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Abstract: Retrospective sampling designs, including case-cohort and case-control

designs, are commonly used for failure time data in the presence of censoring. In

this paper, we propose a new retrospective sampling design, called end-point sam-

pling, which improves the efficiency of the case-cohort and case-control designs. The

regression analysis is conducted using the Cox model. Under different assumptions,

the maximum likelihood approach with computational aid from the EM algorithm,

and the inverse probability weighting approach are developed respectively to esti-

mate the regression parameters. The resulting estimators are shown to be consis-

tent and asymptotically normal. Simulation and a real data study show favorable

evidence for the proposed design in comparison with existing ones.
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1. Introduction

In many cohort studies, the failure or censoring times of all subjects, as well

as the covariates for the cases, are observed in the first stage. In the second stage,

one needs to determine the subjects to choose or sample for covariate ascertain-

ment, which can be rather costly. Case-cohort, case-control, nested case-control

designs or, more generally, the generalized case-cohort designs are common types

of two-phase designs with censored data. Compared with prospective sampling

designs, such retrospective sampling designs can save cost and time, and are

particularly useful for studies of rare diseases. In a case-cohort design, all cases

and a certain number of subcohort are sampled for covariate ascertainment; in a

case-control design, all cases and a certain number of controls are sampled; and

in a nested case-control design all cases and a fixed size of controls from each risk

set at failure times are sampled. More general designs and analysis may be seen

in Chen (2001), Nan (2004), Lu and Tsiatis (2006), Kang and Cai (2009), Kong

and Cai (2009), Liu et al. (2010), Zeng and Lin (2014), and Yao (2015), among

many others.

The problem is what type of design one should choose in order to maxi-

mize the information about the dependence of failure times on covariates at a
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given size of sample with covariate ascertainment. In view of the importance

of retrospective sampling, it is interesting to explore two-phase cohort designs

for more efficient sampling for covariate ascertainment. We say design A can be

viewed as more efficient than design B if the two designs have the same size of

samples with covariate ascertainment, and the data based on design A contain

more information about the dependence of the failure time on covariates, which

can be characterized by the regression parameters. In this paper, we propose an

end-point sampling design that aims at such efficiency and is demonstrated to be

more efficient than the existing designs. The new design takes cases and controls

with large censoring times for covariate ascertainment. In other words, among

the censored individuals, we sample those with larger censoring times by higher

probabilities. The motivation for it is that when censoring times are independent

of the covariates and failure times, the larger censoring times tend to contain the

most information about the regression parameters. In a cohort, the observed

(censored) failure times are in distribution smaller than the actual failure times

because of the nature of right censoring, so additional subjects with potentially

large failure times should provide more additional information than those with

small failure times. Moreover, failure times censored by large censoring times

also tend to take values in smaller range than those censored by small censoring

times.

The idea of the end-point sampling closely resembles that of efficient designs

of covariates/inputs in simple linear regression, in which the variance of the least

squares estimate of the slope is inversely proportional to the sample variance

of the covariates. As a result, for a given sample size, a design would be more

efficient if the covariates of the samples more spread out. The idea of the end-

point sampling is precisely the same: design the sampling scheme so that the

failure times, observed or unobserved, with covariate ascertainment spread out

as much as possible.

The regression analysis is conducted under the Cox proportional hazards

model (Cox (1972)). Let T be the failure time of interest and Z a p-dimensional

covariate. The Cox model assumes that the conditional hazard of T given Z

satisfies

λT |Z(t|Z) = λ(t) exp(β⊤Z), (1.1)

where λ(t) is the baseline hazard function and β is the p-dimensional regression

parameter of interest. Under (1.1), the partial likelihood for nested case-control

and the pseudolikelihood for case-cohort designs are among the classical meth-

ods; see Thomas (1977) and Prentice (1986). Their estimates and inferences

are straightforward, but they are not semiparametrically efficient. Various at-

tempts have been made to improve the efficiency of the estimation methods; see,

for example, Chen and Lo (1999), Nan (2004) and Chen (2004), among others.
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More recently, Zeng and Lin (2014) and Yao (2015) proposed likelihood-based

procedures under linear transformation models which include the Cox model as

a special case. The resulting estimators are shown to be semiparametrically effi-

cient. In this paper, under the assumption that censoring time is independent of

all other variables, we develop a likelihood-based inference under the proposed

sampling design, leading to semiparametrically efficient estimation. For the more

conventional assumption that censoring time is conditionally independent of fail-

ure time given covariates, an inverse probability weighting approach is proposed

to do estimation.

Case-control and case-cohort sampling do not aim at efficient sampling, but

aim at reducing bias and produce relatively easy estimation methods, such as

partial likelihood (Thomas (1977)) and pseudo-likelihood (Prentice (1986)). We

caution that the efficiency of the proposed sampling design is different from the

efficient utilization of samples for given data arising from a sampling design,

to obtain better estimation; see, for example, Chen and Lo (1999), Kulich and

Lin (2004), Breslow et al. (2009), Chen and Zucker (2009), Kim, Cai and Lu

(2013), etc. Empirically, we find that, using the same estimation method, the

proposed end-point sampling design is more efficient than case-cohort or case-

control sampling with comparable number of controls.

The remainder of the paper is organized as follows. Section 2 presents the

description of the proposed end-point sampling under independent censoring as-

sumption. A nonparametric maximum likelihood approach is developed for es-

timation and justification of the asymptotic properties is provided. To over-

come possible computational difficulties, we use a semiparametric expectation-

maximization (EM) algorithm to obtain the maximum likelihood estimator

(MLE). The MLE for the regression parameter is shown to be consistent, asymp-

totically normal, and it reaches the semiparametric efficiency bound. In Section

3, a slightly different end-point design is given under the conditionally indepen-

dent censoring assumption, and an inverse probability weighting approach for

estimation with related large sample properties is provided. Simulation stud-

ies and a data example are presented in Section 4 and 5, respectively. Some

discussion is given in Section 6.

