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Abstract: Combining p-values to integrate multiple effects is of long-standing
interest in social science and biomedical research. In this study, we revisit a
classical scenario closely related to a meta-analysis with unknown heterogeneity that
combines a finite and fixed number of p-values, while allowing the sample size for
generating each p-value to go to infinity. Although many modified Fisher’s methods
have been developed for this purpose, their asymptotic properties and finite-sample
numerical performance have not been examined, and so is the motivation for
our study. Our results show that Fisher and adaptive rank truncated product
methods have top performance and complementary advantages across different
proportions of true signals. Consequently, we propose an ensemble method, called
the Fisher ensemble, that combines the two top-performing Fisher-related methods
using a robust harmonic mean ensemble approach. We show that the Fisher
ensemble achieves asymptotic Bahadur optimality and integrates advantages of
the two methods in simulations. We subsequently extend the Fisher ensemble
to a variation that is particularly powerful for concordant effect size directions.
A transcriptomic meta-analysis application confirms the theoretical and simulation
conclusions, generates intriguing biomarker and pathway findings, and demonstrates
the strengths and strategy of using the proposed Fisher ensemble methods.

Key words and phrases: FEnsemble method, global hypothesis testing, p-value
combination, omnibus test.

1. Introduction

Methods for combining p-values are of substantial interest in statistics
and scientific fields for aggregating homogeneous or possibly heterogeneous
information from multiple sources. Consider the problem of combining K p-
values, p = (p1,...,pK), where p; is the p-value of testing Héi) 10, € @éi) Versus
Hl(i) 10, € 00 — @((f). Here, 6, denotes the parameter of interest, and ©¥ and
@éi) denote the total possible parameter space and null parameter space of 6;,
respectively. For example, 0; = y; for N(p;,1), 00 =R, and 0§ = {; = 0} for
a simple Z-test. The global union-intersection test for detecting any signal in the
K p-values is Hy : Mici<cr{bi € @éi)} versus H; : Ujcicx {0 € 00 — @(()i)}.
A general strategy is to combine the input p-values to form a test statistic
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for globally testing the existence of any signal. In the literature, three major
categories of methods have been developed, depending on the types of input
data and signal. The first category considers the combination of independent p-
values, where K is small and fixed (e.g., K between 5 and 30). The sample size
n; (1 < i < K) for deriving p; is large, and can asymptotically go to infinity.
This first classical scenario is closely related to meta-analysis applications that
integrate multiple small effects to increase statistical power. Traditional methods
include Fisher’s method Trigher = Zfil —2log p; (Fisher| (1934)) and Stouffer’s
method Tsiouffer = Zfil ®~1(1 — p;)(Stouffer et al.| (1949)), as well as many other
transformation selections. The second category combines independent, sparse,
and weak signals. Here, a large number of p-values are combined (K — o0), but
only a small number ¢ of the K p-values (¢ = K? with 0 < 8 < 1/2) have weak
signals, and all remaining p-values have no signal. The higher criticism test (the
HC test, hereafter; Donoho and Jin| (2004))) and the Berk-Jones test (the BJ test,
hereafter; Berk and Jones| (1979); |Li and Siegmund (2015))) are two representative
methods, and are shown to be asymptotically optimal in terms of the detection
boundary across varying levels of signal sparsity (0 < 8 < 1/2) as K — oo. In
the third category, the K p-values are integrated with an unknown correlation
structure and with sparse and weak signals. Liu and Xie (2020) and Wilson
(2019) proposed a Cauchy test (CA test) and a harmonic mean test (HM test),
respectively. These methods provide robustness under an unknown dependency
structure when inference is established under an independence assumption. They
also attain the optimal detection boundary for detecting highly sparse signals
(with s = K#, 0 < 8 < 1/4, but not for 1/4 < 8 < 1/2) as K — oo (Liu and Xie
(2020); |[Fang, Tseng and Chang| (2023))).

In this study, we revisit the methods of the first category, evaluate their
asymptotic efficiencies, assess their finite-sample numerical performance, and
propose an ensemble method that combines two complementary top performers
for general applications. To differentiate between the first category and the second
and third categories, we focus on detecting independent and nonsparse signals
inside a small and fixed number of p-values for scenarios of the first category.
Here, the nonsparse signals differ from the sparse signals in the second and third
categories in the sense that the proportion of true signals varies from 1/K to
1 and is unknown, whereas the proportions in the second and third categories
vanish to zero as K — oco. Methods for the first “meta-analytic scenario with
unknown heterogeneity” remain in high demand, and present new challenges
in applications such as transcriptomic, GWAS, CNV, and methylation meta-
analyses (Li and Tseng (2011); T'seng, Ghosh and Feingold| (2012); |Begum et al.
(2012); |Guerra and Goldstein| (2016)).

Prior to the 1970s and 1980s, methods for the first category focused on ag-
gregating transformed scores from the p-values: T' = Zfil 9(p:) = Zfil Fl(po),
where F;'(-) is the inverse CDF of U. For example, U is a chi-squared distribu-
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tion for the Fisher test, and a standard normal distribution for the Stouffer test.
Littell and Folks (1973)) showed that Fisher’s method is asymptotically optimal
in terms of the Bahadur relative efficiency, providing a theoretical justification
for the log-transformation over the other types of transformations (see Section 2
for more details). Despite the optimal asymptotic efficiency of the Fisher test,
its finite-sample performance in terms of statistical power is often poor if only
part of the K p-values have signals. For this commonly encountered situation,
with unknown heterogeneous signals, many modified Fisher methods have been
developed to improve the original method. |Dudbridge and Koeleman| (2003)
proposed the rank truncated product (RTP) method to aggregate signals only
for the top ordered (i.e., the most significant) p-values: T,, = —23."" logp),
where p(;) is the ith ordered p-value and 1 < m < K is a user-specified truncation
point on the ranks of the input p-values. However, the choice of m is subjective,
and the RTP method can suffer substantial power loss with a misspecified m. To
address this challenge, several works have focused on improving the RTP method
by adaptively determining m from an optimization criterion. For example,
Song, Min and Zhang (2016) developed an adaptive Fisher procedure using a
partial sum optimized by z-standardization, similar to higher criticism (AFz,
hereafter):  Typ, = maxiqen{— i1 logpu — i w(d i)}/ v 3oim, w(4,9),
where w(j,7) = min{1,j/i}. Let F\z (t) = 1 — Fy2 (t), where F\z (t) denotes
the CDF of a chi-squared random variable with degrees of freedom 2j. |[Li
and Tseng (2011) proposed an adaptive Fisher procedure using a partial sum
optimized by the corresponding pseudo/surrogate “p-values”(AFs, hereafter):
Tars = maxigj<kx —log{h(p,j)}. Here, h(p,j) = Fxgj(—Q 7, logpyy) is the
corresponding surrogate “p-value” of the partial sum. This is not a true
and valid p-value, but rather a surrogate for fast computation by importance
sampling (Huo et al. (2020)). Instead of using the surrogate p-values in AFs, |[Yu
et al. (2009) proposed the adaptive rank truncated product (ARTP) method,
which is based on the exact p-values of the partial sum (AFp, hereafter):
Tarp = maxicj<x —log{h;(p,5)}, where h;(p,j) = 1 — G;(=23;_, logp;), in
which G;(t) denotes the CDF function of —23"7_, logp(;) under the null. For
computation, Yu et al.| (2009)) proposed an algorithm that requires large storage
memory to achieve manageable computing.

