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Abstract: Combining p-values to integrate multiple effects is of long-standing

interest in social science and biomedical research. In this study, we revisit a

classical scenario closely related to a meta-analysis with unknown heterogeneity that

combines a finite and fixed number of p-values, while allowing the sample size for

generating each p-value to go to infinity. Although many modified Fisher’s methods

have been developed for this purpose, their asymptotic properties and finite-sample

numerical performance have not been examined, and so is the motivation for

our study. Our results show that Fisher and adaptive rank truncated product

methods have top performance and complementary advantages across different

proportions of true signals. Consequently, we propose an ensemble method, called

the Fisher ensemble, that combines the two top-performing Fisher-related methods

using a robust harmonic mean ensemble approach. We show that the Fisher

ensemble achieves asymptotic Bahadur optimality and integrates advantages of

the two methods in simulations. We subsequently extend the Fisher ensemble

to a variation that is particularly powerful for concordant effect size directions.

A transcriptomic meta-analysis application confirms the theoretical and simulation

conclusions, generates intriguing biomarker and pathway findings, and demonstrates

the strengths and strategy of using the proposed Fisher ensemble methods.

Key words and phrases: Ensemble method, global hypothesis testing, p-value

combination, omnibus test.

1. Introduction

Methods for combining p-values are of substantial interest in statistics

and scientific fields for aggregating homogeneous or possibly heterogeneous

information from multiple sources. Consider the problem of combining K p-

values, p⃗ = (p1, . . . , pK), where pi is the p-value of testing H
(i)
0 : θi ∈ Θ

(i)
0 versus

H
(i)
1 : θi ∈ Θ(i) − Θ

(i)
0 . Here, θi denotes the parameter of interest, and Θ(i) and

Θ
(i)
0 denote the total possible parameter space and null parameter space of θi,

respectively. For example, θi = µi for N(µi, 1), Θ
(i) = R, and Θ

(i)
0 = {µi = 0} for

a simple Z-test. The global union-intersection test for detecting any signal in the

K p-values is H0 : ∩1⩽i⩽K{θi ∈ Θ
(i)
0 } versus H1 : ∪1⩽i⩽K{θi ∈ Θ(i) − Θ

(i)
0 }.

A general strategy is to combine the input p-values to form a test statistic
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for globally testing the existence of any signal. In the literature, three major

categories of methods have been developed, depending on the types of input

data and signal. The first category considers the combination of independent p-

values, where K is small and fixed (e.g., K between 5 and 30). The sample size

ni (1 ⩽ i ⩽ K) for deriving pi is large, and can asymptotically go to infinity.

This first classical scenario is closely related to meta-analysis applications that

integrate multiple small effects to increase statistical power. Traditional methods

include Fisher’s method TFisher =
∑K

i=1 −2 log pi (Fisher (1934)) and Stouffer’s

method TStouffer =
∑K

i=1 Φ
−1(1− pi)(Stouffer et al. (1949)), as well as many other

transformation selections. The second category combines independent, sparse,

and weak signals. Here, a large number of p-values are combined (K → ∞), but

only a small number ℓ of the K p-values (ℓ = Kβ with 0 < β < 1/2) have weak

signals, and all remaining p-values have no signal. The higher criticism test (the

HC test, hereafter; Donoho and Jin (2004)) and the Berk-Jones test (the BJ test,

hereafter; Berk and Jones (1979); Li and Siegmund (2015)) are two representative

methods, and are shown to be asymptotically optimal in terms of the detection

boundary across varying levels of signal sparsity (0 < β < 1/2) as K → ∞. In

the third category, the K p-values are integrated with an unknown correlation

structure and with sparse and weak signals. Liu and Xie (2020) and Wilson

(2019) proposed a Cauchy test (CA test) and a harmonic mean test (HM test),

respectively. These methods provide robustness under an unknown dependency

structure when inference is established under an independence assumption. They

also attain the optimal detection boundary for detecting highly sparse signals

(with s = Kβ, 0 < β < 1/4, but not for 1/4 < β < 1/2) as K → ∞ (Liu and Xie

(2020); Fang, Tseng and Chang (2023)).

In this study, we revisit the methods of the first category, evaluate their

asymptotic efficiencies, assess their finite-sample numerical performance, and

propose an ensemble method that combines two complementary top performers

for general applications. To differentiate between the first category and the second

and third categories, we focus on detecting independent and nonsparse signals

inside a small and fixed number of p-values for scenarios of the first category.

Here, the nonsparse signals differ from the sparse signals in the second and third

categories in the sense that the proportion of true signals varies from 1/K to

1 and is unknown, whereas the proportions in the second and third categories

vanish to zero as K → ∞. Methods for the first “meta-analytic scenario with

unknown heterogeneity” remain in high demand, and present new challenges

in applications such as transcriptomic, GWAS, CNV, and methylation meta-

analyses (Li and Tseng (2011); Tseng, Ghosh and Feingold (2012); Begum et al.

(2012); Guerra and Goldstein (2016)).

Prior to the 1970s and 1980s, methods for the first category focused on ag-

gregating transformed scores from the p-values: T =
∑K

i=1 g(pi) =
∑K

i=1 F
−1
U (pi),

where F−1
U (·) is the inverse CDF of U . For example, U is a chi-squared distribu-
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tion for the Fisher test, and a standard normal distribution for the Stouffer test.

Littell and Folks (1973) showed that Fisher’s method is asymptotically optimal

in terms of the Bahadur relative efficiency, providing a theoretical justification

for the log-transformation over the other types of transformations (see Section 2

for more details). Despite the optimal asymptotic efficiency of the Fisher test,

its finite-sample performance in terms of statistical power is often poor if only

part of the K p-values have signals. For this commonly encountered situation,

with unknown heterogeneous signals, many modified Fisher methods have been

developed to improve the original method. Dudbridge and Koeleman (2003)

proposed the rank truncated product (RTP) method to aggregate signals only

for the top ordered (i.e., the most significant) p-values: Tm = −2
∑m

i=1 log p(i),

where p(i) is the ith ordered p-value and 1 ⩽ m ⩽ K is a user-specified truncation

point on the ranks of the input p-values. However, the choice of m is subjective,

and the RTP method can suffer substantial power loss with a misspecified m. To

address this challenge, several works have focused on improving the RTP method

by adaptively determining m from an optimization criterion. For example,

Song, Min and Zhang (2016) developed an adaptive Fisher procedure using a

partial sum optimized by z-standardization, similar to higher criticism (AFz,

hereafter): TAFz = max1⩽j⩽K{−
∑j

i=1 log p(i) −
∑n

i=1 w(j, i)}/
√∑n

i=1 w
2(j, i),

where w(j, i) = min{1, j/i}. Let F̄χ2
2j
(t) = 1 − Fχ2

2j
(t), where Fχ2

2j
(t) denotes

the CDF of a chi-squared random variable with degrees of freedom 2j. Li

and Tseng (2011) proposed an adaptive Fisher procedure using a partial sum

optimized by the corresponding pseudo/surrogate “p-values”(AFs, hereafter):

TAFs = max1⩽j⩽K − log{h(p⃗, j)}. Here, h(p⃗, j) = F̄χ2
2j
(−2

∑j
i=1 log p(i)) is the

corresponding surrogate “p-value” of the partial sum. This is not a true

and valid p-value, but rather a surrogate for fast computation by importance

sampling (Huo et al. (2020)). Instead of using the surrogate p-values in AFs, Yu

et al. (2009) proposed the adaptive rank truncated product (ARTP) method,

which is based on the exact p-values of the partial sum (AFp, hereafter):

TAFp = max1≤j≤K − log{hj(p⃗, j)}, where hj(p⃗, j) = 1 − Gj(−2
∑j

i=1 log p(i)), in

which Gj(t) denotes the CDF function of −2
∑j

i=1 log p(i) under the null. For

computation, Yu et al. (2009) proposed an algorithm that requires large storage

memory to achieve manageable computing.