2. End-point Sampling Design with Maximum Likelihood Estimation

2.1. The proposed design and likelihood construction

Let C be the right censoring time. In this section, we assume that C is

independent of (T, Z). Denote the observed event time by Y = min{T,C} and

the censoring indicator by δ = I{T � C}, where I{·} is the indicator function.

The full cohort will be n independent and identically distributed (i.i.d.) copies of

(Y, δ, Z), denoted by (Yi, δi, Zi), i = 1, . . . , n. In a case-cohort sampling design,
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the covariates of all the failures, the n1 =
∑n

i=1 δi individuals with δi = 1, and a

simple random sample from the full cohort, known as the subcohort, are observed.

In a case-control sampling design, we observe the covariates of all n1 failures and

a simple random sample of size n2 from all the controls, the n − n1 individuals

with δi = 0. For the ith individual, let ∆i be the sampling indicator variable

with 1 for covariates being observed and 0 otherwise. Then for the scenario of

case-control sampling design,
∑n

i=1∆i = n1 + n2. In both sampling designs, the

observed data is (Yi, δi, Zi) for ∆i = 1 and (Yi, δi) for ∆i = 0, i = 1, . . . , n. An

important feature of the designs is that the distribution of (∆1, . . . ,∆n) depends

only on (Yi, δi), i = 1, . . . , n.

In the proposed end-point sampling design, we still collect the covariates

information for all the failures. However, here the n2 controls are drawn according

to the values of the responses Y , say the individuals with largest n2 censoring

times are selected as the controls, and the corresponding covariates information

of these controls are collected. Under the proposed design, the distribution of

(∆1, . . . ,∆n) still depends only on (Yi, δi), i = 1, . . . , n. The observed data is

represented by the same notation as that used for case-cohort and case-control

sampling.

Let f and F be the density and distribution of Z, respectively, and Λ(t) =∫ t
0 λ(u)du. By using arguments similar to those in Yao (2015), the log-likelihood

of the observed data is

l(β,Λ, F )

=

n∑
i=1

∆i

[
δi{log λ(Yi) + β⊤Zi} − Λ(Yi) exp(β

⊤Zi) + log f(Zi)
]

+

n∑
i=1

(1−∆i) log

[∫

Z

{
λ(Yi) exp(β

⊤z)
}δi

exp
{
−Λ(Yi) exp(β

⊤z)
}
f(z)dz

]

+
n∑

i=1

log
[
λC(Yi)

1−δi exp{−ΛC(Yi)}
]

+ log f∆(∆1, . . . ,∆n|(Yj , δj), 1 � j � n), (2.1)

where λc and ΛC are the hazard and cumulative hazard of C, Z is the support of

Z and f∆ is the joint probability mass for ∆1, . . . ,∆n. The observed likelihood

takes the same form for case-cohort, case-control and the proposed end-point

sampling design. The kernel part of the likelihood is the summation of the first

two terms on the right-hand-side of (2.1), denoted by lk(β,Λ, F ).

Here the maximum of lk does not exist since Λ and f are infinite dimensional

parameters. Thus, we restrict Λ to be a step function with jumps only at the

Yi’s, and F to be a discrete distribution with mass only on observed Zi’s. Define
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O = {i : ∆i = 1} and O = {i : ∆i = 0}. Let λi be the jump size of Λ at

Yi, i = 1, . . . , n, and pi be the probability mass at Zi for i ∈ O. Let ϑ =

(β, λ1, . . . , λn, pi, i ∈ O). Then we have

lk(ϑ) =
∑
i∈O

[
δi{log λi + β⊤Zi} −

∑
Yj�Yi

λj exp(β
⊤Zi) + log pi

]

+
∑

i∈O

log

[∑
j∈O

pj

{
λi exp(β

⊤Zj)
}δi

exp
{
−

∑
Yl�Yi

λl exp(β
⊤Zj)

}]
.

We maximize lk(ϑ) with respect to ϑ subject to λi � 0, i = 1, . . . , n, pi � 0, i ∈ O
and

∑
i∈O pi = 1. Denote the maximizer by ϑ̂M = (β̂M, λ̂1, . . . , λ̂n, p̂i, i ∈ O).

Write Λ̂M(t) =
∑

Yi�t λ̂i and F̂M(z) =
∑

Zi�z,i∈O p̂i. The MLE of β, Λ and F are

β̂M, Λ̂M and F̂M, respectively.

2.2. Algorithm

Maximization of lk(ϑ) can be difficult because the dimension of ϑ increases

as the sample size increases. Since one can view Zi with ∆i = 0 as missing data,

it is quite natural to adopt an EM algorithm to calculate the MLE. Let zi be the

observed value of Zi, i ∈ O. Then the logarithm of the complete data likelihood

is proportional to

lC(ϑ) =
∑
i∈O

{
δi(log λi + β⊤Zi)−

∑
Yj�Yi

λj exp(β
⊤Zi) + log pi

}

+
∑

i∈O

∑
j∈O

I{Zi = zj}
[{

−
∑

Yk�Yi

λk exp(β
⊤zj)

}
+ log pj

]
.

Our algorithm is similar to that devised in Zeng and Lin (2014).

1. E-step: Let ϑ(0) be the starting value for ϑ. The conditional expectation of

lC(ϑ) at ϑ = ϑ(0) given the observations is

∑
i∈O

{
δi

(
log λi + β⊤Zi

)
−

∑
Yj�Yi

λj exp(β
⊤Zi) + log pi

}

+
∑

i∈O

∑
j∈O

wij(ϑ
(0))

[{
−

∑
Yk�Yi

λk exp(β
⊤zj)

}
+ log pj

]
,

where

wij(ϑ) = Eϑ (I{Zi = zj}|Yi, δi = 0) =
exp

{
−
∑

Yk�Yi
λk exp(β

⊤zj)
}
pj

∑
l∈O exp

{
−
∑

Yk�Yi
λk exp(β⊤zl)

}
pl
.

