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Abstract: We consider the problem of obtaining locally D-optimal designs for facto-

rial experiments with qualitative factors at two levels each and with binary response.

For the 22 factorial experiment with main-effects model, we obtain optimal designs

analytically in special cases and demonstrate how to obtain a solution in the general

case using cylindrical algebraic decomposition. The optimal designs are shown to

be robust to the choice of the assumed values of the prior, and when there is no

basis to make an informed choice of the assumed values we recommend the use of

the uniform design that assigns equal number of observations to each of the four

points. For the general 2k case we show that the uniform design has a maximin

property.
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1. Introduction

The goal of many scientific and industrial experiments is to study a process

that depends on several qualitative factors. We focus on the design of those

experiments where the response is binary. When the response is quantitative

and a linear model is appropriate, the design of the experiment is informed by

the extensive literature on factorial experiments. On the other hand if the factors

are quantitative and the response is binary, the literature on optimal design of

generalized linear models in the approximate theory setup could be used. The

goal of our work is to identify optimal and robust designs for factorial experiments

with binary response.

Specific examples of experiments of interest are available. Smith (1932) de-

scribed a bioassay for an anti-pneumococcus serum in which the explanatory

variable was doses of the serum. Mice infected with pneumococcus were injected

with different doses of the serum and the response was survival (or not) beyond

seven days. Hamada and Nelder (1997) discussed the advantages of using a gen-

eralized linear model for discrete responses instead of linearizing the response to

obtain an approximate linear model. They examined an industrial experiment on
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windshield molding performed at an IIT Thompson plant that was originally re-

ported by Martin, Parker, and Zenick (1987). There were four factors each at two

levels and the response was whether the part was good or not. A 24−1 fractional

factorial design was used with 1,000 runs at each experimental condition. Other

examples include a seed gemination experiment described in Crowder (1978),

and a sperm survival experiment in Myers, Montgomery, and Vining (2002). In

a later section we examine a designed 22 experiment on the reproduction of plum

trees, as reported by Hoblyn and Palmer (1934), with binary response.

We assume that the process under study is adequately described by a gen-

eralized linear model. While the theory we develop works for any link function,

in examples and simulations we focus on the logit, probit, log-log, and comple-

mentary log-log links. The optimal designs is obtained using the D-criterion that

maximizes the determinant of the inverse of the asymptotic covariance matrix

of the estimators (the information matrix). In order to overcome the difficulty

posed by the dependence of the design optimality criterion on the unknown pa-

rameters, we use the local optimality approach of Chernoff (1953) in which the

parameters are replaced by assumed values. We refer the reader to the paper

by Khuri et al. (2006) for details of the theory of designs for generalized linear

models.

We assume that every factor is at two levels, a setup of particular interest

in screening experiments, and that (for an experiment with k factors) we are

interested in a complete 2k experiment, one in which the design may be supported

on all 2k points. The model we choose may include a subset of all main effects

and interactions. If we assume that the total number of observations is held fixed,

then the design problem is to determine the proportion of observations allocated

to each of the 2k design points. It may be noted that if the response follows a

standard linear model, then it follows from the results of Kiefer (1975) that the

design which is uniform on the 2k design points is universally optimal. For the

problem restated in terms of weighing designs, Rao (1971) gave the optimality

of the uniform design in terms of minimizing variances of each of the parameter

estimators. It may be noted that the uniform design is an orthogonal array (Rao

(1947)).

In this initial study, we focus primarily on the complete 22 experiment where

the response is binary. While we do not find analytic solutions for D-optimal de-

sign for the general 22 experiment, we obtain characterizations for several special

cases. For the general 22 experiment we demonstrate how a solution may be ob-

tained by Cylindrical Algebraic Decomposition (CAD). Since local D-optimality

depends on the assumed parameter values, we perform extensive simulations and

demonstrate that the design is usually robust to the choice of the these values.

The optimality criterion can be written in terms of the variances, or informa-

tion, at each of the 22 points. Note that these variances depend on the parameters
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through the link function. It turns out that the D-optimal design is quite differ-

ent from the uniform design, especially when at least two of these variances are

far from each other. Our general conclusions may be described as follows. If the

experimenter has an approximate idea of the variances then the design obtained

by using these values as the assumed values in the local D-criterion results is a

highly efficient design. If the experimenter knows only that the variance at one

point is substantially larger (this will be made precise) than the others, then the

optimal design assigns one-third of observations to each of the three points with

smaller variance and none to the one with the largest. In the absence of any prior

idea of the variances our recommendation is to use the uniform design, which is

quite robust in general. This strategy is examined for the logit, probit, log-log,

and complimentary log-log link functions. It may be noted that for applications

where a D-optimal design cannot be used, it can still serve as a benchmark to

evaluate other designs.

For the general 2k experiment we show that the uniform design is a maximin

D-optimal design, i.e., a design that maximizes a lower bound of the D-criterion.

It may be noted that Graßhoff and Schwabe (2008) considered D-optimal

designs for paired comparisons for logit links and in Section 5.2 of their paper

they obtained a result for the optimality of the saturated design and uniform

design.

In Section 2 we give the preliminary setup. In Section 3 we give results for

the 22 experiment, in Section 4 we study robustness against misspecification of

the assumed values and robustness of the uniform design, and in Section 5 we

study an example. In Section 6 we consider the general 2k experiment and we

conclude with some remarks in Section 7. Proofs are relegated to the Appendix.

2. Preliminary Setup

Consider a 2k experiment, an experiment with k explanatory variables at 2

levels each. Suppose ni units are allocated to the ith experimental condition such

that ni > 0, i = 1, . . . , 2k, and n1 + · · · + n2k = n. We suppose that n is fixed

and consider the problem of determining the “optimal” ni’s. In fact, we write

our optimality criterion in terms of the proportions pi = ni/n, i = 1, . . . , 2kand

determine the “optimal” pi’s. (Since ni’s are integers, an optimal design obtained

in this fashion may not be “feasible” - an issue we do not deal with, except to

say that a feasible solution “near” an optimal solution is expected to be “nearly

optimal”).

