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Abstract: We study the asymptotic properties of the adaptive Lasso estimators in

sparse, high-dimensional, linear regression models when the number of covariates

may increase with the sample size. We consider variable selection using the adap-

tive Lasso, where the L1 norms in the penalty are re-weighted by data-dependent

weights. We show that, if a reasonable initial estimator is available, under ap-

propriate conditions, the adaptive Lasso correctly selects covariates with nonzero

coefficients with probability converging to one, and that the estimators of nonzero

coefficients have the same asymptotic distribution they would have if the zero co-

efficients were known in advance. Thus, the adaptive Lasso has an oracle property

in the sense of Fan and Li (2001) and Fan and Peng (2004). In addition, under

a partial orthogonality condition in which the covariates with zero coefficients are

weakly correlated with the covariates with nonzero coefficients, marginal regression

can be used to obtain the initial estimator. With this initial estimator, the adaptive

Lasso has the oracle property even when the number of covariates is much larger

than the sample size.

Key words and phrases: Asymptotic normality, high-dimensional data, penalized

regression, variable selection, oracle property, zero-consistency.

1. Introduction

Consider the linear regression model

y = Xβ + ε ∈ IRn, (1.1)

where X is an n× pn design matrix, β is a pn × 1 vector of unknown coefficients,

and ε is a vector of i.i.d. random variables with mean zero and finite variance

σ2. We note that pn, the length of β, may depend on the sample size n. We

assume that the response and covariates are centered, so the intercept term is

zero. We are interested in estimating β when pn is large, even larger than n,

and the regression parameter is sparse in the sense that many of its elements

are zero. Our motivation comes from studies that try to correlate a certain

phenotype with high-dimensional genomic data. With such data, the dimension

of the covariate vector can be much larger than the sample size. The traditional
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least squares method is not applicable, and regularized or penalized methods

are needed. The Lasso (Tibshirani (1996)) is a penalized method similar to ridge

regression (Hoerl and Kennard (1970)) but uses the L1 penalty
∑pn

j=1 |βj | instead

of the L2 penalty
∑pn

j=1 β2
j . Thus the Lasso estimator is the value that minimizes

∥∥∥y − X′β

∥∥∥
2
+ 2λ

pn∑

j=1

|βj |, (1.2)

where λ is the penalty parameter. An important feature of the Lasso is that

it can be used for variable selection. Compared to the classical variable selec-

tion methods such as subset selection, the Lasso has two advantages. First, the

selection process in the Lasso is continuous and hence more stable than subset se-

lection. Second, the Lasso is computationally feasible for high-dimensional data.

In contrast, computation in subset selection is combinatorial and not feasible

when pn is large.

Several authors have studied properties of the Lasso. When pn is fixed,

Knight and Fu (2000) showed that, under appropriate conditions, the Lasso is

consistent for estimating the regression parameter, and its limiting distributions

can have positive probability mass at 0 when the true value of the parameter is

zero. Leng, Lin and Wahba (2004) showed that the Lasso is in general not path

consistent in the sense that (a) with probability greater than zero, the whole

Lasso path may not contain the true parameter value; (b) even if the true pa-

rameter value is contained in the Lasso path, it cannot be achieved by using

prediction accuracy as the selection criterion. For fixed pn, Zou (2006) further

studied the variable selection and estimation properties of the Lasso. He showed

that the positive probability mass at 0, when the true value of the parameter

is 0, is in general less than 1; this implies that the Lasso is in general not vari-

able selection consistent. He also provided a condition on the design matrix

for the Lasso to be variable selection consistent. This condition was discovered

by Meinshausen and Buhlmann (2006) and Zhao and Yu (2007). In particular,

Zhao and Yu (2007) called this the irrepresentable condition on the design ma-

trix. Meinshausen and Buhlmann (2006) and Zhao and Yu (2007) allowed the

number of variables go to infinity faster than n. They showed that under the

irrepresentable condition, the Lasso is consistent for variable selection provided

pn is not too large and the penalty parameter λ grows faster than
√

n log pn.