418



4 YUAN YAO, WEN YU AND KANI CHEN

the covariates of all the failures, the n1 =
∑n

i=1 δi individuals with δi = 1, and a

simple random sample from the full cohort, known as the subcohort, are observed.

In a case-control sampling design, we observe the covariates of all n1 failures and

a simple random sample of size n2 from all the controls, the n − n1 individuals

with δi = 0. For the ith individual, let ∆i be the sampling indicator variable

with 1 for covariates being observed and 0 otherwise. Then for the scenario of

case-control sampling design,
∑n

i=1∆i = n1 + n2. In both sampling designs, the

observed data is (Yi, δi, Zi) for ∆i = 1 and (Yi, δi) for ∆i = 0, i = 1, . . . , n. An

important feature of the designs is that the distribution of (∆1, . . . ,∆n) depends

only on (Yi, δi), i = 1, . . . , n.

In the proposed end-point sampling design, we still collect the covariates

information for all the failures. However, here the n2 controls are drawn according

to the values of the responses Y , say the individuals with largest n2 censoring

times are selected as the controls, and the corresponding covariates information

of these controls are collected. Under the proposed design, the distribution of

(∆1, . . . ,∆n) still depends only on (Yi, δi), i = 1, . . . , n. The observed data is

represented by the same notation as that used for case-cohort and case-control

sampling.

Let f and F be the density and distribution of Z, respectively, and Λ(t) =∫ t
0 λ(u)du. By using arguments similar to those in Yao (2015), the log-likelihood

of the observed data is

l(β,Λ, F )

=

n∑
i=1

∆i

[
δi{log λ(Yi) + β⊤Zi} − Λ(Yi) exp(β

⊤Zi) + log f(Zi)
]

+

n∑
i=1

(1−∆i) log

[∫

Z

{
λ(Yi) exp(β

⊤z)
}δi

exp
{
−Λ(Yi) exp(β

⊤z)
}
f(z)dz

]

+
n∑

i=1

log
[
λC(Yi)

1−δi exp{−ΛC(Yi)}
]

+ log f∆(∆1, . . . ,∆n|(Yj , δj), 1 � j � n), (2.1)

where λc and ΛC are the hazard and cumulative hazard of C, Z is the support of

Z and f∆ is the joint probability mass for ∆1, . . . ,∆n. The observed likelihood

takes the same form for case-cohort, case-control and the proposed end-point

sampling design. The kernel part of the likelihood is the summation of the first

two terms on the right-hand-side of (2.1), denoted by lk(β,Λ, F ).

Here the maximum of lk does not exist since Λ and f are infinite dimensional

parameters. Thus, we restrict Λ to be a step function with jumps only at the

Yi’s, and F to be a discrete distribution with mass only on observed Zi’s. Define

END-POINT SAMPLING 5

O = {i : ∆i = 1} and O = {i : ∆i = 0}. Let λi be the jump size of Λ at

Yi, i = 1, . . . , n, and pi be the probability mass at Zi for i ∈ O. Let ϑ =

(β, λ1, . . . , λn, pi, i ∈ O). Then we have

lk(ϑ) =
∑
i∈O

[
δi{log λi + β⊤Zi} −

∑
Yj�Yi

λj exp(β
⊤Zi) + log pi

]

+
∑

i∈O

log

[∑
j∈O

pj

{
λi exp(β

⊤Zj)
}δi

exp
{
−

∑
Yl�Yi

λl exp(β
⊤Zj)

}]
.

We maximize lk(ϑ) with respect to ϑ subject to λi � 0, i = 1, . . . , n, pi � 0, i ∈ O
and

∑
i∈O pi = 1. Denote the maximizer by ϑ̂M = (β̂M, λ̂1, . . . , λ̂n, p̂i, i ∈ O).

Write Λ̂M(t) =
∑

Yi�t λ̂i and F̂M(z) =
∑

Zi�z,i∈O p̂i. The MLE of β, Λ and F are

β̂M, Λ̂M and F̂M, respectively.

2.2. Algorithm

Maximization of lk(ϑ) can be difficult because the dimension of ϑ increases

as the sample size increases. Since one can view Zi with ∆i = 0 as missing data,

it is quite natural to adopt an EM algorithm to calculate the MLE. Let zi be the

observed value of Zi, i ∈ O. Then the logarithm of the complete data likelihood

is proportional to

lC(ϑ) =
∑
i∈O

{
δi(log λi + β⊤Zi)−

∑
Yj�Yi

λj exp(β
⊤Zi) + log pi

}

+
∑

i∈O

∑
j∈O

I{Zi = zj}
[{

−
∑

Yk�Yi

λk exp(β
⊤zj)

}
+ log pj

]
.

Our algorithm is similar to that devised in Zeng and Lin (2014).

1. E-step: Let ϑ(0) be the starting value for ϑ. The conditional expectation of

lC(ϑ) at ϑ = ϑ(0) given the observations is

∑
i∈O

{
δi

(
log λi + β⊤Zi

)
−

∑
Yj�Yi

λj exp(β
⊤Zi) + log pi

}

+
∑

i∈O

∑
j∈O

wij(ϑ
(0))

[{
−

∑
Yk�Yi

λk exp(β
⊤zj)

}
+ log pj

]
,

where

wij(ϑ) = Eϑ (I{Zi = zj}|Yi, δi = 0) =
exp

{
−
∑

Yk�Yi
λk exp(β

⊤zj)
}
pj

∑
l∈O exp

{
−
∑

Yk�Yi
λk exp(β⊤zl)

}
pl
.