Suppose η is the linear predictor that involves main effects and interactions

which are assumed to be in the model. For instance, for a 23 experiment with a

model that includes the main effects and the two-factor interaction of factors 1

and 2, η = β0+β1x1+β2x2+β3x3+β12x1x2, where each xi ∈ {−1, 1} . The aim of
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the experiment is to obtain inferences about the parameter vector of factor effects

β; in the preceding example, β = (β0, β1, β2, β3, β12)
′ . Our main focus is the 22

experiment with main-effects model, in which case η = β0 + β1x1 + β2x2 and

β = (β0, β1, β2)
′. In the framework of generalized linear models, the expectation

of the response Y , E (Y ) = π, is connected to the linear predictor η by the link

function g: η = g (π) (McCullagh and Nelder (1989)). For a binary response, the

commonly used link functions are the logit, probit, log-log, and complimentary

log-log links.

The maximum likelihood estimator of β has an asymptotic covariance matrix

(Khuri et al. (2006)) that is the inverse of nX ′WX, where W = diag(w1p1, . . .,

w2kp2k), wi = (dπi/dηi)
2 / (πi(1− πi)) ≥ 0, where ηi and πi correspond to the

ith observation for η and π defined before, and X is the “design matrix”. For

commonly used link functions,

w(π) =


π(1− π) for logit link,[
ϕ
(
Φ−1(π)

)]2
π(1−π) for probit link,(
π

1−π

)(
log(π)

)2
for log-log and complementary log-log link.

For a main-effect 22 experiment, for instance, X = ((1, 1, 1, 1)′, (1, 1,−1,−1)′,

(1,−1, 1,−1)′). In this case, for the logit link, w1 = eβ0+β1+β2
/ (

1 + eβ0+β1+β2
)2
,

w2 = eβ0+β1+β2
/ (

eβ2 + eβ0+β1
)2
, w3 = eβ0+β1+β2

/ (
eβ1 + eβ0+β2

)2
, and w4 =

eβ0+β1+β2
/ (

eβ0 + eβ1+β2
)2
. Note that the matrix X ′WX may be viewed as the

per-observation information matrix. The D-optimality criterion maximizes the

determinant |X ′WX| .

3. D-Optimal 22 Designs

Suppose k = 2. If we consider both the main effects and the interaction, the

design problem is straightforward, because |X ′WX| = 256p1p2p3p4w1w2w3w4.

In this case, the D-optimal 22 design is the uniform, p1 = p2 = p3 = p4 = 1/4,

regardless of the wi’s.

From now on, we consider the main effects only. For a main-effect plan with

k = 2, the asymptotic information matrix is proportional to X ′WX. It can be

shown that |X ′WX| can be written as (except for the constant 16):

det(w,p) = G(p) = p2w2 · p3w3 · p4w4 + p1w1 · p3w3 · p4w4

+ p1w1 · p2w2 · p4w4 + p1w1 · p2w2 · p3w3, (3.1)

where w = (w1, w2, w3, w4)
′ and p = (p1, p2, p3, p4)

′. In this section, we consider

the problem of maximizing G(p) over all vectors p with pi ≥ 0 and
∑

i pi = 1.
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3.1. Analytic solutions to special cases and saturated design

It follows from Kiefer (1975) that if all the wi’s are equal then the uniform

design (p1 = p2 = p3 = p4 = 1/4) is D-optimal. If one and only one of the wi’s is

zero, then the optimal design is uniform over the design points that correspond

to the nonzero wi’s, and if two or more wi’s are zero, then G(p) ≡ 0.

From now on, we assume wi > 0, i = 1, 2, 3, 4, which is always true un-

der logit, probit, log-log, or complementary log-log link functions. Let L(p) =

G(p)/(w1w2w3w4) and vi = 1/wi, i = 1, 2, 3, 4. The maximization problem (3.1)

can be rewritten as that of maximizing

L(p) = v4p1p2p3 + v3p1p2p4 + v2p1p3p4 + v1p2p3p4. (3.2)

The solution always exists and is unique. Its existence is due to the continuity

of L(p), defined on a closed convex region, and its uniqueness is due to the

strict concavity of logL(p). Although the objective function (3.2) is elegant, an

analytic solution with general vi > 0 is not available. In this subsection, analytic

solutions are obtained for some special cases.

Theorem 1. L(p) has a unique maximum at p = (0, 1/3, 1/3, 1/3) if and only

if v1 ≥ v2 + v3 + v4.

Graßhoff and Schwabe (2008) obtained essentially the same result. In the

Appendix, we provide a direct proof.

Lemma 1. If v1 > v2, then any solution to maximizing (3.2) satisfies p1 ≤ p2;

if v1 = v2, then any solution satisfies p1 = p2.

Theorem 2. Suppose v1 ≥ v2, v3 = v4 = v, and v1 < v2+2v. Then the solution

to maximizing (3.2) is

p1 =
1

2
− v1 − v2 + 4v

2(−2δ +D)
, p2 =

1

2
+

v1 − v2 − 4v

2(−2δ +D)
, p3 = p4 =

2v

−2δ +D
(3.3)

with L = 2v2
(
δ2 + 4v1v2 − δD

)
/(−2δ +D)3, where δ = v1 + v2 − 4v and D =√

δ2 + 12v1v2.

Corollary 1. Suppose v2 = v3 = v4 = v and v1 < 3v. Then the solution to

maximizing (3.2) is

p1 =
3v − v1
9v − v1

, p2 = p3 = p4 =
2v

9v − v1
,

with maximum L = 4v3/(9v − v1)
2.
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Corollary 2. Suppose v1 = v2 = u, v3 = v4 = v, and u > v. Then the solution

to maximizing (3.2) is

p1 = p2 =
2u− v − d

6(u− v)
, p3 = p4 =

u− 2v + d

6(u− v)

with maximum L = (2u− v − d)(u− 2v + d)(u+ v + d)/
(
108(u− v)2

)
, where

d =
√
u2 − uv + v2.

The analytic solutions in Theorem 2 and the two subsequent corollaries are

obtained by forcing some of the vi’s to be equal. The equivalent restrictions in

terms of regression coefficients β0, β1, β2, can be obtained accordingly. As an

illustration, under the logit link, the conditions of Corollary 1 are satisfied if and

only if either at least two of the βi’s are zeros (the case v1 = v2 = v3 = v4)

or β0 = β1 = β2 and |β0| < log
(
(1 +

√
3)/2 + 4

√
3/

√
2
)
≈ 0.8314, while the

conditions of Corollary 2 are satisfied if and only if β2 = 0 and β0β1 > 0.

Figure 1(a) marks the regions satisfying the conditions of Theorem 2 in terms of

βi’s under the logit link. More detailed results can be found in the Supplementary

Materials of this paper.

