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Abstract: We introduce a novel two-step approach for estimating a probability den-

sity function (pdf), given its samples, with the second and important step coming

from a geometric formulation. The procedure obtains an arbitrary initial estimate

which it transforms using a warping function to reach the final estimate. The ini-

tial estimate is intended to be computationally fast, albeit suboptimal; however,

but its warping creates a larger, flexible class of density functions, resulting in a

substantially improved estimate. The optimal warping is determined by mapping

warping functions to the tangent space of a Hilbert sphere, which is a vector space

with elements that can be expressed using an orthogonal basis. Using a truncated

basis expansion, we estimate the optimal warping under a (penalized) likelihood

criterion and obtain the final density estimate. This framework is introduced for

univariate unconditional pdf estimations, and then extended to include conditional

pdf estimations. The approach avoids many of the computational pitfalls asso-

ciated with classical conditional-density estimation methods, without sacrificing

estimation performance. We derive the asymptotic convergence rates of our den-

sity estimator, and demonstrate this approach using synthetic data sets and real

data, on the relation between a toxic metabolite on pre-term birth.

Key words and phrases: Conditional density, density estimation, Hilbert sphere,

sieve estimation, tangent space, warped density, weighted likelihood maximization.

1. Introduction

The estimation of probability density functions (pdfs) is an important and

well-studied field of research in statistics. The most basic problem in this area is

that of a univariate pdf estimation from independent and identically distributed

iid samples, henceforth referred to as an unconditional density estimation. An-

other important problem is that of a conditional density estimation, where we

need to characterize the behavior of the response variable for different values of

the predictors.

Owing to the importance of pdf estimations in statistics and related disci-

plines, numerous solutions have been proposed for each of these problems. While

the earliest works focused on parametric solutions, the trend over the last three
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decades has been to use a nonparametric approach, because it minimizes making

assumptions about the underlying density (and about the relationships between

the variables for conditional and joint densities). The most common nonpara-

metric techniques are kernel based; refer to Rosenblatt (1956); Hall et al. (1991);

Sheather and Jones (1991) and Li and Racine (2007) for further information.

Related to these approaches are the “tilting” or “data sharpening” techniques

for unconditional density estimations; see, for example, Hjort and Glad (1995);

Doosti and Hall (2016), and the references therein. Kernel methods are par-

ticularly powerful in a univariate setting. However, as the number of variables

increases, these methods tend to become computationally inefficient owing to

the complexities of bandwidth selection, especially in the case of a conditional

density estimation.

1.1. Two-step approaches for density estimations

Another common approach used for pdf estimation, and the one employed

in this study, is the two-step estimation procedure discussed in Leonard (1978);

Lenk (1988, 1991); Tokdar, Zhu and Ghosh (2010), and Tokdar (2007). The

first step estimates an initial pdf, say fp, from the data, perhaps restricting it

to belonging to a parametric family. In the second step, we improve upon this

estimate by deriving a function w > 0 that depends on the initial estimate fp,

and obtaining a final estimate using w(x)fp(x)/
∫
y w(y)fp(y)dy. Thus, the sec-

ond step involves estimating an optimal w in order to reach the overall estimate.

In a Bayesian context, the function w is often assigned a Gaussian process prior.

While this approach is quite comprehensive, the calculation of the normalization

constant at every step makes the computation very cumbersome. The two-step

procedures can also be adapted to estimate conditional density functions. Here

we estimate the conditional mean function, and then estimate the conditional

density of the residuals, as in Hansen (2004). More recently, Bayesian methods

based on mixture models and latent variables for estimating pdfs have received

increased attention, primarily as a result of their excellent practical performance

and an increasingly rich set of algorithmic tools for sampling the posterior using

Markov chain Monte Carlo (MCMC) methods. See Escobar and West (1995);

Müller, Erkanli and West (1996); MacEachern and Müller (1998); Kalli, Grif-

fin and Walker (2011); Jain and Neal (2004); Kundu and Dunson (2014) and

Bhattacharya, Pati and Dunson (2010) among others. However, these methods

also incur the very high computational cost typically associated with the MCMC

algorithms. Applications of flexible Bayesian models for conditional densities
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are discussed in MacEachern (1999); De Iorio et al. (2004), Griffin and Steel

(2006); Dunson, Pillai and Park (2007); Chung and Dunson (2009) and Norets

and Pelenis (2012), among others. Although the literature suggests that such

methods based on mixture models have several attractive properties, they lack

interpretability. Furthermore, the MCMC solutions for model fitting tend to be

overly complicated and expensive.

1.2. A geometric two-step approach

In this study, we pursue a geometric two-step approach that is applicable

to both conditional and unconditional density estimations. Our main motiva-

tion is to develop an efficient estimation procedure that attains good estimation

performance. This approach differs from the previously described two-step pro-

cedure in that the transformation of fp (in the second step) is now based on the

action of a diffeomorphism group, as follows. Let fp be a strictly positive uni-

variate density on the interval [0, 1]; here fp serves as an initial estimate of the

pdf. Let Γ be the set of all positive diffeomorphisms from [0, 1] to itself, that is,

Γ = {γ|γ is differentiable, γ−1 is differentiable, γ̇ > 0, γ(0) = 0, γ(1) = 1}. The

elements of Γ play the role of warping functions, or transformations of fp. Given

γ ∈ Γ, the transformation of fp is defined by (fp ∗ γ) = (fp ◦ γ)γ̇. Henceforth, we

refer to this transformation as the warping of fp, and to the resulting pdf f as a

warped density. This mapping is comprehensive, in the sense that we can change

from any positive pdf to any other positive pdf using an appropriate γ. Note that

because
∫ 1

0 fp(γ(x))γ̇(x)dx = 1, there is no need to normalize this transforma-

tion. However, the difficulty of estimating the normalizing constant now shifts

to the problem of estimating over Γ, which poses some challenges because Γ is a

nonlinear manifold. Note that diffeomorphisms as transformations of a pdf have

been used in the past, albeit with a different setup and scope; see, for example,

Saoudi, Hillion and Ghorbel (1994), and Saoudi, Ghorbel and Hillion (1997).

