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Abstract: This study proposes an empirical martingale simulation (EMS) and an

empirical P -martingale simulation (EPMS) as price estimators for multi-asset finan-

cial derivatives. Under mild assumptions on the payoff functions, strong consistency

and asymptotic normality of the proposed estimators are established. Several simu-

lation scenarios are conducted to investigate the performance of the proposed price

estimators under multivariate geometric Brownian motion, multivariate GARCH

models, multivariate jump-diffusion models, and multivariate stochastic volatility

models. Numerical results indicate that the multi-asset EMS and EPMS price es-

timators are capable of improving the efficiency of their Monte Carlo counterparts.

In addition, the asymptotic distribution serves as a persuasive approximation to

the finite-sample distribution of the EPMS price estimator, which helps to reduce

the computation time of finding confidence intervals for the prices of multi-asset

derivatives.

Key words and phrases: Empirical martingale simulation, Esscher transform, multi-

asset derivatives pricing.

1. Introduction

Due to the acceleration of cross-market integration and the globalization

of financial markets, market participants have become increasingly interested in

multi-asset derivatives and use them to construct diversified portfolios. On the

other hand, the issuers of multi-asset derivatives are facing the task of pricing

and hedging these products. In this study, the multi-asset derivative means a

derivative whose payoff depends on multiple underling assets.

For European multi-asset options, there are three broad categories - basket

options, rainbow options, and quanto options - that are popular and commonly

traded over-the-counter (OTC). A buyer of a currency basket option has the

right, without the obligation, to receive certain currencies in exchange for a base

currency, either at the spot market rate or at a predetermined rate of exchange.

This kind of options is generally used by multinational corporations which have

to deal with multicurrency cash flows. Using the basket option costs significantly
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less than buying an option on the individual components of the portfolio. This

fact is also mentioned in Dimitroff, Lorenz and Szimayer (2011). For hedging

risks arising from several events, rainbow options are useful tools and have var-

ious types (Ouwehand and West, 2006). A special type of rainbow option is the

exchange option proposed by Margrabe (1978). A holder of an exchange option

has the right to exchange one asset for the other at maturity. Rainbow options

are most commonly used when valuing natural resources, since they depend on

both the price of the natural resource and how much of the resource is available in

a deposit. A quanto option is a cash-settled and cross-currency derivative, whose

underlying asset is measured in one currency and the payoff is quoted in another

currency. The CME Nikkei 225 Dollar Futures is an example of quantos. In the

contract, the underlying asset, the Nikkei 225 Stock Average Index, is settled

in U.S. dollars (USD), as opposed to Japanese yen. It provides investors with

an efficient way to access the opportunities of the Japanese equity market and

trade using USD. On September 16, 2016, the daily trading volume of Nikkei 225

Dollar Futures with the maturity date, December 16, 2016, was 10,479, which

is comparable to the daily trading volume 11,477 of S&P 500 Futures with the

same maturity. Another example is the MSCI Taiwan Index Futures, which is

traded on the Singapore exchange and is settled in USD. The average daily trad-

ing volume from January 7, 2014, to December 20, 2016, was around 52,500.

Other similar derivatives traded on the Singapore exchange include the MSCI

Hong Kong Index Futures, the MSCI Indonesia Index Futures and the FTSE

China A50 Index Futures, whose underlying assets are the Indexes of different

stock markets in Asia but are all settled in USD.

These examples indicate that multi-asset derivatives play an important role

in global investment and risk management. However, pricing and hedging multi-

asset derivatives is more challenging than single-asset derivatives since one needs

to face multiple uncertainties of the underlying assets. Furthermore, there are

usually no closed-form solutions for computing the prices and sensitivities (Greeks)

of multi-asset derivatives if a complicated model is used to describe the dynamics

of the underlying assets. Hence market participants rely on numerical or simula-

tion procedures, such as the Monte Carlo (MC) method, to estimate the prices

and Greeks of multi-asset derivatives.