Another related strategy in the literature is to directly filter out p-values
greater than a user-specified threshold 7 € (0,1]. For example, the truncated
Fisher with hard-thresholding (TFhard) Trenara(7) = Sbe, — log(pi)L{p, < (Za-
ykin et al.| (2002)), where Iy} denotes the indicator function. Zhang et al.| (2020)
proposed the truncated Fisher with soft-thresholding (TFsoft) to improve on
TFhard, arguing that the continuous soft-thresholding scheme leads to more
stable performance with varying input p-values. In both TFsoft and TFhard, the
choice of 7 is not straightforward. Zhang et al. (2020)) investigated the optimal
choice of 7 for TFhard under a theoretical setting of a Gaussian mixture, where
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the mixture probability and the mean of the signals are known and K — oo.
However, such prior information is usually unknown in practice. As such, they
replaced the single user-specified T with a user-specified set of thresholds T, and
proposed two omnibus tests for TFhard and TFsoft that alleviate the problem of
choosing 7 to some extent, but the selection of 7T is still prespecified and ad hoc.

Another line of research in p-value combination incorporates weighting in the
procedure. For example, Xu et al. (2016)) proposed an adaptive two-sample test
for high-dimensional means, which can be regarded as a weighted test. Liptak’s
test (Liptak (1958)) can be considered as Stouffer’s method with weights, and is
commonly referred to as the weighted z-test. |Won et al.|(2009) estimated the best
weights for Liptak’s method from a simple alternative hypothesis, assuming an
expected effect size. Other choices of weights for the z-test have been suggested
by other researchers, including |Mosteller and Bush (1954) and Zaykin| (2011). In
addition to the weighted z-test (Liptak’s test), many tests constructed using the
sum of transformed p-values also have a weighted version. For example, the CA
and HM tests were originally proposed with weights, and in this study, we use the
version with equal weights (Wilson| (2019)); Liu et al.| (2019)); [Liu and Xie| (2020)).
Chen et al.| (2014)) proposed a test combining p-values based on the sum of an
inverse gamma distribution, which can also be regarded as a weighted test, in the
sense that it gives larger “weights” to smaller p-values. In fact, AFs and AFp can
be considered as adaptively weighted methods using binary weights, and TFsoft
(Zhang et al.| (2020)) can be viewed as thresholding and weighting of the Fisher
method.

Notwithstanding the active development of modified Fisher methods, there
is no comprehensive and systematic evaluation of the asymptotic properties and
finite-sample numerical performance of the methods in the first category. Our
study sets out to fill this gap. In Section 2, we examine the Asymptotic Bahadur
optimality (ABO) of seven methods in the first category: Fisher, Stouffer, AF's,
AFz, AFp, TFhard, and TFsoft. The two adaptive Fisher methods, AFs and AFz,
provide estimates of the subset of p-values contributing to the signal. Therefore,
we also investigate whether the estimates in these two methods consistently select
the subset of p-values containing the true signals (signal selection consistency).
For completeness, we also examine the asymptotic efficiency of methods developed
for sparse signals, including the CA, Pareto family, minimum p-value (minP), BJ,
and HC methods. In Section 3, we perform finite-sample numerical evaluations to
compare the statistical power of these methods under different K, signal strength,
and proportions of true signals. The results reported in of Sections 2 and 3
show complementary advantages of two top performers, namely, Fisher and AFp,
especially for varying proportions of true signals. Consequently, we develop a
Fisher ensemble (FE) method in Section 4 that applies an HM ensemble approach
to combine the Fisher and AFp methods. We prove the ABO of the FE (Section
4.2) and demonstrate its consistently high performance in various simulation
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scenarios (Section 4.3). Section 5 develops an extension of the FE method, called
FEgg, for enhanced statistical power in terms of detecting signals with concordant
effect size directions. Section 6 applies FE, FEcg, and several existing methods
to a transcriptomic meta-analysis on biomarker and pathway detection for aging
(Zahn et al.| (2007)). Section 7 concludes the paper.

2. Asymptotic Efficiencies of Existing Methods

This section investigates the asymptotic efficiencies of existing p-value com-
bination methods. Because we focus on the scenarios with independent and
nonsparse signals inside a finite number of p-values, we slightly generalize the
setup proposed in Littell and Folks| (1973) (differences are discussed in Remark 1),
which uses the criterion of exact Bahadur relative efficiency (Bahadur| (1967b))).
Under this setting, Fisher’s method is ABO (Littell and Folks (1973)) and shows
theoretical advantages in terms of log-transformation. Numerous modified Fisher
methods (e.g., AFs, AFp, AFz, TFhard, and TFsoft) have been developed to
improve the finite-sample statistical power, but their asymptotic efficiency has
not been investigated. Section 2.1 introduces the problem setting and defines
the exact slope of a hypothesis test, which is a natural concept derived from the
exact Bahadur relative efficiency. Section 2.2 presents the ABO results of the five
modified Fisher methods.

2.1. Bahadur relative efficiency and exact slope

We first introduce the concept of an exact slope of a hypothesis test
(Bahadur| (1967bl); Littell and Folks (1973)). Consider (z1,xs,...) as an infinite
sequence of independent observations of a random variable X from the probability
distribution P, with parameter § € ©. Let T, be a real-valued and continuous
test statistic depending on the first n observations (zy,...,z,), where large
values of T, result in rejecting the null hypothesis. Assume that the probability
distribution of T, is the same for V8 € O, which leads to Py(T,, < t) = Po(T,, < t),
for all # € ©, and assume 1 —Py(7,, < t) is uniformly distributed on [0, 1] (Littell
and Folks (1973)). Further, denote p™ = 1—F,(t,) as the p-value of the observed
T, = t,, where F,(t) = Po(T,, < t). We then define the exact slope of T}, as
follows.

Definition 1. For the test statistic 7}, with p-value p™, if there is a positive-
valued function c(f), such that for any § € © — Oy, —(2/n)logp™ — c(f) as
n — oo with probability one, then () is called the exact slope of T),.