In addition, the notion of a transformation between pdfs has been used in the

literature on optimal transport, as in Tabak and Turner (2013) and Tabak and

Trigila (2014). However, in this case, the transport is achieved using an iterated

composition of maps, and not through an optimization over Γ, as we do here.

There are two parts to this.

1. Univariate PDF Estimation: We start with a framework for estimating

an unconditional univariate pdf defined on [0, 1]. This unit interval setting

helps explain and illustrate the main components of the framework. In addi-
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tion, the proposed geometric framework is naturally univariate, in the sense

that the transformation defined earlier acts on univariate density shapes,

making it a logical starting point. In this simple setup, the approach deliv-

ers excellent performance, while avoiding a heavy computational cost, that

is comparable with that of the standard kernel methods, even at very low

sample sizes. The framework is then extended to univariate densities with

unknown support by scaling the observation domain to [0, 1]. A defining

characteristic of this warping transformation is that the initial estimate can

be constructed in any way, whether parametric (e.g. Gaussian) or nonpara-

metric (e.g., kernel estimate), and is allowed to be a suboptimal estimate

of the true density.

2. Conditional Density Estimation: The second part of the paper ex-

tends the framework to the estimation of the conditional density f(y|x)

from {(yi, xi) : i = 1, . . . , n, y ∈ R, x ∈ Rd, d ≥ 1}. Here we start with a

nonparametric mean regression model of the form yi = m(xi) + εi, where

εi ∼ N (0, σ2), and m(·) is estimated using a standard nonparametric esti-

mator to obtain an initial conditional density estimate fp,x ≡ N (m̂(x), σ̂2)

at location x. Then, fp,x is warped using the warping function γx into a

final conditional density estimate. Naturally, the choice of γx ∈ Γ varies

with the predictor x. The selection of γx is based on a weighted-likelihood

objective function that borrows information from the neighborhood of the

location x at which the conditional density is being evaluated.

The main contributions of this paper as follows.

1. Transformation-Based Estimation: We introduce a two-step density

estimation framework based on the group action of Γ on the space of den-

sities.

2. Geometry of Γ: The framework uses the differential geometry of Γ to map

its elements to a subset of a Hilbert space, allowing for a basis expansion

and the application of standard optimization tools for estimating warping

functions.

3. Conditional Density Estimation: We derive an efficient framework for

estimating conditional densities, that delivers competitive practical perfor-

mance and an improved computational cost, compared with those of the

standard kernel techniques.
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γ̇, called its square-root velocity function (SRVF), is a point on the unit Hilbert
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Figure 1. Left: The true pdf f0 is estimated by transforming an initial estimate fp by
the warping function γ. The larger the set of allowed γs, the better the estimate is.
Right: Representing warping function γ as an element of the tangent space T1(S+∞).

The rest of the paper is organized as follows. Section 2 outlines the gen-

eral framework for a univariate unconditional density estimation, and Section 3

presents an asymptotic analysis of this estimator. Section 4 presents simulation

results to illustrate the framework. Section 5 develops the theory for the condi-

tional density estimation, and illustrates the properties of the proposed method

using simulated data sets and real data.

2. Proposed Framework

In this section, we develop a two-step framework for estimating a univariate

unconditional pdf. First we introduce some notation. Let F be the set of all

strictly positive univariate pdfs on [0, 1]. (Note that this framework can be ex-

tended easily to densities with unknown support; see the Supplementary Material

Section 6.2.) Let f0 ∈ F denote the underlying true density, and Xi ∼ f0, for

i = 1, 2, . . . , n, be independent samples from f0. Furthermore, let Fp be a prede-

termined subset of F , such that an optimal element (based on the likelihood, or

any other desired criterion) on Fp is relatively easy to compute; call it fp. For

instance, any parametric family with a simple maximumlikelihood estimator is

a good candidate for fp. Similarly, kernel density estimates work well because

they are computationally efficient and robust in univariate setups.

Next, we define a warping-based transformation of the elements of Fp, using

the elements of Γ defined earlier. Note that Γ is an infinite-dimensional manifold

that has a group structure under composition as the group operation. That

is, for any γ1, γ2 ∈ Γ, the composition γ1 ◦ γ2 ∈ Γ. The identity element of
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Γ is given by γid(t) = t, and for every γ ∈ Γ, there is a function γ−1 ∈ Γ,

such that γ ◦ γ−1 = γid. For any fp ∈ Fp and γ ∈ Γ, define the mapping

∗ : F ×Γ→ F : (fp ∗γ) = (fp ◦γ)γ̇ as given earlier. This mapping is akin to the

change of variable formula for densities. The importance of this mapping comes

from the following result.

Proposition 1. The mapping ∗ : F × Γ→ F , specified above, forms an action

of Γ on F . Furthermore, this action is transitive. In other words, one can reach

any element of F from any other element of F using an appropriate element of

Γ.