Note that Theorem 1 does not correspond to a complete 22 experiment. It

corresponds to a situation where the number of support points of the design

is the number of parameters, i.e., the design is saturated. We call 2maxi vi ≥
v1 + v2 + v3 + v4 the saturation condition. In terms of w’s, it is

2

min{w1, w2, w3, w4}
≥ 1

w1
+

1

w2
+

1

w3
+

1

w4
. (3.4)

3.2. Saturation condition in terms of the regression parameters

Now we investigate the saturation condition in terms of the regression coef-

ficients.

Theorem 3. For the logit link, the saturation condition is true if and only if

β0 ̸= 0, |β1| >
1

2
log

(
e2|β0| + 1

e2|β0| − 1

)
, and

|β2| ≥ log

(
2e|β0|+|β1| +

√(
e4|β0| − 1

) (
e4|β1| − 1

)(
e2|β0| − 1

) (
e2|β1| − 1

)
− 2

)
.

Figure 1(b) shows how the region satisfying the saturation condition changes

with β0. For fixed β0, a pair (β1, β2) satisfies the saturation condition if and only

if the corresponding point in Figure 1(b) is above the curve labelled by β0.
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Figure 1. (a) Partitioning of the parameter space where the expressions in
parenthesis indicate the corresponding properties of the vi’s besides v3 = v4.
Region 1 and Region 2 satisfy the conditions v1 > v2, v3 = v4, and v1 <
v2 + v3 + v4. (b) Lower boundary of the region satisfying the saturation
condition.

Corollary 3. Assume β0, β1, β2 all have continuous distributions with support

(−a, a), a > 0, and β0, β1, β2 are independent. The probability of a saturated

design under the logit link is greater than 0 if and only if

a > log
(1 +√

3

2
+

4
√
3√
2

)
≈ 0.8314.

For example, if β0, β1, β2 are iid ∼ Uniform(−a, a), the probabilities of ob-

taining saturation condition for different values of a are given in Table 1. In

many applications, it is reasonable to assume that the coefficients β1, β2 are non-

negative. In that case the probability of obtaining saturation condition is given

by the next corollary.

Corollary 4. Assume β0 has a continuous distribution with support (−a, a),

a > 0, β1 and β2 have continuous distributions with support [0, b), b > 0, and

β0, β1, β2 are independent. The probability of a saturated design under the logit

link is greater than 0 if and only if

b >
1

2
log
(ea + 1 +

√
2(e2a + 1)

ea − 1

)
.

For example, the lower bound of b in Corollary 4 is 1.06, 0.76, 0.54, 0.48, or

0.45 for a = 0.5, 1, 2, 3, or 5, respectively. If the support of β0 is (−∞,∞), then

b > log(1 +
√
2)/2 ≈ 0.4407 guarantees a positive chance of a saturated design.
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Table 1. Probability of obtaining saturation condition under uniform prior

a logit probit log-log c-log-log
0.5 0 0 0 0.21
1 0.02 0.24 0.30 0.63
2 0.51 0.79 0.79 0.80
3 0.76 0.92 0.92 0.84
4 0.87 0.96 0.96 0.90
5 0.92 0.98 0.98 0.94

Table 2. Probability of obtaining saturation condition under normal prior
(logit link)

HHHHHµ1

µ2 -2 -1 0 1 2

-2 0.81 0.64 0.54 0.64 0.81
-1 0.64 0.47 0.36 0.47 0.64
0 0.53 0.37 0.27 0.36 0.54
1 0.64 0.47 0.37 0.47 0.64
2 0.81 0.64 0.54 0.64 0.81

We have also investigated the occurrence of the saturation condition when the

β’s are assumed normal. Table 2 gives the probabilities for the logit link under

the assumption that β0 is standard normal, whereas β1 and β2 follow normal

distribution with common variance 1 and means µ1 and µ2, respectively. The

numbers are even higher under probit, log-log, or complementary log-log links.

These simulations indicate that under reasonable distributional assumptions on

the β’s, the probability of attaining the saturation condition is quite high for the

all common link functions.

3.3. Exact solution using cylindrical algebraic decomposition

Since analytic solutions for the optimization problem in (3.2) are not avail-

able, here we investigate computer-aided exact solutions. One option is to use La-

grange multipliers or the Karush-Kuhn-Tucker (KKT) conditions (Karush (1939),

Kuhn and Tucker (1951)). It leads to intractable polynomial equations. Another

option is to use numerical search algorithms, such as Nelder-Mead, quasi-Newton,

conjugate-gradient, or simply a grid search (for a comprehensive reference, see

Nocedal and Wright (1999)). Those numerical methods are computationally in-

tensive in general when an accurate solution is needed. We suggest using the

Cylindrical Algebraic Decomposition (CAD) algorithm to find the exact global

solution.

Fotiou, Parrilo, and Morari (2005) provide the details for using CAD for

general constrained optimization problems. Our optimization problem (3.2) is
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associated with the boolean expression

(L3 − f ≥ 0)
∧

(p1 ≥ 0)
∧

(p2 ≥ 0)
∧

(p3 ≥ 0)
∧

(p1 + p2 + p3 ≤ 1),

where L3 = L(p1, p2, p3, 1−p1−p2−p3), and f is a new parameter indicating the

value of the objective function. Given specific values of v1, v2, v3, v4, the CAD can

represent the feasible domain of (f, p1, p2, p3) in R4 as a finite union of disjoint

cells. Each cell takes the form
(f, p1, p2, p3)

∈ R4

∣∣∣∣∣∣∣∣
f = a0 or a0 < f < b0,

p1 = g1(f) or g1(f) < p1 < h1(f),

p2 = g2(f, p1) or g2(f, p1) < p2 < h2(f, p1),

p3 = g3(f, p1, p2) or g3(f, p1, p2) < p3 < h3(f, p1, p2)


for some constants a0, b0 and some functions gi, hi, i = 1, 2, 3. Since f indicates

the value of the objective function L (or L3), the cell with greatest f provides

the maximum of L. As an illustration, consider that vi = i × v1 for i = 2, 3, 4,

and the objective function is proportional to

4p1p2p3 + 3p1p2p4 + 2p1p3p4 + p2p3p4 (3.5)

with pi ≥ 0 and p1 + p2 + p3 + p4 = 1. Using the software Mathematica, we

obtain that the maximum of (3.5) based on CAD is the negative first root of

−96 + 800x+ 5220x2 − 19035x3 + 2187x4 = 0 and

p1 is the 4th root of −2− 13x+ 18x2 + 126x3 + 54x4 = 0,

p2 is the 2nd root of −2 + 2x+ 28x2 − 39x3 + 9x4 = 0,

p3 is the 2nd root of −3 + 13x+ 2x2 − 26x3 + 6x4 = 0.

