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Abstract: This paper develops two weighted quantile rank score tests for the sig-

nificance of fixed effects in a class of mixed models with nonhomogeneous groups.

One test is constructed by weighting the residuals to account for heteroscedastic-

ity, while the other test is based on asymptotically optimal weights accounting for

both heteroscedasticity and correlation. Without appropriate weights to account

for heteroscedasticity, the quantile rank score tests often perform poorly. In finite

samples, the test with optimal weights tends to provide marginal improvement over

the one with simpler weights unless the intra-subject correlation is extremely high.

The proposed methods are useful to accommodate nonparametric error distribu-

tions in studying the effect of covariates on any conditional quantile of the response

distribution. We illustrate the value of the proposed methods by modeling sev-

eral quantiles of the apnea duration of the elderly during normal swallowing. Our

method suggests significant interaction effect between feeding type and viscosity in

the upper quantiles of the apnea distribution, a result that tends to be overlooked

by usual linear mixed model approaches.

Key words and phrases: Apnea duration, estimating equation, longitudinal data,

rank score test, weighted quantile regression.

1. Introduction

Mixed models are widely used in the analyses of correlated and longitudinal

data to incorporate both the inter-subject variation and the variation among mea-

surements within a subject. In many applications, the within-subject errors ex-

hibit heterogeneity, with variation depending on certain continuous or discrete co-

variates. Under the normality assumption, a number of methods were proposed to

analyze longitudinal data with heterogeneity, for instance, Davidian and Giltinan

(1993), Lin, Raz and Harlow (1997) and Kizilkaya and Tempelman (2005), among

others.

Though the normality assumption provides mathematical convenience, it is

not realistic in many applications, and its violation may lead to invalid statis-

tical results; see Agresti, Caffo and Ohman (2004) and Hartford and Dividian

(2000) for related discussions. One way to relax normality is to employ more
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general densities. Zhang and Davidian (2001) used a semi-nonparametric den-
sity, and Ghidey, Lesaffre and Eilers (2004) used a mixture of normal densi-
ties to approximate the random effects density. Cai and Dunson (2006) con-
sidered a Bayesian variable selection approach that accommodated non-normal
response distributions. From a frequentist perspective, Zhou and He (2008) con-
sidered the skwed-t distributions for both random error and random effects;
Jara, Quintana and Mart́ın (2008) did the same from a Bayesian perspective.
All these approaches are likelihood-based, and the inferences focus on the condi-
tional mean change of the response variable Y given covariates X. The current
paper considers an alternative quantile regression approach that focuses on the
conditional quantiles of Y given X.

This paper is motivated by a study of swallowing. The purpose of the study
was to determine how the apnea duration, a measurement of duration of breath-
ing suspension, is affected by viscosity and different feeding types. In this study,
the distribution of apnea duration was skewed to the right even after a log trans-
formation. For such data, a quantile regression approach is able to capture the
difference between groups at different locations of the response distribution, and
thus can provide more comprehensive information than mean-based methods. As
longer apnea durations are often due to pathological disorder, the upper quan-
tiles are of more clinical importance. In addition, the apnea durations exhibit
different variations in each viscosity condition, so appropriate quantile inference
method is needed to account for this heteroscedasticity.

We develop two weighted quantile rank score tests for the significance of
fixed effects in a class of mixed models with nonhomogeneous groups. One test
is constructed by weighting the residuals by the original scale to account for het-
eroscedasticity, while the other test is constructed by incorporating both the scale
and correlation structure of the residuals. The developed methods do not rely on
any distributional assumptions, thus are useful to accommodate non-normal er-
rors. With correctly specified weights to account for the heteroscedasticity among
different groups, the proposed test statistics are asymptotically chi-square dis-
tributed. Confidence intervals for the fixed effects can be constructed by inverting
the proposed rank score tests.

The next section of the paper introduces the motivating example, and es-
tablishes the weighted rank score tests. The performance of the proposed tests
is illustrated through a simulation study in Section 3, and through the swallow
study in Section 4. Section 5 provides some concluding remarks.

