jth element, v̂ij , being

1

m− 1

m∑
t=1

(ξitξjt − ¯ξiξj)
2, (3.3)

where ¯ξiξj =
∑m

t=1 ξitξjt/m. Note that the GOF test is only valid when the

parameters associated with Σ̂L are estimated by minimizing (3.2). Although

general, the computation can become prohibitively intensive because it is costly

to minimize (3.2), and it requires O(n6) operations to compute (3.3). Thus we

give an alternative procedure tailored for a powered exponential family covariance

function. Here both parameter estimation and GOF test can be accomplished in

a very efficient way.

3.1. Test for a powered exponential family

A common approach to modeling Σ is to assume C(si, sj) = Cov (ϵti, ϵtj),

where ϵti and ϵtj are in (2.4), is a monotone function of the distance between

two points hij = ∥si − sj∥. Errors are assumed to be more correlated for two

locations that are closer to each other. A popular model in this class is the

powered exponential spatial covariance function

C(si, sj) =

{
σ2 exp(−θhpij) if hij > 0;

σ2 + τ2 if hij = 0,
(3.4)

for a given p (Cressie (1993)). This model has gained popularity due to a simple

functional expression that allows an easy interpolation of covariances, and thus

predictions, for unobserved locations. In the spatial statistics context, the pa-

rameters of this model are often estimated by a binned semi-variogram (Cressie

(1993); Cressie and Wikle (2011)).

Despite its advantages, the parametric model in (3.4) often fails to fully de-

scribe the actual variability in many observed processes. Common problems in-

clude non-monotone behavior of the covariances over distance, non-homogeneity
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of variances across spatial location, and even negative correlations among loca-

tions. In a fixed network setting, the variance-covariance matrix of any spatial

structure can be estimated by exploiting the repeated measurements over time.

Taking advantage of such circumstances, an unstructured form of spatial covari-

ance is able to handle a wider range of error structures without the potential

issues from misspecification of the covariance model.

As such, the use of a restrictive model in (3.4) requires rigorous justification.

The parametric model in (3.4) defines two key features on the spatial covariance

structure: correlation decreasing with distance and constant variance over space.

Accordingly, our proposed test diagnoses and validates the efficacy of the model

by examining these characteristics.

3.2. Test for spatially decaying correlation

The first step of our testing procedure considers C(si, sj) for hij > 0. From

(3.4), observe that

logC(si, sj) = log σ2 − θhpij . (3.5)

The parameters are collectively denoted by η = (log σ2,−θ). When the co-

variance structure follows (3.4), θ is positive. We thus consider the hypotheses

H0 : θ ≤ 0 versus H1 : θ > 0. If we do not reject H0, there is not enough evidence

that (3.4) is suitable for the data and hence we decide to use an unstructured

spatial covariance matrix. If the first test rejects H0, we continue with the second

test.

Let s = (si) be the vectorized lower triangular of S from (3.1) with the

diagonal elements excluded and h = (hi) be the corresponding vector of pairwise

distances between the n locations. Note that s and h are vectors of length

N = n(n − 1)/2. Define an N × 2 matrix A = [1,hp], where 1 is the vector

of ones. By definition, s1, . . . , sN are dependent of each other. Hence, we can

estimate η using GLS by

η̂ = (l̂og σ2,−θ̂) = (A′V −1A)−1A′V −1(log s), (3.6)

where V = Var (log s). By the property of GLS estimators,

η̂ ∼ N(η, (A′V −1A)−1), (3.7)

and hence the standard error for η̂ is se(η̂) =
√

diag[(A′V −1A)−1]. Based on

(3.7), one can calculate the test statistic z1 = θ̂/se(θ̂) and conduct a test; if

z1 < z1−α1 with given level of α1, all following model fittings are performed

using Σ̂ = S.