Here the numerical maximum of (3.5) is 0.1645 with p1 = 0.3112, p2 = 0.2849, p3 =

0.2508 and p4 = 0.1531. In this example, the negative roots of the equation

−96 + 800x + 5220x2 − 19035x3 + 2187x4 = 0 provide candidates for the max-

imum of (3.5). The negative first root is the largest among them and hence is

chosen. The choices of roots for pi’s are determined by the equalities/inequalities

for the cell that provides the maximum.

Note that the CAD algorithm can be used to find the exact solution for

general v1, v2, v3, v4, although an explicit formula is not available. This technique

will be used in the next section in a robustness study.

3.4. Analytic approximate solution

In this section, we propose an analytic approximate solution for (3.2) in

the general case. To simplify notation, write L∗[v1, v2, v3, v4] for maxp L, given
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v1, v2, v3, v4. For example, Theorem 2 corresponds to L∗[v1, v2, v, v]. Without

any loss of generality, we assume v1 < v2 < v3 < v4 and v4 < v1 + v2 + v3. Let

L34 = L∗[v1, v2,
v3 + v4

2
,
v3 + v4

2
]

and take L12, L13, L14, L23, L24 accordingly. The strategy is to use max{L12, L23,

L34} to approximate maxp L based on the following results.

Theorem 4. Assume v1 < v2 < v3 < v4 and v4 < v1 + v2 + v3. Then

max{L13, L14, L24} ≤max{L12, L23, L34},

maxpL−max{L12, L23, L34} ≤min

{
v2 − v1
216

,
v3 − v2

96
√
3
,
v4 − v3

54

}
.

We call the best p among the solutions to L12, L23, or L34 the analytic

approximate solution, and denote it by pa. Thus L(pa) = max{L12, L23, L34}.
Theorem 4 provides a theoretical upper bound for the difference maxpL−L(pa).

To see how our approximation works numerically, we simulated the regression

coefficients as β0, β1, β2 iid ∼ N(0, 1), and calculated the corresponding w = (w1,

w2, w3, w4) under the logit link. Since we know the exact solution if w satisfies

the saturation condition, we omitted those w’s and collected 1,000 non-saturated

cases. For each randomly chosen non-saturated w, we calculated the optimal

p using CAD and denoted it by po. We also calculated the analytic solution

based on Theorems 4 and 2, p∗. Then we calculated the determinant of the

information matrix, denoted Do and D∗ for po and p∗, respectively. Numerical

results show that 99% of the relative losses
(
D

1/3
o −D

1/3
∗

)/
D

1/3
o × 100% are

less than 0.01% and the maximum relative loss is about 0.02%. If we change

the distribution N(0, 1) to N(0, a2) or Uniform(−a, a), a = 2, 3, 4, 5, the relative

losses are roughly the same.

Since the vi’s depend on the assumed values, they are in general not quan-

tified accurately at the planning stage. The results in this section show that

setting some vi’s to be equal is not a bad strategy. The analytic approximation

is also potentially useful for future research in this area.

4. Robustness for 22 Designs

Since locally optimal designs depend on the assumed values of the parame-

ters, it is important to study the robustness of the designs to these values. For

experiments where there is no basis for making an informed choice of the assumed

values, the natural design choice is the uniform design. In this section, we study

the robustness of the optimal design for misspecification of assumed values.



OPTIMAL DESIGN FOR BINARY RESPONSE 895

Figure 2. Plot of w versus π.

4.1. Robustness for misspecification of w

Write w = (w1, w2, w3, w4), and take wt = (wt1, wt2, wt3, wt4) as the true w,
and wc = (wc1, wc2, wc3, wc4) as the chosen (assumed) w. Let pt = (pt1, pt2, pt3,
pt4) and pc = (pc1, pc2, pc3, pc4) be the optimal designs corresponding to wt and
wc, respectively. The relative loss of efficiency of choosing wc instead of wt is
taken as

R(wt,wc) =
det(wt,pt)

1/3 − det(wt,pc)
1/3

det(wt,pt)1/3
, (4.1)

where det(w,p) was defined in (3.1). Note that R(wt,wc) remains invariant un-
der scalar multiplication of determinants. The maximum relative loss of efficiency
is

Rmax(wc) = max
wt

{
R(wt,wc)

}
. (4.2)

This maximum corresponds to the worst case scenario. This tells us, for each w,
how bad the design can perform if we do not choose the w correctly.

For a binary response, commonly used link functions include logit, probit,
log-log and complimentary log-log links. Figure 2 illustrates the range of w for
specific link functions, as mentioned in Section 2. The logit link corresponds to
0 < w ≤ 0.25 whereas for the probit link 0 < w ≤ 2/π, and for the (comple-
mentary) log-log links 0 < w ≤ 0.648. It should also be noted that the w-curve
is symmetric for logit and probit links but asymmetric for the (complementary)
log-log link. To examine the robustness for mis-specification of w for different
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links, we take 0 < ξ ≤ w ≤ ζ for some constants ξ and ζ, since w = 0 leads to

trivial cases.

Fixing a chosen wc = (wc1, wc2, wc3, wc4), let vci = 1/wci, i = 1, 2, 3, 4. With-

out loss of generality, vc1 ≤ vc2 ≤ vc3 ≤ vc4. It follows from Lemma 1 that pc1 ≥
pc2 ≥ pc3 ≥ pc4. For the true wt = (wt1, wt2, wt3, wt4), take vt = (vt1, vt2, vt3, vt4)

with vti = 1/wti, i = 1, 2, 3, 4. In practice, the experimenter might have some

rough idea about the range of the parameter values. For example, if the experi-

menter believes that the regression coefficients β0, β1, β2 all take values in [−1, 1],

then w1, w2, w3, w4 fall into [0.045, 0.25] under the logit link. Our next theorem

specifies the worst possible performance of a chosen design for an assumed range.

To simplify notation, we write R
(c)
max = Rmax(wc), the maximum relative loss of

efficiency as at (4.2).