2. Data and Proposed Methods

2.1. Motivating swallow study

The swallow study was conducted by researchers at the University of Illi-
nois at Urbana-Champaign; see Perlman, He, Barkmeier and Van Leer (2005) for
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clinical details. A total of 31 healthy females, aged 70−85, participated in the

experiment. Each person was presented with 10ml of water or pudding under
two conditions, self-fed and examiner-fed. The number of swallows varied from 4

to 8, and total 860 swallows were observed. The apnea duration (in seconds) was

recorded during each swallowing. The study of apnea duration for elderly normal

adults provides better understanding of the respiratory pattern and serves as a
comparison to disordered swallows. Quantile regression has special value for ana-

lyzing this data set for two reasons: (1) preliminary studies show that the apnea

duration distribution is highly non-normal even for log transformed data; (2) the
lower and upper tails of the response distribution depends on the covariates.

Another important feature is that water and pudding exhibit different error

variances. More specifically, the estimated median absolute deviation (MAD) of

the error from drinking water was 0.3, while that from consuming pudding was
0.1. Ignoring this heteroscedasticity might lead to tests with either the wrong

level or less power. Incorporating heteroscedasticity into the model gives

yijkl = µ+ Vj + Fk + V Fjk + ai + σjeijkl, (2.1)

where yijkl is the apnea duration, µ, V , F and V F stand for the intercept,

viscosity effect, feeding type effect, and the interaction effect, respectively, ai is

the i.i.d. random subject effect, eijkl is the i.i.d. random error, and σj captures the
block-wise heteroscedasticity in the error, i = 1, . . . , n, j = 1, . . . , J , k = 1, . . . ,K

and l = 1, . . . ,mijk. For the particular data studied, J = K = 2. We assume that

ai and eijkl are mutually independent. Model (2.1) represents a typical repeated-

measures design with within-subject factors, where each subject is measured
multiple times under J nonhomogeneous conditions (or blocks).

Our aim is to test a subset of the covariate effects. We first partition the fixed

effects as (α, β) ∈ (Rp,Rq). For instance, to test the interaction effect in Model

(2.1), α ∈ R3 corresponds to the main effects, and β ∈ R1. Without loss of gen-
erality, we assume a balanced design, that is, each subject has m =

∑K
k=1mijk

repeated measurements under each of the nonhomogeneous conditions. To sim-

plify the notation, we omit the subscript k in what follows. Let M = Jm be the
number of measurements of each subject, and N = nJm be the total number of

observations. We rewrite Model (2.1) in the more general form

yijl = xT
ijlα+ zT

ijlβ + ai + σjeijl, i = 1, . . . , n, j = 1, . . . , J, l = 1, . . . ,m, (2.2)

or

Yi = Xiα+ Ziβ + Ui, (2.3)

where Yi = (yi11, . . . , yiJm)T denotes the response variable for the ith subject,

Xi = (xi11, . . . , xiJm)T is anM×p design matrix, Zi = (zi11, . . . , ziJm)T is anM×
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q design matrix, and Ui = (ui11, . . . , uiJm)T is the vector of composite error with
uijl = ai + σjeijl. We write X = (xi11, . . . , xnJm)T and Z = (zi11, . . . , znJm)T .

For the purpose of identifiability, we assume that the τth quantile of uijl is 0.
At any given quantile level 0 < τ < 1, we consider the conditional quantile of y

given (x, z). We are interested in testing H0 : β = 0.

We first review a simple quantile estimator that is obtained under the work-
ing assumption of independence and homoscedasticity. Under H0, α can be

estimated by

α̂ = argmin
a∈Rp

∑

ijl

ρτ (yijl − x
T
ijla), (2.4)

where ρτ (u) = u{τ − I(u < 0)} is the quantile loss function and I(·) is the in-
dicator function; see Koenker (2005) for a comprehensive review on quantile re-

gression. He, Zhu and Fung (2002), Wei and He (2006) and Wang and Fygenson
(2009), among others, investigated the behaviors of α̂ for longitudinal data under

different contexts, and demonstrated that α̂ remains a consistent estimator of α
for dependent data.

For linear mixed models with homogenous errors, Wang and He (2007) pro-
posed a Quantile Rank Score test (QRS) based on α̂. However, for models with

severe heteroscedasticity, we show in Section 3 that QRS produces inflated Type
I error rates due to the incorrect weights used in the chi-square approximation.