As a simple example, consider testing for a zero mean (u = 0) with known
variance under a univariate Gaussian distribution and T, is the conventional
2-test. It is easily seen that c(u) = p? is the exact slope of the z-test. For
more examples, see Abrahamson| (1967) and |Bahadur (1967a)). The exact slope
of a test naturally connects to the exact Bahadur efficiency between the test
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statistics. Consider two sequences of test statistics {TV} and {T{?} testing
the same null hypothesis, with exact slopes ¢;(6) and cy(0), respectively. We
define the ratio ¢12(0) = ¢1(0)/c2(0) as the exact Bahadur relative efficiency of
{TV} relative to {T?}, comparing the relative asymptotic efficiency between
two test statistics. Indeed, considering any significance level a > 0, for ¢ = 1, 2,
denote N (a) as the smallest sample size such that, for any n > N (a), the
p-value of TV is smaller than . Then, we can show with probability one that
lim,_,0 N®(a)/N®(a) = ¢15(6), which asymptotically characterizes the ratio of
the smallest sample sizes of the two test statistics required to attain the same
sufficiently small significance level o (Littell and Folks| (1973))).

For 6 € Oy, the p-value p(™ follows a uniform distribution Unif(0,1). Lemma
1 shows that the analogous “exact slope” —(2/n)logp™ converges to zero with
probability one.

Lemma 1. For 0 € Oy, as n diverges, —(2/n)log p™ — 0 with probability one.

The proof of Lemma 1 can be found in the Supplementary Material, Section
S2.1. Here, we extend the definition of an exact slope to the null parameter space,
where ¢(0) = 0, for 0 € O,.

To benchmark the asymptotic efficiency of a p-value combination method, we
introduce the theoretical setup adopted from the framework in |[Littell and Folks
(1973). Suppose we have K < oo sequences of test statistics {T\V}, ..., {78} for
testing 6, € @éi), for 1 < i < K. Assume that for all sample sizes nq,...,ng, and
when 6; € ), for 1 <i < K, {TV}, ... {T{¥)} are independently distributed.
Denote p\"" as the p-value of the ith test statistic T, For each 1 < i < K,
assume that the sequence {1} has the exact slope ¢;(6;) as —(2/n;) log ") =
¢i(6;) = 0 with probability one as n, — co. We further assume the sample sizes
ni,...,ng satisfy n = (1/K) Zf( n; and lim, .. (n;/n) = X\;, where \; > 0 and
Zf( A; = K. Under the above setup, the goal of any p-value combination method
is to test

Hy: Nt {0, € G)éi)} versus H; : UK {0, € @0 — G)éi)}. (2.1)
For simplicity, we assume under the null
Arcr (01) = Aaca (02) = -+ = Agek (Ok) =0,

where the first ¢ p-values have true signals (i.e., §; belong to @@ — @5;’), fqr
1 < i < ¢) with exact slopes ¢;(6;) > 0, and ¢;(6;) = 0 for the remaining 6; € O},
for/+1<i< K.

Remark 1. There are two main differences between the original setup in [Littell
and Folks (1973)) and ours. First, Littell and Folks| (1973) assume that all studies

have strictly positive exact slopes, whereas we allow some studies to have zero-
valued exact slopes. Second, |Littell and Folks| (1973|) consider a general parameter
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Table 1. Results of asymptotic properties of 12 p-value combination methods: Fisher,
Stouffer, five modified Fisher (AFs, AFp, AFz, TFhard, and TFsoft) and five methods
designed for sparse and weak signals (Cauchy, Pareto, minP, BJ, and HC).

Signal selection

Methods ABO Exact slopes consistency Proofs

Fisher  Yes Y2'_, \ici(6)) - Theorem S1
Stouffer No [0 (Aei(6:))/%)2 - Theorem S1
AFs Yes Zle Aici(6;) Yes Theorems 1 & 4
AFp Yes Zf:l Xici(6;) Yes Theorems 2 & 5
AFz No < maxj< Y EK:I\I/I;':(:{:;!/ rg {21“::/;;”9) No Theorem 3
TFhard Yes ¢ i=1 Xici(6;) - Theorem 6
TFsoft  Yes Z Aici(6) Theorem 6
Pareto No  max; )\ ic; (6:) - Theorem S2
Cauchy No max; A;c; (0;) - Theorem S3
minP No  max; \i¢; (60;) - Littell and Folks|(1973)
BJ No  max;i\c; (6;) No Theorem S4

HC No - No Proposition S1

space ©, whereas we consider a product of parameter spaces O x Q@) x. .. x©QK),
Although differences exist, one can still establish the results in [Littell and Folks
(1973) by combining their arguments with Lemma 1.

Following Theorem 2 and the arguments in Section 4 in |Littell and Folks
(1973), under the alternatives, the maximum attainable exact slope for any p-
value combination method is Zle Aici(0;). Hence, we define the Asymptotic
Bahadur Optimality (ABO) of a p-value combination method as follows.

Definition 2. Denote § = (01,...,0x). Under the above setup, a p-value
combination test H(pi,...,pr) is Asymptotic Bahadur Optimal (ABO) if its
exact slope Cp (0) satisfies Cp (6) = 325, Mica(65).

2.2. The ABO property of p-value combination methods

Littell and Folks| (1973)) showed that the Fisher test is ABO, whereas Stouffer
and minP tests are not. Except for these methods, there is a lack of asymptotic
efficiency analysis for such methods. This subsection discusses five modified
Fisher methods: AFs, AFp, AFz, TFhard, and TFsoft. We additionally analyze
four methods designed for combining sparse and weak signals: Cauchy, Pareto,
BJ, and HC. As expected, the latter four tests do not enjoy ABO property; the
proofs are provided in the Supplementary Material. The theoretical results for
the ABO, exact slope, and signal selection consistency (discussed in Theorems 4
and 5 and Remarks S3, S5, and S6) are summarized in Table 1.
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Recall that the Fisher and the five modified Fisher methods combine p-values
using the following test statistics:

K

>7_ logpy — ity wii, §)

Tisher = Z —2log piy; Tar, = max _ :
=1 SIS S w2, )
Tars = max —log { < —2 Z log p(; ) } Tarp = max —log{h; (. j)};

K K

Trenara(T) = Z(_2logpi)l{pi§‘r}; Trpeofe(T) = Z(_210gpi + 2log 7).

i=1 i=1

Here, w(i, j) = min{1, j/i}. In addition, 7 € (0, 1] is a user-specified constant for
the two truncated Fisher methods, and (z), denotes max(z,0).

All six methods can be characterized in the form of H(—logpy,...,—logpk)
by some function H(-). With the log-transform on p-values as a key ingredient,
the above methods can potentially achieve high asymptotic efficiency. Indeed,
together with Lemma 1, by using almost the same arguments as those in |Littell
and Folks (1973)), one can show that the Fisher test is ABO; see Theorem S1.

