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Abstract: We propose a self-normalization sequential change-point detection method

for time series. To test for parameter changes, most traditional sequential monitor-

ing tests use a cumulative sum-based test statistic, which involves a long-run vari-

ance estimator. However, such estimators require choosing a bandwidth parameter,

which may be sensitive to the performance of the test. Moreover, traditional tests

usually suffer from severe size distortion as a result of the slow convergence rate to

the limit distribution in the early monitoring stage. We propose self-normalization

method to address these issues. We establish the null asymptotic and the consis-

tency of the proposed sequential change-point test under general regularity condi-

tions. Simulation experiments and an applications to railway-bearing temperature

data illustrate and verify the proposed method.
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1. Introduction

Let {Xt} be a sequence of observations governed by a statistical model with

a parameter θ ∈ Θ. We say that there is a change-point at time t∗ if the model

for {X1, X2, . . . , Xt∗−1} has a parameter θ0, but the model for {Xt∗ , Xt∗+1, . . .}
has a parameter θ1 6= θ0. Suppose that {Xt} is observed sequentially, and

the change-point t∗ is unknown. The problem of declaring whether the change

t∗ has occurred is known as the sequential change-point detection, sequential

monitoring, or online monitoring problem.

Sequential change-point detection received considerable attention with ad-

vances in serial data collection in engineering, econometrics, finance, and statis-

tics. Being able to quickly detect of changes in the underlying process structure

using a controlled false alarm rate is crucial because it allows practitioners to

make immediate decisions and necessary adjustments in a timely manner. Se-

Corresponding author: Ngai Hang Chan, Department of Statistics, The Chinese University of Hong
Kong, Central Ave, Hong Kong. E-mail: nhchan@sta.cuhk.edu.hk.

https://doi.org/10.5705/ss.202018.0269
mailtos:nhchan@sta.cuhk.edu.hk


492 CHAN, NG AND YAU

quential change-point detection schemes can be classified into two broad cate-

gories. The first category involves an average run length (ARL)-type constraint

on false alarms. For example, Lai (1995) proposed the window limited general-

ized likelihood ratio scheme for detecting changes in time series models, with a

minimal detection delay for a given ARL to a false alarm; see also Lai (1998);

Yakir (1997); Polunchenko and Tartakovsky (2010); Han, Tsung and Xian (2017).

However, as Lai (1995) points out, although the ARL constraint stipulates a long

expected duration to a false alarm, it does not necessarily imply that the probabil-

ity of having a false alarm before some specified time is small; hence false alarms

at the initial stage cannot be controlled. In practice, frequent false alarms will

result in a waste of resources in terms of repairing and replacement.

The second category uses a hypothesis testing framework so that the prob-

ability of false alarms can be controlled using a Type-I error. To control the

Type-I error in a sequential setting, one straightforward approach is to employ

retrospective change-point tests repeatedly using a multiple-testing procedure,

such as the simulation-based adjustment, Bonferroni adjustment, or false discov-

ery rate (FDR) method; see Hawkins, Qiu and Kang (2003); Hawkins and Zamba

(2005); Choi, Ombao and Ray (2008). However, the simulation-based adjustment

only works in simple models with an independence assumption, and the Bonfer-

roni and FDR adjustments will lead to conservative results. A more sophisticated

approach to controlling the Type-I error to establish the asymptotic distribution

of the running maximum of a cumulative sum (CUSUM) process, which is stan-

dardized using a long-run variance estimator; see Chu, Stinchcombe and White

(1996); Zeileis et al. (2005) in a linear regression setting; Gut and Steinebach

(2002) for the renewal counting process; Berkes et al. (2004) for GARCH models;

Fuh (2006) for state-space models; Gombay and Serban (2009) for AR models;

Gombay and Horváth (2009) for the covariance structure of weakly stationary

time series; and Na, Lee and Lee (2011); Kirch and Tadjuidje Kamgaing (2015);

Leung, Ng and Yau (2017) for general time series models. However, a difficulty

with using this class for sequential change-point detection scheme is that a consis-

tent long-run variance estimator is involved in the test statistic. The commonly

used lag-window-type and kernel-type long-run variance estimators require an

appropriate bandwidth parameter, which is difficult to choose in practice. More-

over, severe size distortions are observed in the empirical studies of Berkes et al.

(2004); Zeileis et al. (2005); Na, Lee and Lee (2011), among others.

In this paper, we propose a new sequential monitoring scheme for detecting

change-points in general time series models that achieves an asymptotically exact
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Type-I error, without needing to estimate the long-run variance. The key idea

of the proposed method is to introduce the self-normalization (SN) concept to

the sequential monitoring scheme. The self-normalization concept has proved

successful in various statistical problems; see, for example, Lobato (2001); Shao

(2010); Shao and Zhang (2010); Zhang, Li and Shao (2014); Huang, Volgushev

and Shao (2015); Zhang and Lavitas (2018). In particular, the self-normalization

method uses a self-normalizer to replace the long-run variance estimator when

standardizing the test statistic. Thus, bypass the estimation of the long-run

variance and, hence, no user-chosen bandwidth parameter is involved. As a

result, the asymptotic null distribution of the SN-based test is pivotal, and the

critical values can be tabulated using simulations. Moreover, the SN-based test

exhibits “better size, but less power”; see Lobato (2001); Shao and Zhang (2010).

This is a desirable feature in terms of resolving the aforementioned size distortion

problem. For a detailed review on self-normalization for time series and its recent

developments, see Shao (2015). In this study, we derive an SN-based statistic that

we use to sequentially monitor the change-points of general time series models.

We study the null asymptotic distribution and the consistency of the proposed

SN-based sequential change-point test under general regularity conditions. The

asymptotic null distribution of the SN-based test statistic is quite different from

that of the test statistic based on the long-run variance estimator; because it

accounts for the extra randomness due to the self-normalizer. The test is shown

to have an asymptotically zero Type-II error, with a prescribed level of Type-

I error. Simulation studies demonstrate that the scheme exhibits a significant

improvement in size distortion, while maintaining a good power.

The remainder of this paper is organized as follows. Section 2 describes the

problem setting and the proposed SN-based sequential monitoring scheme. Sec-

tion 3 presents the general regularity assumptions, and establishes the asymptotic

behavior of the scheme under the null and alternative hypotheses. Simulation

experiments and empirical studies in which we monitor of railway bearing tem-

peratures are provided in Section 4. Section 5 concludes the paper. Technical

proofs are provided in the online Supplementary Material.

2. Problem Setting and Sequential Monitoring Scheme

In this section, we first introduce the setting of the sequential change-point

problem. Then, we propose the SN-based sequential monitoring scheme.
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2.1. Problem settings

Assume that {Xt}t=1,2,... is a stationary and ergodic random process, with

joint density fθ, where θ is the parameter vector in a compact space Θ, and

{fθ : θ ∈ Θ} can be regarded as a class of parametric models with parameter

θ. Examples include the ARMA(p,q)-GARCH(r,s) models and the stochastic

volatility models SV(p) with autoregressive order p, see Section 4.

Before monitoring changes in the sequentially collected data sequence, we

assume a training sample of m historical stationary data points {x1, x2, . . . , xm}
has been observed for the initial estimation of the pre-change parameter value,

say θ0, because we need to know the initial values of the parameters that are

subject to change; see Chu, Stinchcombe and White (1996); Gut and Steinebach

(2002); Berkes et al. (2004); Gombay and Horváth (2009); Na, Lee and Lee

(2011); Kirch and Tadjuidje Kamgaing (2015), among others.