Theorem 5. Suppose 0 < a ≤ vc1 ≤ vc2 ≤ vc3 ≤ vc4 ≤ b and a ≤ vti ≤ b,

i = 1, 2, 3, 4.

(i) If vc4 ≥ vc1 + vc2 + vc3, then R
(c)
max = 1 − ((9θ − 1)/2)2/3/(3θ), where θ =

b/a ≥ 3, and the maximum can only be attained at vt = (b, b, b, a).

(ii) If vc4 < vc1 + vc2 + vc3, then R
(c)
max can only be attained at vt = (b, a, a, a),

(b, b, a, a), or (b, b, b, a).

Note that in Theorem 5, both vci’s and vti’s are restricted to a bounded

region [a, b] excluding 0 and ∞. However, w’s can be arbitrarily close to 0, and

the upper bound b for v can go to ∞. For large enough b, case (i) of Theorem 5

leads to R
(c)
max = 1, indicating total loss of efficiency, while R

(c)
max in case (ii) can

only be attained at vt = (b, a, a, a).

Corollary 5. Suppose 0 < a ≤ vc1 ≤ vc2 ≤ vc3 ≤ vc4 < ∞ and a ≤ vti < ∞,

i = 1, 2, 3, 4.

(i) If vc4 ≥ vc1 + vc2 + vc3, then R
(c)
max = 1.

(ii) If vc4 < vc1 + vc2 + vc3, then R
(c)
max = 1− 3 (pc2pc3pc4)

1/3.

The proof of Corollary 5 is relegated to the Supplementary Materials. The

next theorem asserts that the uniform design is the most robust design in terms

of maximum relative loss. Note that the conclusion of Theorem 6 is still true

even if [a, b] is replaced with [a,∞).

Theorem 6. Suppose vci, vti ∈ [a, b], i = 1, 2, 3, 4, 0 < a ≤ b. Then R
(c)
max attains

its minimum if and only if pc = (1/4, 1/4, 1/4, 1/4).

Remark 1. Uniform design is the most robust design in the absence of any

knowledge about the parameters. However, if the experimenter has some prior

knowledge about the model parameters, say some parameters are nonnegative,



OPTIMAL DESIGN FOR BINARY RESPONSE 897

Figure 3. Robustness study : performance of the “worst 1%” design.

then the uniform design may not be the most robust one. For example, if β0 ∼
Uniform(−1, 1), β1, β2 ∼ Uniform[0, 1), and β0, β1, β2 are independent, the the-
oretical Rmax of the uniform design is 0.134, while the theoretical Rmax of the
design given by p = (0.19, 0.31, 0.31, 0.19) is 0.116. This does not violate The-
orem 6 since w1, w4 ∈ (0.045, 0.25] and w2, w3 ∈ (0.105, 0.25] under the logit
link.

4.2. Simulation study

To study the robustness measured by percentiles of {R(wt,wc)}wt other than
the maximum Rmax(c), we randomly selected 1,000 vectors wi = (wi1, wi2, wi3,
wi4), i = 1, . . ., 1,000. For the logit link, 0 < w ≤ 0.25. If we randomly select
wi’s between 0 and 0.25, the chance of getting a saturated design can be as high
as 48% when some wi is close to 0 and the condition of Theorem 1 applies. We
try to reduce the cases that give a saturated design since in those cases both the
exact solution and robustness are clearly known. So here we consider w ≥ 0.05
only. Then the chance of saturated design drops to 6% for uniformly distributed
wi’s. So, for the logit link, we consider 0.05 ≤ w ≤ 0.25.

In our robustness study, each one of the 1,000 wi’s is chosen in turn as
wc, the assumed w, and the remaining 999 cases are regarded as wt, the true w,
respectively. We use CAD to determine the optimal designs pt = (pt1, pt2, pt3, pt4)
and pc = (pc1, pc2, pc3, pc4) corresponding to wt and wc, respectively.

For the numerical computations in this section, we considered the upper 99th

percentile of {R(wt,wc)}1000t=1 , denoted by R
(c)
99 . This corresponds to the worst

1% case scenario. The left panel of Figure 3 illustrates that this relative loss
will range roughly between 0.1 and 0.4, whereas the right panel helps us identify
those w’s with non-robust optimal solution p. The horizontal axis corresponds
to the distance between vmax and

∑
vi − vmax divided by vmax, where vmax =

max{v1, v2, v3, v4}. The vertical axis is our robustness measurementR99. There is
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a clearly positive association between the relative loss and the distance. We have
examined the other quantiles such as the 25th quantile, median, 75th quantile,
and 95th quantile of R(wt,wc). The patterns are similar for all of them. From
this, we conclude that the locally D-optimal designs are quite robust and the
farther the w’s are from the saturation condition (3.4), the smaller is the relative
loss of efficiency. It is interesting to note that the left most point (denoted by
×) on the right panel of Figure 3 corresponds to the uniform design. It can be
verified that the standardized distance (2vmax−

∑
vi)/vmax attains its minimum

−2 if and only if v1 = v2 = v3 = v4 which leads to the uniform design. While the
left panel of Figure 3 indicates that the performance of the “worst 1%” designs
is not too bad in terms of robustness, the right panel (as well as figures of other
quantiles not shown here) clearly demonstrates the significance of the saturation
condition. The points with R99 values greater than 0.15 either satisfy or almost
satisfy the saturation condition. This figure also suggests that the uniform design
is highly robust.

Note that although our simulation model assumes independence of the wi,
they are associated through dependence on the βi’s. We have performed sev-
eral simulations starting with random βi’s and then computing wi’s via a link
function. The results are similar to the ones reported here except for a slightly
smaller relative loss of efficiency.

The simulation study based on a model for the wi’s has the advantage that
the results do not depend on the link function. Moreover, since wi’s are inverses
of the variances of the yi’s, in some applications, it may be easier to suggest
initial values of wi’s.

5. Robustness of Uniform Design

If the experimenter is unable to make an informed choice of the values for lo-
cal optimality, the natural design choice is the uniform design pu = (1/4, 1/4, 1/4,
1/4). The relative loss of efficiency of pu with respect to the true wt can be ob-
tained from (4.1), say

Ru(wt) = 1− 1

4

(
vt1 + vt2 + vt3 + vt4

L(pt)

)1/3

,

where vti = 1/wti, i = 1, 2, 3, 4, pt is the D-optimal design with respect to wt,
and L(pt) is defined in (3.2).