For pricing options based on single-asset, many variance reduction techniques

have been proposed to improve the computational efficiency of the standard MC

method. For example, Duan and Simonato (1998) proposed an empirical martin-

gale simulation (EMS), that modifies the standard MC simulation procedure, for



MULTI-ASSET EMPIRICAL MARTINGALE PRICE ESTIMATORS 997

single-asset option pricing. The EMS method imposes the martingale property

on the simulated sample paths of the underlying asset prices under a risk-neutral

model and is capable of reducing the variance of the MC price estimator. In

practice, a risk-neutral counterpart of a complex model may not be conveniently

obtained. In this case, we cannot proceed with the EMS under a risk-neutral

environment. To overcome this difficulty, Huang (2014) proposed an empirical

P -martingale simulation (EPMS) under the dynamic P measure. By imposing

the martingale property on the simulated sample paths of both the change-of-

measure process and the underlying asset prices under the dynamic P measure,

the EPMS method has a comparable performance to the EMS method on single-

asset option pricing. The EMS and EPMS methods not only can be used in

pricing derivatives but also can be applied to energy investment program in the

power industry. For example, Contreras and Rodriguez (2014) used the EMS

and EPMS methods to evaluate investments in wind energy.

Traditionally, practitioners repeatedly generate derivative prices with inde-

pendent random copies of the underlying asset prices for computing the standard

deviations of the EMS and EPMS price estimators, which is time-consuming. The

asymptotic distributions of the EMS and EPMS price estimators have been de-

rived. Duan, Gauthier and Simonato (2001) showed that the EMS price estima-

tors of derivative contracts are asymptotically normally distributed for piecewise

linear and continuous payoffs. Yuan and Chen (2009) extended the asymptotic

normality result of the EMS price estimator to piecewise smooth and continuous

payoffs and made a conjecture for discontinuous payoffs. For the EPMS price

estimator, the asymptotic normality was derived for piecewise smooth payoffs,

either continuous or discontinuous, in Huang and Tu (2014). In addition, numer-

ical results presented in Duan, Gauthier and Simonato (2001), Yuan and Chen

(2009), and Huang and Tu (2014) indicate that the asymptotic distributions of

the EMS and EPMS price estimators provide satisfactory approximations to the

finite-sample distributions even when the number of sample paths is as few as

500. Consequently, market participants can quickly obtain accurate confidence

interval estimates of the derivatives prices for making investment decisions by

using the asymptotic distribution.

Since the EMS and EPMS price estimators are easy to implement and have

satisfactory performance in pricing single-asset derivatives, we are interested in

investigating whether these methods still retain the nice theoretical and numer-

ical properties of multi-asset derivatives. This study is devoted to answering

this question. The strong consistency and asymptotic normality of the proposed
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multi-asset EMS and EPMS price estimators are successfully derived under mild

assumptions on the payoff functions. Numerical findings also indicate that the

proposed methods for pricing multi-asset derivatives are capable of reducing sim-

ulation errors substantially, and the asymptotic distribution provides a satisfac-

tory approximation to the finite-sample distribution. In particular, if the change-

of-measure process is equal to 1 in the EPMS procedure, then the EPMS price

estimator coincides with its EMS counterpart. This phenomenon can be observed

by comparing the results of Duan and Simonato (1998) and Huang (2014) with

the results of Yuan and Chen (2009) and Huang and Tu (2014). Consequently,

the EMS is a special case of the EPMS estimator; we present the derivation of

the large sample properties of the multi-asset EPMS estimator in this study.

The rest of this paper is organized as follows. Section 2 introduces the pro-

cedures of obtaining the multi-asset EMS and EPMS price estimators. Section 3

presents the large sample properties of the proposed price estimators. Simulation

studies are conducted in Section 4 to investigate the efficiency of the proposed

price estimators and the accuracy of the asymptotic distribution. Conclusions

are given in Section 5. Detailed proofs and illustrations of our simulation sce-

narios are presented in the online supplement (http://www3.stat.sinica.edu.tw/

statistica/).