Starting from time t = m+ 1, we then observe fresh data {Xt}t=m+1,m+2,...

sequentially, and monitor whether a change has occurred in θ using the null

hypothesis:

H0 : θ = θ0 , for t = 1, 2, . . . ,m+mT ,

against the alternative hypothesis:

H1 : θ =

{
θ0 , for t = 1, 2, . . . , t∗ − 1 ,

θ1 , for t = t∗, t∗ + 1, . . . ,m+mT ,

where θ0 6= θ1, t
∗ > m is the unknown change-point, t∗ = m + k∗, for some

k∗ > 0, and mT is the monitoring horizon, which is the maximum number of

observations to be inspected. The quantity T ∈ (0,∞], which is a user-specified

positive number (possibly infinite), can be regarded as the ratio of the monitoring

horizon to the size of the training sample. In the asymptotic analysis of the

proposed monitoring scheme, we let the size of the training sample m grow to

infinity while T remains fixed, such that the monitoring horizon mT grows to

infinity. The asymptotic distribution of the monitoring test statistic depends on

T ; see Section 3 for details.

By using the stationary pre-change training sample {x1, x2, . . . , xm}, we can

consistently estimate the parameter of interest θ using some objective function

L(Xt,θ). This general framework includes all classical estimation methods, such

as the maximum likelihood estimators, M-estimators, least-squares estimators,

and generalized moment estimators. The parameter estimates θ̂m then satisfy
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the following system of equations:

m∑
t=1

L(Xt, θ̂m) = 0 , (2.1)

where {Xt}t=1,...,m denotes a the training sample, and L is the objective func-

tion, taking values in Rd with E(L(Xt,θ0)) = 0, where the expectation is taken

under H0, and θ0 is the unique solution. Note that {Xt}t=1,...,m can be uni-

variate (i.e., Xt = xt) or multivariate (i.e., Xt = (xt−r, xt−r+1, . . . , xt−1, xt)),

depending on the objective function L and the underlying time series models; for

example, Xt = xt for independent and identically distributed (i.i.d.) data, and

Xt = (xt−p, xt−p+1, . . . , xt−1, xt) if L is the score function of an AR(p) model.

In Section 3, regularity conditions on the objective function L are provided to

ensure the consistency of the parameter estimators θ̂m →p θ0 as m→∞.

2.2. SN-based sequential monitoring scheme (SNSMS)

In this subsection, we derive the sequential change-point monitoring scheme

based on the self-normalization principle. Because E(L(Xt,θ0)) = 0 under H0,

if E(L(Xt,θ0)) 6= 0 under H1, then it is reasonable to monitor the new incoming

data points {Xt}t=m+1,m+2,... using the following CUSUM statistics:

Sm(k, θ̂m) =

m+k∑
t=m+1

L(Xt, θ̂m) ,

where θ̂m is the parameter estimate in (2.1). The rationale behind this is as

follows. If the process remains unchanged, then {L(Xt, θ̂m)}t=m+1,m+2,... should

have an expectation close to zero. Hence, under a weak dependence condition on

{L(Xt, θ̂m)}, the CUSUM behaves like a Wiener process, by the weak invariance

principle; see Lin and Lu (1996) for various mixing and moment conditions.

On the other hand, if the process has a structural change at t∗, then all of

the additional terms {L(Xt, θ̂m)}t>t∗ have a nonzero expectation. Hence, the

cumulative sum Sm(k, θ̂m) diverges as k → ∞. This difference can be used

to distinguish between the null and alternative hypotheses under an appropriate

standardization of Sm(k, θ̂m). Traditional sequential tests or monitoring schemes

require a long-run variance estimator to standardize the CUSUM process. In

practice, it is difficult to choose an appropriate choice of bandwidth parameter

for the lag-window-type and kernel-type long-run variance estimators. Moreover,

large size distortions are commonly found in existing empirical studies; see, for
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example, Berkes et al. (2004); Zeileis et al. (2005); Na, Lee and Lee (2011).

To address these problems, we employ a self-normalization method, where we

replace the long-run variance estimator with the self-normalization factor, which

does not require choosing bandwidth parameters. Specifically, we consider the

self-normalized process Sm(k, θ̂m)′Dm(θ̂m)−1Sm(k, θ̂m), where

Dm(θ̂m) =
1

m2

m∑
t=1


 t∑
j=1

L(Xj , θ̂m)

 t∑
j=1

L(Xj , θ̂m)

′ (2.2)

is the self-normalization factor, and define the monitoring test statistic Mm(k)

at time m+ k as

Mm(k) =
Sm(k, θ̂m)′Dm(θ̂m)−1Sm(k, θ̂m)

m(1 + k/m)2
.

The proposed monitoring scheme is defined based on the stopping time

Tm =

{
min{k : Mm(k) > c, 1 ≤ k ≤ mT} ,
mT + 1 , if Mm(k) ≤ c , for all 1 ≤ k ≤ mT ,

(2.3)

where c is the decision boundary determined by the asymptotic distribution de-

rived in Section 3. This asymptotic distribution is shown to be pivotal to avoiding

an estimation of the long-run variance.

The case T ∈ (0,∞) is called a closed-end monitoring scheme, where we stop

monitoring after a fixed number of observations mT . The case T = ∞ is called

an open-end monitoring scheme, where we always continue monitoring before a

change is found. Starting from time k = 1, we check whether Mm(k) > c. If yes,

then we set Tm = k; and the monitoring scheme terminates by rejecting H0 and

declaring that a change in the parameter has occurred at some time on or before

k. Otherwise, we proceed to time k+ 1 and continue monitoring. For closed-end

monitoring, if the condition Mm(k) > c has not been met at time mT , then we

set Tm = mT + 1, and the monitoring scheme terminates by declaring that a

change in the parameter did not occur, and H0 is not rejected. Note that the

update at each time point does not involve numerical optimization or resampling,

and hence can be computed efficiently.

The performance of the proposed sequential monitoring scheme can be as-

sessed by studying its empirical size, power, and run length. The size is the

probability of declaring an occurrence of a change when no change has occurred,
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the power is the probability that a change-point is declared on or before mT ,

given that the change occurred at k∗ ≤ mT , and the run length is the time until

an alarm is given, that is, Tm.

3. Regularity Assumptions and Asymptotic Theory

The asymptotic analysis of the proposed monitoring scheme is based on let-

ting the size of the training sample m grow to infinity. Intuitively, with a larger

training sample size m, we can estimate the unknown parameters more accu-

rately. Hence, with a more accurate estimated pre-change model, the monitoring

scheme will be more sensitive to deviations from the incoming data following a

post-change model with different parameter values. Similar asymptotic settings

have been studied in Chu, Stinchcombe and White (1996); Gut and Steinebach

(2002); Berkes et al. (2004); Gombay and Horváth (2009); Na, Lee and Lee

(2011); Kirch and Tadjuidje Kamgaing (2015), among others.

In this section, we derive the null and alternative asymptotics of the se-

quential monitoring test under some regularity assumptions on the underlying

process and the objective function. Let L′(Xt,θ) be the gradient matrix for the

objective function L(Xt,θ) with respect to the parameter θ. Define the vector

norm ‖c‖ as the supremum norm of a vector c. When A is a matrix, define the

matrix norm ‖A‖ = supx:‖x‖=1 ‖Ax‖. Denote bxc = max{z ∈ Z : z ≤ x} and

dxe = min{z ∈ Z : z ≥ x}.