Although achieving high asymptotic efficiency, the Fisher test has been shown
to have poor performance empirically when only few of the part of p-values contain
signals (e.g., 2 out of 10 p-values have signals); see |Song, Min and Zhang| (2016)
and |Li and Tseng (2011) for more discussions. Many modified Fisher methods
have been proposed to address this problem (Zaykin et al.|(2002); Yu et al. (2009);
Kuo and Zaykin! (2011)); Zhang et al.| (2020); Li and Tseng| (2011); Song, Min and
Zhang| (2016))). The idea is to filter out large p-values that are less likely to carry
signals, and reduce the impact of noise, while still using the log-transformation of
the p-values to achieve high efficiency. In Particular, AFs, AFp, and AFz combine
the first m smallest ordered p-values. All three methods use some optimization
criterion that adaptively selects m to achieve superior finite-sample power in
varying proportions of signals. Whether AFs, AFp, and AFz retain the ABO
property of Fisher is an intriguing question, and is investigated below. In fact, as
surprisingly found in the following three theorems, that AFs and AFp are ABO,
but AFz is not.

Theorem 1 (AFs is ABO). Under the setup in Section 2.1, Tap, is similar to
the Fisher test in terms of being ABO, with exact slope Caps(6) = Zle Aici(6;).

Theorem 2 (AFp is ABO). Under the setup in Section 2.1, Tapy is similar to
the Fisher test in terms of being ABO, with exact slope CAFP(H) =3 Nei(6)).

Theorem 3 (AFz is not ABO). Under the setup in Section 2.1, consider the
test statistic Ty = maxi<j<x{—2Y 1_,logpu — A;}/B;, where B; > 0 and A,
are some finite constants that depend only on j and K. Assume there is no tie
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for Zz:l Xici(0;)/Bj.forj =1,..., K, and B; is monotonic increasing. Then, Ty
is not ABO, with exact slope
. B, <
Ca(f) < max —L Z)\ici(ﬂi).

1<<e B

The equality holds if and only if ¢ = 1 (i.e., there is only one signal inside the K
p-values).

By taking A; = 23°1  w(j,4) and B; = 2{3°1, w?(j,i)}"/?, Ts reduces to
Tar,, indicating that AFz is not ABO, in general (e.g., a special case that AFz
is ABO is when ¢ = 1).

The better asymptotic efficiency of AFp and AFs compared with that of
AFz may be because the latter tries to estimate the subset of p-values with true
signals. Consider the equivalent form of AFs for combining independent p-values:

K
T = min F.2 —25 w; log p;
AFs & X2(E§K:1wi) - i10gDpi |,
1=

where @ = (wy,...,wg) € {0,1}¥ is the vector of binary weights that
identify the candidate subset of p-values with true signals. Note that T, is
the original form proposed in [Li and Tseng| (2011)). Denoted by @ = argmin
FXE(E{(IW(—2 S wilogp;), and let w* = {(wt,...,w}) : w; = 1if6; €

O — Oy and w; = 0if §; € Oy} be the indicators of the true signals. We show
the signal selection consistency of AF's in the following theorem.

Theorem 4 (Signal selection by AFs is consistent). Under the setup in
Section 2.1, W — W* as n — oo in probability for the AFs test.

Theorem 5 (Signal selection by AFp is consistent). Under the setup in
Section 2.1, AFp selects the true subset of p-values by selecting py, . . ., p;, where

j = argmax —log{h; (7, j)}.
1<G<K
Theorem 6 states that for any given value of 7 € (0, 1], TFhard and TFsoft
are ABO.

Theorem 6 (TFhard and TFsoft are ABO). Under the setup in Section

=

2.1, TFhard and TFsoft are ABO, with exact slopes Crrparq(f) = CTFsoft(g) =
Soisy ici(6;).

Although TFhard and TFsoft are ABO, the choice of 7 may significantly
affect their finite-sample performance (Zhang et al. (2020)). To address this
issue, |Zhang et al.| (2020) proposed the following omnibus tests for both methods
(denoted by oTFhard and oTFsoft, respectively):



2246 FANG, CHANG AND TSENG

TyrFhard = £n€i71_1[1 - FUTFth(T){TTFhard(T)}]

Torrsoft = 17_127[1[1 - FUTFsoft(T){TTFSOft (T)}]v

where T = {m,...,7,,} is a user-specified set of the candidates of 7. Here,
Urfhara(T) and Urpeor(7) denote the random variables that follow the null
distributions of Trppara(7) and Trpeos(7), respectively. Although the omnibus
tests alleviate the sensitivity of the choice of 7 for both TFhard and TFsoft to
some extent, T is still user specified and subjective. In addition, [Zhang et al.
(2020) derive the null distributions of both omnibus tests in an asymptotic sense
as K — oo, which may not be accurate for small K with small p-value thresholds,
which are commonly used in applications, such as genomics studies, to handle
multiplicity.

Proofs of the theorems for the Fisher and modified Fisher methods in this
subsection can be found in the Supplementary Material, Section S2.1. For
completeness, we also show that methods that combine sparse and weak signals,
such as the CA, Pareto, BJ, and HC methods, are not ABO (Supplementary
Material, Section S1); the proofs are available in Supplementary Material, Section
S2.3. In conclusion, the Fisher, AFs, AFp, TFhard, and TFsoft methods are the
only ones with the ABO property. AFs, AFp, and AFz provide signal selection
(i.e., subset estimation of the true signal), and AFs and AFp are the only two
methods that exhibit consistency in the signal identification.

3. Power Comparison in Finite-Sample Simulations

Although Section 2 evaluates the asymptotic efficiency of p-value combination
methods, the finite-sample statistical power of such methods under different
proportions of signals has not been assessed. In this section, we evaluate
the seven methods designed for nonsparse signal setting described in Section
2: Fisher, Stouffer, AFs, AFp, AFz, TFhard, and TFsoft. Additionally, we
evaluate the following methods designed for combining sparse and weak signals
for completeness: minP, CA, HM, BJ, and HC. Because TFhard and TFsoft
are sensitive to the choice of the tuning parameter 7, for a fair comparison, we
use the corresponding omnibus tests oTFhard and oTFsoft, instead. The tuning
candidate set 7 is {0.01,0.05,0.5,1}, which is used in the original paper (Zhang
et al.| (2020)).