Proof. We can verify the two properties in the definition of a group action: (1)

For any γ1, γ2 ∈ Γ and f ∈ F , we have ((f ∗ γ1) ∗ γ2) = (((f ◦ γ1)γ̇1) ◦ γ2)γ̇2 =

(f ∗ γ1 ◦ γ2). (2) For any f ∈ F , (f ∗ γid) = f . To show transitivity, we need to

show that, given any f1, f2 ∈ F , there exists a γ ∈ Γ, such that (f1 ∗ γ) = f2. If

F1 and F2 denote the cumulative distribution functions associated with f1 and

f2, respectively, then the desired γ is simply F−1
1 ◦ F2. Because f1 is strictly

positive, F−1
1 is well defined, and γ is uniquely specified. Furthermore, because

f2 is strictly positive, we have γ̇ > 0 and γ ∈ Γ. �
This result implies that, together, the pair (fp ∗ γ) spans the full set F if γ

is chosen freely from Γ. However, if one uses a proper submanifold of Γ instead

of the full Γ, we may not reach the desired f0, but only approximate it in some

way. This intuition is depicted pictorially in the left panel of Figure 1, where the

inner disk denotes the set Fp. The increasing rings around Fp represent the set

{(fp ∗γ)|fp ∈ Fp}, with γ belonging to progressively larger dimensional subman-

ifolds of Γ. As the submanifolds approach the full space Γ, the corresponding

approximation approaches f0. The submanifolds are introduced formally in the

next subsection. Additional information can be found in Section S1.1 of the

Supplementary Material.

2.1. Finite-dimensional representation of warping functions

Given an initial estimate fp, we now determine an optimal γ, such that the

warped density (fp ◦ γ)γ̇ becomes the final estimate under the chosen criterion.

However, solving an optimization problem over Γ faces two main challenges.

First, Γ is a nonlinear manifold, and second, it is infinite-dimensional. Here, Γ is

a nonlinear manifold because it is not a vector space. (That is, an arbitrary linear

combination of elements of Γ is, typically, not in Γ.) We handle the nonlinearity

by forming a map from Γ to a vector space, and the infinite dimensionality
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by selecting a finite-dimensional subspace of this vector space. Together, these

two steps are equivalent to finding a family of finite-dimensional submanifolds

of Γ that can be flattened into vector spaces. This enables us to represent a

variable γ using elements of a Euclidean vector space and to apply standard

optimization procedures. This representaion, explained in detail below, enjoys

important advantages over direct approximations of γ; for further information,

see the Supplementary Material Section 6.2.

To flatten Γ locally, we define a function qγ : [0, 1] → R, qγ(t) =
√
γ̇(t),

termed the square root slope function (SRSF) of γ ∈ Γ. (For a discussion on

SRSFs of general functions, refer to Chapter 4 of Srivastava and Klassen (2016)).

To understand the nature of this relation γ → qγ , consider the set Qγ = {q :

[0, 1] → R|
∫ t

0 q
2(s)ds = γ(t)}, consisting of all functions that can be mapped

back to the same γ. Clearly, qγ ∈ Qγ and, hence, the set is always nonempty.

Secondly, for any pair γ1 6= γ2, Qγ1 and Qγ2 are disjoint. We denote the unit

Hilbert sphere by S∞ ⊂ L2 = {q : [0, 1] → R|
∫
q2(t) dt = 1}. Then, it is

easy to see that, for all γ ∈ Γ, Qγ ⊂ S∞. This is because for any q ∈ Qγ ,

we have ‖q‖2 =
∫ 1

0 q(t)
2dt =

∫ 1
0 γ̇(t)dt = γ(1) − γ(0) = 1. The set S∞ is a

smooth manifold with known geometry under the L2 Riemannian metric (Lang

(2012)). Although it is not a vector space, it can be easily flattened into a vector

space (locally) owing to its constant curvature. A natural choice for flattening

is the retraction to the vector space tangent to S∞ at the point 1, which is a

constant function with value 1. (1 is the SRSF corresponding to γ = γid(t) = t.)

The tangent space of S∞ at 1 is an infinite-dimensional vector space, given by

T1(S∞) = {v ∈ L2([0, 1],R)|
∫ 1

0 v(t)dt = 〈v,1〉 = 0}. See the right panel of

Figure 1 for an illustration of this idea. Next, we define the antipodal set of 1

on S∞ to be the subset: A1 = {q ∈ S∞| 〈q,1〉 = −1}. Next, we define a bijective

mapping between the set S∞/A1 and the tangent space T1(S∞) using the inverse

exponential map, defined as follows:

exp−1
1 (q) :

S∞
A1
−→ T1(S∞), v = exp−1

1 (q) =
θ

sin(θ)
(q − 1 cos(θ)) , (2.1)

where θ = cos−1(〈1, q〉) is the arc-length from q to 1. The right panel of Figure 1

also shows the mapping from S∞/A1 to T1(S∞). We impose a natural Hilbert

structure on T1(S∞) using the standard inner product, 〈v1, v2〉 =
∫ 1

0 v1(t)v2(t)dt.

It is easy to check that because cos−1(〈1, q〉) < π, we have the norm ‖v‖ =√∫ 1
0 v(t)2dt = θ < π, for v = exp−1

1 (q). Thus, the range of the inverse exponen-

tial map is not the entire T1(S∞), but a subset T 0
1 (S∞) = {v ∈ T1(S∞) : ‖v‖ <
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π}. In order to map points back from the tangent space to the unit Hilbert

sphere, we use the exponential map given by:

exp1(v) : T 0
1 (S∞)→ S∞, exp1(v) = cos(‖v‖)1 +

sin(‖v‖)
‖v‖ . (2.2)

Thus, for every γ ∈ Γ, there exists a set Vγ = exp−1
1 (Qγ) ∈ T 0

1 (S∞), such that

exp1(Vγ) = Qγ .