3.1. Regularity conditions under null hypothesis H0

In this subsection, we give the regularity conditions under which we can

derive asymptotic results for the initial estimation of the parameters, monitoring

test statistic, and stopping time of the proposed procedure.

Assumption 1. The true parameter value θ0 is in the interior of Θ, where Θ

is a compact subset of Rd.

Assumption 2. The process {Xt} is stationary and ergodic.

Assumption 3. E(supθ∈Θ ‖L(Xt,θ)‖) <∞ and θ0 is the unique zero of E(L(Xt,

θ)); that is, for all ε > 0, there exists a κ > 0, such that ‖E(L(Xt,θ))‖ > κ, for

all θ, with ‖θ − θ0‖ > ε.

Assumption 4. E(‖L(Xt,θ0)‖2+δ) <∞, for some δ > 0, and {Xt} is a strong
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mixing sequence with mixing coefficients α(n) satisfying

∞∑
n=1

α(n)δ/(2+δ) <∞ .

For the definition of strong mixing coefficient α(n), see Lin and Lu (1996).

Assumption 5. L(Xt,θ) is continuously differentiable with respect to θ in a

neighborhood Vθ0 of θ0. In addition, E(L′(Xt,θ0)) is positive definite, and E(

supθ∈Vθ0
‖L′(Xt,θ)‖) <∞.

3.2. Regularity conditions under alternative hypothesis H1

In this subsection, we give some mild conditions on the post-change process,

such that the proposed monitoring scheme will stop in finite time with probability

approaching one as m→∞ if a change occurs.

Assumption 6. The change-point occurs after time m; that is, t∗ = bmφc, for

1 < φ < 1 + T , such that the observations after the change-point are {X∗t }t≥t∗,

where {X∗t } is a stationary and ergodic process with parameter value θ1 6= θ0.

Assumption 7.

(a) E(L(X∗t ,θ0)) = c 6= 0, for some constant c ∈ Rd.

(b) E(supθ∈Uθ0
‖L(X∗t ,θ)‖) <∞, for some neighborhood Uθ0 of θ0.

Assumption 6 is a condition on the location of the change-point to ensure

that enough post-change observations will be accumulated for monitoring. As-

sumption 7 on the moment conditions for the post-change process {X∗t } is crucial

for the consistency of the sequential monitoring scheme, because it indicates that

L(Xt,θ0) behaves differently before and after the change-point.

3.3. Asymptotic properties of SNSMS under H0

The following lemma shows the consistency of the parameter estimation and

the invariance principle of the partial sum process. These results are standard

and, thus, we refer the proofs to Theorem 3 of Kirch and Tadjuidje Kamgaing

(2012) and Theorem 3.2.1 of Lin and Lu (1996).

Lemma 1.

(a) Under Assumptions 1 to 5, we have θ̂m = θ0 +Op(m
−1/2).
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(b) Under Assumptions 2 and 4, we have the weak invariance principle of the

partial sum process

1√
m

bmrc∑
t=1

L(Xt,θ0)
D[0,1+T ]−→ WM(r) ,

as m → ∞, where r ∈ [0, 1 + T ], bxc is the largest integer smaller than

x, and −→D[0,1+T ] denotes weak convergence in D[0, 1 + T ], the space of

right-continuous functions with a left limit on [0, 1 +T ]. Here, WM(r) is a

d-dimensional Gaussian process with mean E(WM(r)) = 0 and covariance

function E(WM(u)W′
M(v)) = min(u, v)M(θ0), where M(θ0) is the long-

run covariance matrix defined as

M(θ0) =

∞∑
i=−∞

E[L(X1,θ0)L(Xi+1,θ0)
′] .

The following theorem shows the weak convergence of Dm(θ̂m) of SNSMS.

The results can be used to derived the decision boundary c = c(α, d, T ) with an

asymptotically correct size α, such that we can control the Type-I error of the

procedures.

Theorem 1. Under Assumptions 1 to 5, we have

(a) Dm(θ̂m)
D→ M(θ0)

1/2V
(
M(θ0)

1/2
)′

as m → ∞, where V =
∫ 1
0 (Bd(r) −

rBd(1))(Bd(r) − rBd(1))′dr, Bd(r) is the standard d-dimensional Wiener

process, and Dm(θ̂m) is defined in (2.2).

(b) The asymptotic size of the SNSMS, with decision boundary c for T <∞, is

given by

lim
m→∞

P (Tm ≤ mT |H0) = P

(
sup

0≤s<T

Ud(s)′V−1Ud(s)
(1 + s)2

> c

)
, (3.1)

where Ud(s) = Bd(1 + s)− (1 + s)Bd(1).

(c) For T = ∞, if {Xt} is a geometrically ρ-mixing sequence, that is, the ρ-

mixing coefficient satisfies

ρ(k) := ρ(A0,Bk) = sup
f∈L2(A0),g∈L2(Bk)

|Corr(f, g)| = O(ak) ,

where 0 < a < 1, A0 and Bk are the σ-fields generated by {Xt; t ≤ 0}
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and {Xt; t ≥ k}, respectively, and L2(F) is the space of square-integrable

F-measurable random variables, then

lim
m→∞

P (Tm <∞|H0) = P

(
sup

0≤s<∞

Ud(s)′V−1Ud(s)
(1 + s)2

> c

)
= P

(
sup

0≤u<1
B∗d(u)′V−1B∗d(u) > c

)
, (3.2)

where Ud(s) = Bd(1 +s)− (1 +s)Bd(1), and B∗d is a standard d-dimensional

Wiener process independent of V.

Note that V, which is a functional of {Bd(r)}r∈[0,1), is independent of {Bd(1+

s) − (1 + s)Bd(1)}s∈[0,∞). In addition, the last equality of (3.2) is the result of

the rescaling property of the Brownian motion that

{Ud(s)} = {Bd(1 + s)− (1 + s)Bd(1)} d
=

{
(1 + s)B∗d

(
s

1 + s

)}
;

see the proof of Theorem 1(c) in the online Supplementary Material and Theorem

1 in Hušková and Koubková (2005) for details. The ρ-mixing assumption for the

case T = ∞ is required to fulfill the conditions for using the ρ-mixing Hájek-

Rényi inequality that controls the tail probability of the monitoring statistics

over an infinite horizon; see Wan (2013).

The probabilities in (3.1) and (3.2) can be evaluated using a Monte Carlo

simulation and, hence, the decision boundary c = c(α, d, T ) can be determined

such that the asymptotic size is equal to a prespecified significance level α; that

is,

P

(
sup

0≤s<T

[Bd(1 + s)− (1 + s)Bd(1)]′V−1[Bd(1 + s)− (1 + s)Bd(1)]

(1 + s)2
> c

)
= α ,

(3.3)

or

P

(
sup

0≤u<1
B∗d(u)′V−1B∗d(u) > c

)
= α . (3.4)

Table 1 summarizes the decision boundaries c of the SNSMS for different

values of (α, d, T ), which we use in the simulation studies in Section 4. Given

(α, d, T ), to find the decision boundaries c of the SNSMS for closed- and open-

ended schemes, we use simulations to solve for c in (3.3) and (3.4), respectively.

The standard Brownian motions {Bd(u) : u ∈ [0, 1 + T )} and {B∗d(v) : v ∈
[0, 1)} are approximated by partial sum processes of independent normal random
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Table 1. Decision boundaries c under different α, d, and T for Tm in SNSMS.

d=1 d=2 d=3
T 1 2 10 ∞ 1 2 10 ∞ 1 2 10 ∞

α
0.05 33.1 44.2 60.5 66.2 69.3 92.3 126.4 138.4 112.0 149.5 204.2 223.6
0.1 22.6 30.2 41.3 45.2 50.8 67.7 92.7 101.4 85.2 113.8 155.5 170.3

variables in a dense grid of length 10−4. The decision boundary c is taken as the

empirical percentile of the test statistic in 5,000,000 repetitions.

