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Abstract: Motivated by dimension reduction in the context of regression analysis

and signal detection, we investigate the order determination for large-dimensional

matrices, including spiked-type models, in which the numbers of covariates are

proportional to the sample sizes for different models. Because the asymptotic be-

haviors of the estimated eigenvalues of the corresponding matrices differ from those

in fixed-dimension scenarios, we discuss the largest possible number we can identify

and introduce a “valley-cliff” criterion. We propose two versions of the criterion.

The first is based on the original differences between the eigenvalues. The second

is based on the transformed differences between the eigenvalues, which reduces the

effect of the ridge selection in the former case. This generic method is very easy to

implement and computationally inexpensive, and can be applied to various matri-

ces. As examples, we focus on spiked population models, spiked Fisher matrices,

and factor models with auto-covariance matrices. Numerical studies are conducted

to examine the finite-sample performance of the method, which we compare with

that of existing methods.

Key words and phrases: Auto-covariance matrix, factor model, finite-rank pertur-

bation, Fisher matrix, phase transition, ridge ratio, spiked population model.

1. Introduction

In many statistical methods, we need to determine how many eigenvalues of a

matrix are important to estimations. This problem is called order determination.

Examples include the spiked population models proposed by Johnstone (2001);

spiked Fisher matrices, motivated by signal detection and hypothesis testing for

covariances; canonical correlation analysis; factor models; and matrices in suffi-

cient dimension reduction (see Li (1991); Zhu et al. (2010)). Luo and Li (2016)

is useful literature on order determination and proposed a ladle estimation for

several models. In this study, we use spiked population models to set up the

problem of interest, and then introduce an estimation criterion that applies to

more models, including spiked Fisher matrices. The method is also applicable

to sample auto-covariance matrices, although they cannot be written as a spiked

matrix at the population level. Therefore, we call them spiked-type models.
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The literature includes several proposals in the fixed-dimension cases, such as

the classic Akaike information criterion (AIC) and Bayesian information criterion

(BIC). Some methods developed for sufficient dimension reduction can also be

used in spiked-type models. These include the sequential testing method (Li

(1991)), BIC-type criterion (Zhu, Miao and Peng (2006)), ridge ratio estimation

(Xia, Xu and Zhu (2015)), and ladle estimation (Luo and Li (2016)), some of

which can even handle cases with divergent dimensions in the sense that p/n→ 0

at a certain rate as n→∞. Here, n denotes the sample size and p is the dimension

of the matrix.

However, when the dimension p is proportional to the sample size n, such

that p/n → c for some constant c > 0, the order determination becomes much

more challenging. Some efforts have been devoted to this problem that use the

large-dimensional random matrix theory (e.g., see Kritchman and Nadler (2008);

Onatski (2009)). Consider spiked population models. When p/n → c, using

the results derived by Baik and Silverstein (2006), Passemier and Yao (2012)

introduced a criterion that counts the number of differences between consecutive

eigenvalues above some predetermined threshold. However, if there exist equal

spikes, the corresponding differences could be smaller than the designed threshold.

In this case, the criterion could easily define an estimator smaller than the true

number. Passemier and Yao (2014) improved this method to accommodate cases

with multiple spikes. The underestimation issue, however, remains when there are

three or more equal spikes. In addition to the spike multiplicity, the dominating

effect by several of the largest eigenvalues also results in underestimation. That

is, when a couple of eigenvalues are very large, relatively small spikes are ignored.

For the number of factors in a factor model for high-dimensional time series, Li,

Wang and Yao (2017) proposed a criterion similar to that in Passemier and Yao

(2014). For spiked Fisher matrices, Wang and Yao (2017) used the classical scree

plot to determine the number of spikes when the threshold is selected in a careful

manner. Underestimation is still an issue, as shown in the numerical studies

below. Relevant references include Lam and Yao (2012) and Xia, Xu and Zhu

(2015).

Benefiting from existing asymptotic results for the estimated eigenvalues of

large-dimensional random matrices in the literature, we introduce a novel and

generic criterion in the high-dimensional regime with p/n → c. Our criterion

relies on eigenvalue difference-based ridge ratios with the following features. First,

it can handle multiple spikes, and it alleviates the dominance by large eigenvalues.

Second, it has a nice “valley-cliff” pattern, such that the consistent estimator is

at the “valley bottom” facing the “cliff”, upon which all the next ratios take
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the same values asymptotically and can then exceed a threshold. Third, adding

ridge values is essential to make the ratios stable and create the “valley-cliff”

pattern. Fourth, to reduce the sensitivity of the criterion to ridge selection, we

suggest another version that uses transformed eigenvalues. Fifth, we discuss how

to reduce the effect of model scale in the construction. Because the new method

avoids an optimality procedure, it is computationally efficient.

The remainder of this paper is organized as follows. In Section 2, we fo-

cus on population spiked models, propose a VAlley-CLiff estimation (VACLE),

and provide an optimal lower bound to show what order can be identified. The

VACLE is then improved when we use a transformation-based valley-cliff esti-

mation (TVACLE) to alleviate the criterion’s sensitivity to the designed ridge

value. We also discuss methods that can be used to select the transformation.

In Section 3, we implement our method on two further examples: factor models

with auto-covariance matrices, and spiked Fisher matrices. Here, we discuss its

applicability in more general cases as well. Section 4 contains numerical studies

and compares the VACLE and the TVACLE with some competitors. The anal-

ysis for a real-data example is included in Section 5. Some concluding remarks

are provided in Section 6. The proofs of the theoretical results are included in

the Supplementary Material.

2. Order Determination for Population Spiked Models

In this section, we develop our method for the population spiked models

introduced below, with some important results for the estimated eigenvalues.

2.1. Spiked population models

Assume that a p× p nonnegative-definite matrix Σp = σ2Ip + ∆p has eigen-

values λ1 ≥ · · · ≥ λq1 > λq1+1 = · · · = λp = σ2, where q1 is a fixed number, and

the scale parameter σ2 is either known or unknown. Let Z ≡ (zji)1≤j≤p,1≤i≤n ≡
(z1, . . . , zn) ∈ Rp×n have independent and identically distributed (i.i.d.) entries,

each having zero mean and unit variance. Taking xi := Σ
1/2
p zi, Σp is the popu-

lation covariance matrix of xi, and coincides with the spiked population model

introduced in Johnstone (2001):

spec(Σp) = {λ1, . . . , λq1 , σ2, . . . , σ2}, (2.1)

where the eigenvalues λi, for 1 ≤ i ≤ q1, are called spikes. Denote the correspond-

ing sample covariance matrix by Sn := n−1
∑
xix
>
i = n−1

∑
Σ
1/2
p ziz

>
i Σ

1/2
p , and

its eigenvalues by λ̂1 ≥ · · · ≥ λ̂p, which can also be motivated by the signal
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detection problem (e.g., see Nadler (2010)):

xi = Aui + εi, 1 ≤ i ≤ n, (2.2)

where ui ∈ Rq1 is a random signal vector with zero mean components, εi ∈ Rp

is a random vector with mean zero and covariance matrix σ2Ip, A ∈ Rp×q1 is a

steering matrix, the q1 columns of which are linearly independent of each other,

and xi ∈ Rp is the observed vector on the p sensors.

Remark 1. Spiked population models allow small spikes (i.e., λi < σ2), but we

do not discuss this case because it is of less statistical significance.

2.2. Preliminary results for the estimated eigenvalues of Sn

We use the following assumptions to specify the high-dimensional framework

and the moment conditions used in different scenarios.

Assumption 1. p is proportional to n, that is, p/n→ c ∈ (0,+∞).

Assumption 2. Z has i.i.d. entries zji, for 1 ≤ j ≤ p and 1 ≤ i ≤ n, satisfying

that E(z11) = 0, E(|z11|2) = 1 and E(|z11|4) <∞.

Assumption 3. For any k ∈ N+, there exists a constant Ck such that E(|z11|k) <
Ck.