5.1. Maximum relative loss of uniform design

We denote by R
(u)
max = max

wt

Ru(wt) the maximum loss of efficiency of the

uniform design. The following theorem formulates R
(u)
max with different restricted

regions of wt’s.
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Figure 4. Plot of R
(u)
max versus θ.

Theorem 7. Suppose 0 < a ≤ vti ≤ b, i = 1, 2, 3, 4. Let θ = b/a ≥ 1. Then

R(u)
max =


1− 3

4

(
1 + 3

θ

)1/3
, if θ ≥ 3,

1− 1
8

(
2(θ + 3)(9− θ)2

)1/3
, if θ∗ ≤ θ < 3,

1− 3
2

(
(θ+1)(θ−1)2

(2θ−1−ρ)(θ−2+ρ)(θ+1+ρ)

)1/3
, if 1 < θ < θ∗,

0, if θ = 1,

where ρ =
√
θ2 − θ + 1, and θ∗ ≈ 1.32 is the 3rd root of the equation

3456− 5184θ + 3561θ2 + 596θ3 − 1506θ4 + 100θ5 + θ6 = 0.

Figure 4 reveals the nature of association between the maximum relative loss

of uniform design and the ratio between the upper and lower limits of range of

w’s. It can be seen that the performance of uniform design is worst when θ is 10

or more, but even in that case R
(u)
max is less than 1/4. Uniform designs perform

moderately well when θ lies between 3 and 10, and extremely well if θ < 3.

5.2. An example

The data given in Table 3, reported by Collett (1991), were originally ob-

tained from an experiment conducted at the East Malling Research Station

(Hoblyn and Palmer (1934)). The experimenters investigated the vegetative re-

production of plum trees. Cuttings from the roots of older trees of the palms

named Common Mussel were taken between October, 1931 and February, 1932.

This experiment involved two factors each at two levels. The first factor was

time of planting (root stocks were either planted as soon as possible after they

were taken, or they were imbedded in sand under cover and were planted in the
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Table 3. Survival rate of plum root-stock cutting.

Length of Time of Number of surviving
cutting planting out of 240
Short At once 107

In Spring 31
Long At once 156

In Spring 84

next spring). The second factor was the length of root cuttings (6 cm or 12 cm).
Hoblyn and Palmer used a uniform design, and a total of 240 cuttings were taken
for each of the four combinations. The response was the condition of each plant
(alive or dead) in October, 1932.

After fitting the logit model we get β̂ = (−0.5088,−0.5088, 0.7138)′, and the
corresponding w = (0.244, 0.128, 0.221, 0.221)′. If we use this w, the optimal
proportions are po = (0.2818, 0.1686, 0.2748, 0.2748)′. The corresponding deter-
minant of X ′WX is 8.197 × 10−3. On the other hand, the determinant of the
information matrix corresponding to the uniform design is 7.975 × 10−3. Thus
the uniform design is 99.1% efficient. If this was the first of a series of exper-
iments, then the result supports continued use of the uniform design. Similar
calculations with the probit link show that the uniform design is 99.9% efficient.

6. General Case: 2k Experiment

The general case of 2k factorial is technically complicated. We have some
results for particular cases that will be reported in future publications. In this
section we show that the uniform design (p1 = · · · = p2k = 1/2k) has a maximin
optimality property in that it maximizes a lower bound of the D-criterion.

Suppose there are q parameters (main effects and interactions) in the chosen
model for the 2k experiment, β is a q × 1 vector and the design matrix X is
2k × q. The matrix X can be extended to the 2k × 2k design matrix F of the
“full model” that includes all main effects and interactions. Note that F is a
Hadamard matrix, i.e., F ′F = 2kI2k , where I2k is the identity matrix of order
2k. Moreover, we can partition F as F = (X|R) where R contains all effects that
are not in the chosen model. Clearly,∣∣F ′WF

∣∣ = ∣∣X ′WX
∣∣ ∣∣∣R′WR−R′WX

(
X ′WX

)−1
X ′WR

∣∣∣ 6 ∣∣X ′WX
∣∣ ∣∣R′WR

∣∣ .
Hence ∣∣X ′WX

∣∣ > |F ′WF |
|R′WR|

.

Note that |F ′WF | = 2kqΠwiΠpi, and∣∣R′WR
∣∣ 6 (wM )2

k−q
∣∣R′PR

∣∣ ,
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where wM = max {w1, . . . , w2k} , and P = diag (p1, . . . , p2k) . It follows from

Proposition 1
′
of Kiefer (1975) that the uniform design p1 = · · · = p2k = 1/2k

maximizes |R′PR|. Hence we obtain a lower bound to the D-criterion

∣∣X ′WX
∣∣ > 2k2

k
ΠwiΠpi

(wM )2
k−q

.

This lower bound is a maximum when p1 = · · · = p2k = 1/2k, which gives a

maximin property of the uniform design.

How good is the uniform design? The loss of efficiency corresponding to the

uniform design is

Ru(w) = 1−

(∣∣X ′diag
(
w1/2

k, . . . , w2k/2
k
)
X
∣∣

max |X ′WX|

)1/q

.

Then it can be shown that

Ru(w) 6 1− |X ′W0X|1/q

2kwM
6 1− wm

wM
,

where wm = min {w1, . . . , w2k} and W0 = diag (w1, . . . , w2k) .

For example, suppose it is known that 0.14 6 wi 6 0.20. Then the uniform

design is not less than 70% efficient, irrespective of the value of k or the X

matrix (the model). While this bound enables us to make general statements

like this, the results in Theorem 7 for the 22 case show that this bound can be

quite conservative.