In the following subsections we propose two tests based on weighted estimators:
one accounts for the heteroscedasticity, and the other accounts for both the de-

pendence structure of the residuals and heteroscedasticity.

2.2. A simple weighted quantile approach

Let fj denote the common density function of the uijl for the jth block. We

consider weighting the residuals by the original block-wise scale. We find the
weighted estimator α̃1 as a solution to

n−1
n

∑

i=1

XT
i Wiψτ (Yi −Xiα) ≈ 0, (2.5)

where Wi = diag{f1(0), . . . , fJ(0)} ⊗ Im, ψτ (ε) = (ψτ (ε1), . . . , ψτ (εM ))T for any
vector ε = (ε1, . . . , εM )T , ψτ (u) = τ−I(u < 0), and Im denotes them×m identity

matrix. In quantile regression, the weights are often taken to be proportional to
the block-wise density evaluated at the quantile of interest, rather than as the

reciprocals of the block-wise standard deviations. Since Wi is a diagonal matrix,
solving (2.5) is equivalent to minimizing the weighted quantile objective function
∑

ijl fj(0)ρτ (yijl−x
T
ijla). Therefore α̃1 can be obtained directly by using the “rq”

function in the R package quantreg. In practice, the unknown density function
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fj has to be estimated in order to compute the weighted estimators and perform

the tests to be introduced. A specific choice is made in Remark 3.

From now on, we make the following assumptions.

A.1 For each j, the positive continuous density function fj has a bounded first

order derivative.

A.2 M is uniformly bounded as n→∞.

A.3 Let X̃ = (X,Z) = (x̃ijl), x̃ijl have uniformly bounded third moments for

all i, j, l.

We let Z̃(1) = (z̃ijl(1)) = {IN−X(XTW 2X)−1XTW 2}Z, whereW = In⊗W1,

and Z̃i(1) = (z̃i11(1), . . . , z̃iJm(1))
T . The weighted quantile rank score test WQRS1

is based on

S̃(1) = n−1/2
n

∑

i=1

Z̃T
i(1)Wiψτ (Yi −Xiα̃(1)).

Following a similar argument as in the proof of Lemma A.2 in Wang and He

(2007), for some constant C,

sup
‖t‖≤C

‖rn(t)− E{rn(t)}‖ = op(1), (2.6)

where rn(t) = n−1/2
∑

i Z̃
T
i(1)Wi{ψτ (Ui + n−1/2XT

i t) − ψτ (Ui)}. Let Fj denote

the CDF of residuals from the jth block. Expanding E{rn(t)} around 0, we have

sup
‖t‖≤C

‖E{rn(t)}‖ = sup
‖t‖≤C

∥

∥

∥

∥

n−1/2
∑

ijl

z̃T
ijl(1)fj(0)

{

Fj(0)− Fj(−n
−1/2xT

ijlt)
}

∥

∥

∥

∥

= sup
‖t‖≤C

∥

∥

∥
n−1Z̃T

(1)W
2Xt

∥

∥

∥
+ o(1) = o(1), (2.7)

where the last step is due to the fact that Z̃(1) is orthogonal to W 2X. With a

trivial modification of the proof given in Theorem 1 of He et al. (2002), we obtain

α̃(1) − α = Op(n
−1/2), which together with (2.6) and (2.7) yields

S̃(1) − n
−1/2

n
∑

i=1

Z̃T
i(1)Wiψτ (uijl) = op(1). (2.8)

The asymptotic normality of S̃(1) thus follows from the Lindberg-Feller Central

Limit Theorem.

Under Model (2.2), uijl = ai + σjeijl has an exchangeable correlation struc-

ture within the same subject i and the same block j. With a tedious but other-
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wise routine variance-covariance calculation, we obtain the asymptotic variance-
covariance matrix of S̃(1) as

Q̃(1)(∆) = n−1
n

∑

i=1

Z̃T
i(1)WiVi(∆)WiZ̃i(1), (2.9)

where

Vi(∆) = Cov(ψτ (Ui)) =













Σ11 δ121m · · · δ1J1m

Σ22 · · · δ2J1m

. . .