Although the sample second moment estimator in (3.3) can be used to esti-

mate V , the computational issue still exists. The computation is greatly facili-

tated by assuming normality of ϵt. Let R = (rij) denote empirical correlations
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matrix, where rij = sij/
√
siisjj , for i, j = 1, . . . , n, and r = (ri) the vectorized

lower triangular elements of R. Under H0 and normality, V̂ = 2(B+1N1′N )/m,

where B is an N × N diagonal matrix with its ith element bi = (r−2
i − 1)/2

for i = 1, . . . , N . Let b−1 = B−11 with ith element b−1
i = 2r2i /(1 − r2i ) for

i = 1, . . . , N . It is straightforward to see

V̂ −1 =
m

2
(B−1 − cb−1b−1′), (3.8)

with c = 1/(1 + 1′B−11). Calculation of (3.8) is straightforward as B is now a

diagonal matrix. Once either (3.3) or (3.8) is available, the substitution principle

allows computation of (3.6) with V̂ . When normality is hard to justify, one can

use robust covariance matrix estimators to simplify the computation.

3.3. Test for equal variances

The second test is related to the elements of the covariance matrix associated

with hij = 0. Under (3.4), Var (ϵit) is identical for all si. Thus we consider

H0 : Var (ϵ1t) = . . . = Var (ϵnt) versus H1: Var (ϵit) ̸= Var (ϵjt) for some i, j.

To test the equality, let v = (s11, s22, . . . , snn)
′ be the diagonal elements of S in

(3.1), the vector of location-specific variances. Let Ω = (Ωij) denote Var (v), an

n × n matrix with Ωij = Cov (sii, sjj). Note that Ω̂ can be calculated similar

to (3.3), and its computational burden is much less. When computational effort

needs to be further reduced, one may again employ the normality assumption

which leads to Ωij = 2Σ2
ij/m for i, j = 1, . . . , n. Then one can use Ω̂ = (Ω̂ij),

where Ω̂ij = 2s2ij/m and sij is defined in (3.1).

Under H0, the distribution of the test statistic

z2 = (v − 1n(1
′Ω̂−11)−11′Ω̂−1v)′Ω̂−1(v − 1n(1

′Ω̂−11)−11′Ω̂−1v)

can be approximated by χ2
n−1. One can conduct a test based on z2; if z2 >

χ2
n−1,1−α2

with given level of α2, all subsequent calculations are performed using

the empirical spatial covariance matrix. Otherwise, (3.4) are used.

3.4. Remarks on two tests

We choose the critical region of the first test such that all the associated

parameters can be used directly for the computation of Σ; when our procedure

chooses the model in (3.4), it always yields a positive θ̂. An estimator of τ2 is

readily available as τ̂2 = max{0, n−1
∑

i=1,...,n sii − exp(log σ̂2)}. The unstruc-

tured covariance function does not restrict the parameters.

Although all correlation coefficients are to be positive under (3.4), in practice

some correlations may be very close to zero or even negative, which in turn causes
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a problem in the estimation of (3.6). To handle such cases, we enforce a minimum

correlation of δ by setting sij = δ
√
siisjj when rij < δ. A prespecified small

value, e.g., .01, can be used for δ, or more careful treatment based on m can

be applied. Near zero or negative correlation coefficients already imply that the

model specification in (3.4) is inadequate.

Lastly, we set the order of the two tests to be in the current sequence as

we believe that the first test is of greater importance. Predictions at unobserved

locations rely heavily on the decaying nature of the covariance with respect to the

distance, and hence it is the more representative and fundamental characteristic

of the model (3.4).

4. Prediction

In our study, we are interested in issuing forecasts not only at known moni-

toring sites but also at any locations in future time. At a new location to issue

new predictions, denoted by s∗, let c(s∗) be the vector of the spatial covari-

ance between s∗ and the sample locations (s1, . . . , sn). Similarly, let γm+h =

(γ(m + h − 1), . . . , γ(h))′ be the temporal covariance vector of length m. Let

ch(s
∗) = γm+h ⊗ c(s∗). The best linear unbiased predictor at s∗ for future

time t = m + h is Ŷm+h(s
∗) = β′xm+h(s

∗) + Ẑm+h(s
∗), where Ẑm+h(s

∗) =

ch(s
∗)(Γ̂⊗ Σ̂)−1Ẑ and Ẑ is the residual vector obtained after the model fitting

in Section 2.