3.4. Asymptotic properties of the SNSMS under H1

The following theorem shows that, under H1, the asymptotic power of the

SNSMS converges to one as m → ∞. Hence, when there is a change-point, the

proposed monitoring scheme declares a change in the parameter with probability

approaching one.

Theorem 2. Consider the SNSMS with decision boundary c satisfying (3.3) or

(3.4) for a given significance level α ∈ (0, 1). Under Assumptions 6 and 7, the

asymptotic power of the SNSMS is equal to 1; that is,

lim
m→∞

P (Tm ≤ mT |H1) = 1 if T <∞ , and lim
m→∞

P (Tm <∞|H1) = 1 if T =∞ .

4. Simulation and Empirical Studies

In this section, we investigate the finite-sample performance of the SNSMS by

considering two models in simulation experiments. We focus on the ARMA(p,q)-

GARCH(r,s) models and stochastic volatility models SV(p), and compare per-

formance with that of other existing monitoring schemes in terms of their size,

power, and ARL, that is, the average time until an alarm is given. Because an

inflated empirical size may lead to a higher power and a shorter run length, we

report the size-corrected power and ARLs corresponding to the true size α for a

fair comparison.

4.1. Change in mean levels in ARMA(p,q)-GARCH(r,s) models

Consider the ARMA(p,q)-GARCH(r,s) model with mean level at µt,

Xt = µt + Yt , Yt = φ1Yt−1 + · · ·+ φpYt−p + εt + θ1εt−1 + · · ·+ θqεt−q ,

εt = σtηt , σ2t = ω +
∑

1≤i≤r
αiX

2
t−i +

∑
1≤j≤s

βjσ
2
t−j ,
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where (ω, φ1, . . . , φp, θ1, . . . , θq, α1, . . . , αr, β1, . . . , βs) are parameters of the model,

{ηt} are mean-zero i.i.d. random variables with unit variance, and the mean level

θ = µt is the parameter of interest.

The ARMA(p,q)-GARCH(r,s) model is a general time series model, and

includes the well-known GARCH model as a special case. The ARMA(p,q)-

GARCH(r,s) model has become increasingly popular in time series modeling

and forecasting in engineering, econometrics, and finance. For example, Pham

and Yang (2010) used ARMA-GARCH models to explain the wear and fault

conditions of machines, and Liu and Shi (2013) applied ARMA-GARCH models

to forecast short-term electricity prices. In financial time series, the GARCH

model is commonly used as an alternative to stochastic volatility models; see

Tsay (2010, 2012). To monitor the mean level changes in the process, a CUSUM

monitoring scheme is used; see Chu, Stinchcombe and White (1996); Na, Lee

and Lee (2011) for details. For simplicity, we call this the CUSUM sequential

monitoring scheme (CUSMS).

The CUSMS for the mean level of the ARMA(p,q)-GARCH(r,s) model is

based on the stopping time

Cm = min

min

k :

∣∣∣∑m+k
t=m+1(Xt − µ̂m)

∣∣∣
σ̂m

> m1/2

(
1 +

k

m

)
c

 ,mT + 1

 ,

where the sample mean µ̂m = m−1
∑m

t=1Xt, and the long-run variance estimator

σ̂2m =

dm1/3e∑
j=−dm1/3e

(
1− |j|⌈

m1/3
⌉) γ̂l(j) ,

where γ̂l(j) = m−1
∑m

t=j+1(Xt − µ̂m)(Xt−j − µ̂m). We reject the null hypothesis

of no change-point when Cm < mT + 1. We also apply the self-normalization

approach with L(Xt, θ̂m) = Xt − µ̂m to obtain the self-normalization CUSUM

sequential monitoring scheme (SN-CUSMS):

C(SN)
m = min

min

k :

(∑m+k
t=m+1(Xt − µ̂m)

)2
Dm(µ̂m)

> m

(
1 +

k

m

)2

c

 ,mT + 1

 ,

where Dm(µ̂m) = m−2
∑m

t=1{(
∑t

j=1(Xt − µ̂m))2} is the self-normalizer. In the

following subsections, we compare the CUSMS and SN-CUSMS on ARMA(1, 1)-
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Table 2. Decision boundaries c for Cm in CUSMS when d = 1.

α T = 1 T = 2 T = 10 T =∞
0.05 1.585 1.830 2.137 2.241
0.1 1.386 1.600 1.869 1.960

GARCH(1, 1) models in terms of their size, size-corrected power, and size-correc-

ted ARL. Table 2 summarizes the decision boundary c for the CUSMS. Time

series plots of some realizations of the models are provided in the online Sup-

plementary Material. The decision boundary c of CUSMS for each (α, d, T ) is

obtained by numerically solving for c in the equation

1−

(
4

π

∞∑
k=0

(−1)k

2k + 1
exp

(
−π

2(2k + 1)2T

8c2(1 + T )

))d
= α , (4.1)

where d is the dimension of the process; see Lemma 2 and equation (3.8) in

Leung, Ng and Yau (2017). The decision boundary c for the SN-CUSMS with

d = 1 is given in Table 1.

4.2. Change in mean levels in ARMA(p,q)-GARCH(r,s) models: Sim-

ulation results under H0

To investigate the empirical sizes of the CUSMS and SN-CUSMS under H0,

we performed simulations based on the ARMA(1, 1)-GARCH(1, 1) models with

parameter θ = (µt, ω, φ1, θ1, α1, β1), where φ1 < 1, θ1 < 1, α1 +β1 < 1, and µt =

0, for all t under H0. For comparison, the following models are considered: Model

1: (ω, φ1, θ1, α1, β1) = (0.8, 0.5, 0.5, 0.15, 0.2) ; and Model 2: (ω, φ1, θ1, α1, β1) =

(0.6, 0.7, 0.8, 0.2, 0.1) . We considered combinations of α = 0.05, 0.1 and T = 1,

2, 10; that is, the monitoring horizons mT are m, 2m, and 10m respectively.

Table 3 reports the proportion of rejection of H0 when m = 100, 300, 500, 1,000,

and 2,000. The row T = 10∗ corresponds to the open-end scheme T =∞ with a

monitoring horizon of 10m, because an infinite monitoring horizon is impossible

in practice. The decision boundaries for T =∞ are always larger than those for

finite T under the same (α, d), as shown in Table 1. Thus, the empirical sizes for

the row T = 10 are expected to be larger than those for the row T = 10∗. From

Table 3, the size distortion of the CUSMS is much more severe than that of the

SN-CUSMS. In general, the proposed SN-CUSMS has an empirical size close to

the significance level α. Note that the decay of the covariance structure of the

ARMA-GARCH model is slower in Model 2 than that in Model 1. Thus, the
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Table 3. Empirical sizes for Models 1 and 2 of CUSMS (C) and SN-CUSMS (SN-C)
in ARMA(1,1)-GARCH(1,1) models, with m = 100, 300, 500, 1,000, and 2,000. The
number of replications for each pair (α, T ) is 2,500.