Specifically, pn is allowed to be as large as exp(na) for some 0 < a < 1 when the

errors have Gaussian tails. However, the value of λ required for variable selection

consistency over-shrinks the nonzero coefficients, which leads to asymptotically

biased estimates. Thus the Lasso is variable selection consistent under certain

conditions, but not in general. Moreover, if the Lasso is variable selection consis-

tent, then it is not efficient for estimating the nonzero parameters. These studies
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thus confirm that the Lasso does not possess the oracle property (Fan and Li

(2001) and Fan and Peng (2004)). Here the oracle property of a method means

that it can correctly select the nonzero coefficients with probability converging

to one, and that the estimators of the nonzero coefficients are asymptotically

normal with the same means and covariance that they would have if the zero

coefficients were known in advance. On the other hand, Greenshtein and Ritov

(2004) showed that the Lasso has certain persistence property for prediction and,

under a sparse Riesz condition, Zhang and Huang (2008) proved that the Lasso

possesses the right order of sparsity and selects all coefficients of greater order

than (λ/n)
√

kn, where kn is the number of nonzero coefficients.

In addition to the Lasso, other penalized methods have been proposed for the

purpose of simultaneous variable selection and shrinkage estimation. Examples

include the bridge penalty (Frank and Friedman (1993)) and the SCAD penalty

(Fan (1997) and Fan and Li (2001)). For the SCAD penalty, Fan and Li (2001)

and Fan and Peng (2004) studied asymptotic properties of penalized likelihood

methods. They showed that there exist local maximizers of the penalized like-

lihood that have the oracle property. Huang, Horowitz, and Ma (2008) showed

that the bridge estimator in a linear regression model has the oracle property un-

der appropriate conditions, if the bridge index is strictly between 0 and 1; their

result also permits a divergent number of regression coefficients. While the SCAD

and bridge estimators enjoy the oracle property, the objective functions with the

SCAD and bridge penalties are not convex, so it is more difficult to compute these

estimators. Another interesting estimator of β in high-dimensional settings, the

Dantzig selector, was proposed and studied by Candes and Tao (2005). This

estimator achieves a loss within a logarithmic factor of the ideal mean squared

error, and can be solved by a convex minimization problem.

An approach to obtaining a convex objective function which yields oracle

estimators is by using a weighted L1 penalty with weights determined by an

initial estimator (Zou (2006)). Suppose that an initial estimator β̃n is available.

Let

wnj = |β̃nj |−1, j = 1, . . . , pn, (1.3)

Ln(β) =
∥∥∥y − Xβ

∥∥∥
2
+ 2λn

pn∑

j=1

wnj |βj |. (1.4)

The value β̂n that minimizes Ln is called the adaptive Lasso estimator (Zou

(2006)). By allowing a relatively higher penalty for zero coefficients and, lower

penalty for nonzero coefficients, the adaptive Lasso hopes to reduce the estima-

tion bias and improve variable selection accuracy, compared with the standard

Lasso.
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For fixed pn, Zou (2006) proved that the adaptive Lasso has the oracle prop-

erty. We consider the case when pn → ∞ as n → ∞. We show that the adaptive

Lasso has the oracle property under an adaptive irrepresentable and other regu-

larity conditions and, in particular, this can be achieved with marginal regression

as the initial estimates under a partial orthogonal condition on the covariates.

This result allows pn = O(exp(na)) for some constant 0 < a < 1, where a de-

pends on the regularity conditions. Thus, the number of covariates can be larger

than the sample size if a proper initial estimator is used in the adaptive Lasso.