When the model in (3.4) is chosen from the tests in Section 3, c(s∗) is

directly available with the parameters estimated from (3.6). Otherwise, we use

a nonparametric approach based on an empirical orthogonal function (EOF)

method (Obled and Creutin (1986)). Specifically, we first perform an eigen-

decomposition on the empirical covariance matrix of S in (3.1): S = ΦΛΦ′

where Φ = (ϕ1, . . . ,ϕn) with ϕk = (ϕk(si), . . . , ϕk(si))
′ is the n × n matrix of

eigenvectors, and Λ = diag(λ1, . . . , λn) is the n× n eigenvalue matrix. Then we

interpolate the eigenvectors at the prediction locations to obtain

ϕk(s
∗) =

n∑
i=1

wi(s
∗)ϕk(si)∑n

j=1wj(s∗)
, k = 1, . . . , n, (4.1)

where wi(s
∗)/

∑n
j=1wj(s

∗) is the weight for si (Munoz, Lesser, and Ramsey,

2008). We employ the inverse distance weighting function with p ≤ d for d-

dimensional space (Shepard (1968)) to obtain wi(s
∗) = 1/dist(s∗, si)

p. The

resulting spatial covariance vector is

c(s∗) =
( n∑

k=1

λkϕk(s
∗)ϕk(s1), . . . ,

n∑
k=1

λkϕk(s
∗)ϕk(sn)

)′
. (4.2)
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For more discussion on the use of EOF method, see Munoz, Lesser, and Ramsey

(2008).

Under the normality assumption with known variance components, the vari-

ance of the prediction error is given by

Var [Ŷm+h(s
∗)− Ym+h(s

∗)]

=
[
X ′

m+h(s
∗)− c′h(s

∗)(Γ⊗Σ)−1X
]
Var (β̂)

[
X ′

m+h(s
∗)− c′h(s

∗)(Γ⊗Σ)−1X
]′

−c′h(s
∗)(Γ⊗Σ)−1ch(s

∗) + Var (Ym+h(s
∗)),

where Var (Ym+h(s
∗)) = γ(0)(σ2 + τ2) when the spatial parametric model (3.4)

is applied, and γ(0)
∑n

i=1 λkϕ
2
k(s

∗) for EOF-based spatial covariance function.

Then, a symmetric 100(1− α)% prediction interval is given by

Ŷm+h(s
∗)± z1−α/2

√
Var [Ŷm+h(s∗)− Ym+h(s∗)],

where z1−α/2 is the 1− α/2 quantile of the standard normal distribution.

5. Numerical Study

In this section, the effectiveness of the proposed method is corroborated by a

simulation study and then illustrated with a case study of thermal management

in a data center.

5.1. Simulation

We conducted a simulation study to validate the efficacy of the two-step test

in Section 3. To simulate the data, we considered the model in (2.2) having three

predictor variables x1, x2, x3, each being generated independently from U(0, 1),

with β = (β0, β1, β2, β3)
′ = (2, 2, 1, 1)′; fifteen locations, s1, . . . , s15, were chosen

from uniform (0, 10)3 and fixed during the simulations. The spatio-temporal

process Zt(s) in (2.4) was assumed to be AR order L = 3, with coefficients

α1 = 0.5, α2 = 0.2, α3 = 0.1. We generated the spatio-temporal error Zt(sj), for

t = 1, . . . ,m, j = 1, . . . , 15, with a spatial covarianceΣ and normality assumption

on ϵt. Data associated with 10 sites were used for model fitting while those from

the remaining 5 sites were spared for performance evaluation.