ΣJJ













− τ21M1T
M ,

Σjj = (τ − δjj)Im + δjj1m1T
m, 1m denotes the m-dimensional vector with all 1’s,

∆ is a collection of correlation parameters δjj = P (uijl < 0, uijl′ < 0, l 6= l′), and
δjj′ = P (uijl < 0, uij′l′ < 0, j 6= j′). The Vi(∆) has a block structure consisting of
total J(J+1)/2 unknown δ’s. The δjj measures the dependence between repeated
measurements from the same subject and the same block j, and δjj′ measures
the dependence between observations from the same subject but different blocks.

The weighted quantile rank score test statistic is

T̃(1) = S̃T
(1)

{

Q̃(1)(∆)
}−1

S̃(1). (2.10)

It follows from some routine technical details that, under H0, T̃(1) is asymptoti-
cally χ2

q as n→∞.
In practice, ∆ is unknown and has to be estimated. One natural and consis-

tent estimator is ∆̃ = (δ̃jj , δ̃jj′) with

δ̃jj = Average
i,l 6=l′

I
{

yijl − x
T
ijlα̃(1) < 0, yijl′ − x

T
ijl′α̃(1) < 0

}

,

δ̃jj′ = Average
i,l,l′

I
{

yijl − x
T
ijlα̃(1) < 0, yij′l′ − x

T
ij′l′α̃(1) < 0

}

, j 6= j′. (2.11)

Note that, asymptotically, the α̃1 in (2.11) can be replaced by any other consis-
tent estimator of α, such as α̂ and α̃2 to be introduced in Section 2.4. In our
applications, these estimators of α yield very similar ∆ estimates, even in finite
samples.

Remark 1. In the special case with homoscedastic errors, fj = f is common
across j, Wi = f(0)IM , Z̃(1) = {IN −X(XTX)−1XT }Z

.
= Z∗, and δjj = δjj′ = δ.

The common δ measures the exchangeable intra-subject correlation. Therefore,
we have Vi(∆) = (τ − δ)IM + (δ − τ2)1M1T

M . The WQRS1 thus reduces to the
QRS of Wang and He (2007).
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Remark 2. The validity of the chi-square approximation, mentioned above,

relies on the correct specification of the weight matrix W . With an incorrectly

chosen W as in QRS, the first-order Taylor expansion of E{rn(t)} may not

vanish, thus (2.8) no longer holds.

Remark 3. In order to compute α̃ and to perform a valid test using the chi-

square approximation, a consistent estimation of W or fj(0) is needed. In prac-

tice, for each j we estimate fj using the Gaussian kernel density estimation

method based on the estimated residuals ûijl = yijl − xijlα̂. Under Assumption

A.1, it follows directly from Francq and Tran (2002) that our density estimate is

still consistent for fj even though the residuals are dependent.

2.3. The simplification of Q̃(1)(∆) in a special case

For the swallow data set, the asymptotic variance-covariance matrix Q̃(1)(∆)

can be simplified as follows. Suppose we are interested in testing for the inter-

action effect between viscosity and feeding type, as in (2.1). Then we have

Z̃i(1) = (z̃ijl(1)) = c1(v1,−v1,−v2, v2)
T ⊗ 1m/2, j = 1, 2, l = 1, . . . ,m, and

Q̃(1)(∆) = n−1

{

∑

ijl

z̃2
ijl(1)τ(1− τ) +

∑

ij,l 6=l′

z̃ijl(1)z̃ijl′(1)(δjj − τ
2)

+
∑

i,j 6=j′,l,l′

z̃ijl(1)z̃ij′l′(1)(δjj′ − τ
2)

}

= c2

{

τ(1− τ)(v2
1 + v2

2)− v
2
1(δ11 − τ

2)− v2
2(δ22 − τ

2)
}

,

where vj = {fj(0)}
−2, and c1 and c2 are some constants. In this case, Q̃(1)(∆)

mainly depends on the weights, and on the correlations between observations

from the same subject and the same block.