Consider the sample covariance matrix Sn under Assumption 1 with a general

σ2. When 0 < c ≤ 1, the empirical distribution of all the estimated eigenvalues λ̂i
almost surely converges to the well-known Marcenko–Pastur (M–P) distribution

with the support (σ2(1−
√
c)2, σ2(1+

√
c)2) =: (σ2a, σ2b) (e.g., see Theorem 2.14

in Yao, Zheng and Bai (2015)). Specifically, ∀x ∈ R,

1

p
#{λ̂i : λ̂i < x} → Fc,σ2(x) a.s., (2.3)

with the density function

F ′c,σ2(x) =
1

2πxcσ2

√
(σ2b− x)(x− σ2a), σ2a < x < σ2b. (2.4)

When c > 1, the integral of the above density function over the interval (σ2a, σ2b)

is equal to 1/c, and there is an additional Dirac measure of mass 1− 1/c at the

origin x = 0.

For extreme eigenvalues, Baik and Silverstein (2006) discovered the phase

transition phenomenon in the case with σ2 = 1 under Assumption 2. Slightly
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generalizing their result using a scale transformation λ̂i � λ̂i/σ
2, we have that

for any fixed L with q + 1 < L < p,

λ̂i → σ2φ

(
λi
σ2

)
a.s. for i ≤ q, λ̂i → σ2b a.s. for q + 1 ≤ i ≤ L, (2.5)

where φ(x) := x+ cx(x− 1)−1 is a strictly increasing function on (1 +
√
c,+∞).

Therefore, the number of identifiable spikes q ≤ q1 is defined as

q := #{λi : λi > σ2(1 +
√
c)}. (2.6)

This is because there are only q extreme sample eigenvalues that are outliers

larger than σ2b whenever the corresponding spikes exceed the value σ2(1 +
√
c),

and any λ̂i of λi with σ2 < λi ≤ σ2(1 +
√
c), for q + 1 ≤ i ≤ L, converges in

probability to the same upper bound σ2b.

Bai and Yao (2008) built the central limit theorem for the outliers λ̂i, for

1 ≤ i ≤ q, under Assumption 2 on the moments, which implies the
√
n-consistency

of λ̂i to σ2φ(λi/σ
2). For the eigenvalues λ̂i staying to the right edge σ2b for

q+1 ≤ i ≤ L, Theorem 2.5 in Cai, Han and Pan (2020) shows that n2/3(λ̂i−σ2b)
has the limiting type-1 Tracy–Widom distribution under Assumptions 2–3; thus,

λ̂i − σ2b = OP(n−2/3).

Remark 2. These estimated eigenvalues λ̂i corresponding to spikes λi ≤ σ2(1 +√
c) are not separated from those of λi = σ2. Thus, we only estimate the number

q (≤ q1) of spikes larger than σ2(1 +
√
c).

2.3. Valley-cliff criterion and estimation consistency

When p is proportional to n, estimated eigenvalues become much more dis-

persed, as the Marcenko–Parstur law shows (see (2.3) and (2.4)). The estimation

of λi − σ2 is no longer consistent to zero, but that of λi − λi+1 =: δi is still con-

sistent for any q1 < i < min{n, p}. Thus, we do not directly use λi, but rather δi
in the criterion construction.

Define a sequence of ratios ri := δi+1/δi, 1 ≤ i ≤ p − 2. These ratios are

scale invariant and have the following property, when i ≤ q1:

ri =
δi+1

δi
=
δi+1/σ

2

δi/σ2
=

{
≥ 0, for i < q1,

= 0, for i = q1.
(2.7)

For any q1 + 1 ≤ i ≤ p− 2, ri = 0/0 is not well defined because of its instability,

which also occurs at the sample level. To alleviate its effect in constructing the
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criterion, we define a sequence by adding a ridge cn → 0 to both the numerator

and the denominator:

rRi :=
δi+1/σ

2 + cn
δi/σ2 + cn

, 1 ≤ i ≤ p− 2, (2.8)

where we use δi/σ
2 instead of δi in order to keep the selection of the ridge cn

independent of the scale parameter σ2. Recalling the definition of δi and that

cn → 0, these ratios have the following property:

rRi =
δi+1/σ

2 + cn
δi/σ2 + cn

=


≥ 0, for i < q1,

=
cn

δq1/σ
2 + cn

→ 0, for i = q1,

cn/cn = 1, for q1 + 1 ≤ i ≤ p− 2.

They have a “valley-cliff” pattern, because q1 should be the index of rRq1 → 0 at

a “valley bottom” facing the “cliff” valued at one of all next ratios rRi , for i > q1.

Define their sample versions r̂Ri with δ̂i := λ̂i − λ̂i+1 as

r̂Ri :=
δ̂i+1/σ

2 + cn

δ̂i/σ2 + cn
, 1 ≤ i ≤ p− 2, (2.9)

where σ2 is replaced by σ̂2 when σ2 is unknown. Because λ̂i is not consistent to

λi, these ratios do not simply converge to their population counterparts, which

makes the quantity q1 generally unidentifiable. Hence, we estimate the largest

possible order we can identify, namely q, defined in (2.6).

According to the property of λ̂i, we have

lim
n→∞

δ̂i =


σ2φ

(
λi
σ2

)
− σ2φ

(
λi+1

σ2

)
a.s. for 1 ≤ i ≤ q − 1,

σ2φ

(
λq
σ2

)
− σ2b > 0 a.s. for i = q,

0, a.s. for q + 1 ≤ i ≤ L− 1.

More precisely, recalling the asymptotics of the extreme eigenvalues, we have that

δ̂i = OP(n−2/3), for q + 1 ≤ i ≤ L − 1, and δ̂i for 1 ≤ q, at the rate OP(n−1/2),

are either consistent to positive constants or to zero when the spikes are equal.

When cn is selected, δ̂i = oP(cn), for q + 1 ≤ i ≤ p− 1, that is, cnn
2/3 →∞, and

r̂Ri still have a nice “valley-cliff” pattern at i = q:
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lim
n→∞

r̂Ri =


≥ 0, i < q,

0, i = q,

1, q + 1 ≤ i ≤ L− 2,

(2.10)

with probability going to one, where L is a preset upper bound for q. Taking this

advantage, we define a thresholding VAlley-CLiff estimator (VACLE) as follows:

for a constant τ , with 0 < τ < 1,

q̂VACLE
n := max

1≤i≤L−2

{
i : r̂Ri ≤ τ

}
. (2.11)

We state the estimation consistency as follows.

Theorem 1. Suppose Assumptions 1–3 hold and that cn → 0 and cnn
2/3 →∞.

Then, P(q̂VACLE
n = q)→ 1 as n→∞.

Proof. The consistency of q̂VACLE
n is implied by (2.10).

Remark 3. Recalling r̂Ri defined in (2.9), the value of r̂Ri depends on cn and the

estimator σ̂2 when σ2 is unknown. Because the range of cn can be rather wide,

the criterion is not heavily affected when σ2 is estimated, which is shown in the

numerical studies we conduct later.

2.4. Modification of the VACLE

Selecting cn plays an important role in the estimation efficiency of the VA-

CLE. Although Theorem 1 provides the estimation consistency, some numerical

studies, not discussed here, indicate that the performance of q̂VACLE
n is sometimes

and somehow sensitive to the value of the ridge cn in finite-sample cases. Specifi-

cally, when σ2φ(λq/σ
2)−σ2b is small, the ratio at q could be close to one. Then,

we would easily achieve a smaller estimation of q. A small ridge cn is therefore

preferred. However, a small cn results in the instability caused by 0/0-type ra-

tios, in which case, overestimation is possible. There exists a trade-off between

underestimation and overestimation in the choice of ridge cn. We alleviate this

dilemma by using transformed eigenvalues.

Consider a transformation (depending on n) fn(·) to define

δ̂∗i := fn

(
λ̂i
σ2

)
− fn

(
λ̂i+1

σ2

)
, i = 1, 2, . . . , p− 1. (2.12)

The ratios are defined as

r̂TR
i :=

δ̂∗i+1 + cn

δ̂∗i + cn
, 1 ≤ i ≤ p− 2, (2.13)
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and the estimator of q is defined as

q̂TVACLE
n := max

1≤i≤L−2

{
i : r̂TR

i ≤ τ
}
, (2.14)

where cn and τ have the same definitions as before. We call this criterion the

transformation-based valley-cliff estimation(TVACLE).