Another related strategy in the literature is to directly filter out p-values

greater than a user-specified threshold τ ∈ (0, 1]. For example, the truncated

Fisher with hard-thresholding (TFhard) TTFhard(τ) =
∑K

i=1 − log(pi)I{pi≤τ} (Za-

ykin et al. (2002)), where I{·} denotes the indicator function. Zhang et al. (2020)

proposed the truncated Fisher with soft-thresholding (TFsoft) to improve on

TFhard, arguing that the continuous soft-thresholding scheme leads to more

stable performance with varying input p-values. In both TFsoft and TFhard, the

choice of τ is not straightforward. Zhang et al. (2020) investigated the optimal

choice of τ for TFhard under a theoretical setting of a Gaussian mixture, where
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the mixture probability and the mean of the signals are known and K → ∞.

However, such prior information is usually unknown in practice. As such, they

replaced the single user-specified τ with a user-specified set of thresholds T , and

proposed two omnibus tests for TFhard and TFsoft that alleviate the problem of

choosing τ to some extent, but the selection of T is still prespecified and ad hoc.

Another line of research in p-value combination incorporates weighting in the

procedure. For example, Xu et al. (2016) proposed an adaptive two-sample test

for high-dimensional means, which can be regarded as a weighted test. Liptak’s

test (Lipták (1958)) can be considered as Stouffer’s method with weights, and is

commonly referred to as the weighted z-test. Won et al. (2009) estimated the best

weights for Liptak’s method from a simple alternative hypothesis, assuming an

expected effect size. Other choices of weights for the z-test have been suggested

by other researchers, including Mosteller and Bush (1954) and Zaykin (2011). In

addition to the weighted z-test (Liptak’s test), many tests constructed using the

sum of transformed p-values also have a weighted version. For example, the CA

and HM tests were originally proposed with weights, and in this study, we use the

version with equal weights (Wilson (2019); Liu et al. (2019); Liu and Xie (2020)).

Chen et al. (2014) proposed a test combining p-values based on the sum of an

inverse gamma distribution, which can also be regarded as a weighted test, in the

sense that it gives larger “weights” to smaller p-values. In fact, AFs and AFp can

be considered as adaptively weighted methods using binary weights, and TFsoft

(Zhang et al. (2020)) can be viewed as thresholding and weighting of the Fisher

method.

Notwithstanding the active development of modified Fisher methods, there

is no comprehensive and systematic evaluation of the asymptotic properties and

finite-sample numerical performance of the methods in the first category. Our

study sets out to fill this gap. In Section 2, we examine the Asymptotic Bahadur

optimality (ABO) of seven methods in the first category: Fisher, Stouffer, AFs,

AFz, AFp, TFhard, and TFsoft. The two adaptive Fisher methods, AFs and AFz,

provide estimates of the subset of p-values contributing to the signal. Therefore,

we also investigate whether the estimates in these two methods consistently select

the subset of p-values containing the true signals (signal selection consistency).

For completeness, we also examine the asymptotic efficiency of methods developed

for sparse signals, including the CA, Pareto family, minimum p-value (minP), BJ,

and HC methods. In Section 3, we perform finite-sample numerical evaluations to

compare the statistical power of these methods under differentK, signal strength,

and proportions of true signals. The results reported in of Sections 2 and 3

show complementary advantages of two top performers, namely, Fisher and AFp,

especially for varying proportions of true signals. Consequently, we develop a

Fisher ensemble (FE) method in Section 4 that applies an HM ensemble approach

to combine the Fisher and AFp methods. We prove the ABO of the FE (Section

4.2) and demonstrate its consistently high performance in various simulation
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scenarios (Section 4.3). Section 5 develops an extension of the FE method, called

FECS, for enhanced statistical power in terms of detecting signals with concordant

effect size directions. Section 6 applies FE, FECS, and several existing methods

to a transcriptomic meta-analysis on biomarker and pathway detection for aging

(Zahn et al. (2007)). Section 7 concludes the paper.

2. Asymptotic Efficiencies of Existing Methods

This section investigates the asymptotic efficiencies of existing p-value com-

bination methods. Because we focus on the scenarios with independent and

nonsparse signals inside a finite number of p-values, we slightly generalize the

setup proposed in Littell and Folks (1973) (differences are discussed in Remark 1),

which uses the criterion of exact Bahadur relative efficiency (Bahadur (1967b)).

Under this setting, Fisher’s method is ABO (Littell and Folks (1973)) and shows

theoretical advantages in terms of log-transformation. Numerous modified Fisher

methods (e.g., AFs, AFp, AFz, TFhard, and TFsoft) have been developed to

improve the finite-sample statistical power, but their asymptotic efficiency has

not been investigated. Section 2.1 introduces the problem setting and defines

the exact slope of a hypothesis test, which is a natural concept derived from the

exact Bahadur relative efficiency. Section 2.2 presents the ABO results of the five

modified Fisher methods.

2.1. Bahadur relative efficiency and exact slope

We first introduce the concept of an exact slope of a hypothesis test

(Bahadur (1967b); Littell and Folks (1973)). Consider (x1, x2, . . .) as an infinite

sequence of independent observations of a random variableX from the probability

distribution Pθ with parameter θ ∈ Θ. Let Tn be a real-valued and continuous

test statistic depending on the first n observations (x1, . . . , xn), where large

values of Tn result in rejecting the null hypothesis. Assume that the probability

distribution of Tn is the same for ∀θ ∈ Θ0, which leads to Pθ(Tn < t) = P0(Tn < t),

for all θ ∈ Θ0, and assume 1−P0(Tn < t) is uniformly distributed on [0, 1] (Littell

and Folks (1973)). Further, denote p(n) = 1−Fn(tn) as the p-value of the observed

Tn = tn, where Fn(t) = P0(Tn < t). We then define the exact slope of Tn as

follows.

Definition 1. For the test statistic Tn with p-value p(n), if there is a positive-

valued function c(θ), such that for any θ ∈ Θ − Θ0, −(2/n) log p(n) → c(θ) as

n → ∞ with probability one, then c(θ) is called the exact slope of Tn.