Model 1 Model 2
T Method m=100 300 500 1,000 2,000 m=100 300 500 1,000 2,000

Significance level α = 0.05
1 C 0.124 0.087 0.089 0.077 0.076 0.209 0.150 0.132 0.116 0.088
1 SN-C 0.055 0.044 0.052 0.052 0.053 0.06 0.053 0.049 0.051 0.046
2 C 0.145 0.115 0.090 0.082 0.076 0.222 0.154 0.136 0.107 0.095
2 SN-C 0.052 0.05 0.054 0.051 0.053 0.062 0.053 0.054 0.045 0.051

10 C 0.157 0.116 0.098 0.087 0.072 0.249 0.173 0.148 0.121 0.101
10 SN-C 0.053 0.053 0.053 0.053 0.051 0.067 0.058 0.064 0.054 0.05
10∗ C 0.130 0.085 0.081 0.064 0.057 0.234 0.151 0.118 0.107 0.092
10∗ SN-C 0.045 0.047 0.041 0.045 0.044 0.060 0.055 0.045 0.048 0.045

Significance level α = 0.1
1 C 0.204 0.166 0.156 0.143 0.132 0.278 0.228 0.214 0.17 0.156
1 SN-C 0.107 0.106 0.092 0.097 0.088 0.118 0.097 0.098 0.088 0.092
2 C 0.228 0.156 0.157 0.143 0.13 0.307 0.238 0.225 0.194 0.163
2 SN-C 0.109 0.095 0.102 0.099 0.099 0.122 0.098 0.098 0.101 0.095

10 C 0.242 0.177 0.159 0.151 0.131 0.357 0.255 0.211 0.203 0.151
10 SN-C 0.115 0.11 0.1 0.095 0.096 0.132 0.099 0.1 0.106 0.104
10∗ C 0.192 0.146 0.128 0.119 0.104 0.326 0.226 0.201 0.168 0.143
10∗ SN-C 0.094 0.083 0.084 0.088 0.088 0.119 0.095 0.087 0.088 0.086

long-run variance estimator in Model 2 is more difficult to estimate accurately.

This is a possible reason for the greater size distortion of the CUSMS in Model

2 than that in Model 1.

4.3. Change in mean levels in ARMA(p,q)-GARCH(r,s) models: Sim-

ulation results under H1

To investigate the size-corrected empirical power and ARLs of the CUSMS

and SN-CUSMS under H1, we performed simulations based on the ARMA(1, 1)-

GARCH(1, 1) models with parameter (µt, ω, φ1, θ1, α1, β1), satisfying φ1 < 1,

θ1 < 1, α1 + β1 < 1, and a change-point at t∗ = m+ k∗.

Model A: (ω, φ1, θ1, α1, β1) = (0.6, 0.7, 0.8, 0.2, 0.1), with the mean level changed

from µt = 0, for t < m+ k∗, to µt = ∆, for t ≥ m+ k∗.

The parameter values for Model A are the same as those for Model 2 in

Section 4.2, except for the mean level µt. Table 4 reports the size-corrected

empirical power and ARLs for various k∗ and ∆, with m = 500. The size-

corrected empirical power is the proportion of simulation trials in which the

CUSMS and SN-CUSMS reject H0, using a decision boundary calibrated such

that the empirical size of the scheme is α under H0. The ARLs are computed as

the average stopping times, conditioning on an alarm being given. From Table 4,

whereas the SN-CUSMS generally maintains a reasonable power and ARL, the
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CUSMS usually exhibits a better power and a shorter ARL. This “better size, but

less power” phenomenon is consistent with the findings reported in the literature

in other contexts; see Lobato (2001); Shao and Zhang (2010). The results from

Table 4 also show that the detection rate and timing depend on the magnitude of

the parameter change ∆ and the location of the change-point t∗ = m+k∗. Here,

a smaller k∗ (closer to time m) and a larger magnitude of the change ∆ indicate

a higher detection rate and a shorter detection delay. This phenomenon occurs

mainly because the CUSUM statistic Sm(k, θ̂m) =
∑m+k

t=m+1 L(Xt, θ̂m) contains

more pre-change data when k∗ is large, and hence more post-change data are

needed before significance is reached; see, for example, Chu, Stinchcombe and

White (1996); Na, Lee and Lee (2011) for similar observations.

Furthermore, in general, under the same (T,∆, k∗), a larger m will result in

better power because we can estimate the unknown parameters more accurately

using a larger training sample. Hence, with a more accurate estimated pre-change

model, the monitoring scheme will be more sensitive to deviations of incoming

data that follow a post-change model with different parameter values. This

phenomenon is also mentioned in Chu, Stinchcombe and White (1996); Berkes

et al. (2004); Kirch and Tadjuidje Kamgaing (2015), and many others.

4.4. Change in parameters in time series models with a latent process

Consider the stochastic volatility model SV(p) with autoregressive order p,

Xt = Zte
(αt+β)/2 , αt = η1αt−1 + η2αt−2 + · · ·+ ηpαt−p + εt ,

where Zt are i.i.d. N(0, 1), εt are i.i.d. N(0, σ2), |ηi| < 1, for i = 1, . . . , p, and

θ = (η1, . . . , ηp, σ, β) are the parameters of interest. For a sequential change-point

analysis of SV(p), Leung, Ng and Yau (2017) suggested a sequential monitoring

scheme called the PLSMS, which uses a pairwise likelihood for general time series

models. Define the stopping time Pm(l) of the PLSMS by

Pm(l) = min

{
min

{
k :

∥∥∥∥∥
m+k∑
t=m+1

M̂m(l)−1/2L′t(l; θ̂m)

∥∥∥∥∥
> m1/2

(
1 +

k

m

)
c

}
,mT + 1

}
,

where c is the corresponding decision boundary of the PLSMS, mT is the pre-

specified maximum inspection time, L′t(l;θ) = ∂Lt(l;θ)/∂θ =
∑l

j=1 ∂pt(j;θ)/∂θ
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Table 4. Size-corrected empirical power and average run length (ARL) for CUSMS (C)
and SN-CUSMS (SN-C) in ARMA(1,1)-GARCH(1,1) Model A, with m = 500, ∆ = 0.5,
1, and 2, and k∗ = 50, 250, and 500, with significance levels α = 0.05 and 0.1. The
number of replications for each pair (α, T ) is 2,500.

∆ = 0.5
α T Method k∗ = 50 ARL k∗ = 250 ARL k∗ = 500 ARL
0.05 1 C 0.218 337.1 0.091 362.4 - -

1 SN-C 0.159 316.5 0.082 334.3 - -
2 C 0.302 570.8 0.196 663.5 0.112 698.3
2 SN-C 0.204 532.1 0.146 593.9 0.098 631.1

10 C 0.437 1,490.8 0.378 1,887.3 0.324 2,224.5
10 SN-C 0.284 1,514.8 0.252 1,713.8 0.239 2,102.0

0.1 1 C 0.315 317.6 0.168 348.2 - -
1 SN-C 0.254 295.4 0.152 314.5 - -
2 C 0.424 525.8 0.288 637.3 0.171 664.5
2 SN-C 0.32 504.9 0.229 561.6 0.160 588.6

10 C 0.547 1,268.7 0.513 1,698.1 0.446 2,021.1
10 SN-C 0.405 1,302.3 0.387 1,575.2 0.351 1,839.2

∆ = 1
0.05 1 C 0.677 298.9 0.239 399.2 - -

1 SN-C 0.447 294.8 0.178 377.1 - -
2 C 0.821 458.0 0.612 653.5 0.293 775.1
2 SN-C 0.580 466.4 0.418 638.4 0.212 739.3

10 C 0.939 833.8 0.920 1,276.3 0.895 1,710.4
10 SN-C 0.734 1,107.9 0.692 1,483.3 0.646 1864.3

0.1 1 C 0.759 278.8 0.346 376.0 - -
1 SN-C 0.587 274.4 0.285 350.8 - -
2 C 0.895 396.8 0.715 603.9 0.432 736.3
2 SN-C 0.724 431.5 0.55 597.8 0.339 684.9