419



6 YUAN YAO, WEN YU AND KANI CHEN

2. M-step: We update pi’s by maximizing
∑

i∈O log pi+
∑

i∈O
∑

j∈O wij(ϑ
(0)) log pj

with respect to pi’s, subject to
∑

i∈O pi = 1. This gives the explicit solution

p
(1)
i =

1 +
∑

j∈O wji(ϑ
(0))

n1 + n2 +
∑

i∈O
∑

j∈O wji(ϑ(0))
.

The values of β and λi’s are updated by maximizing

∑
i∈O

{
δi

(
log λi + β⊤Zi

)
−

∑
Yj�Yi

λj exp(β
⊤Zi)

}

+
∑

i∈O

∑
j∈O

wij(ϑ
(0))

{
−

∑
Yk�Yi

λk exp(β
⊤zj)

}
(2.2)

with respect to λi’s and β. For fixed β, the λi’s can be profiled out by setting

λi =
δi∑

j∈O
I{Yj � Yi} exp(β⊤Zj) +

∑
j∈O

I{Yj � Yi}
∑
k∈O

wjk(ϑ(0)) exp(β⊤zk)
.

(2.3)

Plugging this into (2.2) results in maximizing

n∑
i=1

δi

[
β⊤Zi − log

{∑
j∈O

I{Yj � Yi} exp(β⊤Zj)

+
∑

j∈O

I{Yj � Yi}
∑
k∈O

wjk(ϑ
(0)) exp(β⊤zk)

}]

with respect to β. The objective function can be viewed as a weighted log-partial

likelihood and is concave in β. Thus the maximization is easy to implement.

Denote the maximizer by β(1). Replacing β in (2.3) by β(1) we obtain λ
(1)
i . The

updated value of whole parameter is given by ϑ(1) = (β(1), λ
(1)
1 , . . . , λ

(1)
n , p

(1)
i , i ∈

O).

The E-step is repeated using ϑ(1), and the iteration continues until conver-

gence. The resulting parameter values are treated as the MLE.

2.3. Large sample properties

The MLE has the expected large sample properties, under suitable regularity

conditions, of consistency and asymptotic normality. Let β0, Λ0, and F0 be the

true value of β, Λ and F , respectively, ∥ · ∥ the Euclidean norm, τ the duration

of the cohort study. Assume that Z is a bounded set.

Theorem 1. Under Conditions 1−3 in the Appendix, ∥β̂M − β0∥ → 0, supt∈[0,τ ]
|Λ̂M(t)− Λ0(t)| → 0 and supz∈Z |F̂M(z)− F0(z)| → 0 with probability one.
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Let sets of functions be Q1 = {l ∈ BV [0, τ ] : |l| ≤ 1} and Q2 = {l ∈ BV [Z] :

|l| � 1}, where BV [D] is the set of functions on D with bounded total variation.

Theorem 2. Under Conditions 1-4 in the Appendix,
√
n(β̂M−β0, Λ̂M−Λ0, F̂M−

F0) converges weakly to a zero-mean Gaussian process in Rp× l∞(Q1)× l∞(Q2).

Moreover, the limiting covariance of
√
n(β̂M − β0) attains the semiparametric

efficiency bound.

The regularity conditions and proofs of the two theorems are given in the Ap-

pendix. The limiting variances and covariances of the estimator can be estimated

by inverting the observed information matrix derived from the log likelihood. Al-

ternatively, one can use the bootstrap method to get variance estimates.

Remark 1. Assume the true value of the baseline cumulative hazard, Λ0, is

known. If one could observe the full cohort and fit the Cox model using maximum

likelihood, the score function of β for the i-th individual, evaluated at the true

value, takes the form Si(β0) = δiZi − Zi exp(β
⊤
0 Zi)Λ0(Yi). As to the observed

likelihood (2.1), the score function of β, evaluated at the true value, is

∂l(β,Λ, F )

∂β

���
β=β0

=

n∑
i=1

{∆iSi(β0) + (1−∆i)E (Si(β0)|Yi, δi)} .

Then the score function for the i-th individual is given by SR
i (β0) = ∆iSi(β0) +

(1−∆i)E (Si(β0)|Yi, δi). A careful calculation yields that

E
{
SR
i (β0)

⊗2
}
= E

{
Si(β0)

⊗2
}

−E

(
I{∆i = 0}Λ2

0(Yi)E

[{
Zi exp(β

⊤
0 Zi)

}⊗2
|Yi, δi = 0

])
,

where, for a column vector a, a⊗2 = aa⊤. If β0 = 0, then Zi is independent of

(Yi, δi), and E[{Zi exp(β
⊤
0 Zi)}⊗2|Yi, δi = 0] = E(Z⊗2

i ). Consequently,

E
{
SR
i (β0)

⊗2
}
= E

{
Si(β0)

⊗2
}
− E

(
Z⊗2
i

)
E
{
I{∆i = 0}Λ2

0(Yi)
}
. (2.4)

Intuitively, to increase the information of i-th individual, one should decrease

the second term on the right-hand-side of (2.4). Since Λ0 is a non-decreasing

function. one should set ∆i = 0 (not sampled) when Yi is smaller.

Remark 2. The proposed end-point sampling design can be viewed as a special

case of stratified case-cohort design. In most existing literature studying stratified

case-cohort design, a stratum is decided by certain observed covariates, while in

this design a stratum is decided by the observed failure time. More generally, this

design can also be viewed as a special case of the class of generalized case-cohort

design discussed in Chen (2001).
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2. M-step: We update pi’s by maximizing
∑
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∑

i∈O
∑

j∈O wij(ϑ
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∑
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p
(1)
i =
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∑

j∈O wji(ϑ
(0))

n1 + n2 +
∑

i∈O
∑

j∈O wji(ϑ(0))
.
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∑
i∈O

{
δi

(
log λi + β⊤Zi

)
−

∑
Yj�Yi

λj exp(β
⊤Zi)

}

+
∑

i∈O

∑
j∈O

wij(ϑ
(0))

{
−

∑
Yk�Yi

λk exp(β
⊤zj)

}
(2.2)
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δi∑

j∈O
I{Yj � Yi} exp(β⊤Zj) +

∑
j∈O

I{Yj � Yi}
∑
k∈O

wjk(ϑ(0)) exp(β⊤zk)
.