As a simple example, consider testing for a zero mean (µ = 0) with known

variance under a univariate Gaussian distribution and Tn is the conventional

z-test. It is easily seen that c(µ) = µ2 is the exact slope of the z-test. For

more examples, see Abrahamson (1967) and Bahadur (1967a). The exact slope

of a test naturally connects to the exact Bahadur efficiency between the test
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statistics. Consider two sequences of test statistics {T (1)
n } and {T (2)

n } testing

the same null hypothesis, with exact slopes c1(θ) and c2(θ), respectively. We

define the ratio ϕ12(θ) = c1(θ)/c2(θ) as the exact Bahadur relative efficiency of

{T (1)
n } relative to {T (2)

n }, comparing the relative asymptotic efficiency between

two test statistics. Indeed, considering any significance level α > 0, for i = 1, 2,

denote N (i)(α) as the smallest sample size such that, for any n ⩾ N (i)(α), the

p-value of T (i)
n is smaller than α. Then, we can show with probability one that

limα→0 N
(2)(α)/N (1)(α) = ϕ12(θ), which asymptotically characterizes the ratio of

the smallest sample sizes of the two test statistics required to attain the same

sufficiently small significance level α (Littell and Folks (1973)).

For θ ∈ Θ0, the p-value p
(n) follows a uniform distribution Unif(0, 1). Lemma

1 shows that the analogous “exact slope” −(2/n) log p(n) converges to zero with

probability one.

Lemma 1. For θ ∈ Θ0, as n diverges, −(2/n) log p(n) → 0 with probability one.

The proof of Lemma 1 can be found in the Supplementary Material, Section

S2.1. Here, we extend the definition of an exact slope to the null parameter space,

where c(θ) = 0, for θ ∈ Θ0.

To benchmark the asymptotic efficiency of a p-value combination method, we

introduce the theoretical setup adopted from the framework in Littell and Folks

(1973). Suppose we haveK < ∞ sequences of test statistics {T (1)
n1

}, . . . , {T (K)
nK

} for
testing θi ∈ Θ

(i)
0 , for 1 ⩽ i ⩽ K. Assume that for all sample sizes n1, . . . , nK , and

when θi ∈ Θ
(i)
0 , for 1 ⩽ i ⩽ K, {T (1)

n1
}, . . . , {T (K)

nK
} are independently distributed.

Denote p
(ni)
i as the p-value of the ith test statistic T (i)

ni
. For each 1 ⩽ i ⩽ K,

assume that the sequence {T (i)
ni

} has the exact slope ci(θi) as −(2/ni) log p
(ni)
i →

ci(θi) ⩾ 0 with probability one as ni → ∞. We further assume the sample sizes

n1, . . . , nK satisfy n = (1/K)
∑K

i ni and limn→∞(ni/n) = λi, where λi > 0 and∑K
i λi = K. Under the above setup, the goal of any p-value combination method

is to test

H0 : ∩K
i=1

{
θi ∈ Θ

(i)
0

}
versus H1 : ∪K

i=1

{
θi ∈ Θ(i) −Θ

(i)
0

}
. (2.1)

For simplicity, we assume under the null

λ1c1 (θ1) ⩾ λ2c2 (θ2) ⩾ · · · ⩾ λKcK (θK) ⩾ 0,

where the first ℓ p-values have true signals (i.e., θi belong to Θ(i) − Θ
(i)
0 , for

1 ⩽ i ⩽ ℓ) with exact slopes ci(θi) > 0, and ci(θi) = 0 for the remaining θi ∈ Θ
(i)
0 ,

for ℓ+ 1 ⩽ i ⩽ K.

Remark 1. There are two main differences between the original setup in Littell

and Folks (1973) and ours. First, Littell and Folks (1973) assume that all studies

have strictly positive exact slopes, whereas we allow some studies to have zero-

valued exact slopes. Second, Littell and Folks (1973) consider a general parameter
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Table 1. Results of asymptotic properties of 12 p-value combination methods: Fisher,
Stouffer, five modified Fisher (AFs, AFp, AFz, TFhard, and TFsoft) and five methods
designed for sparse and weak signals (Cauchy, Pareto, minP, BJ, and HC).

Signal selection

Methods ABO Exact slopes consistency Proofs

Fisher Yes
∑ℓ

i=1 λici(θi) – Theorem S1

Stouffer No 1
K [
∑ℓ

i=1(λici(θi))
1/2]2 – Theorem S1

AFs Yes
∑ℓ

i=1 λici(θi) Yes Theorems 1 & 4

AFp Yes
∑ℓ

i=1 λici(θi) Yes Theorems 2 & 5

AFz No ⩽ maxj≤ℓ

√∑K
i=1 min2{1,1/i}

∑K
i=1 λici(θi)√∑K

i=1 min2{1,j/i}
No Theorem 3

TFhard Yes
∑ℓ

i=1 λici(θi) – Theorem 6

TFsoft Yes
∑ℓ

i=1 λici(θi) – Theorem 6

Pareto No maxi λici (θi) – Theorem S2

Cauchy No maxi λici (θi) – Theorem S3

minP No maxi λici (θi) – Littell and Folks (1973)

BJ No maxi iλici (θi) No Theorem S4

HC No – No Proposition S1

space Θ, whereas we consider a product of parameter spaces Θ(1)×Θ(2)×· · ·×Θ(K).

Although differences exist, one can still establish the results in Littell and Folks

(1973) by combining their arguments with Lemma 1.

Following Theorem 2 and the arguments in Section 4 in Littell and Folks

(1973), under the alternatives, the maximum attainable exact slope for any p-

value combination method is
∑ℓ

i=1 λici(θi). Hence, we define the Asymptotic

Bahadur Optimality (ABO) of a p-value combination method as follows.

Definition 2. Denote θ⃗ = (θ1, . . . , θK). Under the above setup, a p-value

combination test H(p1, . . . , pK) is Asymptotic Bahadur Optimal (ABO) if its

exact slope CH(θ⃗) satisfies CH(θ⃗) =
∑ℓ

i=1 λici(θi).

2.2. The ABO property of p-value combination methods

Littell and Folks (1973) showed that the Fisher test is ABO, whereas Stouffer

and minP tests are not. Except for these methods, there is a lack of asymptotic

efficiency analysis for such methods. This subsection discusses five modified

Fisher methods: AFs, AFp, AFz, TFhard, and TFsoft. We additionally analyze

four methods designed for combining sparse and weak signals: Cauchy, Pareto,

BJ, and HC. As expected, the latter four tests do not enjoy ABO property; the

proofs are provided in the Supplementary Material. The theoretical results for

the ABO, exact slope, and signal selection consistency (discussed in Theorems 4

and 5 and Remarks S3, S5, and S6) are summarized in Table 1.
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Recall that the Fisher and the five modified Fisher methods combine p-values

using the following test statistics:

TFisher =
K∑
i=1

−2 log p(i); TAFz = max
1⩽j⩽K

−∑j
i=1 log p(i) −

∑K
i=1 w(i, j)√∑K

i=1 w
2(i, j)

;

TAFs = max
1⩽j⩽K

− log

{
F̄χ2

2j

(
− 2

j∑
i=1

log p(i)

)}
; TAFp = max

1⩽j⩽K
− log{hj(p⃗, j)};

TTFhard(τ) =
K∑
i=1

(−2 log pi)I{pi⩽τ}; TTFsoft(τ) =
K∑
i=1

(−2 log pi + 2 log τ)+.

Here, w(i, j) = min{1, j/i}. In addition, τ ∈ (0, 1] is a user-specified constant for

the two truncated Fisher methods, and (x)+ denotes max(x, 0).