Finally, we can select any orthogonal basis B = {bj , j = 1, 2, . . . } of the

Hilbert space T 0
1 (S∞) to express its elements v by their corresponding coefficients;

that is, v(t) =
∑∞

j=1 cjbj(t), where cj = 〈v, bj〉. The only restriction on the

basis elements bj is that they must be orthogonal to 1; that is, 〈bj ,1〉 = 0.

For example, one can use the Fourier basis elements (excluding 1; of course).

However, other bases, such as cosine basis, splines, and Legendre polynomials,

can also be used. In the experimental studies, we use Meyer wavelets, which

have attractive properties of infinite differentiability and support over all reals.

Vermehren and de Oliveira (2015) provide a closed-form expression for Meyer

wavelets and the scale function in the time domain, which enables us to use

the basis set for the representation. However, Meyer wavelets are not naturally

orthogonal to 1, and so need to be orthogonalized first; however, this can be

done offline. Efromovich (2010) discusses different choices of basis functions, and

advocates using trigonometric basis for functions with compact support. They

also discuss how it is advantageous to always assume that the true density has a

compact support and to scale it to the unit interval.

Given a basis set B = {bj , j = 1, 2, . . . } and γ ∈ Γ, we can define an infinite-

dimensional set Cγ = {c = (c1, c2, . . .)|
∑∞

j=1 cjbj(t) ∈ Vγ}. However, we can use

a truncated basis expansion to approximate the elements of the set T 0
1 (S∞) using

finitely many coefficients. Suppose we use J basis elements to approximate the

tangent space elements. Then, the approximating space of coefficients can be

denoted by CJ = {c ∈ RJ |∑J
j=1 cjbj(t) ∈ T 0

1 (S∞)}. Note that CJ is a proper

subset of RJ because it only contains elements satisfying ‖∑J
j=1 cjbj(t)‖ < π.

Using these two steps, we specify a finite-dimensional and, therefore, approximate

representation of warpings. We define a composite map H : CJ → Γ, as

{cj} ∈ CJ
{bj}−−→ v =

J∑
j=1

cjbj ∈ T 0
1 (S∞)

exp1−−−→ q ∈ S∞ −→ γ(t) =

∫ t

0
q(s)2ds .

(2.3)
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Figure 2. A graphic representation of Eqn. 2.3, leading to a map from V Jπ to Γ.

For any c ∈ CJ , let γc denote the diffeomorphism H(c). For any fixed J , the

set H(CJ) forms a J-dimensional submanifold of Γ, henceforth denoted by ΓJ ,

on which we pose the estimation problem. As J goes to infinity, this submanifold

ΓJ converges to the full group Γ.

With this setting, we can rewrite the estimation of the unknown density f0,

given an initial estimate fp, as f̂(t) = fp(γĉ(t))γ̇ĉ(t), t ∈ [0, 1], where γĉ = H(ĉ)

and

ĉ = argmax
c∈CJ

(
n∑
i=1

[log (fp (γc(Xi)) γ̇c(Xi))]

)
. (2.4)

This optimization problem is nonconvex. We use the standard MATLAB function

fminsearch for the optimization; for a discussion of the algorithm, see https://

www.mathworks.com/help/optim/ug/fminsearch-algorithm.html. The trun-

cated basis approximation takes place in the tangent space representation of Γ,

rather than in the original density space as is the case in Birgé and Massart

(1998), Donoho et al. (1996), and several others.

3. Asymptotic Analysis and Convergence Rate Bounds

In this section, we determine the asymptotic convergence rate of the (maxi-

mum likelihood) density estimate f̂ , described according to (2.4) in Section 2.1,

to the true underlying density f0, using the sieve MLE proposed by Wong and

Shen (1995). Let F denote the space of all univariate, strictly positive pdfs on

[0, 1], as before. Let fp be the initial density estimate obtained in the first step

 https://www.mathworks.com/help/optim/ug/fminsearch-algorithm.html
 https://www.mathworks.com/help/optim/ug/fminsearch-algorithm.html
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of the estimation process.

• Assumption 1: f0 : [0, 1]→ R+ is continuous and strictly positive.

• Assumption 2: f0 belongs to either a Hölder or a Sobolev space of order β.

• Assumption 3: fp : [0, 1]→ R+ is strictly positive and is Lipschitz continu-

ous.

Note that in order to represent the entire space F , we need a Hilbert basis with

infinitely many elements. However, in practice, we use only a finite number of

basis elements. Hence, we are actually optimizing over a subset of the space

of density functions based on finitely many basis elements, and using this to

approximate the true density. This subset is called the approximating space. Let

n be the number of available observations. Let Fn be the approximating space

of F when using J = kn basis elements for the tangent space T1(S+
∞), where kn

is some function of n. Let fp ∈ Fp ⊂ F denote the initial estimate satisfying

Assumption 3. Examples of such fp include Gaussian densities truncated to

[0, 1], kernel density estimates with a plug-in bandwidth, and so on. Let Fn =

{fp(γ)γ̇, γ = H(c))| c ∈ CJ ⊂ Rkn}, where H and CJ are defined in Section 2.1.