(2.3)
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j∈O

I{Yj � Yi} exp(β⊤Zj)

+
∑

j∈O

I{Yj � Yi}
∑
k∈O

wjk(ϑ
(0)) exp(β⊤zk)

}]
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(1)
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(1)
1 , . . . , λ

(1)
n , p

(1)
i , i ∈

O).

The E-step is repeated using ϑ(1), and the iteration continues until conver-

gence. The resulting parameter values are treated as the MLE.

2.3. Large sample properties

The MLE has the expected large sample properties, under suitable regularity

conditions, of consistency and asymptotic normality. Let β0, Λ0, and F0 be the

true value of β, Λ and F , respectively, ∥ · ∥ the Euclidean norm, τ the duration

of the cohort study. Assume that Z is a bounded set.

Theorem 1. Under Conditions 1−3 in the Appendix, ∥β̂M − β0∥ → 0, supt∈[0,τ ]
|Λ̂M(t)− Λ0(t)| → 0 and supz∈Z |F̂M(z)− F0(z)| → 0 with probability one.

END-POINT SAMPLING 7

Let sets of functions be Q1 = {l ∈ BV [0, τ ] : |l| ≤ 1} and Q2 = {l ∈ BV [Z] :

|l| � 1}, where BV [D] is the set of functions on D with bounded total variation.

Theorem 2. Under Conditions 1-4 in the Appendix,
√
n(β̂M−β0, Λ̂M−Λ0, F̂M−

F0) converges weakly to a zero-mean Gaussian process in Rp× l∞(Q1)× l∞(Q2).

Moreover, the limiting covariance of
√
n(β̂M − β0) attains the semiparametric

efficiency bound.

The regularity conditions and proofs of the two theorems are given in the Ap-

pendix. The limiting variances and covariances of the estimator can be estimated

by inverting the observed information matrix derived from the log likelihood. Al-

ternatively, one can use the bootstrap method to get variance estimates.

Remark 1. Assume the true value of the baseline cumulative hazard, Λ0, is

known. If one could observe the full cohort and fit the Cox model using maximum

likelihood, the score function of β for the i-th individual, evaluated at the true

value, takes the form Si(β0) = δiZi − Zi exp(β
⊤
0 Zi)Λ0(Yi). As to the observed

likelihood (2.1), the score function of β, evaluated at the true value, is

∂l(β,Λ, F )

∂β

���
β=β0

=

n∑
i=1

{∆iSi(β0) + (1−∆i)E (Si(β0)|Yi, δi)} .

Then the score function for the i-th individual is given by SR
i (β0) = ∆iSi(β0) +

(1−∆i)E (Si(β0)|Yi, δi). A careful calculation yields that

E
{
SR
i (β0)

⊗2
}
= E

{
Si(β0)

⊗2
}

−E

(
I{∆i = 0}Λ2

0(Yi)E

[{
Zi exp(β

⊤
0 Zi)

}⊗2
|Yi, δi = 0

])
,

where, for a column vector a, a⊗2 = aa⊤. If β0 = 0, then Zi is independent of

(Yi, δi), and E[{Zi exp(β
⊤
0 Zi)}⊗2|Yi, δi = 0] = E(Z⊗2

i ). Consequently,

E
{
SR
i (β0)

⊗2
}
= E

{
Si(β0)

⊗2
}
− E

(
Z⊗2
i

)
E
{
I{∆i = 0}Λ2

0(Yi)
}
. (2.4)
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function. one should set ∆i = 0 (not sampled) when Yi is smaller.
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3. End-point Sampling Design with Inverse Probability Weighting

3.1. The proposed design and estimation approach

In survival analysis, a more conventional and realistic assumption is that C

is conditionally independent of T given Z. When this is the case, we propose a

slightly different end-point sampling design and develop an inverse probability

weighting approach for estimating the regression parameters in (1.1). In this

design, the controls for covariate ascertainment are sampled independently with

a positive selection probability that is an increasing function of the observed

time. Specifically, for subject i, let πi = P(∆i = 1|(Yj , δj), j = 1, . . . , n). Here

we set πi = δi + (1 − δi)p(Yi), where p(y) ∈ (0, 1) is a predetermined function

increasing in y, and take the ∆i’s to be independent of each other.

Under this sampling with probabilities design, the inverse probability weight-

ing approach is used to obtain the estimating equation for estimating β; cf., Chen

and Lo (1999), Lu and Tsiatis (2006), Kong and Cai (2009), etc. For our case,

the inverse probability weighted estimating equation is

SIPW(β) =
n∑

i=1

δi

{
Zi −

∑n
j=1(∆j/πj)Zj exp(β

⊤Zj)I{Yj � Yi}∑n
j=1(∆j/πj) exp(β⊤Zj)I{Yj � Yi}

}
= 0.

Denote the solution of the above estimation equation by β̂I, treated as the inverse

probability weighted estimator of β. It is easy to see that β̂I can be obtained by

maximizing

n∑
i=1

δi

[
β⊤Zi − log

{ n∑
j=1

∆j

πj
exp

(
β⊤Zj

)
I{Yj � Yi}

}]

with respect to β. This objective function is concave in β, so the maximization

is easy to implement by standard software packages.