All six methods can be characterized in the form of H(− log p1, . . . ,− log pK)

by some function H(·). With the log-transform on p-values as a key ingredient,

the above methods can potentially achieve high asymptotic efficiency. Indeed,

together with Lemma 1, by using almost the same arguments as those in Littell

and Folks (1973), one can show that the Fisher test is ABO; see Theorem S1.

Although achieving high asymptotic efficiency, the Fisher test has been shown

to have poor performance empirically when only few of the part of p-values contain

signals (e.g., 2 out of 10 p-values have signals); see Song, Min and Zhang (2016)

and Li and Tseng (2011) for more discussions. Many modified Fisher methods

have been proposed to address this problem (Zaykin et al. (2002); Yu et al. (2009);

Kuo and Zaykin (2011); Zhang et al. (2020); Li and Tseng (2011); Song, Min and

Zhang (2016)). The idea is to filter out large p-values that are less likely to carry

signals, and reduce the impact of noise, while still using the log-transformation of

the p-values to achieve high efficiency. In Particular, AFs, AFp, and AFz combine

the first m smallest ordered p-values. All three methods use some optimization

criterion that adaptively selects m to achieve superior finite-sample power in

varying proportions of signals. Whether AFs, AFp, and AFz retain the ABO

property of Fisher is an intriguing question, and is investigated below. In fact, as

surprisingly found in the following three theorems, that AFs and AFp are ABO,

but AFz is not.

Theorem 1 (AFs is ABO). Under the setup in Section 2.1, TAFs is similar to

the Fisher test in terms of being ABO, with exact slope CAFs(θ⃗) =
∑ℓ

i=1 λici(θi).

Theorem 2 (AFp is ABO). Under the setup in Section 2.1, TAFp is similar to

the Fisher test in terms of being ABO, with exact slope CAFp(θ⃗) =
∑ℓ

i=1 λici(θi).

Theorem 3 (AFz is not ABO). Under the setup in Section 2.1, consider the

test statistic TA = max1⩽j⩽K{−2
∑j

i=1 log p(i) −Aj}/Bj, where Bj > 0 and Aj

are some finite constants that depend only on j and K. Assume there is no tie
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for
∑j

i=1 λici(θi)/Bj,for j = 1, . . . ,K, and Bj is monotonic increasing. Then, TA

is not ABO, with exact slope

CA(θ⃗) ⩽ max
1⩽j⩽ℓ

B1

Bj

j∑
i=1

λici(θi).

The equality holds if and only if ℓ = 1 (i.e., there is only one signal inside the K

p-values).

By taking Aj = 2
∑K

i=1 w(j, i) and Bj = 2{∑K
i=1 w

2(j, i)}1/2, TA reduces to

TAFz, indicating that AFz is not ABO, in general (e.g., a special case that AFz

is ABO is when ℓ = 1).

The better asymptotic efficiency of AFp and AFs compared with that of

AFz may be because the latter tries to estimate the subset of p-values with true

signals. Consider the equivalent form of AFs for combining independent p-values:

T ′
AFs = min

w⃗
F̄χ2

2(
∑K

i=1
wi)

(
− 2

K∑
i=1

wi log pi

)
,

where w⃗ = (w1, . . . , wK) ∈ {0, 1}K is the vector of binary weights that

identify the candidate subset of p-values with true signals. Note that T ′
AFs is

the original form proposed in Li and Tseng (2011). Denoted by ˆ⃗w = argminw⃗

F̄χ2

2(
∑K

i=1
wi)

(−2
∑K

i=1 wi log pi), and let w⃗∗ = {(w∗
1, . . . , w

∗
K) : w∗

k = 1 if θi ∈
Θ − Θ0 and w∗

k = 0 if θi ∈ Θ0} be the indicators of the true signals. We show

the signal selection consistency of AFs in the following theorem.

Theorem 4 (Signal selection by AFs is consistent). Under the setup in

Section 2.1, ˆ⃗w → w⃗∗ as n → ∞ in probability for the AFs test.

Theorem 5 (Signal selection by AFp is consistent). Under the setup in

Section 2.1, AFp selects the true subset of p-values by selecting p(1), . . . , p(ĵ), where

ĵ = argmax
1⩽j⩽K

− log{hj(p⃗, j)}.

Theorem 6 states that for any given value of τ ∈ (0, 1], TFhard and TFsoft

are ABO.

Theorem 6 (TFhard and TFsoft are ABO). Under the setup in Section

2.1, TFhard and TFsoft are ABO, with exact slopes CTFhard(θ⃗) = CTFsoft(θ⃗) =∑ℓ
i=1 λici(θi).

Although TFhard and TFsoft are ABO, the choice of τ may significantly

affect their finite-sample performance (Zhang et al. (2020)). To address this

issue, Zhang et al. (2020) proposed the following omnibus tests for both methods

(denoted by oTFhard and oTFsoft, respectively):
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ToTFhard = min
τ∈T

[1− FUTFhard(τ){TTFhard(τ)}]
ToTFsoft = min

τ∈T
[1− FUTFsoft(τ){TTFsoft(τ)}],

where T = {τ1, . . . , τm} is a user-specified set of the candidates of τ . Here,

UTFhard(τ) and UTFsoft(τ) denote the random variables that follow the null

distributions of TTFhard(τ) and TTFsoft(τ), respectively. Although the omnibus

tests alleviate the sensitivity of the choice of τ for both TFhard and TFsoft to

some extent, T is still user specified and subjective. In addition, Zhang et al.

(2020) derive the null distributions of both omnibus tests in an asymptotic sense

as K → ∞, which may not be accurate for small K with small p-value thresholds,

which are commonly used in applications, such as genomics studies, to handle

multiplicity.

Proofs of the theorems for the Fisher and modified Fisher methods in this

subsection can be found in the Supplementary Material, Section S2.1. For

completeness, we also show that methods that combine sparse and weak signals,

such as the CA, Pareto, BJ, and HC methods, are not ABO (Supplementary

Material, Section S1); the proofs are available in Supplementary Material, Section

S2.3. In conclusion, the Fisher, AFs, AFp, TFhard, and TFsoft methods are the

only ones with the ABO property. AFs, AFp, and AFz provide signal selection

(i.e., subset estimation of the true signal), and AFs and AFp are the only two

methods that exhibit consistency in the signal identification.

3. Power Comparison in Finite-Sample Simulations

Although Section 2 evaluates the asymptotic efficiency of p-value combination

methods, the finite-sample statistical power of such methods under different

proportions of signals has not been assessed. In this section, we evaluate

the seven methods designed for nonsparse signal setting described in Section

2: Fisher, Stouffer, AFs, AFp, AFz, TFhard, and TFsoft. Additionally, we

evaluate the following methods designed for combining sparse and weak signals

for completeness: minP, CA, HM, BJ, and HC. Because TFhard and TFsoft

are sensitive to the choice of the tuning parameter τ , for a fair comparison, we

use the corresponding omnibus tests oTFhard and oTFsoft, instead. The tuning

candidate set T is {0.01, 0.05, 0.5, 1}, which is used in the original paper (Zhang

et al. (2020)).