2. The Proposed Multi-Asset Empirical Martingale Price Estimators

Let St = (S1,t, . . . , Sn,t) denote a vector of prices of n underlying assets at

time t that form a multivariate stochastic process. Let f(St, 0 ≤ t ≤ T ) denote

the payoff of a European contingent claim, whose profit depends on multiple

underlying assets with expiration date T . For example, the payoff of a multi-

asset and path-independent European call option is defined by f(St, 0 ≤ t ≤
T ) = max{g(ST )−K, 0} and the corresponding no-arbitrage price is

C0(S0) = e−rTEQ(max{g(ST )−K, 0})

= e−rT
∫
· · ·
∫
ITMT

{g(ST )−K}dF (ST ), (2.1)

where the 1st equality is the so-called risk-neutral pricing formula, r is the risk-

free interest rate, g(·) is a real-valued function with domain Rn and range R, K is

the strike price, ITMT={ST : g(ST ) > K} denotes the in-the-money (ITM) event

at time T , F (ST ) denotes the joint distribution function of ST , and EQ denotes

the expectation under a risk-neutral measure Q. In particular, if the dimension

of underlying assets is reduced to 1, Black and Scholes (1973) derived the famous

http://www3.stat.sinica.edu.tw/statistica/
http://www3.stat.sinica.edu.tw/statistica/
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Black-Scholes formulae for European call and put options by assuming that the

prices of an underlying asset satisfy the risk-neutral model

dS1,t = rS1,tdt+ σS1,tdW̃1,t, (2.2)

where σ is the instantaneous volatility and W̃1,t is a Brownian motion under the

Q measure. The pricing formula for a European call option for a non-dividend-

paying underlying stock with payoff function f(S1,T ) = max(S1,T −K, 0) is

C0(S1,0) = S1,0Φ(d1)−Ke−rTΦ(d2),

where d1 = log(S1,0/K)+(r+0.5σ2)T/(σT 1/2), d2 = d1−σT 1/2 and Φ(·) denotes

the standard normal cumulative distribution function. The Black-Scholes pricing

formula led to a boom in options trading in global financial markets. Nowadays,

many more complicated options than European call options are traded in the

exchanges and OTC markets around the world and more realistic models than

(2.2) are proposed to describe the dynamics of underlying asset prices. However, a

closed-form representation of the multiple integrals on the right-hand-side of (2.1)

with complicated payoff functions under realistic models are usually difficult to

obtain. Therefore, how to approximate derivative prices accurately and efficiently

attracts the attention of traders.

Let ΛT = dQ/dP be a Radon-Nikodým derivative of the risk-neutral Q

measure with respect to the physical P measure. Furthermore, define Λt =

E(ΛT |Ft) := Et(ΛT ), 0 ≤ t < T , where E(·) denotes the expectation under the

physical measure P and Ft denotes the set of information from time 0 up to time

t. Consequently, {Λt, 0 ≤ t ≤ T} is a change of measure process depending on

Su, 0 ≤ u ≤ t, and is a martingale process under the P measure (abbreviated as

P -martingale). For European-style options, due to the identity of EQ{(f(St, 0 ≤
t ≤ T )} = E{f(St, 0 ≤ t ≤ T )ΛT }, the no-arbitrage price of a financial derivative

can also be computed under the physical measure P . If EQ{f(St, 0 ≤ t ≤ T )} and

E{f(St, 0 ≤ t ≤ T )ΛT } do not have closed-form representations, the former can

be approximated by the MC price estimator, m−1
∑m

j=1 f(Sj,t, 0 ≤ t ≤ T ), where

Sj,t, j = 1, . . . ,m, are independent and identically distributed (i.i.d.) random

vectors generated from the risk-neutral model at time t, and the later can be

approximated by m−1
∑m

j=1 f(Sj,t, 0 ≤ t ≤ T )Λj,T with Sj,t, j = 1, . . . ,m, being

i.i.d. random vectors generated from the physical model at time t. Throughout

this study, we use MCQ and MCP to denote the MC price estimators under the

Q measure and P measure, respectively.

In order to improve the efficiency of the MC price estimators, we propose a

multi-asset EMS price estimator under the Q measure and a multi-asset EPMS
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price estimator under the P measure in discrete time. In the following, we first

introduce the proposed EPMS procedure for pricing multi-asset derivatives.