For any transformation fn, we want r̂TR
i to remain close to one for i > q,

and r̂TR
q to be closer to zero than r̂Rq . To this end, we use a transformation that

satisfies conditions (i)− (iii) below:

(i) P{δ̂∗q ≥ δ̂q/σ2} → 1;

(ii) P{δ̂∗i ≤ δ̂i/σ2} → 1, for q + 1 ≤ i ≤ p− 2;

(iii) δ̂∗q+1/δ̂
∗
q ≤ δ̂q+1/δ̂q.

Remark 4. Under conditions (i) and (ii), the transformation pulls the value

of δ̂q up, and presses that of δ̂i, for q + 1 ≤ i ≤ p − 2, down. Condition (iii) is

necessary to make the “valley” closer to its bottom “0” and better separated from

the “cliff” after the transformation. This is not implied by (i) and (ii), because

(iii) holds in a deterministic way, while (i) and (ii) hold with probability going

to one.

The following conditions (a) and (b) ensure that fn : R → R satisfies the

above conditions (i)− (iii), where f ′n(x) is the derivative of fn(x):

(a) fn is differentiable, and f ′n is increasing and nonnegative in R;

(b) ∃ κn > 0 s.t. κnn
2/3 →∞ and f ′n(x) = 1, ∀x ∈ (b− κn, b+ κn).

Lemma 1. Conditions (a) and (b) imply conditions (i) − (iii) for {δ̂∗n,i} and

{δ̂n,i}, defined as above.

Remark 5. In condition (b), κn can take a wide range of values, as long as it

satisfies that κnn
2/3 → ∞. We let f ′n take the value one in (b − κn, b + κn), so

that all λ̂i/σ
2, for q + 1 ≤ i ≤ L− 1, fall into this interval. Thus, the ratios r̂TR

i ,

for q + 1 ≤ i ≤ L − 2, remain unaffected by the transformation fn. In addition,

the selection of κn is independent of cn.

We now give a piecewise quadratic function for this purpose, as follows:
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fn(x) =



Ln −
1

2k1
, x < Ln −

1

k1
,

1

2
k1x

2 + (1− k1Ln)x+
1

2
k1L

2
n, Ln −

1

k1
≤ x < Ln,

x, Ln ≤ x < Rn,
1

2
k2x

2 + (1− k2Rn)x+
1

2
k2R

2
n, x ≥ Rn,

(2.15)

where the slopes k1 and k2 are to be determined, Ln = b− κn, and Rn = b+ κn.

Obviously, the TVACLE degenerates to the VACLE when k1 = k2 = 0.

The consistency of q̂TVACLE
n is stated in the following theorem.

Theorem 2. Under the same conditions of Theorem 1, q̂TVACLE
n with the above

transformation fn is equal to q with a probability going to one.

Remark 6. Although selecting an optimal transformation is desirable, a large

class of functions satisfy the conditions. This issue is beyond the scope of this

study.

3. More Examples

In this section, we consider more examples with structures similar to spiked

population models.

3.1. Large-dimensional auto-covariance matrix

The auto-covariance matrix has a complicated structure at the sample level,

so we discuss it further here. Because the theory for the estimated matrix is not

as complete as that of the spiked population models, we need to add an extra

assumption on the convergence rate of the estimated eigenvalues, as reasonably

conjectured by Li, Wang and Yao (2017), to derive the estimation consistency.

Although the assumption should be true, it requires a rigorous proof that is

beyond the scope of this study, and so we leave it to further research. In this

section, we provide a proposition that assumes that the convergence rate can be

achieved, and use numerical studies to verify the usefulness of our method in

practice.

Consider a factor model:

yt = Axt + εt, (3.1)

where for a fixed number q0, xt ∈ Rq0 is a common factor time series, A is the

p × q0 factor loading matrix, {εt} is a sequence of Gaussian noise observations

independent of xt, and yt is the tth column of the p× T observed matrix Y. Let

Σy = Cov(yt, yt−1) be the lag-1 auto-covariance matrices of yt. Then,
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Σy = Cov(yt, yt−1) = Cov(Axt + εt,Axt−1 + εt−1)

= ACov(xt, xt−1)A
> + Cov(εt, εt−1) =: ∆ + Σε,

which is a finite-rank perturbation of Σε. That is, Σy has a structure similar to

the spiked popualtion model in (2.1), although Σy is not symmetric. The order

determination in this example is to estimate an identifiable quantity q ≤ q0 based

on the singular values of Σ̂y := T−1
∑T+1

t=2 yty
>
t−1.

Let µ be a finite measure on the real line R, with support denoted by supp(µ),

and let C\supp(µ) be a complex space C excluding the set supp(µ). For any

z ∈ C\supp(µ), the Stieltjes transformation and T-transformation of µ are, re-

spectively, defined as

S(z) :=

∫
1

t− z
dµ(t), T (z) :=

∫
t

z − t
dµ(t). (3.2)

When µ is supported on an interval, say supp(µ) = [A,B], and z is a real value,

the T -transformation T (·) is a decreasing homeomorphism from (−∞, A) onto

(T (A−), 0) and from (B,+∞) onto (0, T (B+)), where

T (A−) := lim
z∈R,z→A−

T (z), T (B+) := lim
z∈R,z→B+

T (z).

The assumptions on the time series {xt}1≤t≤T and {εt}1≤t≤T (Li, Wang and

Yao (2017)) are as follows.

Assumption 4. p is propotional to T , that is, p/T → y ∈ (0,+∞).

Assumption 5. {xt}1≤t≤T is a q0-dimensional stationary time series, where q0
is a fixed number, with independent components and the following decomposition:

xi,t =

∞∑
l=0

αi,lηi,t−l, i = 1, . . . , q0, t = 1, . . . , T,

where {ηi,k} is a real-valued and weakly stationary white noise with mean zero and

variance σ2i . Denote γ0(i) and γ1(i) as the variance and lag-1 auto-covariance of

{xi,t}, respectively.

Assumption 6. {εt} is a p-dimensional real-valued random vector independent

of {xt} and with independent components εi,t, satisfying E(εi,t) = 0, E(ε2i,t) = σ2,

and for any η > 0,

1

η4pT

p∑
i=1

T+1∑
t=1

E(|εi,t|4I(|εi,t≥ηT 1/4|)) −→ 0 as pT →∞.
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We show the identifiability of q0 in the following proposition.

Proposition 1. Assume Assumptions 4–6 are satisfied. Denote T (·) as the

T -transformation of the limiting spectral distribution for the matrix M̂y/σ
4 =

Σ̂yΣ̂
>
y /σ

4. Suppose that the above assumptions are satisfied. Let q := #{i : 1 ≤
i ≤ q0, T1(i) < T (b1+)}, where

T1(i) =
2yσ2γ0(i) + γ1(i)

2 −
√

(2yσ2γ0(i) + γ1(i)2)2 − 4y2σ4(γ0(i)2 − γ1(i))2
2γ0(i)2 − 2γ1(i)2

,

b1 =
−1 + 20y + 8y2 + (1 + 8y)3/2

8
, T (b1+) = lim

z∈R,z→b1+
T (z).

Then, q is the largest number of identifiable common factors.

Remark 7. Although the constraint T1(i) < T (b1+) does not have a simple

formulation, as in the spiked population models, it does provide the optimal

bound.

Denoting λ̂i, for 1 ≤ i ≤ p, as the eigenvalues of M̂y, we construct a VACLE

and a TVACLE for q defined above by replacing (σ2, b) with (σ4, b1) in (2.11)

and (2.14), respectively. Their consistencies are shown below.

Proposition 2. If the estimated eigenvalues λ̂i for i > q have a convergence

rate of order OP(n−2/3) with the assumptions in Proposition 1, then P(q̂VACLE
n =

q)→ 1 and P(q̂TVACLE
n = q)→ 1 as n→∞.

Remark 8. As commented above, Li, Wang and Yao (2017) proposed a crite-

rion with a reasonable conjecture on the convergence rate of order OP(n−2/3),

but without a rigorous proof. We have not proved this result either, and thus

consider the above results to be propositions, rather than theorems. However,

our numerical studies demonstrate that they work well.