10 C 0.968 676.4 0.96 1,048.0 0.947 1,480.1
10 SN-C 0.848 898.1 0.813 1,292.6 0.784 1,625.5

∆ = 2
0.05 1 C 0.998 192.7 0.745 394.4 - -

1 SN-C 0.910 236.5 0.524 392.9 - -
2 C 1 218.3 0.995 484.3 0.858 756.5
2 SN-C 0.964 315.6 0.889 551.1 0.622 757.6

10 C 1 262.5 1 551.2 1 894.2
10 SN-C 0.991 459.7 0.986 785.0 0.978 1,184.0

0.1 1 C 1 168.0 0.841 376.4 - -
1 SN-C 0.964 201.4 0.678 371.9 - -
2 C 1 189.5 1 443.4 0.929 721.3
2 SN-C 0.99 251.6 0.943 498.1 0.752 725.3

10 C 1 229.2 1 496.3 1 824.0
10 SN-C 0.998 343.4 0.996 639.4 0.996 1,002.3
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Table 5. Decision boundaries c for Pm(l) in PLSMS when d = 3.

α T = 1 T = 2 T = 10 T =∞
0.05 1.861 2.149 2.510 2.633
0.1 1.684 1.944 2.270 2.381

is the sum of the score functions of the pairwise likelihoods at time t up to lag l,

and M̂m(l) is the long-run variance estimator defined as

M̂m(l) =

dm1/3e∑
j=−dm1/3e

(
1− |j|⌈

m1/3
⌉) γ̂l(j) ,

where γ̂l(j) = m−1
∑m

t=j+1 L
′
t(l; θ̂m)(L′t−j(l; θ̂m))T . On the other hand, we can

apply the self-normalization approach to the PLSMS procedure. Following (2.3),

the stopping time of the new procedure, SN-PLSMS, is given by P
(SN)
m (l) =

min {min {k : Mm,l(k) > c} ,mT + 1} , where

Mm,l(k) =

(
Sm(k, l; θ̂m)

)′
Jm(θ̂m)−1

(
Sm(k, l; θ̂m)

)
m (1 + k/m)2

,

with Sm(k, l; θ̂m) =
∑m+k

t=m+1 L
′
t(l; θ̂m) , and

Jm(θ̂m) =
1

m2

m∑
t=1


 t∑
j=1

L′j(l; θ̂m)

 t∑
j=1

L′j(l; θ̂m)

′ .

In the following subsections, we compare the sizes, size-corrected power and

size-corrected ARLs of the PLSMS and SN-PLSMS on SV(1) models. Table 5

summarizes the decision boundary c for the PLSMS, where we solve (4.1) with

d = 3. The decision boundary c for the SN-PLSMS with d = 3 is given in Table

1.

4.5. Change in parameters in time series models with a latent process:

Simulation results under H0

To investigate the empirical sizes of the PLSMS and SN-PLSMS under H0,

we performed simulations based on the SV(1) models, Model 1: η = 0.7, β = 1,

σε = 1, 2, and 3 ; and Model 2: η = 0.5, β = 2, σε = 1, 2, and 3 .

The models with different values of η represent different degrees of correlation

in the latent autoregressive process. Within each model, the values of σε represent
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volatilities of the latent autoregressive process. We also considered combinations

of α = 0.05, 0.1 and T = 1, 2, 10, that is, the monitoring horizons mT are m, 2m,

and 10m, respectively. Figure S.4 in the online Supplementary Material provides

time series plots of some realizations of Model 2 with different σε values. Note

that spikes occur more frequently under a larger variance in the latent process.

Table 6 reports the proportions of rejection of H0 for the models when m =

500, 1,000, and 1,500. The row T = 10∗ is defined similarly to that in Section

4.2. From Table 6, the size distortions of the PLSMS are much more severe than

those of the SN-PLSMS when m is small. In general, the proposed SN-PLSMS

has an empirical size close to the significance level α.

4.6. Change in parameters in time series models with a latent process:

Simulation results under H1

To investigate the size-corrected empirical power and size-corrected ARLs

under H1, we performed simulations based on three change-point models, with a

change-point at t∗ = m+ k∗:

Model 1: (η0, σε,0, β0) = (0.2, 1.2,−0.45) changed to (ηA, σε,A, βA) = (0.6, 1.2,−
0.45) ;

Model 2: (η0, σε,0, β0)=(0.7, 0.2,−0.1) changed to (ηA, σε,A, βA)=(0.5, 0.4,−0.3) ;

Model 3: (η0, σε,0, β0)=(0.2, 1, 0.1) changed to (ηA, σε,A, βA)=(0.65, 0.7756, 0.1) .

Model 2 has two parameters changed that with a small magnitude, whereas

only η changed in Model 1. In Model 3, the parameters are restricted to change

in such a way that the variance of the observed process {Xt} remains unchanged.

Table 7 reports the size-corrected empirical power and ARLs for various k∗, with

m = 750. The size-corrected empirical power is the proportion of the simulation

trials in which the PLSMS or SN-PLSMS rejects H0, using a decision boundary

calibrated such that the empirical size of the scheme is α under H0. The ARLs

are computed as the average stopping times, conditioning on an alarm being

given. From Table 7, although the SN-PLSMS maintains reasonable power, in

general, the power of the PLSMS is usually higher than that of the SN-PLSMS

in Models 1 and 3. The ARL of the PLSMS is also shorter than that of the

SN-PLSMS, in general. For Model 2, the size-corrected power of the SN-PLSMS

is higher than that of the PLSMS. A possible reason for this is that the size

distortion of the PLSMS in the stationary process that follows Model 2 (with

parameter values (η0, σε,0, β0) = (0.7, 0.2,−0.1)) is much more severe than that

of other two. Unreported simulations show that the size distortion of the PLSMS

in the stationary process that follows Model 2 is about 0.16 above the significance
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Table 6. Empirical sizes for Models 1 and 2 of PLSMS (P) and SN-PLSMS (SN-P) in
SV(1) models, with m = 500, 1,000, and 1,500, when l = 1. The number of replications
for each pair of (α, T ) is 1,000.

Model 1
σε = 1 σε = 2 σε = 3

T Method m=500 1,000 1,500 m=500 1,000 1,500 m=500 1,000 1,500
Significance level α = 0.05

1 P 0.16 0.134 0.132 0.148 0.124 0.121 0.149 0.122 0.121
1 SN-P 0.064 0.067 0.065 0.067 0.057 0.051 0.063 0.054 0.051
2 P 0.164 0.139 0.109 0.15 0.132 0.131 0.167 0.138 0.128
2 SN-P 0.061 0.069 0.054 0.057 0.055 0.056 0.054 0.055 0.053

10 P 0.185 0.156 0.132 0.17 0.133 0.139 0.188 0.147 0.138
10 SN-P 0.071 0.068 0.07 0.067 0.056 0.06 0.072 0.062 0.059
10∗ P 0.16 0.127 0.095 0.158 0.121 0.109 0.159 0.115 0.097
10∗ SN-P 0.062 0.058 0.047 0.064 0.045 0.046 0.057 0.045 0.049