3.2. Large sample properties

It is expected that under suitable regularity conditions, the inverse probabil-

ity weighted estimator β̂I is asymptotically normally distributed. To give specific

results, we need some notation. Let µ(t)=E[Z exp(β⊤
0 Z)I{Y � t}]/E[exp(β⊤

0 Z)

I{Y � t}], N(t)=δI{Y � t} and π = δ + (1− δ)p(Y ). Take

Σ1 = E

[∫ ∞

0
{Z − µ(t)}⊗2 dN(t)

]
,

Σ2 = E

(
1− π

π

[∫ Y

0
exp(β⊤

0 Z) {Z − µ(t)}λ0(t)dt

]⊗2
)
,

where λ0 is the true value of λ.
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Theorem 3. Under Conditions 1−4 in the Appendix,
√
n(β̂I − β0) converges

weakly to a zero-mean normal vector with variance-covariance matrix Σ−1
1 (Σ1 +

Σ2)Σ
−1
1 .

The proof is given in the Appendix. We estimate Σ1 by

Σ̂1 =
1

n

n∑
i=1

δi {Zi − µ̂(Yi)}⊗2 ,

where µ̂(t) =
∑n

j=1(∆j/πj)Zj exp(β̂
⊤
I Zj)I{Yj � t}/

∑n
j=1(∆j/πj) exp(β̂

⊤
I Zj)I{Yj �

t}, and estimate Σ2 by

Σ̂2 =
1

n

n∑
i=1

(1− πi)∆i

π2
i

[∫ Yi

0
exp(β̂⊤

I Zi) {Zi − µ̂(t)} dΛ̂I(t)

]⊗2

,

where dΛ̂I(t) =
∑n

j=1 dNj(t)/
∑n

j=1(∆j/πj) exp(β̂
⊤
I Zi)I{Yj � t}, with Ni(t) =

δiI{Yi � t}, i = 1, . . . , n.

Remark 3. When β0 = 0, (Y, δ) is independent of Z. Then Σ2 = E{(1 −
π)π−1[{Z − E(Z)}Λ0(Y )]⊗2}. Since Λ0(y) is increasing in y, to decrease Σ2

requires that (1− π)π−1 to be decreasing so that p(y) be an increasing function

of y. However, since p(y) is increasing, it is possible that (1 − π)/π might be

very large when y → 0. Still, [
∫ Y
0 exp(β⊤

0 Z){Z−µ(t)}λ0(t)dt]
⊗2 is no larger than

O(Y 2), and if we choose p(y) to be a linear or quadratic function, Σ2 is finite.

Remark 4. For the sampling with probabilities design if p(y) is strictly positive,

the inverse probability weighting approach does not require the independence

between censoring time and covariates. However, it is not easy to specify a sam-

pling probability that leads to superior design. The end-point sampling design

proposed in Section 2 can be viewed as a special case of the sampling with prob-

abilities design: the sampling probability is 1 for the cases and the large censored

observations, and 0 for small ones, but the inverse probability weighting method

breaks down because of the existence of zero selection probability.

4. Simulation Studies

In this section, we report on some simulation studies to compare the estima-

tion results under the proposed sampling designs with those under some existing

retrospective designs.

4.1. Maximum likelihood approach

For model (1.1), we chose the dimension of Z to be 2. Two model setups

were considered. In the first setup, Z1 and Z2 were generated from the Binomial
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observations, and 0 for small ones, but the inverse probability weighting method

breaks down because of the existence of zero selection probability.
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In this section, we report on some simulation studies to compare the estima-
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retrospective designs.
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For model (1.1), we chose the dimension of Z to be 2. Two model setups

were considered. In the first setup, Z1 and Z2 were generated from the Binomial
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distribution with success probability 0.5 and uniform distribution on (0, 1), re-

spectively. The two covariates were independent of each other. We set β1 = 1,

β2 = −1 and λ(t) = 0.5. The censoring time was C = min{C̃, τ}, where C̃ was

exponential with mean 0.33 and independent of T , Z1, and Z2, and τ = 0.7. The

resulting censoring percentage was around 87%. In the second setup, the covari-

ates were generated according to the same scheme. We set β1 = −1, β2 = 0.5,

and λ(t) = t. A four-stage censoring scheme was considered: the first one-fourth

of the individuals were censored at t1, the second one-fourth at t2, the third one-

fourth at t3, and the rest at t4, where t1 = 0.1, t2 = 0.5, t3 = 0.9, and t4 = 1.3.

The censoring percentage wa again about 87%.

The full cohort size n was set to be 2,000. We considered three retrospective

sampling designs. The first one was case-cohort, where all the cases were sam-

pled and a subcohort of size 235 was drawn by simple random sampling. With

the censoring percentage at 87%, the subcohort contained about 200 censored

individuals. The second one was case-control, where all the cases and a simple

random sample of size 200 from the censored individuals were sampled. The third

one was the proposed end-point sampling design, where all the cases and the 200

individuals with the largest censoring times from the censored individuals were

sampled. Note that if more than 200 censored individuals are tied at the largest

censoring time, we draw a simple random sample from the censored ones whose

observed censoring times are the largest censoring time.

For the case-cohort design, the pseudolikelihood method proposed by Pren-

tice (1986) and the maximum likelihood approach were applied to get estimators

for β1 and β2. For the case-control design and the proposed design, the maximum

likelihood approach was used. For the pseudolikelihood estimates, the standard

errors were estimated by the plug-in method proposed by Chen and Lo (1999).

To get the MLE, the EM algorithm was adopted. The initial values of β1, β2, and

λi’s were obtained by fitting the Cox model only using the individuals with co-

variates observed. The initial values of the pi’s were set to be equally distributed.

The convergence criterion was set to be 10−2. To implement the optimization

in the M-step, we used the ‘fminsearch’ function in the ‘Optimization toolbox’

of MATLAB, which uses a simplex search method to find optimum. The vari-

ance estimates were obtained by inverting the observed information matrix at

the MLE. We also calculated the maximum partial likelihood estimates based on

the full cohort for comparison.