3.2. Large-dimensional spiked Fisher matrix

Again, consider the signal detection problem discussed above:

xi = Aui + εi, 1 ≤ i ≤ n, (3.3)

where xi, A, and ui share the same settings as in (2.2), and εi is a noise vector

with a general covariance matrix Σ2. Denote the population covariance matrix

of xi by Σ1 such that Σ1 = Σ2 + ∆, where ∆ = ACov(ui)A
T is a nonnegative-

definite matrix with fixed rank q1, provided that Cov(ui) is of full rank. Then,
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Σ1Σ
−1
2 has a spiked structure:

spec(Σ1Σ
−1
2 ) = {λ1, . . . , λq1 , 1, . . . , 1}, (3.4)

where λ1 ≥ · · · ≥ λq1 > 1 and the number of spikes q1 is fixed. When Σ2 is known,

the sample version of Σ1Σ
−1
2 is SnΣ−12 , where Sn is the sample covariance matrix

in the spiked population model. Otherwise, both Σ1 and Σ2 need to be estimated.

Let S1 := n−1
∑
xix
>
i and S2 := T−1

∑
ete
>
t , corresponding to Σ1 and Σ2, with

respective sample sizes of n and T , where the sample covariance matrix S2 comes

from another sequence of pure noise observations, say {ei}1≤i≤T , with a different

sample size T . When S2 is invertible, the random matrix Fn := S1S
−1
2 is called

a Fisher matrix, the motivation for which comes from the following hypothesis

testing problem:

H0 : Σ1 = Σ2 H1 : Σ1 = Σ2 + ∆. (3.5)

See Wang and Yao (2017) as an example. Denote the eigenvalues of Fn as λ̂1 ≥
· · · ≥ λ̂p. The difference between the two hypotheses relies upon the extreme

eigenvalues of Fn.

Consider a more general Fisher matrix with the spiked structure,

spec(Σ1Σ
−1
2 ) = {λ1, . . . , λq1 , σ2, . . . , σ2}, (3.6)

motivated by the hypothesis testing problem,

H0 : Σ1 = σ2Σ2 H1 : Σ1 = σ2Σ2 + ∆. (3.7)

By using the simple transformation λ̂i � λ̂i/σ
2, we can achieve the results in

the case of σ2 = 1 in a similar manner.

The assumptions on the samples {xi}1≤i≤n and {et}1≤t≤T are as follows.

Assumption 7. p/n→ c ∈ (0,∞) and p/T → y ∈ (0, 1).

Assumption 8. Let zi := Σ
−1/2
1 xi and wt := Σ

−1/2
2 et, for 1 ≤ i ≤ n and

1 ≤ t ≤ T . Assume that {zi}1≤i≤n and {wt}1≤t≤T are independent and satisfy

the moment conditions of Assumptions 2 and 3.

The order determination in this example is to estimate the number of spikes

q, the identifiability of which is shown in the following proposition.

Proposition 3. Suppose that Assumptions 7 and 8 are satisfied. Define q :=

#{i : λi > σ2(1 − y)−1(1 +
√
c+ y − cy)}. Then, q is the number of identifiable

spikes.
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Let b2 := (1−y)−2(1+
√
c+ y − cy)2 and construct a VACLE and a TVACLE

for q by replacing b with b2 in (2.11) and (2.14), respectively. We show the

consistencies of the VACLE and the TVACLE below.

Theorem 3. Suppose that Assumptions 7 and 8 are satisfied. Then, P(q̂VACLE
n =

q)→ 1 and P(q̂TVACLE
n = q)→ 1 as n→∞.

3.3. General cases

Beyond the three models studied above, we consider more general cases in

this section. Suppose that Tn ∈ Rp×p is the matrix in the order determination

problem of interest, for example, the sample covariance matrix Sn in Section 2,

and λ̂i, for 1 ≤ i ≤ p, are its eigenvalues in descending order.

We assume the following model features for λ̂i, for 1 ≤ i ≤ p.
Model Feature 1. In the high-dimensional regime with p/n → c ∈ (0,∞),

suppose there exists a fixed constant q ∈ N+ satisfying:

(A1) there exists a constant d such that λ̂q − d = oP(1) as n→∞;

(A2) for a large fixed value L satisfying q + 1 < L < p, there exist e < d and a

sequence c̃n → 0 such that λ̂i − e = OP(c̃n), for q + 1 ≤ i ≤ L.

Remark 9. Condition (A1) corresponds to the so-called phase transition phe-

nomenon for extreme eigenvalues. (A2) further focuses on the fluctuations of

those eigenvalues sticking to the boundary of the bulk, and a fluctuation is often

of order OP(n−2/3), that is, c̃n = n−2/3. General theory for the phase tran-

sitions and fluctuations can be found, for example, in Péché (2006), Benaych-

Georges, Guionnet and Maida (2011), Benaych-Georges and Nadakuditi (2011),

and Knowles and Yin (2017). The aforementioned three models are typical ex-

amples.

Similarly to spiked population models, the VACLE and the TVACLE for the

q defined in this model feature can be constructed by replacing σ2b with d, and

taking a ridge cn satisfying cn/c̃n →∞ in (2.11) and (2.14).

4. Numerical Studies

4.1. Numerical studies on spiked population models

Consider the comparisons between the VACLE and the TVACLE, written as

q̂VACLE
n and q̂TVACLE

n , respectively, and the estimator written as q̂PYn , and devel-

oped and refined by Passemier and Yao (2012) and Passemier and Yao (2014).

Because estimating q is the main focus, we conduct simulations mainly with given
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σ2. For the case of unknown σ2, we give a simple one-step estimator of σ2 and

a brief discussion. In all simulations, we conduct 500 independent replications.

We report the results, recalling c = p/n, with three scenarios: c = .25, 1 and 2,

representing cases with dimensions p smaller than and larger than the sample

size n. Furthermore, q̂PYn is defined by

q̂PYn := min{i ∈ {1, . . . , L} : δ̂i+1 < dn and δ̂i+2 < dn}, (4.1)

where L > q is a sufficiently large preset bound, dn = o(n−1/2), and n2/3dn →
+∞.

Scale estimation. Passemier and Yao (2012) estimated σ2 by simply taking

the average over {λ̂i}q+1≤i≤p, and Passemier, Li and Yao (2017) established its

consistency and further introduced a refined version by subtracting the bias.

However, it involves an iteration procedure because the number q must first

be estimated. To construct a robust estimator, Ulfarsson and Solo (2008) and

Johnstone and Lu (2009) used the median of the sample eigenvalues {λ̂i : λ̂i ≤ b}
and the sample variances {n−1

∑n
i=1 x

2
ij}1≤j≤p, respectively. The former median

still needs a crude estimation of the right edge b = σ2(1+
√
c)2 in advance, which

amounts to a rough initial estimation of σ2.

We propose a one-step procedure that can be regarded as a simplified version

of the method in Ulfarsson and Solo (2008). For spiked population models, the

empirical spectral distribution of Sn converges almost surely to a M–P distribu-

tion Fc,σ2(x) (see (2.3) and (2.4)). For 0 < α < 1, their α-quantiles are denoted

by ξ̂
(n)
c,σ2(α) and ξc,σ2(α), respectively:

ξ̂
(n)
c,σ2(α) := λ̂p−[pα], ξc,σ2(α) := inf{x : Fc,σ2(x) ≥ α}. (4.2)

It then follows that ξ̂
(n)
c,σ2(α)→ ξc,σ2(α) as n→∞. Note that ξc,σ2(α) = σ2ξc,1(α).

Approximating a certain quantile, say ξc,σ2(α), of the M–P distribution by its

sample counterpart ξ̂
(n)
c,σ2(α), we obtain an estimator of σ2,

σ̂2 =
ξ̂
(n)
c,σ2(α)

ξc,1(α)
. (4.3)

The consistency of σ̂2 is equivalent to that of ξ̂
(n)
c,σ2(α), which holds under As-

sumption 2. Practically, for simplicity and stability, let α = 0.5 for 0 < c < 1,

and 1 − (2c)−1 for c ≥ 1. Then, α = 1 − (2 max{1, c})−1. The sample quantile

ξ̂
(n)
c,σ2(α) divides all positive eigenvalues of Sn into two equal parts. The estimator
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σ̂2 can be less sensitive to extreme eigenvalues of Sn. Its performance is examined

in the following numerical studies.