2.4. Optimally weighted quantile approach

For median regression, Jung (1996) proposed to weight the residuals utilizing

both scale and correlation structure information, and this weight matrix was

shown to be optimal in terms of asymptotic efficiency. We extend Jung’s idea

to quantile regression and consider the optimally weighted estimator α̃2, as the

solution to

n−1
n

∑

i=1

XT
i Wi

{

Vi(∆)
}−1

ψτ (Yi −Xiα) ≈ 0. (2.12)

In practical applications, we estimate ∆ using α̂ when solving (2.12).
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Following the reweighted least squares algorithm, we can compute α̃2 by

iterating

α̃2 ←

[ n
∑

i=1

XT
i Wi

{

Vi(∆)
}−1

AiXi

]−1[ n
∑

i=1

XT
i Wi

{

Vi(∆)
}−1

AiYi

]

,

where Ai = diag{ψτ (yijl − xT
ijlα̃2)/(yijl − xT

ijlα̃2)}, with the convention that

ψτ (u)/u = 0 when u = 0. For faster convergence, we suggest using α̂ as the

starting value.

Based on α̃2, we construct the optimal weighted quantile rank score test,

denoted by WQRS2, as follows. The test statistic is

T̃(2) = S̃T
(2)

{

Q̃(2)(∆)
}−1

S̃(2), (2.13)

where

S̃(2) = n−1/2
n

∑

i=1

Z̃T
i(2)Wi

{

Vi(∆)
}−1

ψτ (Yi −Xiα̃(2)),

Q̃(2)(∆) = n−1
n

∑

i=1

Z̃T
i(2)WiVi(∆)WiZ̃i(2), Z̃i(2) = (z̃i11(2), . . . , z̃iJm(2))

T ,

Z̃(2) = (z̃ijl(2)) =
[

IN −X(XTW 2{V (∆)}−1X)−1XTW 2{V (∆)}−1
]

Z.

Similar to Section 2.3, we can show that, under H0, T̃(2)
D
→ χ2

q as n→∞.

2.5. Construction of confidence intervals

The confidence interval for the quantile coefficient β ∈ R1 at a given quantile

level τ can be constructed by inverting the weighted rank score test statistics. Let

T̃ (β0) be the test statistic of WQRS1 or WQRS2 for testing H0 : β = β0. Note

that the corresponding quantile rank score S̃(β0) is monotone in β0. Therefore,

for a fixed ∆, the set {β0 : T̃ (β0) ≤ χ
2
1−α,1} is a (1−α) confidence interval for β,

where χ2
1−α,1 is the (1−α)th quantile of χ2

1. For models with independent errors,

Koenker (1994) discussed confidence intervals via inversion of a rank score test,

that is a special case of WQRS1 with Vi(∆) = (τ − τ2)IM . For dependent data,

the variance of S̃(β0) involves the unknown correlation parameters ∆. The em-

pirical estimator ∆̃ based on the estimated residuals obtained under H0 depends

on β0, and it is asymptotically consistent under the local alternative. When ∆ is

estimated by ∆̃, we employ a two-step procedure to obtain an approximate con-

fidence interval for β, whose coverage probability converges to 1− α as n→∞.

First we obtain a rough (1−α) confidence interval (a0, b0) for β, assuming inde-

pendence. Then we perform the weighted quantile rank score test around a0 by
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moving a small distance to the left or right to find the lower confidence limit a

at which the test statistic value is within 0.05 of the critical value. Following a

similar procedure we can find the upper confidence limit b. In empirical studies,

we find that a fairly small number of searches, around 20, is needed.

3. Simulation Study

We conducted a simulation study to assess the performance of proposed

methods in both homoscedastic and heteroscedastic mixed models. The simula-

tion study mimics the apnea duration experiment analyzed in this paper to study

the effects of viscosity and feeding type. For comparative purpose, besides QRS,

we also considered the rank score test (denoted by Indep) implemented in the R

package quantreg, assuming independent data.

The simulated data sets were generated from the model

yijkl = 1 + xijklα+ wijklβ + zijklγ + ai + σjeijkl − 0.4
√

1 + σ2
j Φ

−1(τ), (3.1)

where i = 1, . . . , 30, j = 1, 2, k = 1, 2, l = 1, . . . , 6, xi1kl = wij1l = 0, xi2kl =

wij2l = 1, zijkl = xijkl · wijkl, and Φ is the cdf of N(0, 1). The α, β, and γ

correspond to the viscosity, feeding type, and viscosity-feeding interaction effects

in the swallow study. As an illustration, we generated both random subject

effects ai and random errors eijkl from N(0, 0.42). Note that under this setting,

the marginal distribution of uij = ai + σjeijkl was N(0, 0.42(1 + σ2
j )). Therefore,

uij − 0.4
√

1 + σ2
j Φ

−1(τ) has zero τth quantile for each i and j, satisfying the

assumption made in Model (2.3) for the identifiability purpose. To assess the

Type I errors of different methods, we set (α, β, γ) = (0, 1, 0) for testing H0 : α =

0, and (α, β, γ) = (2, 0, 0) for testing H0 : β = 0. For testing H0 : γ = 0, we let

α = 2, β = 1 and varied γ from 0 to 0.5 to assess the Type I error and power.