For better illustration, we first present the results of the seven methods that

combine nonsparse signals in Figures 1 and S1. Results comparing all 12 methods

can be found in the Supplementary Material, Figures S2 and S3, where the

modified Fisher methods dominate other methods designed for sparse and weak

signals, in general, unless the signals are indeed sparse and weak (e.g., cases of

ℓ/K ⩽ 0.1 in Figure S3). However, in such cases, methods such as AFp and AFz

still have comparable power with the top-performing methods, such as minP.
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We simulate X = (X1, . . . , XK)
D∼ N(µ⃗, IK), where µ⃗ = (µ1, µ2, . . . , µK)

contains ℓ nonzero signals µ1 = · · · = µℓ = µ0, and K − ℓ with no signal (µℓ+1 =

· · · = µK = 0). We evaluate for a wide range of K = 10, 20, 40, 80. For each K,

we vary the proportions of the true signals ℓ/K: ℓ/K = 0.05, 0.1, 0.2, . . . , 0.9. We

also vary µ0 = 0.5, 0.65, . . . , 6 for a broad range of signal strengths. The p-values

are calculated using the two-sided test pi = 2(1 − Φ(|Xi|)), for i = 1, . . . ,K.

For each combination of parameter values, we draw 106 Monte Carlo samples to

calculate the critical values for all the methods at a given significance level α,

because the p-value calculation algorithms for some methods, such as oTFsoft

and oTFhard, are not accurate for small K.

Figure 1 shows the empirical power of the Fisher, Stouffer, and five modified

Fisher methods with varying proportions of signals ℓ/K = 0.05, 0.1, 0.2, . . . , 0.9

at significance level α = 0.01. For a given K and proportion of signals ℓ/K, we

choose the smallest µ0 such that the best method has at least 0.5 statistical power,

which allows optimized visualization and a comparison of the methods in different

signal settings. We first note that AFz is inferior to the other modified Fisher

methods, consistent with our theoretical result that AFz is not ABO. We further

note that AFs, AFp, oTFhard, and oTFsoft exhibit comparable performance

across varying proportions of signals. Fisher outperforms all other methods in

terms of detecting frequent signals (e.g., when the proportion of true signals is

greater than 0.3).

Although combining a small number of strong signals is not our primary

focus, out of curiosity, and for a more comprehensive evaluation of existing

methods, we simulate the alternatives with fixed numbers of true signals ℓ =

1, 2, . . . , 6, for K = 20, 40, 80, following the above simulation scheme. Figure

S1 shows the empirical power of the Fisher, Stouffer, and five modified Fisher

methods with varying numbers of signals ℓ = 1, 2, . . . , 6 at α = 0.05. Similarly,

for a given K and ℓ, we choose the smallest µ0 such that the best method has at

least 0.9 statistical power. Clearly, this simulation setting focuses more on the

performance of combining less frequent, but relatively strong signals. We note

that AFz, AFp, and oTFsoft have comparable statistical power across varying

numbers of true signals, followed by AFs and oTFhard. However, the Fisher

method, is significantly inferior to the modified Fisher methods when ℓ is much

smaller than K (e.g., ℓ ⩽ 3 for K = 20, 40, 80).

In many real applications (e.g., the transcriptomic meta-analysis in Section

6), the p-value combination test is repeated many times (i.e., for each gene). It

is expected that some true biomarkers are more homogeneous with frequent true

signals and some with less-frequent signals. The results in Figures 1 and S1 show

the need to develop an ensemble method to integrate the advantages of Fisher

and one of the top-performing modified Fisher methods, which is presented in

the next section.
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Figure 1. Statistical power of the Fisher, Stouffer, and five modified Fisher’s methods
at significance level α = 0.01 across varying frequencies of signals ℓ/K = 0.1, 0.2, . . . , 0.9
and varying numbers of combined p-values K = 10, 20, 40, 80. The standard errors are
negligible compared with the scale of the mean power (smaller than 0.1% of the power),
and hence are omitted. The results of the Stouffer test with power smaller than 0.25 are
omitted.

4. Fisher Ensemble to Combine Fisher and AFp

As shown in Sections 2 and 3, the Fisher and four modified Fisher methods

(AFs, AFp, TFhard, and TFsoft) are ABO, and have complementary strength in

finite-sample evaluation of varying proportions and numbers of true signals. A

natural idea is to ensemble Fisher and one of the four modified Fisher methods
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for more stable and universally competitive performance. Because oTFhard

and oTFsoft methods require an ad hoc decision of a user-specified set T , and

their existing computing algorithms are not accurate for small K, we develop

an ensemble method to combine Fisher and AFp methods. In Section 4.1, we

propose an ensemble approach, namely the FE, using the HM method (Wilson

(2019); Fang, Tseng and Chang (2023)) to combine Fisher and AFp. In Section

4.2, we provide the theoretical support of the FE and show that the FE is ABO.

Section 4.3 presents simulation results similar to those in Section 3 to demonstrate

the balanced and superior performance of FE across varying proportions of true

signals.

4.1. FE by HM integration

Denoted by pFisher and pAFp the p-values derived from the Fisher and AFp

combination tests, respectively. We propose combining the p-values of the two

methods using Th = {h(pFisher)+h(pAFp)}/2, with function h. Because the pFisher

and pAFp can be highly dependent, one option is to use the Cauchy combination

test with h(p) = tan{π(1/2 − p)}, because the theorems and simulations in Liu

and Xie (2020) and Liu et al. (2019) show that the Cauchy combination test is

robust to dependency of the combined p-values, and results in a fast algorithm

with a Cauchy distribution under the null hypothesis (i.e., the null distribution

is standard Cauchy). However, this Cauchy ensemble approach is problematic

when either pFisher or pAFp is close to one. In this case, the Cauchy transformation

generates a −∞ score, and the power is greatly reduced. We propose using the

HM method (Wilson (2019)), h(p) = 1/p, in our FE, as follows:

TFE =
1

2

(
1

pFisher
+

1

pAFp

)
, (4.1)

where the HM method is shown to be approximately equivalent to Cauchy in

(Fang, Tseng and Chang (2023)). When the p-value p follows Unif(0, 1), the

reciprocal of p follows the Pareto distribution Pareto(1, 1) with both the scale

and shape parameters equal to one. We use the reciprocal of p-values instead

of the Cauchy transformation to avoid the large negative score issue described

above; also see Fang, Tseng and Chang (2023) for more details. Other than

avoiding large negative score issue, using the HM with the reciprocal of the p-value

1/p performs almost identically to Cauchy h(p). The Supplementary Material,

Section S3.7, provides numeric results in which the ensemble method using the

HM outperforms the Cauchy combination.

In the implementation, FE is fully data-driven with fast algorithms. Indeed,

for p1, . . . , pK
i.i.d.∼ Unif(0, 1), the null distribution of the Fisher test follows a chi-

squared distribution with degrees of freedom 2K. For the p-value calculation for

AFp, Yu et al. (2009) proposed an empirical approach to avoid cumbersome two-
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layer permutation. Finally, Theorems 1 and 2 in Fang, Tseng and Chang (2023)

show that the harmonic approach using the reciprocal of the p-values can have

robust type I error control if we naively use the Pareto distribution Pareto(1, 1)

as the null distribution (see the Supplementary Material, Section S1.2).

As a result, the fast p-value computation for the FE TFE is warranted. Table

S1 in Section S3.1 justifies the above procedure, where we show that the type-I

error control for FE is accurate for α ⩽ 0.05 across a broad range of 5 ⩽ K ⩽ 100.