1. Use the standard MC method to generate m independent random paths for

the prices of the ith asset under the P measure, denoted by Ŝi,j,t, where

i = 1, . . . , n, j = 1, . . . ,m and t = 1, . . . , T .

2. Let Λ∗j,0 = Λ̂j,0 = Λ0 = 1 and define the empirical martingale change of

measure process by Λ∗j,t = Λ̂j,t/Λ̄m,t, for j = 1, . . . ,m and t = 1, . . . , T ,

where Λ̄m,t = m−1
∑m

j=1 Λ̂j,t and Λ̂j,t = Λt(Ŝ1,j,u, . . . , Ŝn,j,u, 0 ≤ u ≤ t) is a

function of the jth path of the MC asset prices generated in Step 1.

3. Let S∗i,j,0 = Ŝi,j,0 = Si,0 be the initial price of the ith asset, for i = 1, . . . , n

and j = 1, . . . ,m, and define the empirical martingale stock prices S∗i,j,t by

S∗i,j,t = ertSi,0Ŝi,j,t/S̄
∗
i,m,t, for i = 1, . . . , n, j = 1, . . . ,m and t ≥ 1, where

S̄∗i,m,t = m−1
∑m

j=1 Ŝi,j,tΛ
∗
j,t.

4. Define the multi-asset EPMS price estimator with a payoff function f by

C
(m)
EPMS =

1

m
e−rT

m∑
j=1

f(S∗j,1, . . . ,S
∗
j,T )Λ∗j,T , (2.3)

where S∗j,t = (S∗1,j,t, . . . , S
∗
n,j,t).

In Steps 2 and 3 we create dependencies among Λ∗j,t, j = 1, . . . ,m, and

also among S∗i,j,t, j = 1, . . . ,m, for each asset at time t. These dependencies

provide an opportunity for variance reduction for the multi-asset EPMS price

estimator. Moreover, the processes {Λt} and {e−rtStΛt} are martingales under

the P measure. After the modification in Steps 2 and 3, the generated processes

{Λ∗j,t} and {S∗i,j,t} satisfy the following empirical P -martingale properties

1

m

m∑
j=1

Λ∗j,t = Λ0 = 1 and
1

m

m∑
j=1

e−rtS∗i,j,tΛ
∗
j,t = Si,0,

for each i = 1, . . . , n, and t = 1, . . . , T .

Remark 1. The above multi-asset EPMS procedure can be conveniently mod-

ified to obtain a multi-asset EMS price estimator by the following scheme: (i)

generate random samples from a Q measure in Step 1, (ii) skip Step 2, and (iii)

let Λ∗j,t = 1, for all j = 1, . . . ,m and t = 1, . . . , T , in Steps 3 and 4.

In view of the EPMS procedure and Remark 1, the EMS and EPMS are easy

to implement since the EMS and EPMS corrections are obtained by modifying
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the standard MC samples. In addition, the modification is simple and does not

require an expensive computational cost.

3. Main Results

3.1. The strong consistency of the multi-asset EPMS method

Throughout this paper, the notation ‖ · ‖ stands for the Euclidean norm and

the domain of the payoff function f is denoted by Df ⊆ Rn for an integer n.

Definition 1. A function f : Df → R is said to have growth rate q if there exist

a constant c > 0 and a positive integer q such that |f(x)| ≤ c(1 + ‖x‖q) for any

x ∈ Df .

Definition 2. A function f : Df → R is said to satisfy the Lipschitz condition

if there exists c <∞ such that |f(x)− f(y)| ≤ c‖x− y‖ for any x, y ∈ Df .

In addition, the following assumptions are needed for establishing our theo-

retical results.

(A1) The payoff function f is piecewise smooth.

(A2) Df has a finite partition, denoted by {A`, ` = 1, . . . , k}, with each partition

a connected set such that f is Lipschitz continuous on A`.

(A3) f has growth rate q on Df .

(A4) EQ(|f(S1, . . . ,ST )|) <∞.

(A5) The multivariate distribution of (S1, . . . ,ST ) underQ has a bounded density

function and EQ(‖(S1, . . . ,ST )‖q) <∞, where q is the same as in (A3).