When pn > n, the regression parameter is in general not identifiable with-

out further assumptions on the covariate matrix. However, if there is suitable

structure in the covariate matrix, it is possible to achieve consistent variable se-

lection and estimation. We consider a partial orthogonality condition in which

the covariates with zero coefficients are only weakly correlated with the covari-

ates with nonzero coefficients. We show that for pn ≫ n, and under the partial

orthogonality and certain other conditions, the adaptive Lasso achieves selection

consistency and estimation efficiency when the marginal regression estimators are

used as the initial estimators, although they do not yield consistent estimation of

the parameters. The partial orthogonality condition is reasonable in microarray

data analysis, where the genes that are correlated with the phenotype of inter-

est may be in different functional pathways from the genes that are not related

to the phenotype (Bair et al. (2006)). The partial orthogonality condition was

also discussed in the context of bridge estimation by Huang, Horowitz, and Ma

(2008). Fan and Lv (2006) studied univariate screening in high-dimensional re-

gression problems and provided conditions under which it can be used to reduce

the exponentially growing dimensionality of a model. A new contribution here is

that we investigate the effect of the tail behavior of the error distribution on the

property of the marginal regression estimators in high-dimensional settings.

The rest of the paper is organized as follows. In Section 2, we state the

results on variable selection consistency and asymptotic normality of the adaptive

Lasso estimator. In Section 3, we show that, under the partial orthogonality and

certain other regularity conditions, marginal regression estimators can be used in

the adaptive Lasso to yield the desirable selection and estimation properties. In

Section 4, we present results from simulation studies and a data example. Some

concluding remarks are given in Section 5. The proofs of the results stated in

Sections 2 and 3 are provided in the online supplement to this article.

2. Variable-Selection Consistency and Asymptotic Normality

Let the true parameter value be β0 = (β01, . . . , β0p)
′ with dimension p = pn.

For simplicity, write β0 = (β′
10,β

′
20)

′, where β10 is a kn × 1 vector and β20 is

a mn × 1 vector. Suppose that β10 6= 0 and β20 = 0, where 0 is the vector
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(of appropriate dimension) with all components zero. So kn is the number of

non-zero coefficients and mn is the number of zero coefficients in the regression

model. We note that it is unknown to us which coefficients are non-zero and

which are zero. Most quantities and data objects in our discussion are functions

of n, but this dependence on n is often left implicit, especially for n-vectors and

matrices with n rows.

We center the response y = (y1, . . . , yn)′ and standardize the covariates

X = (xij)n×pn
so that

n∑

i=1

yi = 0,
n∑

i=1

xij = 0 and
1

n

n∑

i=1

x2
ij = 1, j = 1, . . . , pn. (2.1)

Let xj = (x1j , . . . , xnj)
′ be the j-th column of the design matrix X = (x1, . . . ,xpn

),

and y = (y1, . . . , yn)′. The regression model is

y =

pn∑

j=1

βjxj + ε = Xβ + ε (2.2)

with the error vector ε = (ε1, . . . , εn)′. Let Jn1 = {j : β0j 6= 0} and set

X1 = (x1, . . . ,xkn
), Σn11 = n−1X′

1X1 Let τn1 be the smallest eigenvalue of

Σn11. For any vector x = (x1, x2, . . .)
′, denote its sign vector by sgn(x) =

(sgn(x1), sgn(x2), . . .)
′, with the convention sgn(0) = 0. Following Zhao and Yu

(2007), we say that β̂n =s β if and only if sgn(β̂n) = sgn(β). Let

bn1 = min{|β0j | : j ∈ Jn1}. (2.3)

We consider the following conditions.

(A1) The errors εi, ε2, . . . are independent and identically distributed random

variables with mean zero, and for certain constants 1 ≤ d ≤ 2, C > 0 and

K, the tail probabilities of εi satisfy P (|εi| > x) ≤ K exp(−Cxd) for all

x ≥ 0 and i = 1, 2, . . .

(A2) The initial estimators β̃nj are rn-consistent for the estimation of certain ηnj:

rn max
j≤pn

∣∣∣β̃nj − ηnj

∣∣∣ = OP (1), rn → ∞,

where ηnj are unknown constants depending on β and satisfy

max
j 6∈Jn1

|ηnj| ≤ Mn2,
{ ∑

j∈Jn1

( 1

|ηnj|
+

Mn2

|ηnj|2
)2} 1

2 ≤ Mn1 = o(rn).
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(A3) Adaptive irrepresentable condition. For sn1 =
(
|ηnj |−1sgn(β0j), j ∈ Jn1

)′

and some κ < 1,

n−1
∣∣∣x′

jX1Σ
−1
n11sn1

∣∣∣ ≤ κ

|ηnj |
, ∀ j 6∈ Jn1.