4.2. Asymptotic efficiency of the FE

In this subsection, we show that the FE is ABO. We first introduce a

heavy-tailed distribution family, namely, the regularly varying distribution R

(Mikosch (1999)), where Cauchy and Pareto distributions are special cases of the

family. Consider an ensemble method induced by a regularly varying distribution

(e.g., Pareto(1, 1) for 1/p, in our case) to combine multiple p-value combination

methods (e.g., Fisher and AFp, in our case). The ensemble method is ABO if at

least one of the p-value combination methods is ABO. Because both Fisher and

AFp are ABO, and Pareto(1, 1) (corresponding to 1/p) is a regularly varying

distribution, we conclude that the FE is also ABO. Below, we outline the

definition of the regularly-varying distributions and the theorem. The detailed

proof is available in the Supplementary Material, Section S2.2.

Definition 3. A distribution F is said to belong to the regularly varying tailed

family with index γ (denoted by F ∈ R−γ) if limx→∞ F̄ (xy)/F̄ (x) = y−γ , for

some γ > 0 and all y > 0.

We denote the whole family of regularly varying tailed distributions byR. For

two positive functions u(·) and v(·), we write u(t) ∼ v(t) if limt→∞ u(t)/v(t) = 1.

It can be shown that every distribution F belonging to R−γ can be characterized

by F̄ (t) ∼ L(t)t−γ , where F̄ (t) = 1 − F (t) and L(t) is a slowly varying

function. A function L is called slowly varying if limy→∞ L(ty)/L(y) = 1 for

any t > 0. Regularly varying distributions represent a wide class of heavy-

tailed distributions, including the Cauchy, Pareto(1, 1) (HM), and general Pareto

distributions.

Consider L < ∞ p-value combination test statistics T1, . . . , TL. Denoted by

pT1
, . . . , pTL

the resulting p-values of T1, . . . , TL. In the FE, we have L = 2, and

(T1, T2) are Fisher and AFp. Under Definition 3, consider the following ensemble

method using a regularly varying tailed distribution:

TRV(γ) =
L∑

i=1

gγ(pTi
) =

L∑
i=1

F−1
U(γ)(1− pTi

),

where FU(γ) is the CDF of U(γ) and U(γ) ∈ R−γ . Under the null hypothesis,

the test statistic transforms all pTi
into regularly varying tailed random variables
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with index γ. The following theorem suggests that under mild conditions, the

ensemble method with a regularly varying tailed distribution exhibits the ABO

property.

Theorem 7. For each i = 1, . . . , L, let Ci(θ⃗) be the exact slope of Ti, and assume

max1⩽i⩽L Ci(θ⃗) > 0. Let C
(γ)
RV(θ⃗) be the exact slope of TRV(γ). If one of the

following two conditions holds: (C1) F−1
U(γ)(1−p) is bounded below: F−1

U(γ)(1−p) ⩾
ν, for some constant ν and ∀p ∈ [0, 1], and (C2) all Ti have nonzero exact slopes:

min1⩽i⩽L Ci(θ⃗) > 0, then we have C
(γ)
RV(θ⃗) = max1⩽i⩽L Ci(θ⃗).

Remark 2. Because 1/p (reciprocal of p-value) is bounded below and h(p)

(Cauchy) is not, using 1/p rather than h(p) can satisfy Condition (C1) in Theorem

7. In general, if Condition (C1) is not satisfied, Condition (C2) is a mild condition

(meaning all tests Ti are at least minimally effective and have a nonzero slope),

but not always easy to check or satisfy in practice. For example, when we

aggregate the methods combining left one-sided p-values and right one-sided p-

values in Section 4, methods that only combining left one-sided p-values will

produce p-values converging to one when only positive effects exit; see Section 5

and the Supplementary Material, Section S3.7 for more details.

Theorem 7 suggests that TRV(γ) is ABO as long as at least one of T1, . . . , TL

is ABO. Consequently, the FE is ABO, because Pareto(1, 1) (corresponding to

1/p) belongs to a regularly varying tailed distribution, and both Fisher and AFp

are ABO.

4.3. Finite-sample power comparison for the FE

In this subsection, we evaluate the finite-sample power of FE. To illustrate

that FE can take advantage of integrated methods, we also include AFs and Fisher

as baseline methods. We use the same simulation scheme as that in Section 3 to

generate the simulated data. Figure 2 shows the statistical power of FE, AFp, and

Fisher, with varying proportions of true signals ℓ/K = 0.05, 0.1, 0.2, . . . , 0.9 at

α = 0.01. Similarly to Figure 1, for a given proportion of signals ℓ/K and number

of combined p-values K, we choose the smallest µ0 that allows the best method

to have power larger than 0.5 in Figure 2. Figure S4 shows the statistical power

of FE, AFp, and Fisher when combining K = 20, 40, 80 p-values with varying

numbers of true signals ℓ = 1, 2, . . . , 6 at α = 0.05. Similarly to Figure S1, for a

given ℓ and K, we choose the smallest µ0 that allows the best method to have

power larger than 0.9 in Figure S4, which is supposed to focus on combining less

frequent, but strong signals. As expected,the FE has stable statistical power that

is comparable to the better of Fisher and AFp in settings with either dense but

weak signals, or less frequent but strong signals. Specifically, when the proportion

of signals is high, FE performs close to Fisher and is superior to AFp. When the

number of true signals is small, FE performs close to AFp and outperforms Fisher.

In the Supplementary Material, Figures S5 and S6, we implement another Fisher
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Figure 2. Statistical power of FE, Fisher, and AFp at significance level α = 0.01
across varying frequencies of signals ℓ/K = 0.05, 0.1, 0.2, . . . , 0.9 and varying numbers
of combined p-values K = 10, 20, 40, 80. The standard errors are negligible, and hence
are omitted.

ensemble method (FE2) that combines Fisher, AFp, and minP. As expected, its

power for only a small number of signals is slightly improved over that of FE, but

at the expense of a large reduction of power when signals are frequent. From the

asymptotic efficiency in Section 4.2 and the simulations above, we recommend

using the FE method that combines Fisher and AFp for general applications.
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5. Detection of Signals with Concordant Directions

5.1. FE focused on concordant signals (FECS)

For all methods we have discussed so far, the global hypothesis setting

is designed for two-sided tests, regardless of the directions of the effects.

Recall from Equation 2.1 that the hypothesis testing considered is H0 :

∩K
i=1 {θi = 0} versus H1 : ∪K

i=1 {θi ̸= 0}. Consider the alternative hypothesis

that only the first ℓ p-values have true signals (i.e., θi ̸= 0 for 1 ⩽ i ⩽ ℓ,

and θℓ+1 = · · · = θK = 0). The two-sided tests to obtain pi (1 ⩽ i ⩽ K) cannot

guarantee signals with concordant directions (sgn(θ1) = · · · = sgn(θℓ), denoted by

sgn(·), the sign function), which is desirable in most applications. For example,

when conducting a meta-analysis of K transcriptomic studies believed to be

relatively homogeneous, we are interested in identifying biomarkers concordantly

up-regulated or down-regulated. For this problem, Owen (2009) revisited the

Pearson test statistic, and proposed using TPearson = min{p̃Fisher,L, p̃Fisher,R},
where p̃Fisher,L and p̃Fisher,R use Fisher to combine the left and right one-sided p-

values respectively, and the Pearson test takes the more significant one as the

test statistic. In this subsection, we similarly extend the FE method to use the

HM approach to combine the two left and right one-sided p-values of Fisher and

AFs (denoted by FECS; Fisher ensemble for concordant signal):

TFECS
=

1

4

(
1

p̃Fisher,L
+

1

p̃Fisher,R
+

1

p̃AFp,L
+

1

p̃AFp,R

)
.