In financial markets, many derivatives have payoffs involving multiple un-

derlying assets. For examples, the payoff of an arithmetic basket put option

is defined by f(ST ) = max(K − n−1
∑n

i=1 Si,T , 0), the payoff of a maximum

call option is max(max(S1,T , . . . , Sn,T )−K, 0), the payoff of an exchange option

is max(S1,T − S2,T , 0), and the payoff of a quanto call option is f(ST , XT ) =

max(XTST −K, 0), where XT is the exchange rate at time T . It can be checked

that these payoff functions satisfy (A1)-(A3). In the following, we use a two-

dimensional geometric average put option (or called geometric basket put option)

as an example for illustration.

Example 1. A two-dimensional geometric average put option is defined by

f(S1,T , S2,T ) = max(K − (S1,TS2,T )1/2, 0). In particular, the domain of the pay-

off f here is set up to be Df = [η,∞) × [η,∞) with an 0 < η < K1/2. For
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practical implementation, we set η to be a very small number, say η = 10−8.

Apparently, f is piecewise smooth on Df . Hence, (A1) holds. Let A1 = {(S1,T ,
S2,T ) | (S1,TS2,T )1/2 ≤ K for S1,T ≥ η and S2,T ≥ η} and A2 = {(S1,T , S2,T ) |
(S1,TS2,T )1/2 > K for S1,T ≥ η and S2,T ≥ η} be a partition of Df . Since

f(S1,T , S2,T ) = 0 for (S1,T , S2,T ) ∈ A2, f is Lipschitz continuous on A2. In Sec-

tion S2.1 of the online supplement, we prove that f is also Lipschitz continuous

on A1. Therefore, (A2) holds. In addition, f has growth rate q = 1 on Df

since |f(S1,T , S2,T )| ≤ K, for (S1,T , S2,T ) ∈ Df , which ensures (A3). Moreover,

(A4) is a natural assumption for derivative pricing, while (A5) is satisfied for

most payoff functions under the multivariate geometric Brownian motion, multi-

variate GARCH models, multivariate versions of Merton (1976)’s jump-diffusion

models and multivariate versions of Hull and White (1987)’s and Heston (1993)’s

stochastic volatility models. We discuss these models in Section S1 of the online

supplement.

Some single-asset derivatives also satisfy (A1)-(A3) with n = 1. For example,

the payoff functions of European call, European put, digital and barrier options

all satisfy (A1)-(A3) with growth rate q = 1. The payoff function of a self-quanto

call option f(ST ) = ST max(ST −K, 0), for ST ∈ Df = [0, ξ] where ξ is a large

positive number, say ξ = 108, also satisfies (A1)-(A3) and is an example of growth

rate q = 2. Therefore, (A1)-(A3) are satisfied for many financial derivatives

traded in the market. As mentioned in Example 1, (A4) and (A5) are also

satisfied by popular models for describing the dynamics of the underlying assets,

like the multivariate models discussed in Section S1 of the online supplement.

We prove that the derivative prices obtained from the multi-asset EPMS

method converge to the theoretical values. Details of the proof are given in

Section 2.2 of the online supplement.

Theorem 1. Let {Λt} be a change of measure process of Q with respect to P ,

and {e−rtSi,tΛt} be a positive P -martingale process over the time index set {t :

t = 0, 1, . . . , T}, i = 1, . . . , n. If (A1)-(A5) hold, then as m→∞,

1

m

m∑
j=1

f(S∗j,1, . . . ,S
∗
j,T )Λ∗j,T → E0{f(S1, . . . ,ST )ΛT },

almost surely, where S∗j,t = (S∗1,j,t, . . . , S
∗
n,j,t) and both Λ∗j,t and S∗i,j,t are generated

from the multi-asset EPMS method.