For better illustration, we first present the results of the seven methods that
combine nonsparse signals in Figures 1 and S1. Results comparing all 12 methods
can be found in the Supplementary Material, Figures S2 and S3, where the
modified Fisher methods dominate other methods designed for sparse and weak
signals, in general, unless the signals are indeed sparse and weak (e.g., cases of
¢/K < 0.1 in Figure S3). However, in such cases, methods such as AFp and AFz
still have comparable power with the top-performing methods, such as minP.
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We simulate X = (Xi,..., Xg) R N(jii,Ix), where i = (u1, oy, lhK)
contains ¢ nonzero signals p; = --- = g = g, and K — ¢ with no signal (pg; =
-+ = uxg = 0). We evaluate for a wide range of K = 10, 20, 40, 80. For each K,
we vary the proportions of the true signals ¢/K: ¢/K = 0.05,0.1,0.2,...,0.9. We
also vary pg = 0.5,0.65,...,6 for a broad range of signal strengths. The p-values
are calculated using the two-sided test p;, = 2(1 — ®(|X;|)), for i = 1,..., K.
For each combination of parameter values, we draw 10® Monte Carlo samples to
calculate the critical values for all the methods at a given significance level «,
because the p-value calculation algorithms for some methods, such as oTFsoft
and oTFhard, are not accurate for small K.

Figure 1 shows the empirical power of the Fisher, Stouffer, and five modified
Fisher methods with varying proportions of signals ¢//K = 0.05,0.1,0.2,...,0.9
at significance level @ = 0.01. For a given K and proportion of signals ¢/ K, we
choose the smallest 119 such that the best method has at least 0.5 statistical power,
which allows optimized visualization and a comparison of the methods in different
signal settings. We first note that AFz is inferior to the other modified Fisher
methods, consistent with our theoretical result that AFz is not ABO. We further
note that AFs, AFp, oTFhard, and oTFsoft exhibit comparable performance
across varying proportions of signals. Fisher outperforms all other methods in
terms of detecting frequent signals (e.g., when the proportion of true signals is
greater than 0.3).

Although combining a small number of strong signals is not our primary
focus, out of curiosity, and for a more comprehensive evaluation of existing
methods, we simulate the alternatives with fixed numbers of true signals ¢ =
1,2,...,6, for K = 20,40,80, following the above simulation scheme. Figure
S1 shows the empirical power of the Fisher, Stouffer, and five modified Fisher
methods with varying numbers of signals £ = 1,2,...,6 at a« = 0.05. Similarly,
for a given K and ¢, we choose the smallest o such that the best method has at
least 0.9 statistical power. Clearly, this simulation setting focuses more on the
performance of combining less frequent, but relatively strong signals. We note
that AFz, AFp, and oTFsoft have comparable statistical power across varying
numbers of true signals, followed by AFs and oTFhard. However, the Fisher
method, is significantly inferior to the modified Fisher methods when ¢ is much
smaller than K (e.g., £ < 3 for K = 20,40, 80).

In many real applications (e.g., the transcriptomic meta-analysis in Section
6), the p-value combination test is repeated many times (i.e., for each gene). It
is expected that some true biomarkers are more homogeneous with frequent true
signals and some with less-frequent signals. The results in Figures 1 and S1 show
the need to develop an ensemble method to integrate the advantages of Fisher
and one of the top-performing modified Fisher methods, which is presented in
the next section.
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Figure 1. Statistical power of the Fisher, Stouffer, and five modified Fisher’s methods
at significance level a = 0.01 across varying frequencies of signals ¢/K = 0.1,0.2,...,0.9
and varying numbers of combined p-values K = 10,20,40,80. The standard errors are
negligible compared with the scale of the mean power (smaller than 0.1% of the power),
and hence are omitted. The results of the Stouffer test with power smaller than 0.25 are
omitted.

4. Fisher Ensemble to Combine Fisher and AFp

As shown in Sections 2 and 3, the Fisher and four modified Fisher methods
(AFs, AFp, TFhard, and TFsoft) are ABO, and have complementary strength in
finite-sample evaluation of varying proportions and numbers of true signals. A
natural idea is to ensemble Fisher and one of the four modified Fisher methods
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for more stable and universally competitive performance. Because oTFhard
and oTFsoft methods require an ad hoc decision of a user-specified set 7, and
their existing computing algorithms are not accurate for small K, we develop
an ensemble method to combine Fisher and AFp methods. In Section 4.1, we
propose an ensemble approach, namely the FE, using the HM method (Wilson
(2019); [Fang, Tseng and Chang| (2023))) to combine Fisher and AFp. In Section
4.2, we provide the theoretical support of the FE and show that the FE is ABO.
Section 4.3 presents simulation results similar to those in Section 3 to demonstrate
the balanced and superior performance of FE across varying proportions of true
signals.

4.1. FE by HM integration

Denoted by pFsher and pAFP the p-values derived from the Fisher and AFp
combination tests, respectively. We propose combining the p-values of the two
methods using T}, = {h(p¥t") + h(pA¥P)} /2, with function h. Because the pFisher
and pAf can be highly dependent, one option is to use the Cauchy combination
test with h(p) = tan{mw(1/2 — p)}, because the theorems and simulations in Liu
and Xie (2020) and |Liu et al.| (2019) show that the Cauchy combination test is
robust to dependency of the combined p-values, and results in a fast algorithm
with a Cauchy distribution under the null hypothesis (i.e., the null distribution
is standard Cauchy). However, this Cauchy ensemble approach is problematic
when either pf'r or pAFP is close to one. In this case, the Cauchy transformation
generates a —oo score, and the power is greatly reduced. We propose using the
HM method (Wilson| (2019)), h(p) = 1/p, in our FE, as follows:

1 1 1
TFE = 5 <pFisher + pAFp>’ (41)

where the HM method is shown to be approximately equivalent to Cauchy in
(Fang, Tseng and Chang (2023)). When the p-value p follows Unif(0, 1), the
reciprocal of p follows the Pareto distribution Pareto(1,1) with both the scale
and shape parameters equal to one. We use the reciprocal of p-values instead
of the Cauchy transformation to avoid the large negative score issue described
above; also see Fang, Tseng and Chang (2023|) for more details. Other than
avoiding large negative score issue, using the HM with the reciprocal of the p-value
1/p performs almost identically to Cauchy h(p). The Supplementary Material,
Section S3.7, provides numeric results in which the ensemble method using the
HM outperforms the Cauchy combination.

In the implementation, FE is fully data-driven with fast algorithms. Indeed,
for p1,...,pK N Unif(0, 1), the null distribution of the Fisher test follows a chi-
squared distribution with degrees of freedom 2K . For the p-value calculation for
AFp,|Yu et al.| (2009)) proposed an empirical approach to avoid cumbersome two-
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layer permutation. Finally, Theorems 1 and 2 in [Fang, Tseng and Chang (2023)
show that the harmonic approach using the reciprocal of the p-values can have
robust type I error control if we naively use the Pareto distribution Pareto(1, 1)
as the null distribution (see the Supplementary Material, Section S1.2).