One thousand replicates were done. For each estimate, we report the average

bias, the empirical standard error, the average of estimated standard error, and

the coverage rate of 95% Wald-type confidence interval. To compare the effi-

ciency of different designs, we used a quantity called efficiency gain per sample

with covariates observed, denoted by EGPS. For each specific estimate, EGPS is

END-POINT SAMPLING 11

Table 1. Summarized simulation results for different retrospective designs
with maximum likelihood estimation.

Setup Method Parameter BIAS SE SEE CP RE

1 Full-cohort β1 −0.002 0.130 0.129 0.944 1.000
β2 0.001 0.198 0.209 0.963 1.000

Case-cohort β1 −0.003 0.216 0.213 0.949 1.481
Prentice β2 −0.021 0.364 0.377 0.957 1.207

Case-cohort β1 −0.055 0.187 0.191 0.953 1.970
MLE β2 0.042 0.293 0.308 0.961 1.866

Case-control β1 −0.052 0.188 0.192 0.957 1.955
MLE β2 0.046 0.312 0.307 0.936 1.645

End-point β1 −0.021 0.154 0.149 0.944 2.940
MLE β2 0.007 0.260 0.256 0.944 2.368

2 Full-cohort β1 0.003 0.143 0.137 0.935 1.000
β2 0.010 0.208 0.217 0.964 1.000

Case-cohort β1 −0.004 0.236 0.225 0.938 1.573
Prentice β2 0.009 0.402 0.399 0.954 1.148

Case-cohort β1 0.067 0.195 0.204 0.932 2.321
MLE β2 −0.028 0.296 0.319 0.948 2.125

Case-control β1 0.073 0.198 0.210 0.950 2.274
MLE β2 −0.024 0.305 0.320 0.954 2.019

End-point β1 0.032 0.169 0.165 0.943 3.117
MLE β2 0.001 0.256 0.267 0.954 2.859

BIAS: average bias of the estimates; SE: empirical standard error of the estimates; SEE: average

of the estimated standard errors; CP: empirical coverage probabilities of Wald-type confidence

intervals with 95% confidence level; RE: relative efficiency defined as the ratio of EGPS’s; Full-

cohort: maximum partial likelihood estimate using full cohort; Case-cohort Prentice: pseudo-

likelihood estimate under case-cohort design; Case-cohort MLE: MLE under case-cohort design;

Case-control MLE: MLE under case-control design; End-point MLE: MLE under the proposed

end-point design.

the ratio between the inverse of its empirical variance (regarded as an efficiency

estimate) and the average sample size used for covariate observation. Then for

each estimate, we calculated a relative efficiency of that estimate to the corre-

sponding maximum partial likelihood estimate, by taking the ratio of the two

EGPS’s. The results are summarized in Table 1.

Under both model setups, all the estimates were essentially unbiased. For

the case-cohort design, the MLE had smaller empirical standard errors than the

pseudolikelihood estimates. The MLE under case-cohort design and case-control

design had almost the same empirical standard errors; as expected, since the two

designs used almost the same amount of covariates ascertainment. The MLE

under the proposed end-point sampling design was obviously less variable than
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distribution with success probability 0.5 and uniform distribution on (0, 1), re-

spectively. The two covariates were independent of each other. We set β1 = 1,

β2 = −1 and λ(t) = 0.5. The censoring time was C = min{C̃, τ}, where C̃ was

exponential with mean 0.33 and independent of T , Z1, and Z2, and τ = 0.7. The

resulting censoring percentage was around 87%. In the second setup, the covari-

ates were generated according to the same scheme. We set β1 = −1, β2 = 0.5,

and λ(t) = t. A four-stage censoring scheme was considered: the first one-fourth

of the individuals were censored at t1, the second one-fourth at t2, the third one-

fourth at t3, and the rest at t4, where t1 = 0.1, t2 = 0.5, t3 = 0.9, and t4 = 1.3.

The censoring percentage wa again about 87%.

The full cohort size n was set to be 2,000. We considered three retrospective

sampling designs. The first one was case-cohort, where all the cases were sam-

pled and a subcohort of size 235 was drawn by simple random sampling. With

the censoring percentage at 87%, the subcohort contained about 200 censored

individuals. The second one was case-control, where all the cases and a simple

random sample of size 200 from the censored individuals were sampled. The third

one was the proposed end-point sampling design, where all the cases and the 200

individuals with the largest censoring times from the censored individuals were

sampled. Note that if more than 200 censored individuals are tied at the largest

censoring time, we draw a simple random sample from the censored ones whose

observed censoring times are the largest censoring time.

For the case-cohort design, the pseudolikelihood method proposed by Pren-

tice (1986) and the maximum likelihood approach were applied to get estimators

for β1 and β2. For the case-control design and the proposed design, the maximum

likelihood approach was used. For the pseudolikelihood estimates, the standard

errors were estimated by the plug-in method proposed by Chen and Lo (1999).

To get the MLE, the EM algorithm was adopted. The initial values of β1, β2, and

λi’s were obtained by fitting the Cox model only using the individuals with co-

variates observed. The initial values of the pi’s were set to be equally distributed.

The convergence criterion was set to be 10−2. To implement the optimization

in the M-step, we used the ‘fminsearch’ function in the ‘Optimization toolbox’

of MATLAB, which uses a simplex search method to find optimum. The vari-

ance estimates were obtained by inverting the observed information matrix at

the MLE. We also calculated the maximum partial likelihood estimates based on

the full cohort for comparison.

One thousand replicates were done. For each estimate, we report the average

bias, the empirical standard error, the average of estimated standard error, and

the coverage rate of 95% Wald-type confidence interval. To compare the effi-

ciency of different designs, we used a quantity called efficiency gain per sample

with covariates observed, denoted by EGPS. For each specific estimate, EGPS is
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Table 1. Summarized simulation results for different retrospective designs
with maximum likelihood estimation.