As n → ∞, kn → ∞ and, hence, Fn → F . Let ηn be a sequence of positive

numbers converging to zero. Let Zi be the n observed data points scaled to the

unit interval. We call an estimator f̂ : [0, 1]→ Fn an ηn sieve MLE if

1

n

n∑
i=1

log f̂(Zi) ≥ sup
p∈Fn

1

n

n∑
i=1

log p(Zi)− ηn,

In the proposed method, f̂ : [0, 1] → Fn, as defined in (2.4), satisfies that

(1/n)
∑n

i=1 log f̂(Zi) is exactly supp∈Fn
(1/n)

∑n
i=1 log p(Zi). Therefore, f̂ is a

sieve MLE with ηn ≡ 0. Let ‖·‖r denote the Lr norm between functions. Then,

the following theorem provides the asymptotic convergence rate for the sieve

MLE f̂ .

Theorem 1. Let ε∗n = M1n
−β/(2β+1)

√
log n, for some constant M1. If f0 satisfies

Assumptions 1 and 2, and fp satisfies Assumption 3, then there exist constants

C1 and C2, such that

P (‖f̂1/2 − f1/2
0 ‖2 ≥ ε∗n) ≤ 5 exp

(
− C2n(ε∗n)2)+ exp

(
−1

4
C1n(ε∗n)2

)
. (3.1)
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The proof of this theorem is deferred to the Supplementary Material. The

idea of the proof hinges on proving the equivalence of the density space and the

parameter space. That is, we show that if the estimated parameter is “close” to

the true parameter corresponding to the true density, in some sense, then the

corresponding estimated density is also “close” to the true density. The statement

is stated formally and proved in Lemma S.1 in the Supplementary Material.

Note that the convergence rate presented in Theorem 1 is independent of the

initial step fp (up to constant terms) because the estimation problem is shifted

to Γ, given a fixed choice of fp. Intuitively, different initial choices of fp will

result in different warping functions that would reshape fp to the correct shape

of f0. Hence, the notion of a “true” warping function is identifiable only after

specifying a fixed choice of fp. However, once some fp satisfying Assumption 3

is fixed, the convergence rate of γ̂ to the “true” warping function and, hence, the

convergence rate of f̂ to f0, is independent of fp.

4. Simulation Studies

Next, we present the results of experiments in which we apply the univari-

ate unconditional density estimation procedure to two simulated data sets. The

code used in the experiments presented here can be found at https://github.

com/Sutanoy/Density-estimation-1. The computations described here are

performed on an Intel(R) Core(TM) i7-3610QM CPU processor, and the compu-

tational times are reported for each experiment. First, we compare the average

performance of the proposed solution with two standard techniques: (1) kernel

density estimates, with bandwidth selected using the unbiased cross-validation

method, henceforth referred to as kernel(ucv); and (2) a standard Bayesian tech-

nique that uses the function DPdensity in the R package DPPackage. We focus on

the average performance of the various techniques over 100 independent samples

from the true density. We use the MATLAB function ksdensity to determine the

initial estimate fp for our approach; ksdensity uses the naive thumb rule for band-

width selection and is computationally very fast, albeit suboptimal. We consider

sample sizes of n = 25, 100, and 1, 000 to study the effect of n on the estimation

performance and the computational cost. The performance is evaluated using

multiple norms: the L2 and L1 norm and the L∞ norm, averaged over the 100

samples.

We borrow the first example from Tokdar (2007) and Lenk (1991), where

f0 ∝ 0.75exp(rate = 3) + 0.25N (0.75, 1/82), a mixture of exponential and nor-

https://github.com/Sutanoy/Density-estimation-1
https://github.com/Sutanoy/Density-estimation-1
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Table 1. The performance of the mixture of exponential and normal densities.

Method: DPDensity Kernel(ucv) Our Estimate

n Norm Mean std.dev. Time Mean std.dev Time Mean std.dev Time

25

L1 37.26 8.63 33.51 11.97 34.37 11.11

L2 5.05 0.9 4 sec 4.5 1.44 < 1 sec 4.43 1.42 12 sec

L∞ 1.64 0.21 1.44 0.47 1.28 0.48

100

L1 22.87 5.32 21.9 5.54 19.69 5.48

L2 3.47 0.58 18 sec 3.14 0.57 < 1 sec 2.77 0.69 12 sec

L∞ 1.49 0.2 1.23 0.24 1.04 0.32

1,000

L1 10.79 2.05 11.57 2.14 10.40 1.70

L2 1.83 0.24 225 sec 1.67 0.23 < 1 sec 1.65 0.33 12 sec

L∞ 1.18 0.2 0.88 0.22 0.87 0.22

mal densities, truncated to the interval [0, 1]. Table 1 summarizes estimation

performance and computation cost for these methods at different sample sizes.

The mean and standard deviation values have been scaled by 100 for clarity. We

find that when n = 25, the kernel(ucv) method performs slightly better than our

method. However, for larger sample sizes, the warping-based method performs

better overall. The computational cost of the proposed method, while higher than

that of kernel(ucv), is much less than that of DPdensity for larger sample sizes.

We used Meyer wavelets as the basis set for the tangent space representation,

and used Algorithm 1 (see Section S2 of Supplementary Material for details) to

obtain an optimal number of basis elements. We also examined the performance

using the Fourier basis and found very similar results.

For the second example, we use Example 10 from Marron and Wand (1992),

who uses the claw density f0 = (1/2)N (0, 1)+
∑4

l=0(1/10)N ((l/2)−1, (0.1)2). As

before, we employ Algorithm 1 (see Section S2 of the Supplementary Material)

to find the optimal number of tangent basis elements J based on the AIC, with

J ≤ 40.