7. Discussion

Locally optimal designs require assumed values of the parameters w that

may not be readily available at the planning stage. The expression of wi given in

Section 2 depends on the assumed values of the parameter β and the link func-

tion g. In situations where there is overdispersion, this expression (the nominal

variance) may not be adequate to describe variation in the model, and a more

realistic representation for w may be

wi = ci
(dπi/dηi)

2

(πi(1− πi))
,

where ci is a function of the factor levels x1, . . . , xk. This makes the specification

of wi even more difficult. For the design problem, however, it can be seen that

we need only the relative magnitudes w∗
i = wi/wM that may be easier to specify

in some applications. Note that w∗
i take values in the interval (0, 1].
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The overall conclusion for the 22 factorial experiment with main-effects model

is that, for the link functions we studied, the locally optimal designs are robust

in the sense that the loss of efficiency due to misspecification of the assumed

values is not large. If the (assumed) variance at one point is substantially larger

than the others, then the D-optimal design is based on only three of the four

points. In applications, however, an experimenter would rarely feel confident to

not allocate observations at a point based solely on assumed values, and this is not

our recommendation for practice. However, the D-optimal design still provides

a useful benchmark for the efficiency of designs, and to the extent feasible it is

wise to dedicate more resources to points that we believe have small variance,

and less resources to points with large variance. If there is no basis to make an

informed choice of the assumed values, we recommend the use of the uniform

design.
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Appendices

A.1. Proof of Theorem 1

(1) If v1 ≥ v2 + v3 + v4, then

L = v4(p1p2p3 + p2p3p4) + v3(p1p2p4 + p2p3p4) + v2(p1p3p4 + p2p3p4)

+(v1 − v2 − v3 − v4)p2p3p4

= v4(p1 + p4)p2p3 + v3(p1 + p3)p2p4 + v2(p1 + p2)p3p4

+(v1 − v2 − v3 − v4)p2p3p4

≤ v4

(
(p1 + p4) + p2 + p3

3

)3

+ v3

(
(p1 + p3) + p2 + p4

3

)3

+v2

(
(p1 + p2) + p3 + p4

3

)3

+ (v1 − v2 − v3 − v4)p2p3p4 (A.1)

=
v4
27

+
v3
27

+
v2
27

+ (v1 − v2 − v3 − v4)p2p3p4

≤ v2 + v3 + v4
27

+ (v1 − v2 − v3 − v4)

(
p2 + p3 + p4

3

)3

(A.2)

≤ v2 + v3 + v4
27

+ (v1 − v2 − v3 − v4)

(
p1 + p2 + p3 + p4

3

)3

=
v1
27

. (A.3)
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By the inequality of arithmetic and geometric means, equality in (A.1) holds if

and only if

p1 + p4 = p2 = p3, p1 + p3 = p2 = p4, and p1 + p2 = p3 = p4,

which implies p1 = 0, p2 = p3 = p4 = 1/3. Note that the equality in (A.2) holds

if p2 = p3 = p4, and equality in (A.3) holds if p1 = 0. After all, L = v1/27 if and

only if p1 = 0, p2 = p3 = p4 = 1/3.

(2) If p = (0, 1/3, 1/3, 1/3) maximizes (3.2), we claim that v1 ≥ v2 + v3 + v4.

Otherwise, if v1 < v2+v3+v4, the solution pϵ = (ϵ, (1− ϵ)/3, (1− ϵ)/3, (1− ϵ)/3)

is better than p for small enough ϵ > 0. It can be shown that L (pϵ) >

L(p) if and only if 3d1 > ϵ(3+6d1−2ϵ−3d1ϵ), where d1 = (v2+v3+v4−v1)/v1 >

0.

A.2. Proof of Theorem 2

Based on Lemma 3.1.1, v3 = v4 implies p3 = p4 in any solution maximizing

(3.2). Write x = p1, y = p2, and z = p3 = p4. Then x = 1− y− 2z. Now (3.2) is

equivalent to maximizing

L(y, z) = z
[
2vy − 2vy2 + v2z + (v1 − v2 − 4v) yz − 2v2z

2
]

with restrictions y ≥ 0, z ≥ 0, and y + 2z ≤ 1. It can be verified that none of

the boundary cases could be a solution maximizing (3.2).

Assume y > 0, z > 0, and y + 2z < 1. The solution to ∂L(y, z)/∂y = 0 is

y = y∗ := z(v1 − v2 − 4v)/(4v) + 1/2. Plug y = y∗ into L(y, z) and get

L(z) = z

(
∆

8v
z2 +

v1 + v2 − 4v

2
z +

v

2

)
,

where ∆ = (v1 + v2 − 4v)2 − 4v1v2. So we only need to maximize L(z) with the

restriction 0 ≤ z ≤ z∗, where z∗ = 2v/(v1 − v2 + 4v). Assume v1 > v2 first.

Case (i): Suppose ∆ = 0. Then dL(z)/dz = (v1 + v2 − 4v)z + v/2. Since

v1 < v2 + 2v, then
√
v1 = 2

√
v − √

v2, which implies 9v2 > v1 > v > v2

and v1 + v2 − 4v < 0. L(z) attains its maximum
(√

v1 +
√
v2
)4

/[256
√
v1v2] at

z0 = v/[2(4v − v1 − v2)]. Then the solution maximizing (3.2) is

p1 =
3
√
v2 −

√
v1

8
√
v2

, p2 =
3
√
v1 −

√
v2

8
√
v1

, p3 = p4 =

(√
v1 +

√
v2
)2

16
√
v1v2

. (A.4)

It can be verified that the solution (A.4) is a special case of (3.3) when
√
v1 =

2
√
v −√

v2.
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From now on, assume ∆ ̸= 0. Let δ = v1 + v2 − 4v. Then ∆ = δ2 − 4v1v2 and

the solutions to dL(z)/dz = 0 are

z1 = − 2v

2δ +
√
δ2 + 12v1v2

, z2 =
2v

−2δ +
√
δ2 + 12v1v2

.

Therefore, dL(z)/dz = 3∆(z − z1)(z − z2)/(8v).

Case (ii): Suppose ∆ > 0. Then v1 < v2 + 2v implies δ < −2
√
v1v2, that is,√

v1 < 2
√
v − √

v2. It can be verified that 0 < z2 < z∗ < z1. L(z) attains its

maximum at z2. The solution leads to (3.3), which maximizes (3.2).

Case (iii): Suppose ∆ < 0. Then v < 4v2 and z1 < 0 < z2 < z∗. L(z) attains its

maximum at z2. The solution leads to (3.3) as well.

So far we have shown that the solution to (3.3) maximizes (3.2) when v1 > v2,

v3 = v4 = v and v1 < v2 +2v. It can be verified that the (3.3) holds if v1 > v2 is

replaced with v1 ≥ v2.

A.3. Proof of Theorem 5.