Remark 3. When combining one-sided p-values, it is common to observe p-

values close to one and it is critical to use the HM rather than Cauchy, to avoid

−∞ scores.

Remark 4. Let CL(θ⃗) be the maximum attainable exact slope for any p-value

combination method combining left one-sided p-values, and define CR(θ⃗) in a

similar manner for right one-sided p-values. By Theorem 7, the exact slope of

FECS is max{CL(θ⃗), CR(θ⃗)}, indicating high asymptotic efficiency, because even

if one has prior knowledge of the effect size direction, it is not possible to design

a p-value combination method with a larger exact slope for detecting concordant

signals.

For the computation, similarly to FE, one can use the p-value calculation of

Pareto(1, 1) to calculate the p-value for FECS. This approximation procedure is

justified by simulation results in Table S1 in Section S3.1 for a broad range of

significance levels α and numbers of input p-values K.

5.2. Finite-sample power comparison for the FE for concordant signals

In this subsection, we evaluate the finite-sample power of FECS. To demon-

strate the advantages of FECS, we also include the regular FE and Pearson as
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baseline methods. We use the same simulation scheme as that in Section 3 to

generate the simulated data. For FECS and Pearson, the one-sided p-values are

generated by p̃
(L)
i = 1 − Φ(Xi) and p̃

(R)
i = Φ(Xi) (i = 1, . . . ,K), respectively.

For the regular FE, we combine the two-sided p-values pi = 2{1 − Φ(|Xi|)}, for
i = 1, . . . ,K.

Figures 3 and S7 show the empirical power of FECS, Pearson, and the regular

FE. For Figure 3, we choose the smallest µ0 that allows the best method to

have power larger than 0.5 for a given proportion of signals ℓ/K and a number

of combined p-values K. Both FECS and Pearson dominate the regular FE,

indicating the former two methods perform better for the alternatives with one-

sided direction consistent effects (because µ1 = · · · = µs = µ0 > 0 under

the alternatives). In addition, FECS has comparative performance with that of

Pearson for ℓ/K ⩾ 0.2, and outperforms Pearson when ℓ/K < 0.2. For Figure S7,

we choose the smallest µ0 that allows the best method to have power larger than

0.9 for a given number of signals ℓ and number of combined p-values K. This

setting focuses on less frequent but strong signals. Note that FECS outperforms

Pearson when the number of signals is low (e.g., ℓ ⩽ 4).

6. Real Application to AGEMAP Data

In this section, we apply different p-value combination methods to analyze

data from the AGEMAP study (Zahn et al. (2007)). The data set contains

microarray expressions of 8,932 genes in 16 tissues and age and sex variables of

618 mice subjects. We are interested in identifying age-associated marker genes.

Following the original paper, we fit the following regression model to detect age-

associated genes in each tissue:

Yijk = β0jk + βage,jkAgeijk + βsex,jkSexijk + εijk for i = 1, . . . ,mjk,

where Yijk is the expression level of the ith subject for the jth gene and kth tissue.

For each gene j, we consider designs of both two-sided and one-sided tests when

combining p-values across tissues. In the two-sided test design, the two-sided

p-values (pj1, . . . , pjK) for their corresponding βage,jk coefficients are combined

using the Fisher, AFp, and FE methods. In this case, the association directions

(positive or negative associations) are not considered. In contrast, the one-sided

test design combines left-tailed p-values (p̃Lj1, . . . , p̃
L
jK) or right-tailed p-values

(p̃Rj1, . . . , p̃
R
jK) using FECS. Figure 4 shows the general workflows of transcriptomic

meta-analysis for the jth gene with two-sided and one-sided designs. Compared

with FE, FECS is expected to have increased power in terms of detecting age-

related biomarkers with concordant signals (all positive associated or all negative

associated) across tissues, but have reduced power for markers with heterogeneous

signals (i.e., positive associations in some tissues and negative associations in

some others). In this application, both concordant and heterogeneous age-related
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Figure 3. Statistical power of FE, FECS, and Pearson at significance level α = 0.01
across varying frequencies of signals ℓ/K = 0.05, 0.1, 0.2, . . . , 0.9 and varying numbers of
combined p-values K = 10, 20, 40, 80. The standard errors are negligible, and hence are
omitted.

biomarkers are of interest. Heterogeneous biomarkers detected by FE can have

different age-associations (positive, negative, or non-association) across tissues,

whereas concordant biomarkers detected by FECS are tissue-invariant. FE and

FECS serve as complementary tools for different biological objectives.

Figure 5(a) shows the Fisher, AFp, and FE p-value combination results

in the two-sided test design. Under the significance level of q-value ⩽ 0.05,

Fisher detects 576 genes (yellow color) and AFp detects 473 genes (green color),

where Category II (392 genes) represents genes detected by Fisher and AFp

and Categories I (184 genes) and III (81 genes) represent biomarkers uniquely

detected by Fisher and by AFp, respectively. The heatmap shows an age-

association measure defined as: Ejk = −sign(βage,jk) log(min{p̃Ljk, p̃Rjk}) for gene
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j on the rows and tissue k on the columns, that is, the signed log-transformed

(base 10) one-sided p-values. Consequently, a red color of Ejk represents a strong

positive association with age, and blue denotes a strong negative association.

As expected, FE combines the strengths of Fisher and AFp to detect 593 genes

(purple color) that contain all genes in Category II and most genes in Categories

I and III. By counting the number of tissues with p-values pjk ⩽ 0.05, Figure S10

in the Supplementary Material shows that Category I genes (detected by Fisher,

but not by AFp) are age-associated in more tissues, while Category III (detected

by AFp, but not by Fisher) are age-associated in fewer tissues, which is consistent

with the theoretical insight and simulation result that Fisher is more powerful for

detecting frequent signals, and AFp is more powerful for relatively less frequent

signals.

We next perform hierarchical clustering (using 1-correlation between tissues

as the dissimilarity measure and complete linkage) for the 16 tissues based on the

Ejk values in the 593 age-related genes detected by FE; the dendrogram is shown

in Figure 5(a). By cutting the dendrogram, we identify five clear tissue modules

with similar age-association patterns: (1) thymus and gonads; (2) spleen and

lung; (3) eye, kidney, and heart; (4) hippocampus, adrenal glands, and muscle;

and (5) cerebrum and spinal cord (also see Figure 5(b) for the heatmap of the

pair-wise correlations). For the first module, the thymus has long been regarded

as an endocrine organ that is closely related to gonads and sexual physiology,

such as sexual maturity and reproduction (Grossman (1985); Leposavić and

Pilipović (2018)). The spleen lung module is consistent with the finding in Zahn

et al. (2007), and many reports suggest that the spleen and lung share a similar

aging pattern (e.g., Schumacher et al. (2008)). For the third module, literature

shows that the kidney and eye share structural, developmental, physiological, and

pathogenic similarities and pathways. The relationships between age-related eye,

kidney, and cardiovascular diseases have been widely reported (e.g., Farrah et al.