In this simulation, four different cases were considered. Case 1 was a ho-

moscedastic model with σ1 = σ2 = 1, so that the intra-subject correlation,

denoted by ̺, was 0.5, and δ11 = δ22 = 0.333 at median. Cases 2−4 were

heteroscedastic models. In Case 2, we set σ1 = 1 and σ2 = 0.5, resulting in

δ11 = 0.333 and δ22 = 0.398 (corresponding to ̺ = 0.8) at median. Case 3

had a larger degree of heteroscedasticity with σ1 = 2 and σ2 = 0.5, resulting

in δ11 = 0.282 (corresponding to ̺ = 0.2) and δ22 = 0.398 at median. Case 4

was similar to Case 3 but with σ2 = 0.25 associated with an extremely large

intra-subject correlation ̺ = 0.941 in the second viscosity group. We focused on

the quantile levels τ = 0.25 and 0.50, and repeated the simulation 500 times for

each case.

Table 1 summarizes the Type I errors of different methods for testing α,

β, and γ under the respective null hypotheses. The nominal significance level
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Table 1. The Type I errors of Indep, QRS, WQRS1 and WQRS2 in Cases
1−4 for testing three different null hypotheses. The significance level is 0.05.

τ = 0.25 τ = 0.5

Indep QRS WQRS1 WQRS2 Indep QRS WQRS1 WQRS2

H0 : α = 0

Case 1 0.018 0.044 0.044 0.048 0.016 0.054 0.048 0.052

Case 2 0.010 0.068 0.050 0.046 0.026 0.070 0.044 0.032

Case 3 0.054 0.098 0.036 0.038 0.050 0.102 0.058 0.046

Case 4 0.082 0.166 0.074 0.036 0.070 0.142 0.064 0.035

H0 : β = 0

Case 1 0.018 0.042 0.040 0.042 0.010 0.034 0.044 0.060

Case 2 0.004 0.030 0.028 0.034 0.002 0.048 0.048 0.048

Case 3 0.008 0.034 0.042 0.036 0.008 0.034 0.044 0.048

Case 4 0.044 0.064 0.040 0.054 0.018 0.068 0.034 0.034

H0 : γ = 0

Case 1 0.026 0.050 0.038 0.034 0.006 0.044 0.044 0.038

Case 2 0.020 0.048 0.050 0.052 0.004 0.032 0.024 0.026

Case 3 0.042 0.080 0.048 0.044 0.016 0.072 0.034 0.038

Case 4 0.044 0.104 0.040 0.054 0.018 0.088 0.024 0.024

was 0.05. Note that under the current simulation design, for inference on β,

Z∗ = 130 ⊗ (1, 1,−1,−1)T ⊗ 16 was orthogonal to W and thus the chi-square

approximation used in QRS was valid. However, this would not be true for gen-

eral designs. For inferences on α and γ, QRS showed reasonable robustness to

modest heteroscedasticity (Case 2), but it produced inflated levels at both quan-

tile levels in Cases 3−4 where the homoscedasticity assumption was substantially

violated. On the other hand the Indep test, was too conservative; see Figure 1

for the power curves of all four tests at τ = 0.5 for testing γ. Both WQRS1

and WQRS2 gave decent Type I errors and competitive powers, and WQRS2

was slightly more powerful than WQRS1 only in Case 4, where the intra-subject

correlation was extremely high.

Besides the testing performance, we also compared the efficiency of the work-

ing independence estimator and two weighted quantile estimators for estimating

the viscosity effect α and the feeding type effect β when the data was generated

with (α, β, γ) = (2, 1, 0). The results at median are summarized in Table 2. The

three estimators performed similarly for estimating α, while the two weighted

estimators had higher efficiency (and less bias) for estimating β in Cases 2−4.