Significance level α = 0.1
1 P 0.228 0.181 0.18 0.222 0.196 0.166 0.243 0.205 0.197
1 SN-P 0.122 0.104 0.108 0.118 0.106 0.102 0.128 0.111 0.102
2 P 0.248 0.196 0.186 0.257 0.175 0.224 0.27 0.205 0.175
2 SN-P 0.124 0.115 0.111 0.132 0.108 0.114 0.126 0.106 0.111

10 P 0.275 0.189 0.172 0.228 0.195 0.168 0.281 0.201 0.195
10 SN-P 0.144 0.113 0.109 0.111 0.117 0.113 0.129 0.114 0.106
10∗ P 0.223 0.187 0.161 0.192 0.187 0.167 0.225 0.171 0.168
10∗ SN-P 0.128 0.092 0.087 0.099 0.103 0.084 0.106 0.081 0.083

Model 2
σε = 1 σε = 2 σε = 3

T Method m=500 1,000 1,500 m=500 1,000 1,500 m=500 1,000 1,500
Significance level α = 0.05

1 P 0.13 0.107 0.097 0.101 0.093 0.082 0.112 0.091 0.079
1 SN-P 0.069 0.058 0.049 0.051 0.046 0.048 0.059 0.047 0.053
2 P 0.13 0.122 0.089 0.144 0.101 0.08 0.131 0.101 0.083
2 SN-P 0.067 0.066 0.05 0.062 0.063 0.044 0.069 0.058 0.057

10 P 0.136 0.113 0.103 0.149 0.112 0.088 0.127 0.106 0.105
10 SN-P 0.06 0.056 0.057 0.068 0.064 0.051 0.067 0.056 0.045
10∗ P 0.127 0.098 0.077 0.126 0.094 0.062 0.106 0.089 0.079
10∗ SN-P 0.051 0.049 0.043 0.057 0.041 0.038 0.052 0.038 0.032

Significance level α = 0.1
1 P 0.213 0.171 0.158 0.202 0.158 0.158 0.211 0.155 0.141
1 SN-P 0.123 0.106 0.095 0.118 0.104 0.101 0.12 0.106 0.1
2 P 0.201 0.178 0.166 0.188 0.168 0.153 0.199 0.169 0.157
2 SN-P 0.119 0.116 0.112 0.114 0.099 0.108 0.117 0.102 0.099

10 P 0.238 0.184 0.163 0.194 0.164 0.144 0.206 0.174 0.156
10 SN-P 0.135 0.113 0.106 0.115 0.107 0.096 0.123 0.113 0.095
10∗ P 0.193 0.165 0.129 0.178 0.137 0.113 0.176 0.141 0.118
10∗ SN-P 0.113 0.102 0.084 0.105 0.088 0.087 0.101 0.09 0.087

level; that of Model 1 is about 0.07 above the significance level. Indeed, the size-

corrected decision boundary for Model 2 is much higher than those for Models 1

and 3. For example, under (α, T, k∗) = (0.05, 2, 50), the size-corrected decision

boundaries c for Models 1, 2, and 3 are 2.4, 4.98, and 2.46, respectively. Hence,
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the size-corrected power of the PLSMS for Model 2 is affected significantly.

4.7. Empirical studies on railway bearing temperature data

In this section, we apply the proposed method to railway bearing tempera-

ture data. Figure 1 depicts the temperatures (TDFA) of two railway bearings,

AxlePos 1 and AxlePos 7, for the period August 12, 2016 to January 7, 2017.

Because most abnormalities of the bearing condition (e.g., grease hardening) will

induce an increase in the bearing temperature, detecting temperature changes

helps to identify potential abnormalities in the bearings. On the other hand, the

punctuality of its service and the cost of maintenance are crucial to operating a

railway company, and both will be adversely affected by false alarms. Hence, a

controlled Type-I error of the monitoring scheme is important.

To monitor the mean bearing temperature, we applied the CUSMS and SN-

CUSMS procedures described in Section 4.1 and then compared their perfor-

mance. The data from August 12, 2016, to August 30, 2016, which include 350

observations (m = 350), are used as the training data set. From the time series

plot of the bearing temperatures in Figure 1, the 350 training data points ap-

pear to be stationary and free of structural breaks. We apply the retrospective

change-point test proposed by Shao and Zhang (2010) for the mean change on

the training data set. The test results suggest there is no change in the mean

level in the training data set under the significance level α = 5%. Using the

training data set, we estimate the mean and the self-normalization factor by

µ̂m =
1

m

m∑
t=1

Xt , Dm(µ̂m) =
1

m2

m∑
t=1


 t∑
j=1

(Xt − µ̂m)

 t∑
j=1

(Xt − µ̂m)

′ ,

respectively. The data from August 30, 2016 to January 7, 2017, which involve

2,530 observations (mT = 2,530), are used as the monitoring data set. Therefore,

we set T = 2,530/350 = 7.228571. We performed the detection schemes under α

= 0.05 and 0.1 by monitoring the CUSUM statistic, S(k) =
∑m+k

t=m+1(Xt − µ̂m),

for time m+k, for k = 1, . . . , 2,530. If the deviation from the mean is significant,

such that m−1 (1 + k/m)−2 S(k)′Dm(µ̂m)−1S(k) > c, then we declare that a

change in the mean of the bearing temperature has occurred before time m+ k.

Table 8 reports the corresponding time points when change-points are de-

clared for significance levels α = 0.05 and 0.1 under a closed-end scheme with

T = 7.228571 and an open-end scheme with T = ∞, respectively. In order to

compare the two monitoring procedures, we find the first change-point in the
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Table 7. Size-corrected empirical power and average run lengths (ARL) for Models 1 to
3 of PLSMS (P) and SN-PLSMS (SN-P), with m =750 and k∗ =50, 250, and 500. The
number of replications for each pair (α, T ) is 1,000.

Model 1
α T Method k∗ = 50 ARL k∗ = 250 ARL k∗ = 500 ARL

0.05 1 P 0.843 374.8 0.611 527.5 0.193 618.6
1 SN-P 0.685 402.8 0.459 527.9 0.17 622.9
2 P 0.948 517.2 0.875 777.1 0.744 1,003.5
2 SN-P 0.801 606.0 0.665 784.6 0.559 1,005.8

10 P 0.998 711.2 0.991 1,135.0 0.99 1,605.8
10 SN-P 0.911 1,196.4 0.875 1,529.4 0.871 2,046.6

0.1 1 P 0.934 328.0 0.682 503.8 0.327 594.6
1 SN-P 0.808 339.7 0.561 504.8 0.26 561.3
2 P 0.985 452.2 0.928 704.3 0.819 938.1
2 SN-P 0.87 550.4 0.769 729.5 0.652 931.3

10 P 1 605.0 0.997 948.3 0.997 1,433.1
10 SN-P 0.952 922.4 0.954 1,248.9 0.912 1,816.2

Model 2
α T Method k∗ = 50 ARL k∗ = 250 ARL k∗ = 500 ARL

0.05 1 P 0.074 465.0 0.051 502.2 0.047 555.9
1 SN-P 0.14 446.2 0.084 493.7 0.074 464.3
2 P 0.066 901.1 0.065 984.8 0.046 1,012.2
2 SN-P 0.188 853.1 0.145 875.8 0.122 892.7

10 P 0.103 1,415.3 0.058 2,227.6 0.062 2,620.5
10 SN-P 0.296 2,286.0 0.223 2,890.6 0.223 3,024.4

0.1 1 P 0.157 440.4 0.138 396.0 0.114 420.7
1 SN-P 0.254 447.9 0.194 458.2 0.133 427.4
2 P 0.15 748.3 0.15 701.7 0.105 694.3
2 SN-P 0.314 780.8 0.254 825.0 0.177 896.8