We considered two scenarios: (1) Σ1 in the form of (3.4) with m = 300,

and (2) a nonstationary spatial covariance matrix for Σ2 with m =1,000. The

stationary Σ1 had equal variances across locations and spatial correlations that

decayed in distance between locations. These assumptions were relaxed in sce-

nario 2. We allowed the variances to vary over locations, and the monotone

relationship between correlation and distance was disturbed by applying a local

structure.
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Table 1. The summarized results of simulation, where the numbers in paren-
thesis represent the standard deviation.

RMSE RMSPE
β0 β1 β2 β3

Scenario 1 Method I 0.168 0.093 0.079 0.095 1.507 (0.088)
Method II 0.202 0.101 0.105 0.113 1.527 (0.104)
Method III 0.185 0.102 0.093 0.103 1.516 (0.096)

Scenario 2 Method I 0.630 0.072 0.082 0.072 3.339 (1.294)
Method II 0.222 0.052 0.060 0.057 2.142 (0.484)
Method III 0.222 0.052 0.060 0.057 2.142 (0.484)

Specifically, for Σ1, we chose the parameters σ = 1, τ = 0.1, θ = 1/4 and

p = 2. For Σ2, we first divided 15 locations into 6 and 9, and made a 15 × 15

covariance matrix A by letting the elements be 2.5 in a 6 × 6 block associated

with the covariance within the first 6, with the remaining elements 0.5. Then

a positive definite Σ2 was obtained by A +Σ1. In this way, we could simulate

departure of Σ2 from Σ1 in two key aspects that the tests in Section 3 examine.

We considered different ways to select the covariance model for the simulated

data: (I) the method that assumes the stationary and parametric covariance

model in (3.4); (II) the method that assumes the non-parametric model without

the two-step procedure in Section 3; (III) our method that incorporates the

flexibility with covariance switching from the two-step procedure. We replicated

the simulations 100 times for each scenario and method, and compared the root

mean square prediction error (RMSPE) and root mean square error (RMSE) of β̂

from the 100 replicates as a measure of overall stability and prediction accuracy.

The results are summarized in Table 1. Under scenario 1, method III does

not lose much estimation and prediction accuracy compared to method I that

uses the knowledge of the underlying spatial covariance structure. Method III

also performs better, in both estimation and prediction than method II without

the GOF test-based switching; our method often chooses the correct model and

uses the same inference as method I, and the estimated covariance from (3.1)

is reasonable even when it chooses a wrong model. Under scenario 2, method

I performs considerably worse than method II and III; the model fitted with

the incorrectly specified covariance model by using method I can lead to a large

error as seen in standard deviation value of RMSPE, and method I produces less

efficient coefficient parameter estimates.

These results indicate that our method has flexibility and can make appro-

priate adjustments in practical situations.
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5.2. Industry application

In this section, we present a case study motivated by an industrial project

aiming at better managing a data center thermal system and reducing the en-

ergy cost (Hamann et al. (2009)). Temperature is a key performance indicator

for operating data center equipment in a reliable manner while avoiding excessive

use of energy. In order to manage temperature in data centers, relevant envi-

ronmental information is monitored via a sensor network. We build a predictive

model to forecast future temperature distributions across the entire data center,

based on hypothetical future settings of the cooling system. The goal is to utilize

the predictive model to reduce energy consumption by the cooling system while

ensuring safe operating temperatures throughout the center.

The layout of the data center in this case study is depicted in Figure 2.

Servers and other equipments are mounted on racks above a raised floor, depicted

as grey rectangles in the figure. The data center has alternating “cold aisles” and

“hot aisles”. The inlet side of a server faces a cold aisle, while the exhaust side

faces a hot aisle. Four air conditioning units (ACUs) with large scale fans expel

cool air into the plenum of the data center, thereby pressurizing it. Through

perforated tiles located in the cold aisles, the cooled air is provided to the inlets

of the servers. The heated exhaust air from the servers is returned to the ACUs

via the ACU intake openings located in the hot aisles.