Remark 10. The rigidity of the eigenvalues of the covariance matrix (see The-

orem 3.3 in Pillai and Yin (2014)) implies that the convergence rate of σ̂2 is

o(n−1+ε), for any ε > 0. The consistencies still hold for the VACLE and the

TVACLE with λ̂i/σ̂
2, because σ̂2 has a higher convergence rate than those of

the extreme eigenvalues λ̂i, for 1 ≤ i ≤ L, for any fixed L. Repeating the con-

struction of (4.3) for the estimated eigenvalues of auto-covariance matrices and

spiked Fisher matrices can lead to similar estimators for σ2. Their consistencies

are implied by the convergence of the empirical spectral distributions of M̂y and

Fn, respectively (see Li, Wang and Yao (2017) and Wang and Yao (2017)). How-

ever, because the convergence rates are still under study, we do not discuss them

further here.

Models and parameter selections: the known σ2 case.

For q̂PYn , the sequence dn = Cn−2/3
√

2 log log n, with C adjusted using an

automatic procedure identical to that in Passemier and Yao (2014). For q̂VACLE
n

and q̂TVACLE
n , they share the same threshold τ = 0.5, but have different ridges cn.

Theoretically, cn can be selected flexibly on condition that cn → 0 and n2/3cn →
+∞. Here, we give an automatic procedure for ridge calibration using pure-noise

simulations. For given (p, n), we conduct 500 independent pure-noise simulations

and obtain the α-quantile qp,n(α) and sample mean mp,n of the difference {λ̃1 −
λ̃2}, where λ̃1 and λ̃2 are the two largest eigenvalues of the noise matrix. From

the results in Benaych-Georges, Guionnet and Maida (2011), we can approximate

δ̂q+1 by {λ̃1 − λ̃2} as follows:

P{qp,n(0.01)−mp,n < δ̂q+1 −mp,n < qp,n(0.99)−mp,n}
≈ P{qp,n(0.01)−mp,n < λ̃1 − λ̃2 −mp,n < qp,n(0.99)−mp,n} ≈ 0.98.

Thus, the value of {δ̂q+2−mp,n+(qp,n(0.99)−qp,n(0.01))}{δ̂q+1−mp,n+(qp,n(0.99)−
qp,n(0.01))}−1 is dominated by the term (qp,n(0.99) − qp,n(0.01) −mp,n), and is

close to the “cliff” valued at one with a high probability. We use the ridge

c
(1)
n = log log n(qp,n(0.95) − qp,n(0.05)) − mp,n for the VACLE, and a smaller

one c
(2)
n =

√
log logn(qp,n(0.95)− qp,n(0.05))−mp,n for the TVACLE. Note that

qp,n(α) and mp,n have the same convergence rate as λ̂q+1, which has a slightly

faster rate to zero than c
(1)
n and c

(2)
n . In addition, we determine the sequence κn,

bound L, and slopes k1 and k2 using a rule of thumb. We take L = 20, because

it is much larger than the true value of q in the simulations and many practical
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Table 1. Parameter settings for the three methods.

Method dn τ cn κn k1 k2 L

PY Cn−2/3
√

2 log log n — — — — — 20

VACLE — 0.5 c
(1)
n — — — 20

TVACLE — 0.5 c
(2)
n p−2/3 log log p 5 5 20

Table 2. Values of C.

c=p/n 0.25 1 2

C 5.5226 6.3424 7.6257

scenarios, and is also large enough. Details of the selections of the parameters

are reported in Table 1. Following the calibration procedure of Passemier and

Yao (2014), we obtain the value of C for various c = p/n, as shown in Table 2.

Remark 11. Note that we select different ridges cn in q̂VACLE
n and q̂TVACLE

n . As

described above, we want a small ridge cn to make r̂Rq+1 well separated from r̂Rq ,

but this may lead to instability of r̂Ri for i > q+1. Because r̂TR
i is less sensitive to

the ridge than r̂Ri , we can choose a smaller ridge for q̂TVACLE
n . Furthermore, the

ridges c
(1)
n and c

(2)
n are generated by an automatic procedure rather than manual

selections. This calibration procedure only depends on (p, n). Overall, when the

signals are stronger, the detection is easier.

Consider three models: for fair comparisons, Models 1 and 2 were used by

Passemier and Yao (2012) with dispersed spikes and closely spaced, but unequal

spikes, respectively, and Model 3 has two equal spikes:

Model 1. q = 5, (λ1, . . . , λ5) = (259.72, 17.97, 11.04, 7.88, 4.82),

Model 2. q = 4, (λ1, . . . , λ4) = (7, 6, 5, 4),

Model 3. q = 4, (λ1, . . . , λ4) = (5, 4, 3, 3).

Furthermore, we compare q̂TVACLE
n with q̂PYn on a model with a greater mul-

tiplicity of spikes:

Model 4. q = 6, (λ1, . . . , λ6) = (5, 5, 5, 5, 5, 5).

Set σ2 = 1. When σ2 is unknown, use the one-step method in (4.3) to

estimate it. We conduct the same simulations for q̂VACLE
n and q̂TVACLE

n as those

for the known σ2. However, we do not report the results for q̂PYn with unknown

σ2, because the results and conclusions are very similar.

From Table 3, we have the following observations. For Model 1, all three

methods work well with high accuracies and small MSEs in the cases where the



ORDER DETERMINATION FOR SPIKED-TYPE MODELS 1649

Table 3. Mean, mean squared error, and mis-estimation rates of q̂PY
n , q̂VACLE

n , and
q̂TVACLE
n over 500 independent replications for Models 1-3, with known σ2 = 1.

q̂PY
n q̂VACLE

n q̂TVACLE
n

(p, n) Mean MSE q̂PY
n 6= q Mean MSE q̂VACLE

n 6= q Mean MSE q̂TVACLE
n 6= q

Model 1

(50, 200) 5.022 0.022 0.022 5.004 0.004 0.004 5.024 0.024 0.024

(200, 800) 5.012 0.012 0.012 5.002 0.002 0.002 5.016 0.016 0.016

(100, 100) 5.016 0.02 0.02 4.97 0.046 0.046 4.998 0.002 0.002

(200, 200) 5.026 0.03 0.024 5.01 0.01 0.01 5.004 0.004 0.004

(100, 50) 4.846 0.218 0.212 4.484 1.296 0.41 4.782 0.222 0.216

(200, 100) 4.99 0.074 0.074 4.758 0.486 0.194 4.954 0.046 0.046

Model 2

(50, 200) 4.018 0.058 0.028 4.006 0.006 0.006 4.016 0.016 0.016

(200, 800) 4.016 0.02 0.014 4.004 0.004 0.004 4.032 0.04 0.028

(100, 100) 3.922 0.246 0.074 3.416 2.112 0.22 3.968 0.036 0.036

(200, 200) 4.014 0.014 0.014 3.92 0.304 0.048 4.006 0.006 0.006

(200, 100) 3.558 0.83 0.342 2.452 5.144 0.584 3.712 0.304 0.28

(400, 200) 3.906 0.162 0.118 3.046 3.138 0.364 3.958 0.05 0.044

Model 3

(50, 200) 3.994 0.118 0.032 3.772 0.804 0.08 4.024 0.024 0.024

(200, 800) 4.018 0.018 0.018 4 0 0 4.036 0.036 0.036

(200, 200) 3.456 0.92 0.414 1.94 6.684 0.734 3.614 0.518 0.326

(400, 400) 3.904 0.18 0.122 2.7 4.152 0.478 3.898 0.142 0.112

(400, 200) 2.222 3.81 0.952 1.08 9.736 0.968 2.648 2.296 0.91

(800, 400) 2.626 2.482 0.844 1.588 7.104 0.954 3.022 1.558 0.7

dimension p is smaller than n (c = p/n = 0.25). When either c = 1 or c = 2,

q̂TVACLE
n is the best, and q̂PYn has smaller MSEs than q̂VACLE

n . In other words,

all three methods perform satisfactorily, but the performance of q̂TVACLE
n is the

most stable for various values of c = p/n. For Model 2, q̂VACLE
n is sensitive to

the ratio c, particularly its MSE. When c = 2, q̂TVACLE
n may sometimes slightly

underestimate the true number. However, this is less serious than q̂PYn . For

Model 3, with two equal spikes, q̂TVACLE
n outperforms both q̂PYn and q̂VACLE

n ,

which underestimate q significantly.