Table 2 summarizes the performance, showing that at n = 1, 000, the three

methods perform similarly, especially kernel(ucv) and the warped density esti-

mate. In fact, the warped density estimate and kernel(ucv) perform similarly

even at low sample sizes, whereas DPdensity performs worse. These results were

obtained using the Fourier basis, but the results for the Meyer basis were similar.

Note that the computation cost is highest for n = 25 for our method, and actually

decreases as n increases. This is because, for small n, there is less information;

thus it takes more time for the objective function to converge.
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Table 2. The performance of the claw density.

Method: DPDensity Kernel(ucv) Our Estimate

n Norm Mean std.dev. Time Mean std.dev Time Mean std.dev Time

25

L1 39.15 6.29 17.06 2.33 18.28 3.3

L2 5.46 0.48 4 sec 2.09 0.3 1 sec 2.41 0.43 105 sec

L∞ 1.2 0.05 0.5 0.14 0.64 0.17

100

L1 28.39 4.55 8.54 2.38 9.06 2.6

L2 4.31 0.46 26 sec 1.18 0.28 1 sec 1.3 0.35 85 sec

L∞ 1.08 0.09 0.34 0.08 0.42 0.13

1,000

L1 19.28 1.63 2.4 0.38 2.46 0.43

L2 3.16 0.15 331 sec 0.38 0.06 1 sec 0.4 0.08 71 sec

L∞ 0.83 0.04 0.14 0.03 0.15 0.04

We also study the effect of the choice of the initial shape on the overall

performance of the estimator, and compare the boundary performance with that

of a standard kernel estimate; see Section S5 of the Supplementary Material.

5. Extension to Conditional Density Estimation

The idea of using diffeomorphisms to warp an initial density estimate, while

maximizing the likelihood, extends naturally to conditional density estimation.

Consider the following setup. Let X be a fixed d-dimensional random variable,

with a positive density on its support. Let Y ∼ f0(m(X), σ2(X)), where f0

is the unknown conditional density that changes smoothly with X; m(X) is the

unknown mean function, assumed to be differentiable; and σ2(X) is the unknown

variance, which may or may not depend on X. Here, Y is assumed to have a

univariate continuous distribution, with support on an unknown interval [A,B].

We observe the pairs (Yi, Xi), for i = 1, . . . , n, and are interested in recovering

the conditional density f0.

In order to initialize the estimation, we assume a nonparametric mean re-

gression model of the form yi = m(xi)+εi, εi ∼ fp(0, σ2), where m(·) is estimated

using a standard local linear regression, fp is an initial estimate for the condi-

tional density of the response variable, and σ2 is estimated using the sample

standard deviation of the residuals {Yi− m̂(Xi)}. We used the truncated normal

density as fp in the experiments presented later, but other choices are equally

valid. In addition, we can choose any cost-efficient conditional density estimate

directly as the initial guess. As was the case in the unconditional pdf estima-

tion, it is not required that the initial estimate has a mean function close to
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the true mean function, or that it takes any particular form. The only require-

ment is that the initial conditional density should be continuous and bounded

away from zero, and that the density should vary smoothly with X, in the

sense that if x1 and x2 are close to each other, then the conditional pdf of

(Y |X = x1) should be close to the conditional pdf of (Y |X = x2), under the

L2 or some related metric. Then, the warped density estimate, for a warp-

ing function γ and location x0, is fw,x0
(y|X = x0) = fp(γ(y), m̂(x0), σ̂2)γ̇(y).

Let Fp,x0
be the initial estimate of the conditional distribution function of Y ,

given X = x0, for some given value of the predictor x0. If Ft,x0
is the true

conditional distribution function of Y , given X = x0, then the true γ at lo-

cation x0 is γx0
= F−1

p,x0
◦ Ft,x0

. Setting fp,x0
≡ fp(m̂(x0), σ̂2), we estimate

the optimal γ using the following weighted maximum likelihood estimation:

γ̂x0
= argmaxγ∈Γ(

∑n
i=1 log[(fp,x0

(γ(yi)|xi)γ̇)Wx0,i]) , where Wx0,i is the localized

weight associated with the ith observation, calculated as

Wx0,i =
N (‖Xi − x0‖2/h(x0); 0, 1)∑n
j=1N (‖Xj − x0‖2/h(x0); 0, 1)

,

where N (·; 0, 1) is the standard normal pdf, and h(x0) is the parameter that con-

trols the relative weights associated with the observations. Note that although

we have used a Gaussian kernel to define the weights, any kernel can be used.

However, the weights defined in this way result in a higher bias because informa-

tion is being borrowed from all observations. As in Bashtannyk and Hyndman

(2001), we allow only a specified fraction of the observations Xi to have a positive

weight. However, using too small a fraction will result in unstable estimates and

poor practical performance, because the effective sample size will be too small.

Hence, we advocate using the nearest 50% of the observations (nearest to the

target location) for borrowing information, and then calculating the weights for

this smaller sample as before.

The parameter h(x0) is akin to the bandwidth parameter associated with

traditional kernel methods for density estimation. A very large value of h(x0)

distributes approximately equal weight to all observations, whereas a very small

value considers only those observations in a small neighborhood around x0. Be-

cause h(x0) is scalar, we avoid the tremendous computational cost associated

with obtaining cross-validated bandwidths in each predictor dimension, when

the predictor dimension is high. When the predictor is one-dimensional, the pa-

rameter h(x0) is chosen according to the location x0 using the following two-step

procedure:
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1. Compute a standard kernel density estimate K̂ of the predictor space, using

a fixed bandwidth chosen according to any standard criterion. Let h be the

fixed bandwidth used.