As a result, the fast p-value computation for the FE Trg is warranted. Table
S1 in Section S3.1 justifies the above procedure, where we show that the type-I
error control for FE is accurate for a < 0.05 across a broad range of 5 < K < 100.

4.2. Asymptotic efficiency of the FE

In this subsection, we show that the FE is ABO. We first introduce a
heavy-tailed distribution family, namely, the regularly varying distribution R
(Mikosch, (1999)), where Cauchy and Pareto distributions are special cases of the
family. Consider an ensemble method induced by a regularly varying distribution
(e.g., Pareto(1,1) for 1/p, in our case) to combine multiple p-value combination
methods (e.g., Fisher and AFp, in our case). The ensemble method is ABO if at
least one of the p-value combination methods is ABO. Because both Fisher and
AFp are ABO, and Pareto(1,1) (corresponding to 1/p) is a regularly varying
distribution, we conclude that the FE is also ABO. Below, we outline the
definition of the regularly-varying distributions and the theorem. The detailed
proof is available in the Supplementary Material, Section S2.2.

Definition 3. A distribution F is said to belong to the regularly varying tailed
family with index v (denoted by F € R_,) if lim, o, F(zy)/F(z) = y™7, for
some v > 0 and all y > 0.

We denote the whole family of regularly varying tailed distributions by R. For
two positive functions u(-) and v(-), we write u(t) ~ v(t) if lim; o, u(t)/v(t) = 1.
It can be shown that every distribution F' belonging to R_. can be characterized
by F(t) ~ L(t)t™7, where F(t) = 1 — F(t) and L(t) is a slowly varying
function. A function L is called slowly varying if lim, ,. L(ty)/L(y) = 1 for
any t > 0. Regularly varying distributions represent a wide class of heavy-
tailed distributions, including the Cauchy, Pareto(1,1) (HM), and general Pareto
distributions.

Consider L < oo p-value combination test statistics 71,...,7T. Denoted by
D1,y - .-, 01, the resulting p-values of 17, ...,7r. In the FE, we have L = 2, and
(T4, T) are Fisher and AFp. Under Definition 3, consider the following ensemble
method using a regularly varying tailed distribution:

L

Trv(v) = Zgw(pn) =Y Fyby(1=pn),

i=1

where Fy () is the CDF of U(y) and U(y) € R_,. Under the null hypothesis,
the test statistic transforms all p7, into regularly varying tailed random variables
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with index +. The following theorem suggests that under mild conditions, the
ensemble method with a regularly varying tailed distribution exhibits the ABO
property.

—

Theorem 7. For eachi=1,...,L, let C;(0) be the exact slope of T;, and assume
max;<;<; Ci(d) > 0. Let C)(0) be the exact slope of Try(y). If one of the
following two conditions holds: (C1) FJ(I,y)(l—p) is bounded below: Fg(ﬁy)(l—p) >
v, for some constant v and Vp € [0,1], and (C2) all T; have nonzero exact slopes:

ming <;<r, Cl(é) > 0, then we have C](g&(ﬁ_') = max; <<z, 01(5)

Remark 2. Because 1/p (reciprocal of p-value) is bounded below and h(p)
(Cauchy) is not, using 1/p rather than h(p) can satisfy Condition (C1) in Theorem
7. In general, if Condition (C1) is not satisfied, Condition (C2) is a mild condition
(meaning all tests T; are at least minimally effective and have a nonzero slope),
but not always easy to check or satisfy in practice. For example, when we
aggregate the methods combining left one-sided p-values and right one-sided p-
values in Section 4, methods that only combining left one-sided p-values will
produce p-values converging to one when only positive effects exit; see Section 5
and the Supplementary Material, Section S3.7 for more details.

Theorem 7 suggests that Try(7y) is ABO as long as at least one of T3,..., T,
is ABO. Consequently, the FE is ABO, because Pareto(1,1) (corresponding to
1/p) belongs to a regularly varying tailed distribution, and both Fisher and AFp
are ABO.

4.3. Finite-sample power comparison for the FE

In this subsection, we evaluate the finite-sample power of FE. To illustrate
that FE can take advantage of integrated methods, we also include AFs and Fisher
as baseline methods. We use the same simulation scheme as that in Section 3 to
generate the simulated data. Figure 2 shows the statistical power of FE, AFp, and
Fisher, with varying proportions of true signals ¢/K = 0.05,0.1,0.2,...,0.9 at
a = 0.01. Similarly to Figure 1, for a given proportion of signals £/ K and number
of combined p-values K, we choose the smallest g that allows the best method
to have power larger than 0.5 in Figure 2. Figure S4 shows the statistical power
of FE, AFp, and Fisher when combining K = 20,40, 80 p-values with varying
numbers of true signals £ = 1,2,...,6 at o = 0.05. Similarly to Figure S1, for a
given ¢ and K, we choose the smallest o that allows the best method to have
power larger than 0.9 in Figure S4, which is supposed to focus on combining less
frequent, but strong signals. As expected,the FE has stable statistical power that
is comparable to the better of Fisher and AFp in settings with either dense but
weak signals, or less frequent but strong signals. Specifically, when the proportion
of signals is high, FE performs close to Fisher and is superior to AFp. When the
number of true signals is small, FE performs close to AFp and outperforms Fisher.
In the Supplementary Material, Figures S5 and S6, we implement another Fisher
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Figure 2. Statistical power of FE, Fisher, and AFp at significance level a = 0.01
across varying frequencies of signals ¢/K = 0.05,0.1,0.2,...,0.9 and varying numbers
of combined p-values K = 10, 20, 40,80. The standard errors are negligible, and hence
are omitted.

ensemble method (FE2) that combines Fisher, AFp, and minP. As expected, its
power for only a small number of signals is slightly improved over that of FE, but
at the expense of a large reduction of power when signals are frequent. From the
asymptotic efficiency in Section 4.2 and the simulations above, we recommend
using the FE method that combines Fisher and AFp for general applications.
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5. Detection of Signals with Concordant Directions
5.1. FE focused on concordant signals (FEcs)

For all methods we have discussed so far, the global hypothesis setting
is designed for two-sided tests, regardless of the directions of the effects.
Recall from Equation 2.1 that the hypothesis testing considered is Hy
NE, {6; =0} versus H; : UK, {0, #0}. Consider the alternative hypothesis
that only the first ¢ p-values have true signals (i.e., 6; # 0 for 1 < i < ¢,
and 0,41 = -+ = 0 = 0). The two-sided tests to obtain p; (1 < i < K) cannot
guarantee signals with concordant directions (sgn(6,) = - - - = sgn(6,), denoted by
sgn(+), the sign function), which is desirable in most applications. For example,
when conducting a meta-analysis of K transcriptomic studies believed to be
relatively homogeneous, we are interested in identifying biomarkers concordantly
up-regulated or down-regulated. For this problem, Owen (2009) revisited the

Pearson test statistic, and proposed using Tpearson = min{pFishenl pFisher.’R

Where ﬁFishcr,L and 25Fishcr,R
values respectively, and the Pearson test takes the more significant one as the

test statistic. In this subsection, we similarly extend the FE method to use the

use Fisher to combine the left and right one-sided p-

HM approach to combine the two left and right one-sided p-values of Fisher and
AFs (denoted by FEcg; Fisher ensemble for concordant signal):

oL 1 1 1 1
FEcs — Z ﬁFisher,L + ﬁFisher,R + ﬁAFp,L + ﬁAFp,R :

Remark 3. When combining one-sided p-values, it is common to observe p-
values close to one and it is critical to use the HM rather than Cauchy, to avoid
—00 SCcores.