To further confirm this phenomenon, we report the results for Model 4 with

additional equal spikes. The results in Table 4 suggest that, overall, q̂TVACLE
n

outperforms q̂PYn in terms of estimation accuracy and MSE. It has an underesti-

mation problem, because its searching procedure stops earlier once the difference

between consecutive eigenvalues corresponding to equal spikes is below the thresh-

old dn. This conclusion can be made after observing its empirical distributions

in Table 4. In contrast, q̂TVACLE
n largely avoids this problem. To better illustrate

this fact, we plot in Figure 1 the first 40 differences δ̂i for q̂PYn and the first 40

ratios of r̂TR
i for q̂TVACLE

n . The left subfigure shows that there are three δ̂i, for

i = 3, 4, 5, very close to the threshold line y = dn, which causes the underestima-
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Table 4. Mean, mean squared error, and empirical distribution of q̂PY
n and q̂TVACLE

n over
500 independent replications for Model 4 (q = 6), with known σ2 = 1.

(p, n) Mean MSE q̂ = 0 q̂ = 1 q̂ = 2 q̂ = 3 q̂ = 4 q̂ = 5 q̂ = 6 q̂ ≥ 7

q̂PY
n

(50, 200) 5.358 2.874 0.018 0.04 0.042 0.06 0 0 0.826 0.014

(200, 800) 5.816 0.868 0.002 0.014 0.02 0.012 0 0 0.94 0.012

(100, 100) 4.436 6.904 0.06 0.072 0.118 0.106 0.01 0.048 0.572 0.014

(200, 200) 4.964 4.772 0.042 0.052 0.082 0.07 0 0 0.742 0.012

(400, 200) 3.858 9.794 0.078 0.138 0.164 0.094 0.008 0.032 0.484 0.002

(800, 400) 4.406 7.558 0.068 0.11 0.098 0.086 0 0 0.626 0.012

q̂TVACLE
n

(50, 200) 6.006 0.006 0 0 0 0 0 0 0.994 0.006

(200, 800) 6.024 0 0 0 0 0 0 0 0.976 0.024

(100, 100) 5.886 0.122 0 0 0 0 0.004 0.106 0.89 0.11

(200, 200) 6 0 0 0 0 0 0 0 1 0

(400, 200) 5.952 0.06 0 0 0 0 0.004 0.042 0.952 0.002

(800, 400) 6.002 0.002 0 0 0 0 0 0 0.998 0.002
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Figure 1. Plots of the first 40 differences and ratios: the left is for differences δ̂i, for
1 ≤ i ≤ 40, in q̂PY

n ; the right is for ratios r̂TR
i , for 1 ≤ i ≤ 40, in q̂TVACLE

n . The
results are based on simulations for Model 4 with 500 independent replications, and
(p, n) = (400, 200).

tion problem shown in Table 4. In contrast, the right subfigure shows that the

“valley” r̂TR
q and the “cliff” r̂TR

q+1 are well separated by the threshold line τ = 0.5.

As we claimed in Sections 2.3 and 2.4, the VACLE could be somehow sensitive

to the ridge selection. The results reported in Table 3 confirm this claim. To

explore how the ridge cn affects the VACLE and the TVACLE, Figure 2 presents,

for Model 2 with (p, n) = (400, 200), box plots of the first seven ratios without

ridge r̂i, the first seven ridge ratios r̂Ri , and the first seven transformed ridge

ratios r̂TR
i . From left to right in Figure 2, we can see that r̂i fluctuates much

more than r̂Ri for i > q = 4, and that r̂TR
4 and r̂TR

i , for i > 4, are separated more

significantly. This confirms the necessity of using a ridge with a stable ratio r̂Ri ,

and that a transformation can enhance the estimation accuracy.
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Figure 2. Box plots of the first seven ratios: the left is for ratios without a ridge, r̂i; the
middle is for ratios with ridge r̂Ri ; the right is for transformed ratios with ridge r̂TR

i .

Table 5. Mean and mean squared error of q̂VACLE
n , q̂TVACLE

n , and σ̂2, and the mis-
estimation rates of q̂VACLE

n and q̂TVACLE
n over 500 independent replications for Models 2

and 4, with unknown σ2 whose true value is one.

q̂VACLE
n q̂TVACLE

n σ̂2

(p, n) Mean MSE q̂VACLE
n 6= q Mean MSE q̂TVACLE

n 6= q Mean MSE

Model 2

(50, 200) 4.002 0.002 0.002 4.012 0.012 0.012 1.0513 0.0033

(200, 800) 4.002 0.002 0.002 4.014 0.014 0.014 1.0119 0.0002

(100, 100) 3.326 2.346 0.258 3.966 0.038 0.038 1.0326 0.0022

(200, 200) 3.96 0.176 0.04 4.006 0.006 0.006 1.0169 0.0006

(200, 100) 2.334 5.726 0.616 3.71 0.306 0.282 1.0205 0.0008

(400, 200) 3.266 2.454 0.292 3.962 0.038 0.038 1.0094 0.0002

Model 4

(50, 200) 6.01 0.01 0.01 6.01 0.01 0.01 1.0788 0.0069

(200, 800) 6.002 0.002 0.002 6.022 0.022 0.022 1.0181 0.0004

(100, 100) 4.082 10.362 0.388 5.878 0.142 0.112 1.0555 0.0042

(200, 200) 5.846 0.938 0.034 6 0 0 1.0256 0.0009

(400, 200) 4.524 8.064 0.306 5.958 0.042 0.042 1.0165 0.0004

(800, 400) 5.822 0.966 0.034 6.01 0.01 0.01 1.0079 9× 10−5

The unknown σ2 Case. Use Models 2 and 4 and regard σ2 as an unknown

value. These two models represent the cases with and without equal spikes,

respectively. Furthermore, because the conclusions are very similar to those with

known σ2, we report only the results for q̂VACLE
n and q̂TVACLE

n to further confirm

the advantages of q̂TVACLE
n . The numerical results are shown in Table 5. The

results in the last two columns show that the one-step estimation σ̂2 has good

performance in terms of accuracy and robustness.
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Table 6. Parameters in the TVACLE.

τ cT κT k1 k2 L

0.5
√

log log T [qp,T (0.95)− qp,T (0.05)]−mp,T p−2/3 log log p 5 5 20

4.2. Numerical studies on large-dimensional auto-covariance matrices

To estimate the number of factors in Model (3.1), Li, Wang and Yao (2017)

introduced the following ratio-based estimator:

q̂LWY
T := min

{
i ≥ 1 :

λ̂i+1

λ̂i
> 1− dT and

λ̂i+2

λ̂i+1

> 1− dT
}
− 1, (4.4)

where λ̂i, for 1 ≤ i ≤ p, are in descending order, and dT is a tuning parameter

selected as in Section 3.1 of Li, Wang and Yao (2017). We use q̂LWY
T as the

competitor to examine the performance of q̂TVACLE
n . For the ratio p/T = y, we

consider two values y = 0.5 and y = 2. The dimension p = 100, 200, 300, 400, and

500. In each case, we repeat the experiment 500 times. To be fair and concise, we

conduct the simulation with two models as follows. The model structure is the

same as in Lam and Yao (2012) and Li, Wang and Yao (2017): for 1 ≤ t ≤ T ,

yt = Axt + εt, εt ∼ Np(0, Ip), xt = Θxt−1 + et, et ∼ Nk(0,Γ), (4.5)

where A ∈ Rp×q is the factor loading matrix, and {εt} is a white noise sequence

with unit variance σ2 = 1. As in Li, Wang and Yao (2017), A and Γ are A =

(Iq,O(p−q)×q)
> and Γ = diag(2, 2, . . . , 2). We manipulate the strength of the

factors by adjusting the matrix Θ in different models, as follows:

Model 5. This model is the same as Scenario III in Li, Wang and Yao (2017).