(2020)). For the fourth module, numerous studies have reported a relationship

between adrenal glands and hippocampal aging (e.g., Landfield, Waymire and

Lynch (1978)). For the last module, few existing studies have investigated the

aging process of the spinal cord (Knight and Nigam (2017)). However, it is

reasonable that the cerebrum and spinal cord might share a similar aging pattern,

because they both belong to the central nervous system. On the other hand, the

liver has intriguingly negative correlations of aging effects with muscle, adrenal

glands, and several brain regions, such as the hippocampus, cerebellum, and

cerebrum (also see Figure 5(b)).

Next, we evaluate FECS for the one-sided test design and compare it with FE.

We calculate Ssign,j =
∑16

k=1 sign(βage,jk)I{min{p̃L
jk,p̃

R
jk}⩽0.05} to determine whether

the detected concordant aging marker j is positively associated (Ssign,j > 0)

or negatively associated (Ssign,j ⩽ 0), and use it to determine whether a

detected marker is dominant with the positive association or negative association.
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Similarly to the previous analysis, Figure 6 shows the age-associated genes

detected by FE (593 genes, Categories II(A), II(B), and III) and FECS (398

genes, Categories I(A), I(B), II(A), and II(B)), where Categories II(A) and II(B)

are genes detected by FE and FECS, Category III are detected only by FE, and

Categories I(A) and I(B) are detected only by FECS. For genes detected by

FECS, Categories I(A) and II(A) are concordant aging markers with a positive

association (mostly red), and Categories I(B) and II(B) are negatively associated

(mostly blue), which are visually consistent with the heatmap. In contrast, genes

in Category III mostly have discordant association directions (partial red and

partial blue). The Supplementary Material, Figure S11, shows the distributions

of Ssign,j in the gene categories.

At significance level q ⩽ 0.05, FECS identifies 184 positively associated genes

(Categories I(A) and II(A)) and 214 negatively associated genes (Categories

I(B) and II(B)). We perform an Ingenuity Pathway Analysis (IPA) on these two

concordant age-associated gene lists. The result identifies 11 enriched pathways

from the 184 positively associated genes, and four enriched pathways from the 214

negatively associated genes (enrichment p ⩽ 0.01). Table S2 shows these enriched

pathways with pathway names, enrichment p-values, and abundant supporting

literature of the pathways related to aging/early development processes (see

complete references in the Supplementary Material, References II). The result

shows that FECS has an advantage in terms of identify age-associated markers

concordant across tissues and delivering interpretable biological insights.

7. Conclusion

Combining p-values is a common and effective tool in many scientific appli-

cations. We focus on the scenario of meta-analysis with unknown heterogeneity,

in which the number of combined p-values K is finite and fixed but the sample

size for generating each p-value can increase to infinity (i.e., the first category

described in the Introduction ). The goal of this category is to aggregate het-

erogeneous independent signals, where the proportion of true signals is unknown

and can range from 1/K to 1. Note that our goal is to combine independent

and nonspare signals and to distinguish it from combining sparse signals in the

asymptotic rare and weak (ARW) model when K → ∞, which is commonly

considered in the second and third categories described in the Introduction.

Our results contribute to the literature in three ways. First, this is the

first study to comprehensively evaluate p-value combination methods for their

asymptotic efficiency in terms of asymptotic Bahadur optimality (ABO). We

investigate classical methods (Fisher and Stouffer) and modified Fisher methods

(AFs, AFp, AFz, TFhard, and TFsoft). The result shows that Fisher, AFs,

AFp, TFhard, and TFsoft are ABO, but Stouffer and AFz are not. We also

find interesting consistency properties when estimating the subset of contributing
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(a)

Gene j

Liver Lung Heart Spleen. . . . . .

Test 1 Test 2 Test 15 Test 16. . . . . .

H(pj1, pj2, . . . , pj16) ⇒ p(j).

(b)

Gene j

Liver Lung Heart Spleen. . . . . .

TestL 1, TestR 1 TestL 2, TestR 2 TestL 15, TestR 15 TestL 16, TestR 16. . . . . .

H(p̃Lj1, p̃
L
j2, . . . , p̃

L
j16, p̃

R
j1, p̃

R
j2, . . . , p̃

R
j16) ⇒ p(j).

Figure 4: Procedures of transcriptomic meta-analysis on AGEMAP data set (two-sided

design (Figure 4(a)) and one-sided design (Figure 4(b)), where H(·) denotes a chosen p-value

combination method and p(j) denotes the corresponding p-value of H with input p-values.

Here, pjk is the two-sided p-value for the jth gene on the kth tissue, and p̃Ljk and p̃Rjk are the

left-tailed and right-tailed p-values for the jth gene on the kth tissue, respectively.

Figure 4. Procedures of transcriptomic meta-analysis on AGEMAP data set (two-sided
design (Figure 4(a)) and one-sided design (Figure 4(b)), where H(·) denotes a chosen p-
value combination method and p(j) denotes the corresponding p-value of H with input
p-values. Here, pjk is the two-sided p-value for the jth gene on the kth tissue, and p̃Ljk
and p̃Rjk are the left-tailed and right-tailed p-values for the jth gene on the kth tissue,
respectively.

signals in AFs and AFp (Theorems 4 and 5). Second, we perform an extensive

finite-sample power comparison and conclude that Fisher and AFp are the two top

performers, with complementary advantages, where Fisher is more powerful with

frequent signals and AFp is more powerful in relatively sparse settings. Third,

we propose a Fisher ensemble (FE) method that combines Fisher and AFp. A

one-sided test modification, FECS, is further developed for detecting concordant

signals. Here, FE and FECS offer several advantages: First, both methods have

high asymptotic efficiency (FE is ABO). Second, the HM combination avoids the

−∞ score in the Cauchy. Third, we numerically demonstrate their constantly

high performance across varying proportions of signals. Fourth, both methods
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Figure 5. (a) Heatmaps of age-association measure Ejk of significant genes (q <= 0.05)
detected in the two-sided test design. Category I: genes detected by Fisher, but not by
AFp; II: genes detected by both Fisher and AFp; III: genes detected by AFp, but not
by Fisher. (b) Heatmap of pair-wise correlations between tissues based on the detected
genes by FE (q ⩽ 0.05.) in (a).

have fast procedures. Finally, an application to AGEMAP transcriptomic data

verifies our theoretical conclusions, demonstrates the superior performance of

FE and FECS, and discovers intriguing biological findings in age-associated

biomarkers and pathways.

Modern data science faces challenges from data heterogeneity, increasingly

complex data structures, and the need for effective methods for new scientific

hypotheses. The ensemble methods proposed in this paper, FE and FECS, have

solid theoretical and numerical support for their superior performance in a wide

range of signal settings. Therefore, we believe these methods will be useful in

many other scientific problems.

Supplementary Material

The online Supplementary Material includes proofs of Lemma 1, Theorems

1–7, and all technical lemmas, as well as additional theoretical results (Theorems

S1-S4 and Proposition S1 and their proofs) and additional simulation results.
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