(A4) The constants {kn,mn, λn,Mn1,Mn2, bn1} satisfy

(log n)I{d=1}
{(log kn)

1

d

n
1

2 bn1

+ (log mn)
1

d

n
1

2

λn

(
Mn2 +

1

rn

)}
+

Mn1λn

bn1n
→ 0.

(A5) There exists a constant τ1 > 0 such that τn1 ≥ τ1 for all n.

Condition (A1) is standard for variable selection in linear regression. Condi-

tion (A2) assumes that the initial β̃nj actually estimates some proxy ηnj of βnj,

so that the weight wnj ≈ |ηnj |−1 is not too large for β0j 6= 0 and not too small for

β0j = 0. The adaptive irrepresentable condition (A3) becomes the strong irresp-

resentable condition for the sign-consistency of the Lasso if the |ηnj| are identical

for all j ≤ pn. It weakens the strong irrepresentable condition by allowing larger

|ηnj| in Jn1 (smaller sn1) and smaller |ηnj | outside Jn1. If sgn(ηnj) = sgn(βnj) in

(A2), we say that the initial estimates are zero-consistent with rate rn. In this

case, (A3) holds automatically and Mn2 = 0 in (A2).

Condition (A4) restricts the numbers of covariates with zero and nonzero

coefficients, the penalty parameter, and the smallest non-zero coefficient. The

number of covariates permitted depends on the tail behavior of the error terms.

With sub-Gaussian tails, the model can include more covariates than with ex-

ponential tails. We often have nδ−1/2rn → ∞ and λn = na for some 0 < a < 1

and small δ > 0. In this case, the number mn of zero coefficients can be as large

as exp(nd(a−δ)). But the number of nonzero coefficients allowed is of the order

min{n2(1−a), n1−2δ}, assuming 1/bn1 = O(1) and Mn1 = O(k
1/2
n ). Condition

(A5) assumes that the eigenvalues of Σn11 are bounded away from zero, this is

reasonable since the number of nonzero covariates is small in a sparse model.

Among conditions (A1) to (A5), (A3) is the critical one and is in general

difficult to establish. It assumes that we can estimate certain ηnj satisfying

the condition. On the other hand, this task can be reduced to establishing the

simpler and stronger properties under a partial orthogonality condition described

in Section 3.

Theorem 1. Suppose that conditions (A1)−(A5) hold. Then P
(
β̂n =s β0

)
→ 1.

The proof of this theorem can be found in the on-line supplement to this

article.
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Theorem 2. Suppose that conditions (A1) to (A5) are satisfied. Let s2
n =

σ2α′
nΣ−1

n11αn for any kn×1 vector αn satisfying ‖αn‖2 ≤ 1. If Mn1λn/n1/2 → 0,

n
1

2 s−1
n α′

n(β̂n1 − β0) = n− 1

2 s−1
n

n∑

i=1

εiα
′
nΣ−1

n11x1i + op(1) →D N(0, 1), (2.4)

where op(1) is a term that converges to zero in probability uniformly with respect

to αn.

This theorem can be proved by verifying the Lindeberg conditions in the
same way as in the proof of Theorem 2 of Huang et al. (2008). Thus we omit

the proof here.

3. Zero-Consistency, Partial Orthogonality and Marginal Regression

For the adaptive Lasso estimator to be variable selection consistent and
have the oracle property, it is crucial to have an initial estimator that is zero-
consistent or satisfies the weaker condition (A3). When pn ≤ n, the least squares
estimator is consistent and therefore zero-consistent under certain conditions
on the design matrix and regression coefficients. In this case, we can use the
least squares estimator as the initial estimators for the weights. However, when
pn > n, which is the case in many microarray gene expression studies, the least
squares estimator is no longer feasible. In this section, we show that the marginal
regression estimators are zero-consistent under a partial orthogonality condition.