There are q = 3 factors, the theoretical limits of which equal (7.726, 5.496, 3.613)

in the case of y = 0.5, and (23.744, 20.464, 17.970) in the case of y = 2. The

upper edge b1 of the supports in these two cases are, respectively, 2.773 and

17.637. Lastly, q = 3 factors are identifiable, and Θ = diag(0.6,−0.5, 0.3).

Model 6. This model has more factors. There are q = 6 factors with iden-

tical strength, and their theoretical limits are 5.496 in the case of y = 0.5

and 20.464 in the case of y = 2. Because these limits exceed their corre-

sponding upper edge b1, all q = 6 factors are identifiable, in theory, with Θ =

diag(0.5, 0.5, 0.5, 0.5, 0.5, 0.5).

All parameters in the simulations share the same settings as those in Sec-

tion 4.1, where we conduct numerical studies for spiked population models. The

parameters in the TVACLE are shown in Table 6.
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Table 7. Mean, mean squared error, and empirical distribution of q̂LWY
T and q̂TVACLE

T

over 500 independent replications for Model 5.

p 100 200 300 400 500 p 100 200 300 400 500

T = 2p 200 400 600 800 1,000 T = 0.5p 50 100 150 200 250

q̂LWY
T

q̂ = 0 0.024 0.002 0 0 0 q̂ = 0 0.53 0.238 0.234 0.138 0.054

q̂ = 1 0.028 0 0 0 0 q̂ = 1 0.326 0.412 0.38 0.36 0.282

q̂ = 2 0.384 0.138 0.05 0.014 0.008 q̂ = 2 0.136 0.32 0.356 0.464 0.572

q̂ = 3 0.544 0.85 0.948 0.976 0.986 q̂ = 3 0.008 0.03 0.03 0.036 0.092

q̂ ≥ 4 0.02 0.01 0.002 0.01 0.006 q̂ ≥ 4 0 0 0 0.002 0

Mean 2.508 2.866 2.952 2.996 2.998 Mean 0.622 1.142 1.182 1.404 1.702

MSE 0.732 0.166 0.052 0.024 0.014 MSE 6.21 4.11 3.982 3.148 2.186

q̂TVACLE
T

q̂ = 0 0 0 0 0 0 q̂ = 0 0.02 0.002 0 0.002 0

q̂ = 1 0 0 0 0 0 q̂ = 1 0.332 0.182 0.116 0.104 0.054

q̂ = 2 0.196 0.02 0.014 0.008 0.002 q̂ = 2 0.584 0.698 0.688 0.73 0.676

q̂ = 3 0.782 0.948 0.974 0.964 0.974 q̂ = 3 0.062 0.116 0.196 0.16 0.268

q̂ ≥ 4 0.022 0.032 0.012 0.028 0.024 q̂ ≥ 4 0.002 0.002 0 0.004 0.002

Mean 2.826 3.012 2.998 3.02 3.022 Mean 1.694 1.934 2.08 2.06 2.218

MSE 0.218 0.052 0.026 0.036 0.026 MSE 2.094 1.446 1.152 1.168 0.894

Table 8. Mean, mean squared error, and empirical distribution of q̂LWY
T and q̂TVACLE

T

over 500 independent replications for Model 6.

p 100 200 300 400 500 p 100 200 300 400 500

T = 2p 200 400 600 800 1,000 T = 0.5p 50 100 150 200 250

q̂LWY
T

q̂ = 0 0.156 0.104 0.072 0.098 0.054 q̂ = 0 0.226 0.202 0.26 0.24 0.134

q̂ = 1 0.178 0.154 0.124 0.146 0.076 q̂ = 1 0.418 0.35 0.326 0.304 0.28

q̂ = 2 0.19 0.154 0.114 0.104 0.062 q̂ = 2 0.296 0.314 0.262 0.236 0.312

q̂ = 3 0.162 0.112 0.068 0.106 0.044 q̂ = 3 0.06 0.122 0.134 0.17 0.188

q̂ = 4 0.13 0.006 0 0 0 q̂ = 4 0 0.012 0.016 0.05 0.07

q̂ = 5 0.112 0.072 0 0 0 q̂ = 5 0 0 0.002 0 0.014

q̂ = 6 0.072 0.394 0.62 0.542 0.754 q̂ = 6 0 0 0 0 0.002

q̂ ≥ 7 0 0.004 0.002 0.004 0.01 q̂ ≥ 7 0 0 0 0 0

Mean 2.556 3.574 4.29 3.954 4.926 Mean 1.19 1.392 1.326 1.486 1.83

MSE 15.196 11.166 8.13 9.806 5.242 MSE 23.862 22.192 22.974 21.746 18.802

q̂TVACLE
T

q̂ = 0 0 0 0 0 0 q̂ = 0 0 0 0 0 0

q̂ = 1 0 0 0 0 0 q̂ = 1 0.01 0 0 0 0

q̂ = 2 0 0 0 0 0 q̂ = 2 0.206 0.07 0.03 0.008 0.008

q̂ = 3 0.004 0 0 0 0 q̂ = 3 0.586 0.496 0.33 0.224 0.13

q̂ = 4 0.066 0.002 0 0 0 q̂ = 4 0.19 0.414 0.546 0.574 0.554

q̂ = 5 0.418 0.038 0 0 0 q̂ = 5 0.008 0.02 0.094 0.188 0.294

q̂ = 6 0.51 0.946 0.99 0.984 0.97 q̂ = 6 0 0 0 0.006 0.014

q̂ ≥ 7 0.002 0.014 0.01 0.016 0.03 q̂ ≥ 7 0 0 0 0 0

Mean 5.44 5.972 6.01 6.016 6.03 Mean 2.98 3.384 3.704 3.96 4.176

MSE 0.72 0.06 0.01 0.016 0.03 MSE 9.588 7.26 5.728 4.628 3.808
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Table 9. Parameters in the TVACLE.

τ cn κn k1 k2 L

0.8 c
(3)
n p−2/3 log log p 5 5 20

From Table 7, we can see that when T = 2p, q̂LWY
T works well. That is, when

T is large, q̂LWY
T shows good performance, whilst when T is not large, it tends

to underestimate the true number q. Our method outperforms q̂LWY
T . Although,

when T is small, the true value is somewhat underestimated, it is still estimated

to be two or greater with a high proportion. Table 8 shows that for Model 6 with

equal spikes, when T = 2p, the performance of q̂LWY
T is not encouraging, and when

T = 0.5p, the underestimation problem becomes serious, with a high proportion

having q̂LWY
T ≤ 2. In contrast, our method performs well when T = 2p and when

T = 0.5p; underestimation still occurs, but it is much less serious than q̂LWY
T in

the sense that q̂ > 2 with high proportion. Overall, our estimator q̂TVACLE
T is

superior to q̂LWY
T in these limited simulations.

4.3. Numerical studies on large-dimensional spiked Fisher matrices

Because the TVACLE has been demonstrated to outperform the VACLE

overall, we compare only q̂TVACLE
n and the estimator q̂WY

n introduced by Wang

and Yao (2017). Sharing the notations in Section 3.2, the estimator q̂WY
n can be

written as

q̂WY
n := max{i : λ̂i ≥ b2 + dn}, (4.6)

where dn is recommended to be (log log p)p−2/3.

Because a Fisher matrix Fn = S1S
−1
2 involves two random matrices S1 and

S2, its eigenvalues are more dispersed, with a wider range of support, than the

spiked sample covariance matrices and auto-covariance matrices. The afore-

mentioned automatic procedure for ridge selection then generates a larger cn,

which increases the value at the “valley”. Hence, we use a larger threshold

τ = 0.8 to avoid underestimation. Furthermore, in Model 7, we set the ridge

c
(3)
n =

√
log log p[qp,n(0.95) − qp,n(0.05)] − mp,n. For Model 8, with dramati-

cally fluctuating extreme eigenvalues, we need to set c
(3)
n =

√
log log p[qp,n(0.8)−

qp,n(0.05)]−mp,n to avoid too large a ridge. Other parameters in q̂TVACLE
n share

the same settings with the spiked population models, as shown in Table 9.