One explanation is that in these heteroscedastic models, residuals from the same

j (viscosity) are identically distributed, but those from the same k (feeding type)

are non-identically distributed. Therefore, weighting the residuals by the original

scale reduces the heterogeneity within the same k, and thus improves the effi-

ciency of the feeding type effect estimation in a more obvious way. β̃2 is clearly
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Figure 1. Power curves of Indep, QRS, WQRS1 and WQRS2 for testing γ

in Cases 1-4 at τ = 0.5. The dashed horizontal line is the nominal 0.05 level.

Table 2. The comparison of finite sample mean squared errors (MSE) and
average bias (Bias) of three estimators: working independence estimator

(α̂, β̂), the simple weighted estimator (α̃1, β̃1), and the optimally weighted
estimator (α̃2, β̃2). The α stands for the viscosity effect and β is for the
feeding type effect.

Bias (in percentage)
MSE(α̃1)
MSE(α̂)

MSE(α̃2)
MSE(α̂)

MSE(β̃1)

MSE(β̂)

MSE(β̃2)

MSE(β̂)
α̂ α̃1 α̃2 β̂ β̃1 β̃2

Case 1

τ = 0.25 0.97 1.00 1.00 1.01 0.08 0.04 0.08 -0.64 -0.59 -0.66

τ = 0.5 0.98 0.99 1.01 1.00 0.16 0.15 0.17 -0.54 -0.54 -0.52

Case 2

τ = 0.25 0.98 0.97 0.90 0.88 0.21 0.20 0.16 -0.21 -0.17 -0.20

τ = 0.5 0.99 0.96 0.98 0.95 -0.05 -0.05 -0.06 -0.39 -0.36 -0.34

Case 3

τ = 0.25 0.99 0.98 0.75 0.69 0.36 0.36 0.29 -0.45 -0.26 -0.32

τ = 0.5 0.99 0.98 0.79 0.75 -0.24 -0.18 -0.19 -0.60 -0.56 -0.44

Case 4

τ = 0.25 1.00 0.99 0.57 0.38 0.56 0.54 0.40 -0.33 -0.17 -0.26

τ = 0.5 1.00 1.00 0.61 0.48 -0.25 -0.23 -0.22 -0.43 -0.35 -0.23
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Figure 2. The boxplots of the estimated errors in the swallow study.

more efficient than β̃1 when the intra-subject correlation was extremely high as,

in Case 4.

4. Application to the Swallow Study

We now apply the proposed method to the swallow data set introduced in

Section 2.1 to study the effects of viscosity and feeding type. For easy interpre-

tation of the results, we work on the raw scale of the apnea duration data. We

focus on three different quantile levels τ = 0.1, 0.5 and 0.9. In swallow studies,

the upper quantiles are of more clinical importance since longer apnea durations

in the elderly are often due to pathological disorder, or to healthy age-related

function changes.

Figure 2 shows the boxplots of the estimated errors for two viscosity con-

ditions, obtained by fitting model (2.1) at median. The plot suggests that the

apnea duration distribution is skewed to the right (this is true even for the log

transformed data), and the water and pudding swallows exhibit very different

variabilities. These should all be taken into account in the statistical inference.

For this data set, as the estimated intra-subject correlation is 0.2 for pudding

and 0.4 for water, the WQRS1 and WQRS2 give similar results and we focus

on WQRS1 in the following analysis. Table 3 summarizes the point estimates

and 95% confidence intervals of viscosity (pudding=1 and water=0), feeding type

(self-fed=1 and examiner-fed=0), and viscosity-feeding interaction effects at three

quantile levels. For comparative purposes, we also report the mean regression

results from PROC MIXED assuming unequal variances for water and pudding

swallows. The QRS and WQRS1 yield similar significance results. However,

WQRS1 provides shorter confidence intervals than QRS for the feeding and in-

teraction effects. For the viscosity effect, QRS yields shorter confidence intervals,



INFERENCE ON QUANTILE REGRESSION 1259

Table 3. The point estimates and 95% confidence intervals (CI) of viscosity,
feeding type and viscosity-feeding interaction effects on apnea duration at
three quantiles. The last row gives the mean regression results from PROC
MIXED.