Remark 2. In Theorem 1, if n = 1 and f has a growth rate q = 1 on Df ,

then (A1)-(A3) ensure that f satisfies the generic Lipschitz condition in Huang
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Table 1. The estimated option prices of the MCQ and EMS methods for f(ST ) =
(ST /S0) logST I(ST<100) with 10k sample paths, where ST = λ|XT | with XT being t-
distributed with degrees of freedom ν = 1.01, 1.1 or 1.3, λ = S0e

rT (ν − 1)Γ(1/2)Γ(ν/2)/
{2ν1/2Γ((ν + 1)/2)}, S0 = 100, r = 0.05 and T = 1.

k 4 5 6 7
ν = 1.01 MCQ 0.10 0.10 0.10 0.10

EMS 0.57 0.65 0.55 0.47
ν = 1.1 MCQ 0.59 0.59 0.59 0.59

EMS 0.27 0.76 0.75 0.70
ν = 1.3 MCQ 0.96 0.94 0.94 0.94

EMS 0.99 0.95 0.96 0.95

(2014), and f is Lipschitz continuous over each partition set of Df . Consequently,

Theorem 2.2 in Huang (2014) is a special case of Theorem 1.

We provide a counter-example to demonstrate that (A5) is crucial to the

strong consistency of the proposed price estimator. Let ST = λ|XT | under

a risk-neutral measure Q, where XT is t-distributed with degrees of freedom

ν ∈ (1, 2) and λ is a positive constant. In order to keep the martingale prop-

erty of discounted stock prices under the Q measure, we choose λ = S0e
rT (ν −

1)Γ(1/2)Γ(ν/2)/{2ν1/2Γ((ν + 1)/2)} such that EQ(e−rTST ) = S0. Consider a

payoff function f(ST ) = (ST /S0) logST I(ST<K) that satisfies f(ST ) < c(1 + S2
T )

for some positive constants c, so f(ST ) has growth rate q = 2 > ν. Then

EQ{f(ST )} < ∞ but EQ(S2
T ) does not exist: (A4) holds but (A5) is violated.

Table 1 presents the estimated option values of the MCQ and EMS methods with

S0 = K = 100, r = 0.05, T = 1, ν = 1.01, 1.1, 1.3 and numbers of sample paths

m = 10k, k = 4, 5, 6, 7. Numerical results show that the EMS price estimator

does not converge when ν = 1.01 and 1.1.

3.2. Asymptotic distribution for the multi-asset EPMS price estimator

In this section, the asymptotic distribution of the multi-asset EPMS price

estimator defined in (2.3) is derived, where f(·) is assumed to be piecewise smooth

and continuous. According to Duan, Gauthier and Simonato (2001), Yuan and

Chen (2009), and Huang and Tu (2014), this study only considers establishing

the asymptotic distribution of the multi-asset EPMS price estimator for path-

independent derivatives, the payoff function only depends on the prices of the

underlying assets at time T .

Suppose f : Df → R is piecewise smooth and continuous and can be written

as
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f(x) =

k∑
`=1

f`(x)IA`
(x), (3.1)

where x = (x1, . . . , xn), the A`’s form a partition of Df and IA`
(x) is an indicator

function defined by IA`
(x) = 1, if x ∈ A`, and IA`

(x) = 0, if x /∈ A`. Denote the

boundary set of Df by

G =

k⋃
`=1

(A` −A∗` ), (3.2)

where A` and A∗` denote the closure and interior of A`, respectively. To ensure

the continuity of f , we assume that f`(x) = fs(x) for x ∈ A` ∩ As, ` 6= s and

`, s ∈ {1, . . . , k}. In addition, we write ∇f(x) =
∑k

`=1∇f`(x)IA`
(x), where

∇f`(x) = (∂f`/∂x1, . . . , ∂f`/∂xn)>. Here we strengthen the conditions (A1),

(A2), (A3) and (A5) in Section 3.1 to (A1’), (A2’), (A3’) and (A5’), respectively,

and let (A4’) = (A4) for deriving the asymptotic distribution.

(A1’) The payoff function f is piecewise smooth and continuous.

(A2’) ∇f`(x) exists and is continuous for x ∈ A`.

(A3’) There exists a positive integer q such that each component of ∇f(·) has

growth rate q, so ‖∇f(x)‖1 ≤ c(1+‖x‖q) for some positive constant c <∞.

(A5’) The multivariate distribution of (S1, . . . ,ST ) underQ has a bounded density

function and E(‖ST ‖q+1ΛT ) = EQ(‖ST ‖q+1) < ∞, where q is the same as

in (A3’).