To simplify notation, let q4 = pc1pc2pc3, q3 = pc1pc2pc4, q2 = pc1pc3pc4, and

q1 = pc2pc3pc4. Then q4 ≥ q3 ≥ q2 ≥ q1. If

Qc(vt1, vt2, vt3, vt4) =
vt4q4 + vt3q3 + vt2q2 + vt1q1

vt4pt1pt2pt3 + vt3pt1pt2pt4 + vt2pt1pt3pt4 + vt1pt2pt3pt4
,

then R(wt,wc) = 1 −Qc(vt1, vt2, vt3, vt4)
1/3. Also, we use (v1, v2, v3, v4) instead

of (vt1, vt2, vt3, vt4). Note that Qc(λv1, λv2, λv3, λv4) = Qc(v1, v2, v3, v4) for any

λ > 0. To minimize Qc(v1, v2, v3, v4), we only need to consider those cases with

v4 = a.

If vc4 ≥ vc1 + vc2 + vc3, then pc4 = 0 and pc1 = pc2 = pc3 = 1/3. Thus

q3 = q2 = q1 = 0 and q4 = 1/27. Fixing v4 = a, it can be verified that

Qc(v1, v2, v3, a) =
a/27

v1p2p3p4 + v2p1p3p4 + v3p1p2p4 + ap1p2p3
≥ Qc(b, b, b, a),

where equality holds if and only if v1 = v2 = v3 = b. Let θ = b/a ≥ 3. In this

case,

R(c)
max = 1− 1

3θ

(
9θ − 1

2

)2/3

.

Suppose vc4 < vc1 + vc2 + vc3. Then pc1 ≥ pc2 ≥ pc3 ≥ pc4 > 0 and

q4 ≥ q3 ≥ q2 ≥ q1 > 0. Again, we fix v4 = a and assume 0 < a ≤ vi ≤ b,

i = 1, 2, 3, 4.
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Case 1: If v1 ≥ v2 + v3 + a, then Qc(v1, v2, v3, a) ≥ Qc(b, a, a, a), where equality

holds if and only if v1 = b and v2 = v3 = v4 = a. In this case, θ = b/a ≥ 3.

Case 2: If v1 < v2 + v3 + a and v′1 > v1, then Qc(v
′
1, v2, v3, a) < Qc(v1, v2, v3, a).

Actually, in this case, 0 < p1 ≤ p2 ≤ p3 ≤ p4. For small enough ϵ > 0,

Qc(v1, v2, v3, a) ≥
v′1q1 + v2q2 + v3q3 + aq4

v′1p
′
2p

′
3p

′
4 + v2p′1p

′
3p

′
4 + v3p′1p

′
2p

′
4 + ap′1p

′
2p

′
3

≥ Qc(v
′
1, v2, v3, a),

where p′i = pi + ϵ, i = 2, 3, 4 and p′1 = p1 − 3ϵ.

From now on, we only need to consider Qc(b, v2, v3, a) with b ≥ v2 ≥ v3 ≥ a

and b < v2 + v3 + a. In this case, 0 < p1 ≤ p2 ≤ p3 ≤ p4. It can be verified that

(1) if b > v2 > a, then Qc(b, v2, a, a) > min{Qc(b, a, a, a), Qc(b, b, a, a)},
(2) if b > v3 > a, then Qc(b, b, v3, a) > min{Qc(b, b, b, a), Qc(b, b, a, a)},
(3) if b > v2 > v3 > a, then Qc(b, v2, v3, a) > min{Qc(b, v2, v2, a), Qc(b, v2, a, a)},
(4) if b > v = v > a, then Qc(b, v, v, a) > min{Qc(b, b, b, a), Qc(b, a, a, a)}.

In summary, if vc4 < vc1 + vc2 + vc3 then

Qc(v1, v2, v3, v4) ≥ min{Qc(b, b, b, a), Qc(b, b, a, a), Qc(b, a, a, a)}.

Based on the proof, the minimum of Qc(v1, v2, v3, v4) can only be obtained at

(b, a, a, a), (b, b, a, a), or (b, b, b, a).

A.4. Proof of Theorem 6

To find out the most robust design in terms of maximum relative loss, we

need explicit formulas of R
(c)
max for part (ii) of Theorem 5. Following the proof

of Theorem 5,

R(c)
max = max

{
1−Qc(b, a, a, a)

1/3, 1−Qc(b, b, a, a)
1/3, 1−Qc(b, b, b, a)

1/3
}
.

Let θ = b/a ≥ 1 and ρ =
√
θ2 − θ + 1. Based on Corollary 1 and Corollary 2,

Qc(b, a, a, a) =Qc(θ, 1, 1, 1) =


27
θ (θq1 + q2 + q3 + q4), if θ ≥ 3,

(9−θ)2

4 (θq1 + q2 + q3 + q4), if 1 ≤ θ < 3,

Qc(b, b, a, a) =Qc(θ, θ, 1, 1) =
108(θ − 1)2(θq1 + θq2 + q3 + q4)

(2θ − 1− ρ)(θ − 2 + ρ)(θ + 1 + ρ)
,

Qc(b, b, b, a) =Qc(θ, θ, θ, 1) =
(9θ − 1)2

4θ3
(θq1 + θq2 + θq3 + q4).
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Given θ ≥ 1 and pc1 ≥ pc2 ≥ pc3 ≥ pc4, it can be verified that

θq1 + q2 + q3 + q4 = θpc2pc3pc4 + pc1pc3pc4 + pc1pc2pc4 + pc1pc2pc3 ≤
θ + 3

64
,

where the second equality holds if and only if pc1 = pc2 = pc3 = pc4 = 1/4.

Similarly, θq1 + θq2 + q3 + q4 ≤ 2(θ + 1)/64, where equality holds if and only if

pc1 = pc2 = pc3 = pc4 = 1/4; θq1 + θq2 + θq3 + q4 ≤ (3θ + 1)/64 where equality

holds if and only if pc1 = pc2 = pc3 = pc4 = 1/4. Therefore, if vc4 < vc1+vc2+vc3,

min {Qc(b, a, a, a), Qc(b, b, a, a), Qc(b, b, b, a)} attains its maximum only at pc1 =

pc2 = pc3 = pc4 = 1/4. In other words, the uniform design has smaller R
(c)
max than

any other design pc with vc4 < vc1 + vc2 + vc3.

On the other hand, it can be verified that if θ ≥ 3,

R(u)
max = 1− 3

4

(
1 +

3

θ

)1/3

> 1− 1

3θ

(
9θ − 1

2

)2/3

= R(c)
max

for any design with vc4 ≥ vc1 + vc2 + vc3.

In short, R
(c)
max attains its minimum only at the uniform design.
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