With the centering and scaling given in (2.1), the estimated marginal regres-
sion coefficient is

β̃nj =

∑n
i=1 xijyi∑n
i=1 x2

ij

=
x′

jy

n
. (3.1)

We take the ηnj in (A2) to be Eβ̃nj . Since µ0 = Ey = Xβ0,

ηnj = Eβ̃nj =
x′

jµ0

n
=

kn∑

l=1

β0lx
′
jxl

n
. (3.2)

It is also possible to consider β̃nj = |x′
jy/n|γ and ηnj = |x′

jµ0/n|γ with certain
γ > 0, but we focus on the simpler (3.1) and (3.2) here.

Consider the following assumptions.

(B1) The condition (A1) holds.

(B2) (Partial orthogonality) The covariates with zero coefficients and those with
nonzero coefficients are weakly correlated

∣∣∣
1

n

n∑

i=1

xijxik

∣∣∣ =
∣∣∣
x′

jxk

n

∣∣∣ ≤ ρn, j 6∈ Jn1, k ∈ Jn1
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where, for certain 0 < κ < 1, ρn satisfies

cn =
(

max
j 6∈Jn1

∣∣ηnj

∣∣
)( ∑

j∈Jn1

|ηnj |−2

kn

) 1

2 ≤ κτn1

knρn
, (3.3)

where κ is given in (A3).

(B3) The minimum b̃n1 = min{|ηnj |, j ∈ Jn1} satisfies

k
1

2

n (1 + cn)

b̃n1rn

→ 0, rn =
n

1

2

(log mn)
1

d (log n)I{d=1}
.

Condition (B2) is the weak partial orthogonality assumption that requires
that the covariates with zero coefficients have weaker correlation to the mean
µ0 = Ey than those with nonzero coefficients, in an average sense. For knρn ≤
κτn1, (B2) holds for the Lasso with ηnj = 1. Thus, the adaptive Lasso has advan-
tages only when cn < 1. Condition (B3) requires that the non-zero coefficients
are bounded away from zero at certain rates depending on the growth of kn and
mn.

Theorem 3. Suppose that conditions (B1) to (B3) hold. Then the β̃n in (3.1)
is rn-consistent for ηnj and the adaptive irrepresentable condition holds.

The proof of this theorem is given in the on-line supplement to this article.
Theorem 3 provides justification for using marginal regression estimator for

the adaptive Lasso as the initial estimator under the partial orthogonality con-
dition. Under (B1)−(B3), (A4) follows from

(B4). Let bn2 = O(1). Then bn1 ≤ |β0j | ≤ bn2 ∀j ∈ Jn1 and

( log kn

log mn
)

1

d

rnbn1
+

n

λnrn
(knρn +

1

rn
) +

k
1

2

n λn

nbn1b̃n1

→ 0.

Thus, under (B1)−(B4) and (A5), we can first use marginal regression to obtain
the initial estimators, then use them as weights in the adaptive Lasso to achieve
variable-selection consistency and oracle efficiency.

A special case of Theorem 3 is when ρn = O(n−1/2), that is, the covariates
with nonzero and zero coefficients are essentially uncorrelated. Then we can take
ηnj = 0, j 6∈ Jn1, and (3.3) is satisfied. Consequently, the univariate regression

estimator β̃n in (3.1) is zero-consistent with rate rn. In this case, the adaptive
irrepresentable condition (A3) is automatically satisfied.

4. Numerical Studies

We conduct simulation studies to evaluate the finite sample performance of
the adaptive Lasso estimate and use a data example to illustrate the application
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of this method. Because our main interest is in pn large and Zou (2006) has

conducted simulation studies of adaptive Lasso in low-dimensional settings, we

focus on the case pn > n.

4.1. Simulation study

The adaptive Lasso estimate can be computed by a simple modification

of the LARS algorithm (Efron et al. (2004)). The computational algorithm is

omitted here. In the simulation study, we are interested in (1) accuracy of variable

selection and (2) prediction performance measured by mse (mean squared error).

For (1), we compute the frequency of correctly identifying zero and nonzero

coefficients in repeated simulations. For (2), we compute the median prediction

mse, calculated based on the predicted and observed values of the response from

independent data not used in model fitting. We also compare the results from

the adaptive Lasso to those from the standard Lasso estimate.