We continue to use the two-dimensional geometric average put option men-

tioned in Example 1 to demonstrate that these assumptions are satisfied.

Example 2. It is trivial to find that (A1’) is satisfied by a two-dimensional

geometric average put option. By using the notation of Example 1 and by

(3.1), we have f1(S1,T , S2,T ) = K − (S1,TS2,T )1/2 and f2(S1,T , S2,T ) = 0 for

(S1,T , S2,T ) ∈ Df . As a result,

∇f1 = (−0.5(S2,T /S1,T )1/2,−0.5(S1,T /S2,T )1/2) and ∇f2 = (0, 0).

Apparently, ∇f1 is continuous on A1 = {(S1,T , S2,T ) : (S1,TS2,T )1/2 ≤ K for S1,T
≥ η and S2,T ≥ η} and ∇f2 is continuous on A2 = {(S1,T , S2,T ) : (S1,TS2,T )1/2 ≥
K for S1,T ≥ η and S2,T ≥ η} Therefore, (A2’) holds. Since max{(S2,T /S1,T )1/2,

(S1,T /S2,T )1/2} ≤ η−1(1 + ‖(S1,T , S2,T )‖) for all (S1,T , S2,T ) ∈ Df , (A3’) holds

with q = 1. (A5’) is satisfied if the multivariate model discussed in Section S1 of
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the online supplement is used to describe the dynamics of the underlying asset

prices.

We need some notation.

Definition 3. For matrices A and B of dimension m×n, the Hadamard product,

denoted by A ◦ B, is a matrix of dimension m × n with elements (A ◦ B)i,j =

(A)i,j × (B)i,j, where (X)i,j denotes the (i, j)th element of a matrix X.

For a random variable X and a random vector Y = (Y1, . . . , Yn) we use

Cov(X,Y) = (Cov(X,Y1), . . . ,Cov(X,Yn))> to denote the vector of covariances

of X and Yi, i = 1, . . . , n, use Cov(Y) = (Cov(Yi, Yj)), for i, j = 1, . . . , n, to

denote the covariance matrix of Y, and let Y−1 = (Y −11 , . . . , Y −1n ).

Theorem 2. Let the assets prices ST = (S1,T , . . . , Sn,T ) be a positive random

vector and ΛT be a Radon-Nikodým derivative.

(i) If (A1’)-(A5’) hold, then

C
(m)
MC − C

(m)
EPMS = e−rT {(S̄m,T − erTS0)Φ + (Λ̄m,T − 1)Ψ}+ op(m

−1/2),

where C
(m)
MC is the derivative value computed by the MC method,

Φ = e−rTE[ΛT∇f(ST ) ◦ (ST ◦ S−10 )>]

is an n× 1 vector,

Ψ = E[f(ST )ΛT ]− erTS0Φ

is a scalar, S̄m,T = (S̄1,m,T , ..., S̄n,m,T ) with S̄i,m,T = m−1
∑m

j=1 Ŝi,j,T Λ̂j,T

for i = 1, . . . , n, Λ̄m,T = m−1
∑m

j=1 Λ̂j,T , and Hm = op(m
−k) denotes that a

sequence of random variables, Hm, m = 1, 2, . . ., satisfying limm→∞m
kHm =

0 in probability.

(ii) If (A5’) is strengthened to E(‖ST ‖2(q+1)Λ2
T ) <∞, then

m1/2(C
(m)
EPMS − C)

L−→ N(0, V ), as m→∞,

where C is the true derivative price,
L−→ denotes convergence in distribution,

and

V = e−2rT
{

Var(f(ST )ΛT ) + Φ>Cov(ΛTST )Φ

+Ψ2Var(ΛT )− 2Φ>Cov(f(ST )ΛT ,ΛTST )

−2ΨCov(f(ST )ΛT ,ΛT ) + 2ΨΦ>Cov(ΛT ,ΛTST )
}
. (3.3)

Remark 3. If n = 1, then the asymptotic results shown in Theorem 2 reduce to

the results in Theorem 3.1 of Huang and Tu (2014) for the single asset case.
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The asymptotic properties shown in Theorems 1 and 2 for the multi-asset

EPMS price estimator can be conveniently modified to the multi-asset EMS price

estimator defined in Remark 1. We illustrate this fact.