We considered three factors that affect the temperature at a given location

in the data center: (i) temperature of the air supplied to the data center from

each ACU outlet; (ii) airflow through the perforated tiles at the floor level, which

determines how cooling air is distributed across the horizontal dimensions; (iii)

the height of the location. In total, there are 105 thermal sensors distributed

throughout the data center, marked as dots in Figures 2−4. The temperature

data is collected in ten-minute intervals. We used data from 1,000 time points as

training data to issue forecasts of the temperature distribution map for the entire

data center, using the model in (2.2). All factors in the models were included

as linear predictors without any transformation or higher order terms of factors.

Computation using (3.3) was infeasible due to the sample size of n = 105, and

therefore all tests were performed using the normality approximation in (3.8).

Figure 1 shows a scatter plot of empirical covariances sij of (3.1) versus distance

hij . Clearly, the observed relationship between covariances and distance does

not fit (3.4) well, although there is an overall tendency that covariances decrease

in absolute magnitude with respect to the distances. Negative covariances are

also visible. These observations suggest that (3.4) may not be suitable for the

data. With δ = 0.01, our GOF test statistic in the first step was greater than

Z0.999 and we went on to the second test. The second test statistic was greater

than χ2
104,0.999, suggesting that the assumption of variance homogeneity is invalid.
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Figure 1. Plot of empirical spatial covariance and distances, where spatial
covariances are calculated by (3.1).

Given that the ratio of the smallest and largest diagonal components of (3.1) is

137, the result is not surprising.

Figures 2−4 display the predicted temperature distribution map at time

t = 1, 001 based on the nonparametric spatial model, lower and upper predic-

tion bounds at the 95% confidence level, respectively. The default system values

were chosen for temperature and airflow for forecasting. As expected, we ob-

served lower temperatures along the inlets where cold air is expelled through the

perforated tiles. The temperature rose as height increased.

For comparison, we also applied the parametric model in (3.4) to predict

the temperature distribution in the data center. For t = 901, . . ., 1,000, we

randomly deleted one sensor’s data, built the model by using the data obtained

from the 1 to t−1 period, and obtained one-step ahead forecasting at the deleted

location. Blindly applying parametric model gave an RMSPE of 30.775, while

our method gave 5.534. The physical structures of the layout environment leads

to a complicated underlying spatial process that cannot be fully modeled by

parametric spatial models. Our approach detected the poor fit of the parametric

model and switched to an alternative unstructured spatial model that successfully

picked up the complicated spatial dependence pattern.

In an on-line monitoring framework, such temperature prediction maps are

updated on an ongoing basis as new measurements arrive continuously. The

predictive model can be used to explore the effect of changing the settings of
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Figure 2. One-step ahead prediction of the temperature distribution map of
the entire data center, where each subplot is a snapshot at a specified height.

Figure 3. Lower prediction bound at 95% confidence level of one-step ahead
prediction of the temperature distribution map of the entire data center,
where each subplot is a snapshot at a specified height.

the cooling system on the operating temperature distribution. In particular, this

predictive model may be tied in with an optimization framework that finds system

settings to avoid over-cooling or over-heating by setting proper temperature of

the air conditioning units.

6. Discussion

Analytics applied to data from monitoring networks is a growing trend in

practice. An automated model fitting and forecast framework that can handle

such data in a flexible and reliable manner is needed. We have introduced a

framework that uses a generalized least squares approach and an empirical sample

covariance matrix; with an automated test procedure, our method can detect the

underlying nature well and can make appropriate adjustments in model fitting
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Figure 4. Upper prediction bound at 95% confidence level of one-step ahead
prediction of the temperature distribution map of the entire data center,
where each subplot is a snapshot at a specified height.

method for various practical situations. All required computation is designed

to meet time and budget requirement simultaneously. As no procedure in our

approach requires complicated optimization, the framework can be executed in

an economical manner with minimal manual monitoring; it is already successfully

implemented in some of our projects in the service industry.

Unlike the situations considered here, challenges will arise when the variable

of interest is discrete, there is missing information in the dataset, or the location

of the monitoring network changes over time. Research effort is needed to find

procedures that can be run in a reliable and expeditious manner.
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