10 P 0.232 2,517.7 0.223 2,615.3 0.201 2,529.6
10 SN-P 0.422 2,088.0 0.41 2,332.8 0.368 2,710.3

Model 3
α T Method k∗ = 50 ARL k∗ = 250 ARL k∗ = 500 ARL

0.05 1 P 0.357 464.6 0.195 529.4 0.073 581.1
1 SN-P 0.299 447.9 0.137 526.0 0.074 528.9
2 P 0.485 756.8 0.374 909.6 0.236 1,052.8
2 SN-P 0.322 751.6 0.251 913.7 0.166 987.0

10 P 0.629 1,934.6 0.607 2,421.4 0.52 2,741.9
10 SN-P 0.435 2,027.2 0.408 2,488.3 0.376 2,747.7

0.1 1 P 0.461 440.8 0.305 518.4 0.17 524.9
1 SN-P 0.373 421.9 0.265 488.7 0.171 521.0
2 P 0.61 755.7 0.486 868.2 0.357 1,010.0
2 SN-P 0.476 725.1 0.39 857.1 0.272 935.5

10 P 0.76 1,719.8 0.721 2,134.8 0.661 2,553.9
10 SN-P 0.607 1,844.4 0.574 2,109.9 0.511 2,508.6
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Table 8. Performance of the CUSMS and SN-CUSMS for the temperatures of two railway
bearings with d = 2 and m = 350, using a closed-end monitoring scheme with T =
7.228571, and an open-end monitoring scheme with T =∞.

Closed-end monitoring scheme Open-end monitoring scheme
CUSMS

α Change-point declared (Decision boundary c) Change-point declared
0.05 439 (2.337) 446
0.1 428 (2.091) 433

SN-CUSMS
α Change-point declared (Decision boundary c) Change-point declared
0.05 1,029 (122.1) 1,038
0.1 993 ( 89.5) 1,008

overall monitoring data set using an offline change-point estimation. We apply

the PELT algorithm for detecting multiple change-points proposed by Killick,

Fearnhead and Eckley (2012) to the data set. The estimation results show that

the first possible change-point is at time 908, which corresponds to September

29, 2016.

Figure 1 depicts the temperatures of two railway bearings from August 12,

2016 to January 7, 2017, and the CUSMS and SN-CUSMS results under the

open-end scheme. The observations on the left-hand side of the thin solid line

are training data of size m = 350. The dotted and dashed lines represent the

time points at which the SN-CUSMS declares changes at α = 0.05 and α = 0.1,

respectively. The dotdashed and longdashed lines represent the time points at

which the CUSMS declare a change at α = 0.05 and α = 0.1, respectively. The

thick solid line represents the first possible change-point estimated by the PELT

algorithm using the whole monitoring data set. Figure 1 suggests that the SN-

CUSMS successfully detects a change in the bearing temperature. On the other

hand, the change-point detected by the CUSMS appears to occur before the

estimated change-point and, thus, could be a false alarm. This is in line with the

findings in Section 4.2 that the CUSMS tends to suffer from large size distortions,

and rejects the null hypothesis more frequently than the nominal level.

5. Conclusion

We have proposed a self-normalization (SN)-based sequential change-point

detection method for detecting changes in parameter values in time series models.

The monitoring scheme is shown to have an asymptotically zero Type-II error

for any prescribed level of Type-I error. By incorporating the self-normalization
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Figure 1. Plots of temperatures of the bearings AxlePos 1 and AxlePos 7 from August
2016 to January 2017. The observations on the left-hand side of the thin solid line are
the training data. The thick solid line is the estimated first change-point by the PELT
algorithm using the whole monitoring data set. The dotted and dashed lines represent
the time points at which the open-end SN-CUSMS declares a change at α = 0.05 and
α = 0.1, respectively. The dotdashed and longdashed lines represent the time points at
which the open-end CUSMS declares a change at α = 0.05 and α = 0.1, respectively.

method, we bypass the estimation of the long-run variance and the arbitrary

choices of the bandwidth for the kernel estimators, the effect of which do not

appear in the limit distribution. Simulation and empirical studies show that the

proposed method substantially improves the large size distortions that occur in

traditional methods, while maintaining a reasonable power.

The proposed sequential monitoring procedure is closely related to the theory

of sequential tests with power one, which is a problem of determining a stopping

rule τ , such that P (τ < ∞|H0) ≤ α and P (τ < ∞|H1) = 1, for a given sig-

nificance level α. Under this framework, the false alarm rate of the monitoring

scheme is controlled. Hence, the scheme performs best in applications in which

1) the costs associated with false alarms are higher than those associated with

detection delays; or 2) the system requires a significant cost to reset after a false

alarm. As argued in Chu, Stinchcombe and White (1996); Berkes et al. (2004),

this framework is particularly useful in the sequential analysis of economic and

financial data, in which the sampling is costless under the null hypothesis of no

change-point and no action is required if the observed processes is “in control”;

that is, there is no change in the parameters of the data-generating mechanisms.
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See Berkes et al. (2004) for additional financial applications in measuring port-

folio risk and pricing options. In addition, in some engineering applications, the

punctuality of the service and the cost of maintenance are crucial to the oper-

ation of a company, and both are adversely affected by false alarms. Frequent

false alarms also result in wasted resources, owing to manual checking, repairing,

and replacement. Hence, a controlled Type-I error of the monitoring scheme is

important.

In practice, practitioners have to specify the training sample size m and

monitoring horizon ratio T . In a simple location model, m can be as small

as 100 for a good empirical size, as demonstrated in the simulation results in

Table 3. On the other hand, a large m of at least 500 is usually required for

complicated models, such as stochastic volatility models, which involve latent

processes, in order to achieve accurate parameter estimates and good empirical

sizes; see Table 6. From the simulation studies in Section 4.3, for a simple

location model, m ≥ 500 generally yields good power when the signal-to-noise

ratio ∆/σ is around one; see Table 4 under ∆ = 2. In practice, it is difficult

to determine which m achieves a power close to one because this depends on

the unknown break size ∆ and the location of the change-point k∗. One way to

address this issue is to choose a small T , such as T ∈ [1, 10), and then update the

parameter estimates in (2.1) and (2.2) using the available data after monitoring

mT observations when no change occurs. Consequently, a sufficiently large m

can be accumulated in the case of no changes, and the possible change-point

will be closer to the new starting point, and thus easier to detect. Another way

to address this issue is to conduct extensive simulations using various assumed

or estimated models, projected monitoring horizons mT , projected break sizes

∆, and locations of the change-point k∗, and then identify an appropriate m

satisfying the needs of the practitioner.

For the choice of T , if the practitioners have a plan in advance that exactly

n0 incoming data are going to be observed and monitored, then T should be

equal to n0/m. If the practitioners do not have the exact number of n0, but

have a possible range n0 ∈ [na, nb], then using a larger T , such as T = nb/m,

to determine the decision boundary c will give a more conservative monitoring

scheme, which leads to a smaller empirical size than when using T = na/m. This

is because the decision boundary c is increasing with T under the same (α, d).

Hence, using the decision boundary c for T = ∞ will always give conservative

results, and is only appropriate when practitioners have little information about

n0 and suspect there is a very long monitoring horizon. From the simulation
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results in Section 4, in general, T ∈ [1, 10] gives good empirical sizes, reasonable

power, and reasonable ARLs.

Supplementary Material

The online Supplementary Material contains figures for the time series plots

of the realizations of the models in Section 4, and the proofs for the main results

in the paper.
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