We simulate data from the linear model y = Xβ + ε, ε ∼ N(0, σ2In). Eight

examples with pn > n are considered. In each example, the covariate vector is

normally distributed with mean zero and the covariance matrix specified below.

The value of X is generated once and then kept fixed. Replications are obtained

by simulating the values of ε from N(0, σ2In) and then setting y = Xβ + ε for

the fixed covariate value X. The sample size used in estimation is n = 100.

Summary statistics are computed based on 500 replications.

The eight examples we consider are the following.

1. p = 200 and σ = 1.5; the n-rows of X are independent; for the i-th row, the

first 15 covariates (xi,1, . . . , xi,15) and the remaining 185 covarites (xi,16, . . . , xi,200)

are independent; the pairwise correlation between the kth and the jth compo-

nents of (xi,1, . . . , xi,15) is r|k−j| with r = 0.5, k, j = 1, . . . , 15; the pairwise

correlation between the kth and the jth components of (xi,16, . . . , xi,200) is

r|k−j| with r = 0.5, k, j = 16, . . . , 200; the first five components of β are 2.5,

components 6–10 are 1.5, components 11–15 are 0.5, and the rest are zero;

the covariate matrix has the partial orthogonal structure.

2. The same as Example 1, except that r = 0.95.

3. The same as Example 1, except that p = 400.

4. The same as Example 2, except that p = 400.

5. p = 200 and σ = 1.5; the predictors are generated as xij = Z1j + eij , i =

1, . . . , 5, xij = Z2j + eij , i = 6, . . . , 10, xij = Z3j + eij , i = 11, . . . , 15, and

xij = Zij , where Zij are i.i.d. N(0, 1) and eij are i.i.d. N(0, 1/100); The first

15 components of β are 1.5, the remainder are zero.

6. The same as Example 5, except that p = 400.
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Table 1. Simulation study, comparison of adaptive Lasso with Lasso. PMSE:
median of PMSE, inside “()” are the corresponding standard deviations.

Covariate: median of number of covariates with nonzero coefficients.

Lasso Adaptive-Lasso
Example PMSE Covariate PMSE Covariate

1 3.829 (0.769) 58 3.625 (0.695) 50

2 3.548 (0.636) 54 2.955 (0.551) 33

3 3.604 (0.681) 50 3.369 (0.631) 43

4 3.304 (0.572) 50 2.887 (0.499) 33

5 3.148 (0.557) 48 2.982 (0.540) 40
6 3.098 (0.551) 42 2.898 (0.502) 36

7 3.740 (0.753) 59 3.746 (0.723) 53

8 3.558 (0.647) 55 3.218 (0.578) 44

7. p = 200 and σ = 1.5; the pairwise correlation between the kth and the jth

components of (xi,1, . . . , xi,200) is r|k−j| with r = 0.5, k, j = 1, . . . , 300; com-
ponents 1–5 of β are 2.5, components 11–15 are 1.5, components 21–25 are
0.5, and the rest are zero.

8. The same as Example 7, except that r = 0.95.

Partial orthogonal condition is satisfied in Examples 1–6. Especially, Examples
1 and 3 represent cases with moderately correlated covariates; Examples 2 and
4 have strongly correlated covariates; while Examples 5 and 6 have the grouping
structure (Zou and Hastie (2005)) with three equally important groups, where
covariates within the same group are highly correlated. Examples 7 and 8 rep-
resent cases where the partial orthogonality assumption is violated; covariates
with nonzero coefficients are correlated with the rest.

In each example, the simulated data consist of a training set and a test set,
each of size 100. For both the Lasso and Adaptive Lasso, tuning parameters
are selected based on V-fold cross-validation with the training set only. We set
V = 5. After tuning parameter selection, the Lasso and adaptive Lasso estimates
are computed using the training set. We then compute the prediction MSE for
the test set, based on the training set estimate. Specifically, in each data set of
500 replications, let ŷi be the fitted value based on the training data, and let yi

be the response value in the test data whose corresponding covariate value is the
same as that associated with ŷi. Then the prediction MSE for this data set is
n−1

∑n
i=1(ŷi − yi)

2 where n = 100. The PMSE included in Table 1 is the median
of the prediction MSE’s from 500 replications.