Remark 4. Let CL(g) be the maximum attainable exact slope for any p-value
combination method combining left one-sided p-values, and define C®(6) in a
similar manner for right one-sided p-values. By Theorem 7, the exact slope of
FEcs is max{C%(8), C®(0)}, indicating high asymptotic efficiency, because even
if one has prior knowledge of the effect size direction, it is not possible to design
a p-value combination method with a larger exact slope for detecting concordant
signals.

For the computation, similarly to FE, one can use the p-value calculation of
Pareto(1,1) to calculate the p-value for FEcg. This approximation procedure is
justified by simulation results in Table S1 in Section S3.1 for a broad range of
significance levels o and numbers of input p-values K.

5.2. Finite-sample power comparison for the FE for concordant signals

In this subsection, we evaluate the finite-sample power of FEcs. To demon-
strate the advantages of FEcg, we also include the regular FE and Pearson as
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baseline methods. We use the same simulation scheme as that in Section 3 to
generate the simulated data. For FEqg and Pearson, the one-sided p-values are
generated by ﬁEL) =1-®(X;) and ﬁz(-R) =o(X;) (i = 1,...,K), respectively.
For the regular FE, we combine the two-sided p-values p; = 2{1 — ®(|X;]|)}, for
i=1,... K.

Figures 3 and S7 show the empirical power of FEqg, Pearson, and the regular
FE. For Figure 3, we choose the smallest py that allows the best method to
have power larger than 0.5 for a given proportion of signals /K and a number
of combined p-values K. Both FEcg and Pearson dominate the regular FE,
indicating the former two methods perform better for the alternatives with one-
sided direction consistent effects (because p; = -+ = py = po > 0 under
the alternatives). In addition, FEqg has comparative performance with that of
Pearson for £/ K > 0.2, and outperforms Pearson when ¢/ K < 0.2. For Figure S7,
we choose the smallest gy that allows the best method to have power larger than
0.9 for a given number of signals ¢ and number of combined p-values K. This
setting focuses on less frequent but strong signals. Note that FEqg outperforms
Pearson when the number of signals is low (e.g., £ < 4).

6. Real Application to AGEMAP Data

In this section, we apply different p-value combination methods to analyze
data from the AGEMAP study (Zahn et al| (2007)). The data set contains
microarray expressions of 8,932 genes in 16 tissues and age and sex variables of
618 mice subjects. We are interested in identifying age-associated marker genes.
Following the original paper, we fit the following regression model to detect age-
associated genes in each tissue:

Yiie = Bojr + ﬁageJkAgeijk + Boex,jkS€Xijk + € for i =1,... m,

where Y}, is the expression level of the ith subject for the jth gene and kth tissue.
For each gene j, we consider designs of both two-sided and one-sided tests when
combining p-values across tissues. In the two-sided test design, the two-sided
p-values (pj1,...,pjx) for their corresponding Bagee jr coefficients are combined
using the Fisher, AFp, and FE methods. In this case, the association directions
(positive or negative associations) are not considered. In contrast, the one-sided
test design combines left-tailed p-values (ph,...,ply) or right-tailed p-values
(P, ..., Pi%) using FEcs. Figure 4 shows the general workflows of transcriptomic
meta-analysis for the jth gene with two-sided and one-sided designs. Compared
with FE, FEqg is expected to have increased power in terms of detecting age-
related biomarkers with concordant signals (all positive associated or all negative
associated) across tissues, but have reduced power for markers with heterogeneous
signals (i.e., positive associations in some tissues and negative associations in
some others). In this application, both concordant and heterogeneous age-related
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Figure 3. Statistical power of FE, FEcg, and Pearson at significance level a = 0.01
across varying frequencies of signals £/K = 0.05,0.1,0.2,...,0.9 and varying numbers of
combined p-values K = 10, 20,40, 80. The standard errors are negligible, and hence are
omitted.

biomarkers are of interest. Heterogeneous biomarkers detected by FE can have
different age-associations (positive, negative, or non-association) across tissues,
whereas concordant biomarkers detected by FEcg are tissue-invariant. FE and
FEcg serve as complementary tools for different biological objectives.

Figure 5(a) shows the Fisher, AFp, and FE p-value combination results
in the two-sided test design. Under the significance level of g-value < 0.05,
Fisher detects 576 genes (yellow color) and AFp detects 473 genes (green color),
where Category II (392 genes) represents genes detected by Fisher and AFp
and Categories I (184 genes) and III (81 genes) represent biomarkers uniquely
detected by Fisher and by AFp, respectively. The heatmap shows an age-
association measure defined as: Ej, = —sign(Bage,r) log(min{ph,, pk}) for gene
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j on the rows and tissue k£ on the columns, that is, the signed log-transformed
(base 10) one-sided p-values. Consequently, a red color of Ej;, represents a strong
positive association with age, and blue denotes a strong negative association.
As expected, FE combines the strengths of Fisher and AFp to detect 593 genes
(purple color) that contain all genes in Category II and most genes in Categories
I and III. By counting the number of tissues with p-values p;, < 0.05, Figure S10
in the Supplementary Material shows that Category I genes (detected by Fisher,
but not by AFp) are age-associated in more tissues, while Category IIT (detected
by AFp, but not by Fisher) are age-associated in fewer tissues, which is consistent
with the theoretical insight and simulation result that Fisher is more powerful for
detecting frequent signals, and AFp is more powerful for relatively less frequent
signals.