Viscosity Feeding Interaction

Estimate 95%CI Estimate 95%CI Estimate 95%CI

τ = 0.1

WQRS1 -0.09 (-0.18, -0.02) -0.04 (-0.08, 0.02) 0.02 (-0.03, 0.07)

QRS -0.09 (-0.14, -0.05) -0.04 (-0.08, 0.04) 0.02 (-0.03, 0.08)

τ = 0.5

WQRS1 -0.24 (-0.35, -0.14) -0.04 (-0.09, 0.02) 0.04 (-0.04, 0.10)

QRS -0.24 (-0.31, -0.17) -0.04 (-0.11, 0.02) 0.04 (-0.05, 0.11)

τ = 0.9

WQRS1 -2.53 (-3.27, -1.28) -1.53 (-2.07, -1.11) 1.71 (1.16, 2.32)

QRS -2.53 (-3.13, -1.94) -1.53 (-2.09, -1.08) 1.71 (1.04, 2.31)

Mean -0.61 (-0.76, -0.47) -0.27 (-0.45, -0.10) 0.31 (0.11, 0.51)

Table 4. Estimated quantiles of apnea duration from different conditions.

τ = 0.1 τ = 0.5 τ = 0.9

Water, examiner-fed 0.762 1.106 4.038

Water, self-fed 0.726 1.070 2.504

Pudding, examiner-fed 0.670 0.870 1.506

Pudding, self-fed 0.658 0.874 1.684

possibly due to the obvious over-rejection as observed in the simulation study.

For this data set, the lower and upper tails of the apnea distribution behave

differently. At the lower quantile (τ = 0.1) and at the median, only viscosity is

significant, while at the upper quantile (τ = 0.9) both main and interaction ef-

fects are significant. More specifically, WQRS1 yields a p-value of 0.0009 for the

interaction effect at τ = 0.9, suggesting significance even after multiple testing

adjustment at three quantile levels. The exclusive use of the analysis on the mean

differences from PROC MIXED would overlook the different covariate effects on

the upper and lower quantiles of the apnea duration distribution.

Table 4 shows the estimated quantiles of apena duration from four different

viscosity-feeding conditions. Generally speaking, normal senior people tend to

have longer apnea duration when drinking water than when consuming pudding.

At the upper quantile, the viscosity exhibits a larger effect on the apnea dura-

tion when subjects were fed by examiners than when they were consuming by

themselves.

5. Discussion and Conclusions

In this paper, we proposed two weighted quantile rank score tests for mixed
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models with block-wise heteroscedasticity. The tests do not impose any paramet-

ric assumptions on the response distributions and thus are robust in performance.

We showed that without appropriate weights to account for the heteroscedastic-

ity, the rank score test QRS based on an asymptotic chi-square distribution is

no longer valid. We also demonstrated that the δ adjustment employed in the

proposed tests is crucial for dependent data. Simply ignoring the intra-subject

correlation led to conservative tests in our simulation study, while under some

other circumstances for testing the between-subject factors, it led to tests with

inflated Type I errors. Solving the estimating equation as in WQRS2 is computa-

tionally demanding, because it no longer corresponds to minimization of a convex

objective function. This requires sufficient data for the asymptotic optimality of

WQRS2 to take effect. In finite samples, the asymptotically optimal weights

that incorporate both correlation and heteroscedasticity provide marginal im-

provement over the simpler weights, except in situations where the intra-subject

correlation is extremely high. Based on the finite-sample performance and the

computational complexity, for clustered data with nonhomogeneous groups we

would recommend WQRS1 when the intra-subject correlation is moderate, and

WQRS2 for cases with extremely high intra-subject correlation (̺ ≥ 0.90).

Our proposed weights are proportional to the error densities evaluated at

the target quantiles. In models such as (2.1), where we can assume common

densities within blocks, the desired weights can be estimated consistently. The

apnea duration study used in the paper is typical, as this type of data is en-

countered frequently in applications. Under more general heteroscedasticity, the

error densities would be difficult to estimate, and we might consider using the

wild bootstrap to obtain a reference distribution for the rank score test statistic,

by treating each subject as a whole unit. More details on the wild bootstrap can

be found in Liu (1988) and Wu (1986). The validity and performance of such

bootstrap-based procedures need further investigation.
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