2. Then, set the bandwidth parameter h(x0) at location x0 to h(x0) = h/√
K̂(x0).

Intuitively, h controls the overall smoothing of the predictor space based on the

sample points, and

√
K̂(x0) stretches or shrinks the bandwidth at the particular

location. The choice of the adaptive bandwidth parameter is motivated by the

discussions of variable bandwidth kernel density estimators in Terrell and Scott

(1992), Van Kerm (2003), and Abramson (1982), among others. In the case of d

independent predictors, h(x0) at x0 is chosen as follows:

1. Compute the kernel density estimate K̂i, for i ∈ 1, . . . , d, for the d pre-

dictors, with associated bandwidths h1, h2, . . . , hd, respectively. Then, h is

chosen as the harmonic mean of hi.

2. Once h is obtained, the bandwidth parameter h(x0) at x0 is given by

h(x0) =
h∏d

i=1

√
K̂i(x0i)

, (5.1)

where x0i is the ith coordinate of x0.

This choice of using the harmonic mean is based on the dependence of the mini-

max rates of convergence of the estimators to the harmonic mean of the smooth-

ness of the density along the different dimensions, as discussed in Lepski (2015).

We defer the analysis of the asymptotic properties of the proposed conditional

density estimator to the Supplementary Material, Section S2.

5.1. Simulation studies

Here, we present two examples to illustrate the proposed method and to com-

pare its performance with that of the standard R package NP (using the kd-tree

package implementation to reduce the computation time). In these experiments

we have used a Gaussian family for fp, the initial parametric conditional density

estimate. To estimate the mean function, we have used a local linear regression

function with Gaussian kernel weights, and with the bandwidth obtained using

kernel(bcv), available in the R package kedd. Bandwidths from other estima-

tors, such as unbiased cross-validation, and even the naive ksdensity function in
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MATLAB, produce qualitatively identical results. We use six basis elements for

the tangent space representation throughout. Note that using Algorithm 1 to

decide the number of basis elements would naturally increase the computation

cost, depending on how many models are considered.

For comparison, we used 100 samples, each of size n = 100 and n = 1, 000,

to obtain a mean integrated squared error loss function estimate, mean abso-

lute error estimate, and mean L∞ loss function estimate from the densities

evaluated over a grid of 100 points at 10 equidistant locations over the sup-

port of each of the predictors. As a first example, we consider a situation

where the true conditional density is a Laplace distribution; that is, f(yi|X =

xi) = DExp(yi; mean=(2xi − 1), var=1) and Xi ∼ N (0, 1). As the second ex-

ample, we consider a bivariate predictor scenario where f(yi|X = (x1i, x2i)) =

(1 − e−x2i)N (yi; (x1i + 2), (0.5)2) + (e−x2i)DExp(yi; (x1i − 1), 1), the predictors

X1 ∼ 0.95N (0, (0.4)2) + 0.05N (0, (1.4)2), and X2 ∼ U(0, 1).

The results are summarized in Table 3. From the results, it is clear that

when the sample size is low, the performance of the warped estimate is better

and more stable. When the sample size is high, the two methods perform sim-

ilarly. For the second example, the NP package has better overall loss, although

the warped estimation method still provides more stable performance. How-

ever, the computation cost of the NP package is very high, even with the kd-tree

implementation, whereas the warped estimation is computationally very efficient.

5.2. Application to epidemiology

Longnecker et al. (2001) studied the association between DDT metabolite

DDE exposure and pre-term birth in a study based on the US Collaborative Peri-

natal Project (CPP). DDT is very effective against mosquitoes carrying malaria

and, hence, is frequently used in malaria-endemic areas, in spite of evidence that

suggests there are associated health risks. Both Longnecker et al. (2001) and

Dunson and Park (2008) concluded that higher levels of DDE exposure are asso-

ciated with higher risks of pre-term birth. The response variable in question is

the gestational age at delivery (GAD), and deliveries occurring prior to 37 weeks

of gestation are considered as pre-term. Longnecker et al. (2001) also recorded

the serum triglycerine level, among several other factors, and included it in their

model, because the serum DDE level can be affected by the concentration of

serum lipids.

We study the GAD data set to investigate the effects of varying levels of
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Table 3. A comparison of the performance of the NP package and the warped estimate
for the simulated examples.

Method: NP package Warped Estimate

Example n Norm Mean std.dev Time Mean std.dev Time

Example 1

100

L1 4.11 0.51 3.28 0.44

ISE 0.59 0.12 1 sec 0.41 0.11 1 sec

L∞ 0.40 0.07 0.88 0.34

1,000

L1 2.50 0.24 2.46 0.11

ISE 0.26 0.04 51 sec 0.25 0.03 3 sec

L∞ 0.39 0.06 0.36 0.04

Example 2

100

L1 60.49 6.67 58.55 5.28

ISE 11.43 4.01 2 sec 10.38 1.82 2 sec

L∞ 2.47 0.43 2.41 0.35

1,000

L1 42.10 4.32 53.53 1.86

ISE 5.88 1.41 198 sec 8.96 0.57 7 sec

L∞ 2.38 0.29 2.24 0.25

DDE on the distribution of the GAD, focusing on the left tail of the distribution

to assess the effect on pre-term births. In our study, following Dunson and Park

(2008), we include only the 2,313 subjects for whom the gestation age at delivery

is less than 45 weeks, attributing higher values to measurement errors. We study

the conditional density of the GAD, given different doses of DDE in the serum.