Summary statistics of variable selection and PMSE results are shown in Ta-

ble 1. It can be seen that for Examples 1−6, the adaptive Lasso yields smaller

models with better predictive performance. However, due to the large number

of covariates, the number of covariates identified by the adaptive Lasso is still



ADAPTIVE LASSO FOR SPARSE HIGH-DIMENSIONAL REGRESSION MODELS 1613

larger than the true value (15). When the partial orthogonality condition is not

satisfied (Examples 7 and 8), the adaptive Lasso still yields smaller models with

satisfactory predictive performance (comparable to the Lasso). Extensive simu-

lation studies with other values of p and different marginal and joint distributions

of xij yield similar, satisfactory results. Figures 1 and 2 show the frequencies of

individual covariate effects being properly classified: zero versus nonzero. For a

better view, we show only the first 100 coefficients which include all the nonzero

coefficients. The patterns of the results from the remaining coefficients are simi-

lar.

4.2. Data example

We use the data set reported in Scheetz et al. (2006) to illustrate the appli-

cation of the adaptive Lasso in high-dimensional settings. For this data set, F1

animals were intercrossed and 120 twelve-week-old male offspring were selected

for tissue harvesting from the eyes and for microarray analysis. The microarrays

used to analyze the RNA from the eyes of these F2 animals contain over 31,042

different probe sets (Affymetric GeneChip Rat Genome 230 2.0 Array). The

intensity values were normalized using the RMA (robust multi-chip averaging,

Bolstad et al. (2003), Irizzary (2003)) method to obtain summary expression val-

ues for each probe set. Gene expression levels were analyzed on a logarithmic

scale. For the 31,042 probe sets on the array, we first excluded probes that were

not expressed in the eye or that lacked sufficient variation. The definition of ex-

pressed was based on the empirical distribution of RMA normalized values. For

a probe to be considered expressed, the maximum expression value observed for

that probe among the 120 F2 rats was required to be greater than the 25th per-

centile of the entire set of RMA expression values. For a probe to be considered

“sufficiently variable”, it had to exhibit at least 2-fold variation in expression

level among the 120 F2 animals. A total of 18,976 probes met these two criteria.

We are interested in finding the genes whose expression are correlated with

that of gene TRIM32. This gene was recently found to cause Bardet-Biedl syn-

drome (Chiang et al. (2006)), which is a genetically heterogeneous disease of mul-

tiple organ systems including the retina. The probe from TRIM32 is 1389163 at,

which is one of the 18, 976 probes that are sufficiently expressed and variable.

One approach to finding the probes among the remaining 18, 975 probes that are

most related to TRIM32 is to use regression analysis. Here the sample size is

n = 120 (i.e., there are 120 arrays from 120 rats), and the number of probes is

18, 975. It is expected that only a few genes are related to TRIM32. Thus this

is a sparse, high-dimensional regression problem. We use the proposed approach

in the analysis. We first standardize the probes so that they have mean zero and

standard deviation 1, we then do the following steps:
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Figure 1. Simulation study (Examples 1–4): frequency of individual covari-
ate effect being correctly identified. Circle: Lasso; Triangle: adaptive Lasso.
Only the results of the first 100 coefficients are shown in the plots.
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Figure 2. Simulation study (Examples 5–8): frequency of individual covari-
ate effect being correctly identified. Circle: Lasso; Triangle: adaptive Lasso.
Only the results of the first 100 coefficients are are shown in the plots.
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1. select 3,000 probes with the largest variances;

2. compute the marginal correlation coefficients of the 3,000 probes with the

probe corresponding to TRIM32;

3. select the top 200 covariates with the largest correlation coefficients; this is

equivalent to selecting the covariates based on marginal regression, since co-

variates are standardized.