We next perform hierarchical clustering (using 1-correlation between tissues
as the dissimilarity measure and complete linkage) for the 16 tissues based on the
E;i, values in the 593 age-related genes detected by FE; the dendrogram is shown
in Figure 5(a). By cutting the dendrogram, we identify five clear tissue modules
with similar age-association patterns: (1) thymus and gonads; (2) spleen and
lung; (3) eye, kidney, and heart; (4) hippocampus, adrenal glands, and muscle;
and (5) cerebrum and spinal cord (also see Figure 5(b) for the heatmap of the
pair-wise correlations). For the first module, the thymus has long been regarded
as an endocrine organ that is closely related to gonads and sexual physiology,
such as sexual maturity and reproduction (Grossman| (1985)); Leposavi¢ and
Pilipovi¢ (2018)). The spleen lung module is consistent with the finding in Zahn
et al.| (2007), and many reports suggest that the spleen and lung share a similar
aging pattern (e.g., Schumacher et al.| (2008)). For the third module, literature
shows that the kidney and eye share structural, developmental, physiological, and
pathogenic similarities and pathways. The relationships between age-related eye,
kidney, and cardiovascular diseases have been widely reported (e.g., [Farrah et al.
(2020)). For the fourth module, numerous studies have reported a relationship
between adrenal glands and hippocampal aging (e.g., |[Landfield, Waymire and
Lynch! (1978)). For the last module, few existing studies have investigated the
aging process of the spinal cord (Knight and Nigam (2017)). However, it is
reasonable that the cerebrum and spinal cord might share a similar aging pattern,
because they both belong to the central nervous system. On the other hand, the
liver has intriguingly negative correlations of aging effects with muscle, adrenal
glands, and several brain regions, such as the hippocampus, cerebellum, and
cerebrum (also see Figure 5(b)).

Next, we evaluate FEcg for the one-sided test design and compare it with FE.
We calculate Sggn,; = 2;6:1 sign(ﬁage’j;@)l{min{ﬁh,I;ﬁ}@,og)} to determine whether
the detected concordant aging marker j is positively associated (Sgign; > 0)
or negatively associated (Sggn; < 0), and use it to determine whether a
detected marker is dominant with the positive association or negative association.
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Similarly to the previous analysis, Figure 6 shows the age-associated genes
detected by FE (593 genes, Categories II(A), II(B), and III) and FEqg (398
genes, Categories I(A), I(B), II(A), and II(B)), where Categories II(A) and II(B)
are genes detected by FE and FEcg, Category III are detected only by FE, and
Categories I(A) and I(B) are detected only by FEcs. For genes detected by
FEcs, Categories I(A) and II(A) are concordant aging markers with a positive
association (mostly red), and Categories I(B) and II(B) are negatively associated
(mostly blue), which are visually consistent with the heatmap. In contrast, genes
in Category III mostly have discordant association directions (partial red and
partial blue). The Supplementary Material, Figure S11, shows the distributions
of Sgign,; in the gene categories.

At significance level ¢ < 0.05, FEqg identifies 184 positively associated genes
(Categories I(A) and II(A)) and 214 negatively associated genes (Categories
I(B) and II(B)). We perform an Ingenuity Pathway Analysis (IPA) on these two
concordant age-associated gene lists. The result identifies 11 enriched pathways
from the 184 positively associated genes, and four enriched pathways from the 214
negatively associated genes (enrichment p < 0.01). Table S2 shows these enriched
pathways with pathway names, enrichment p-values, and abundant supporting
literature of the pathways related to aging/early development processes (see
complete references in the Supplementary Material, References II). The result
shows that FEcg has an advantage in terms of identify age-associated markers
concordant across tissues and delivering interpretable biological insights.

7. Conclusion

Combining p-values is a common and effective tool in many scientific appli-
cations. We focus on the scenario of meta-analysis with unknown heterogeneity,
in which the number of combined p-values K is finite and fixed but the sample
size for generating each p-value can increase to infinity (i.e., the first category
described in the Introduction ). The goal of this category is to aggregate het-
erogeneous independent signals, where the proportion of true signals is unknown
and can range from 1/K to 1. Note that our goal is to combine independent
and nonspare signals and to distinguish it from combining sparse signals in the
asymptotic rare and weak (ARW) model when K — oo, which is commonly
considered in the second and third categories described in the Introduction.

Our results contribute to the literature in three ways. First, this is the
first study to comprehensively evaluate p-value combination methods for their
asymptotic efficiency in terms of asymptotic Bahadur optimality (ABO). We
investigate classical methods (Fisher and Stouffer) and modified Fisher methods
(AFs, AFp, AFz, TFhard, and TFsoft). The result shows that Fisher, AFs,
AFp, TFhard, and TFsoft are ABO, but Stouffer and AFz are not. We also
find interesting consistency properties when estimating the subset of contributing
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Figure 4. Procedures of transcriptomic meta-analysis on AGEMAP data set (two-sided
design (Figure 4(a)) and one-sided design (Figure 4(b)), where H(-) denotes a chosen p-
value combination method and p/) denotes the corresponding p-value of H with input
p-values. Here, pjj is the two-sided p-value for the jth gene on the kth tissue, and j)'fk

and lﬁﬁ are the left-tailed and right-tailed p-values for the jth gene on the kth tissue,
respectively.

signals in AFs and AFp (Theorems 4 and 5). Second, we perform an extensive
finite-sample power comparison and conclude that Fisher and AFp are the two top
performers, with complementary advantages, where Fisher is more powerful with
frequent signals and AFp is more powerful in relatively sparse settings. Third,
we propose a Fisher ensemble (FE) method that combines Fisher and AFp. A
one-sided test modification, FEcg, is further developed for detecting concordant
signals. Here, FE and FEcg offer several advantages: First, both methods have
high asymptotic efficiency (FE is ABO). Second, the HM combination avoids the
—oo score in the Cauchy. Third, we numerically demonstrate their constantly
high performance across varying proportions of signals. Fourth, both methods
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Figure 5. (a) Heatmaps of age-association measure Ejj;, of significant genes (¢ <= 0.05)
detected in the two-sided test design. Category I: genes detected by Fisher, but not by
AFp; II: genes detected by both Fisher and AFp; III: genes detected by AFp, but not
by Fisher. (b) Heatmap of pair-wise correlations between tissues based on the detected
genes by FE (¢ < 0.05.) in (a).

have fast procedures. Finally, an application to AGEMAP transcriptomic data
verifies our theoretical conclusions, demonstrates the superior performance of
FE and FEcg, and discovers intriguing biological findings in age-associated
biomarkers and pathways.

Modern data science faces challenges from data heterogeneity, increasingly
complex data structures, and the need for effective methods for new scientific
hypotheses. The ensemble methods proposed in this paper, FE and FEcg, have
solid theoretical and numerical support for their superior performance in a wide
range of signal settings. Therefore, we believe these methods will be useful in
many other scientific problems.

Supplementary Material

The online Supplementary Material includes proofs of Lemma 1, Theorems
1-7, and all technical lemmas, as well as additional theoretical results (Theorems
S1-S4 and Proposition S1 and their proofs) and additional simulation results.
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