We also study the effects of different levels of triglyceride on the GAD. However,

because DDE is a possible confounding factor, we conduct a bivariate analysis,

including both DDE dose and triglyceride level as covariates, and study the effect

on the GAD at varying levels of one covariate, keeping the other fixed. We also

investigate whether different levels of one covariate affect the distribution of the

other.

Based on our findings, the very erratic behavior at locations where the DDE

dose or triglyceride levels lie in the 99th percentile is seen with some skepticism,

owing to the sparsity of the data in that region. We notice an increasingly promi-

nent peak near the left tail of the GAD distribution with increasing dose of DDE,

which agrees with the results of Longnecker et al. (2001) and Dunson and Park

(2008), shown in the left panel of Figure 3. The right panel of Figure 3 suggests

a tendency of a higher risk of pre-term birth at higher doses of triglycerides as

well, although the difference is less pronounced.

To investigate whether the results corresponding to triglycerides are con-

founded by the DDE doses, we first study the effects of triglyceride levels on the
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Figure 3. Distribution of GAD for varying levels of DDE and triglyceride.
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Figure 4. Distribution of DDE and triglyceride at different levels of the other.
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GAD vs DDE at triglyceride level 196ug/L dose
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GAD vs DDE at triglyceride level 439ug/L dose
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Figure 5. Distribution of gestation at varying levels of DDE for fixed values of triglyc-
eride.
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GAD vs triglyceride at DDE dose 24.68ug/L dose
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Figure 6. Distribution of gestation at varying levels of triglyceride for fixed values of
DDE.

DDE distribution and vice versa. Figure 4 shows that the distributions of the

covariates are almost identical for varying levels of the other. The only exception

is at the 99th percentile of triglyceride, for which the distribution of the DDE

doses seems to be shifted to the right. For fixed levels of triglyceride, increasing

the DDE doses shows an increasing left peak, except where both the DDE and

the triglyceride levels are very high, as shown in Figure 5. For fixed doses of



TWO-STEP GEOMETRIC FRAMEWORK FOR DENSITY MODELING 2173

DDE, the distribution of the GAD at different levels of triglyceride do not follow

any increasing trend, and are almost indistinguishable from each other for dif-

ferent doses of DDE, as seen in Figure 6. This suggests that the increased risk

of pre-term birth can be attributed primarily to DDE doses, and there is no sig-

nificant effect of different triglyceride levels on the gestation age. The apparent

increasing risk of pre-term birth for increasing level of triglycerides seen in the

right panel of Figure 3 is caused mainly by DDE doses acting as a confounding

factor.

6. Discussion

Density estimation is a rich field of research in Statistics and machine learn-

ing. This study introduces a novel framework using geometric tools and the

notion of a transitive group action, providing a new option for density estima-

tion. Specifically, exploiting the geometry of the group of diffeomorphisms, we

can shift the problem of finding an underlying density to one of finding an ap-

propriate diffeomorphism, given an initial shape, based on available data. In

recent years, most data sets on a variable of interest have associated covariates

that make a conditional density estimation useful and practically relevant. An

advantage of the proposed framework is the easy extendibility of its geometric

tools to the conditional density estimation problem, via a weighted maximum

likelihood objective function.

Given the focus of our research, we touch only lightly upon, or do not explore

many associated problems of density estimation, such as, the choice of the number

of basis elements for the tangent space representation, choice of the basis set itself,

or choice of a penalty for a penalized estimation and boundary estimation. Here

we use the AIC as the penalty to select the number of basis elements because

we noticed that the BIC tends to choose an insufficient number of parameters.

In addition, experiments using a Meyer basis set and a cosine basis set for the

tangent space representation of the diffeomorphisms yielded similar results to

those of the Fourier basis. Keeping in mind that the basis set representation is for

used to approximate the warping functions and not the density functions directly,

we can choose different basis sets for a comparative study of performances. Here,

we follow Turnbull and Ghosh (2014) when choosing the boundaries.

For the conditional density estimation, the weights defined as a Gaussian

kernel can also be defined using any other kernel. The choice of a Gaussian ker-

nel (and the L2loss function) simply serves as an example. A possible extension
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is to estend the framework to include situations in which multiple or very high

numbers of covariates are present. Currently, the bandwidth parameter is cho-

sen adaptively based on a kernel density estimate at the location of the (scalar)

covariate. It can be extended directly to d covariate scenario using a d variate

kernel density estimate at the location of the predictors. However, such an esti-

mate suffers from the curse of dimensionality. In applications where only a few

of the covariates are relevant to the response variable, Wasserman and Lafferty

(2006) developed a technique to identify the relevant variables, and to obtain

the corresponding bandwidth parameters. Using these bandwidth parameters,

we can redefine the weights and perform a weighted likelihood maximization to

produce a conditional density estimate. Furthermore, note that the proposed

bandwidth for the weights in this study is same for all the covariates. However,

many different isotropic and anisotropic data-driven bandwidth choices are pos-

sible, for example, using cross-validation, or the method proposed in Wasserman

and Lafferty (2006). Note that even with an isotropic choice of bandwidth, the

proposed technique performs similarly to a standard KDE, especially at smaller

sample sizes.

Supplementary Material

The online Supplementary Material, Section S1, contains the proofs of the

results in Section 3 of the manuscript. Section S2 discusses the asymptotic con-

vergence rate of the conditional density estimator. Section S3 presents a practical

implementation of the framework and several numerical techniques. Graphical

representations of the univariate density estimations on the simulated data sets

(see Section 4) are presented in Section S4 of the Supplementary Material. Sec-

tion S5 presents simulation studies that investigate the properties of the density

estimator. Section 6 discusses several properties of the estimator.
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