Again, for a fair comparison, we design two models: one was used by Wang

and Yao (2017), and the other has weaker spikes. For y = p/T and c = p/n, we set

(0.5, 0.2) and (0.2, 0.5) for the respective models. The dimension p takes values

of 50, 100, 150, 200, and 250. For each combination (p, T, n), the experiment is
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repeated 500 times. Consider the number of spikes to be q = 3 and A to be a

p× 3 matrix: 
√
α1 0 0 0 · · · 0
0
√

α2

2

√
α2

2 0 · · · 0
0
√

α3

2 −
√

α3

2 0 · · · 0


>

3×p

, (4.7)

where α = (α1, α2, α3) assumes different values in the two models. Assume the

covariance matrix Cov(ui) = I3 and Σ2 = diag(1, · · · , 1, 2, · · · , 2), where “1” and

“2” both have multiplicity p/2. The two models are:

Model 7. Let α = (10, 5, 5) and (y, c) = (0.5, 0.2), which is Model 1 in Wang

and Yao (2017). The matrix Σ1Σ
−1
2 has three spikes, λ1 = 11 and λ2 = λ3 = 6,

that are all significantly larger than the identifiability bound
√
b2 = (1−y)−1(1+√

c+ y − cy) ≈ 3.55.

Model 8. Let α = (10, 2, 2) and (y, c) = (0.2, 0.5). The matrix Σ1Σ
−1
2 then also

has three spikes, λ1 = 11 and λ2 = λ2 = 3, larger than the identifiability bound√
b2 = (1−y)−1(1 +

√
c+ y − cy) ≈ 2.22. Then, λ2 = λ2 = 3 are relatively more

difficult to detect.

The results reported in Tables 10 and 11 show that q̂TVACLE
n shows better

overall performance than q̂WY
n . For Model 8, q̂TVACLE

n is superior to q̂WY
n when

the signals are relatively weak.

5. A Real-Data Example

Consider a data set of the daily prices of 100 stocks (see Li, Wang and Yao

(2017)). This data set includes stock prices of the S&P500 for the period January

3, 2005, to December 29, 2006. Except for incomplete data, every stock has 502

observations of log returns. Thus, T = 502, p = 100, and c = p/T ≈ 0.2.

Denote yt ∈ Rp, for 1 ≤ t ≤ T , as the tth observation of the log return of

these 100 stocks. Then, obtain its lag-1 sample auto-covariance matrix Σ̂y and

the matrix M̂y = Σ̂yΣ̂
>
y , as formulated in Section 3.1. Use q̂TVACLE and q̂LWY in

Li, Wang and Yao (2017) to determine the number of factors. All parameters in

these two methods share the same settings with the simulation parts. In addition,

the unknown σ2 in q̂TVACLE is estimated using method (4.3), after a necessary

modification, as noted in Remark 10. We can see that the two largest eigenvalues

of M̂y are 7.17 × 10−7 and 2.01 × 10−7; the third to the 40th eigenvalues are

shown in Figure 3.

Figure 4 shows that q̂LWY = 5. However, as shown in Figure 3, the gap
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Table 10. Mean, mean squared error, and empirical distribution of q̂WY
n and q̂TVACLE

n

for Model 7.

(p, T, n) Mean MSE q̂ = 0 q̂ = 1 q̂ = 2 q̂ = 3 q̂ = 4

(50, 100, 250) 2.344 0.732 0 0.034 0.592 0.37 0.004

(100, 200, 500) 2.672 0.352 0 0.004 0.328 0.66 0.008

q̂WY
n (150, 300, 750) 2.822 0.194 0 0 0.186 0.806 0.008

(200, 400, 1000) 2.964 0.092 0 0 0.064 0.908 0.028

(250, 500, 1250) 2.96 0.068 0 0 0.054 0.932 0.014

(50, 100, 250) 2.364 0.7 0 0.028 0.584 0.384 0.004

(100, 200, 500) 2.688 0.336 0 0.004 0.312 0.676 0.008

q̂TVACLE
n (150, 300, 750) 2.842 0.182 0 0 0.17 0.818 0.012

(200, 400, 1000) 2.974 0.082 0 0 0.054 0.918 0.028

(250, 500, 1250) 2.964 0.064 0 0 0.05 0.936 0.014

Table 11. Mean, mean squared error, and empirical distribution of q̂WY
n and q̂TVACLE

n

for Model 8.

(p, T, n) Mean MSE q̂ = 0 q̂ = 1 q̂ = 2 q̂ = 3 q̂ = 4

( 50, 250, 100) 2.114 1.07 0 0.09 0.708 0.2 0.002

(100, 500, 200) 2.302 0.79 0 0.046 0.606 0.348 0

q̂WY
n (150, 750, 300) 2.498 0.538 0 0.018 0.466 0.516 0

(200, 1000, 400) 2.622 0.394 0 0.006 0.368 0.624 0.002

(250, 1250, 500) 2.692 0.324 0 0.004 0.304 0.688 0.004

( 50, 250, 100) 2.238 0.898 0 0.064 0.638 0.294 0.004

(100, 500, 200) 2.462 0.602 0 0.03 0.48 0.488 0.002

q̂TVACLE
n (150, 750, 300) 2.71 0.314 0 0 0.302 0.686 0.012

(200, 1000, 400) 2.82 0.232 0 0.002 0.2 0.774 0.024

(250, 1250, 500) 2.904 0.164 0 0 0.13 0.836 0.034
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Figure 3. Eigenvalues of M̂y from λ̂3 to λ̂40.

between the fifth eigenvalue and several following eigenvalues is evidently non-

significant, because q̂LWY is based on the magnitudes of the next two consecutive
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Figure 4. Ratios λ̂i+1/λ̂i in Li, Wang and Yao (2017) and Ratios r̂TR
i in the TVACLE,

for 1 ≤ i ≤ 40.

ratios. If eigenvalue multiplicity occurs, q̂LWY could likely select a value smaller

than the true number. When the TVACLE is used, q̂TVACLE = 10. Figure 4

shows that the 11th ratio is much larger than the 10th ratio, although some val-

ues get smaller. Note that in this example, c ∼ 0.2 and the ridge is relatively

small. This has a less dominant effect on the difference between the eigenvalues,

and thus some oscillating values remain after the 10th ratio.

It is considered that q̂LWY would neglect several factors, and likely result in

an underestimation. For a real-data example, we usually cannot give a definitive

answer. However, our method could provide an estimation that is relatively

conservative, but necessary, particularly in the initial stage of a data analysis;

otherwise, an excessively parsimonious model could cause misleading conclusions.

6. Conclusion

In this paper, we propose a valley-cliff criterion for spiked models. The

method can be applied to other order determination problems when the dimension

is proportional to the sample size, such as those in sufficient dimension reduction

if the corresponding asymptotics can be well investigated. The method is for

the case with a fixed order q. An extension to the case with diverging q will be

examined in future work. In addition, our method applies to general Σ cases,

provided that we have the true value or a reliable estimation of the right edge

corresponding to Σ. However, it is generally difficult to have a good estimation

of the right edge in a real-data analysis when Σ is unknown.

Supplementary Material

Proofs and technical details are contained in the online Supplementary Ma-

terial.
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Zhu, L., Wang, T., Zhu, L. and Ferré, L. (2010). Sufficient dimension reduction through

discretization-expectation estimation. Biometrika 97, 295–304.

Yicheng Zeng

Department of Mathematics, Hong Kong Baptist University, Kowloon, Hong Kong, China.

E-mail: statzyc@gmail.com

Lixing Zhu

Department of Mathematics, Hong Kong Baptist University, Kowloon, Hong Kong, China.

Center for Statistics and Data Science, Beijing Normal University at Zhuhai, Zhuhai, Guang-

dong, China.

E-mail: lzhu@hkbu.edu.hk

(Received March 2020; accepted January 2021)

mailto:statzyc@gmail.com
mailto:lzhu@hkbu.edu.hk

	Introduction
	Order Determination for Population Spiked Models
	Spiked population models
	Preliminary results for the estimated eigenvalues of Sn
	Valley-cliff criterion and estimation consistency
	Modification of the VACLE

	More Examples
	Large-dimensional auto-covariance matrix
	Large-dimensional spiked Fisher matrix
	General cases

	Numerical Studies
	Numerical studies on spiked population models
	 Numerical studies on large-dimensional auto-covariance matrices
	 Numerical studies on large-dimensional spiked Fisher matrices

	A Real-Data Example
	Conclusion