The estimation and prediction results from adaptive Lasso and Lasso are

provided below. Table 2 lists the probes selected by the adaptive Lasso. For

comparison, we also used the Lasso. The Lasso selected five more probes than

the adaptive Lasso. To evaluate the performance of the adaptive Lasso relative

to the Lasso, we use cross-validation and compare the predictive mean square

errors (MSEs). Table 3 gives the results when the number of covariates is p =

100, 200, 300, 400 and 500. We randomly partition the data into a training set

and a test set, the training set consisting of 2/3 observations and the test set

consisting of the remaining 1/3 observations. We then fit the model with the

training set and calculate the prediction MSE for the test set. We repeat this

process 300 times, each time a new random partition is made. The values in Table

3 are the medians of the results from 300 random partitions. Overall, we see that

the performance of the adaptive Lasso and Lasso are similar. However, there is

some improvement of the adaptive Lasso over the Lasso in terms of prediction

MSEs. Notably, the number of covariates selected by the adaptive Lasso is fewer

than that selected by the Lasso, yet the prediction MSE of the adaptive Lasso is

smaller.

5. Concluding Remarks

The adaptive Lasso is a two-step approach. In the first step, an initial esti-

mator is obtained. Then a penalized optimization problem with a weighted L1

penalty must be solved. The initial estimator does not need to be consistent,

but it must put more weight on the zero coefficients and less on nonzero ones,

in an average sense, to improve upon the Lasso. Under the partial orthogonality

condition, a simple initial estimator can be obtained from marginal regression.

Compared to the Lasso, the theoretical advantage of the adaptive Lasso is that

it has the oracle property. Compared to the SCAD and bridge methods, which

also have the oracle property, the advantage of the adaptive Lasso is its computa-

tional efficiency. Given the initial estimator, the computation of adaptive Lasso

estimate is a convex optimization problem and its computational cost is the same

as that of the Lasso. Indeed, the entire regularization path of the adaptive Lasso

can be computed with the same computational complexity as the least squares
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Table 2. The probe sets identified by Lasso and adaptive Lasso that corre-

lated with TRIM32.

Probe ID Lasso Adaptive-Lasso

1369353 at -0.021 -0.028

1370429 at -0.012

1371242 at -0.025 -0.015

1374106 at 0.027 0.026

1374131 at 0.018 0.011
1389584 at 0.056 0.054

1393979 at -0.004 -0.007

1398255 at -0.022 -0.009

1378935 at -0.009
1379920 at 0.002

1379971 at 0.038 0.041

1380033 at 0.030 0.023

1381787 at -0.007 -0.007

1382835 at 0.045 0.038
1383110 at 0.023 0.034

1383522 at 0.016 0.01

1383673 at 0.010 0.02

1383749 at -0.041 -0.045
1383996 at 0.082 0.081

1390788 a at 0.013 0.001

1393382 at 0.006 0.004

1393684 at 0.008 0.003

1394107 at -0.004
1395415 at 0.004

Table 3. Prediction results using cross validation following 300 random par-

titions of the data set. In each partition, the training set consists of 2/3

observations and the test set consists of the remaing 1/3 observations. The

values in the table are medians of the results from 300 random partitions:

in the table, # cov is the number of covariates being considered; nonzero is
the number of covariates in the final model; corr is correlation coefficient be-

tween the fitted and observed values of Y ; coef is the slope of the regression

of the fitted values of Y against the observed values of Y .

Lasso Adaptive-Lasso

# cov nonzero mse corr coef nonzero mse corr coef
100 20 0.005 0.654 0.486 18 0.006 0.659 0.469

200 19 0.005 0.676 0.468 17 0.005 0.678 0.476

300 18 0.005 0.669 0.443 17 0.005 0.671 0.462

400 22 0.005 0.676 0.442 19 0.005 0.686 0.476

500 25 0.005 0.665 0.449 22 0.005 0.670 0.463
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solution using the LARS algorithm (Efron et al. (2004)). The adaptive Lasso is

a useful method for analyzing high-dimensional data.

We have focused on the adaptive Lasso in the context of linear regression

models. This method can be applied in a similar way to other models, such as

the generalized linear and Cox models. It would be interesting to generalized the

results of this paper to these more complicated models.
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