Corollary 1. Under the framework of a risk-neutral Q measure, if Λt, Λ̂j,t and

Λ∗j,t are 1 for all j = 1, . . . ,m and t = 1, . . . , T , in Theorems 1 and 2, then

we obtain the strong consistency and asymptotic distribution for the multi-asset

EMS price estimator defined in Remark 1. For n = 1, the results shown in

Theorems 1 and 2 reduce to those of Duan and Simonato (1998), Duan, Gauthier

and Simonato (2001), and Yuan and Chen (2009).

4. Simulation Study

We investigated the efficiency of the multi-asset EMS and EPMS price es-

timators in several simulation scenarios and examined the performance of the

asymptotic distribution of the multi-asset EPMS price estimator. Four types

of frequently used models were considered: multivariate geometric Brownian

motion, multivariate GARCH model, multivariate versions of Merton (1976)’s

jump-diffusion model and multivariate versions of Hull and White (1987)’s and

Heston (1993)’s stochastic volatility models.

Two multi-asset derivatives were employed. The first one was the maximum

call option with payoff function

f(S1,T , . . . , Sn,T ) = max{max(S1,T , . . . , Sn,T )−K, 0}.

The second one was the geometric average put option with payoff function

f(S1,T , . . . , Sn,T ) = max{K − (S1,T . . . Sn,T )1/n, 0}.

These payoff functions of the maximum call option and the geometric average put

option are piecewise smooth and continuous. By using the results in Theorem 2,

we constructed asymptotic (1− α) confidence interval for the multi-asset EPMS

price estimator: (
C

(m)
EPMS − zα/2(

V̂

m
)1/2, C

(m)
EPMS + zα/2(

V̂

m
)1/2

)
, (4.1)

where C
(m)
EPMS is defined in (2.3), zα/2 is the (1 − α/2) quantile of a standard

normal random variable and V̂ is an estimator of V defined in (3.3) and can be

obtained simply by using the MC samples.

For evaluating the performance of the proposed price estimators, we con-

sidered the following ratios. If the maximum call option and the geometric

average put option have closed-form solutions, we report the ratios of mean
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squared errors (MSE): MRQ = MSE(MCQ)/MSE(EMS) under the Q measure

and MRP = MSE(MCP)/MSE(EPMS) under the P measure, where MSE(·)
denotes the MSE of the corresponding price estimator on the basis of 1,000 repli-

cations. If a closed-form solution of an option did not exist, the expected option

value was replaced by using the standard MC with 105 simulations for computing

MRQ and MRP.

Detailed illustrations and numerical results of our simulation scenarios are

presented in the online supplement. In general, the proposed price estimators

and the asymptotic distribution have satisfactory performance, especially for

ITM options.

5. Conclusion

In this study, we propose a multi-asset EMS price estimator and a multi-

asset EPMS price estimator for financial derivatives based on multiple under-

lying assets. The strong consistency and asymptotic normality of the proposed

price estimators are derived under mild assumptions on the payoff functions.

Simulation results given in the online supplement indicate that the proposed

price estimators are capable of improving the efficiency of their MC counterparts

under multivariate geometric Brownian motion, multivariate GARCH models,

multivariate versions of Merton (1976)’s jump-diffusion models and multivari-

ate versions of Hull and White (1987)’s and Heston (1993)’s stochastic volatility

models. Numerical results also provide strong evidence that the asymptotic dis-

tribution has a satisfactory approximation to the finite-sample distribution in

our scenarios, which helps to reduce the computation time of finding confidence

intervals for the prices of multi-asset derivatives.

Supplementary Materials

In the supplement, several simulation scenarios are reported under multi-

variate Brownian motion, multivariate GARCH models, multivariate versions of

jump-diffusion models and multivariate versions of stochastic volatility models to

investigate the efficiency of the proposed price estimators. In addition, the per-

formance of the asymptotic distribution of the multi-asset EPMS price estimator

was examined under various simulation cases. Detailed proofs and numerical

results are also given.
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