Setup Method Parameter BIAS SE SEE CP RE

1 Full-cohort β1 −0.002 0.130 0.129 0.944 1.000
β2 0.001 0.198 0.209 0.963 1.000

Case-cohort β1 −0.003 0.216 0.213 0.949 1.481
Prentice β2 −0.021 0.364 0.377 0.957 1.207

Case-cohort β1 −0.055 0.187 0.191 0.953 1.970
MLE β2 0.042 0.293 0.308 0.961 1.866

Case-control β1 −0.052 0.188 0.192 0.957 1.955
MLE β2 0.046 0.312 0.307 0.936 1.645

End-point β1 −0.021 0.154 0.149 0.944 2.940
MLE β2 0.007 0.260 0.256 0.944 2.368

2 Full-cohort β1 0.003 0.143 0.137 0.935 1.000
β2 0.010 0.208 0.217 0.964 1.000

Case-cohort β1 −0.004 0.236 0.225 0.938 1.573
Prentice β2 0.009 0.402 0.399 0.954 1.148

Case-cohort β1 0.067 0.195 0.204 0.932 2.321
MLE β2 −0.028 0.296 0.319 0.948 2.125

Case-control β1 0.073 0.198 0.210 0.950 2.274
MLE β2 −0.024 0.305 0.320 0.954 2.019

End-point β1 0.032 0.169 0.165 0.943 3.117
MLE β2 0.001 0.256 0.267 0.954 2.859

BIAS: average bias of the estimates; SE: empirical standard error of the estimates; SEE: average

of the estimated standard errors; CP: empirical coverage probabilities of Wald-type confidence

intervals with 95% confidence level; RE: relative efficiency defined as the ratio of EGPS’s; Full-

cohort: maximum partial likelihood estimate using full cohort; Case-cohort Prentice: pseudo-

likelihood estimate under case-cohort design; Case-cohort MLE: MLE under case-cohort design;

Case-control MLE: MLE under case-control design; End-point MLE: MLE under the proposed

end-point design.

the ratio between the inverse of its empirical variance (regarded as an efficiency

estimate) and the average sample size used for covariate observation. Then for

each estimate, we calculated a relative efficiency of that estimate to the corre-

sponding maximum partial likelihood estimate, by taking the ratio of the two

EGPS’s. The results are summarized in Table 1.

Under both model setups, all the estimates were essentially unbiased. For

the case-cohort design, the MLE had smaller empirical standard errors than the

pseudolikelihood estimates. The MLE under case-cohort design and case-control

design had almost the same empirical standard errors; as expected, since the two

designs used almost the same amount of covariates ascertainment. The MLE

under the proposed end-point sampling design was obviously less variable than
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that under case-cohort and case-control designs, suggesting that using compara-

ble size of covariates ascertainment, the proposed deign was more efficient than

case-cohort and case-control designs. The MLE under the proposed design had

the highest relative efficiency defined from the EGPS, implying the merit of the

proposed design. All the estimated standard errors were close to the empiri-

cal standard errors, and the coverage probabilities were reasonably close to the

nominal level. The proposed EM algorithm possesses reasonable computational

efficiency. In our simulation, on average, the algorithm took around 9 steps to

converge for the proposed design and, in each iteration, the maximization was

solved efficiently since the objective function is concave.

4.2. Inverse probability weighting approach

Keeping the dimension of Z at 2, we considered two model setups. In

the first, Z1 and Z2 were independently generated as Binomial with success

probability 0.5 and uniform on (0, 1), respectively. β1 = 1, β2 = −1 and

λ(t) = 0.5. Here the covariates-dependent censoring was generated. Specifi-

cally, C = min{C̃, τ} with C̃ exponential with mean 0.6Z2, and τ = 0.7. This

gave about 89% censoring percentage. In the second setup, we kept the same

generating scheme for the two covariates. β1 = −0.5, β2 = 1 and λ(t) = t.

We set C = (1 − Z1) × Uniform(0, Z2) + Z1 × min{Uniform(Z2, 1.1), 1}, where
Uniform(a, b) stands for the uniform distribution from a to b. The censoring rate

was also around 89%.

We set n = 2, 000. For the proposed end-point sampling design, we set

p(y) = y for the first setup, and p(y) = 0.7y2 for the second setup. For the

purpose of comparison, we also considered the equal probability sampling with

p(y) a constant c. This can be treated as case-control sampling. In the first

setup c = 0.225, and in the second c = 0.245. The two values were chosen to

yield a comparable size of covariate ascertainment for the two sampling designs.

When calculating the inverse probability weighted estimates, we used the ‘fmin-

search’ function to find the optimum. Moreover, the maximum partial likelihood

estimates based on the full cohort were obtained. One thousand replicates were

done. For each estimate, we report the average bias, the empirical standard er-

ror, the average of estimated standard error, the coverage rate of 95% Wald-type

confidence interval, and the relative efficiency based on EGPS. The results are

given in Table 2.

We find from the results that all the estimates were essentially unbiased.

The inverse probability weighted estimates under the proposed design were more

efficient than those under the equal selection probability, as revealed by the

standard error and the relative efficiency comparisons. The plug-in variance
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Table 2. Summarized simulation results for different retrospective designs
with the inverse probability weighting approach.

Setup Method Parameter BIAS SE SEE CP RE

1 Full-cohort β1 0.003 0.149 0.150 0.955 1.000
β2 -0.009 0.266 0.283 0.966 1.000

Equal-probability β1 0.007 0.182 0.186 0.958 2.149
IPW β2 -0.024 0.351 0.361 0.956 1.855

End-point β1 0.009 0.166 0.167 0.952 2.604
IPW β2 -0.029 0.313 0.333 0.967 2.335

2 Full-cohort β1 0.006 0.185 0.179 0.943 1.000
β2 0.003 0.279 0.280 0.955 1.000

Equal-probability β1 0.002 0.236 0.222 0.938 1.880
IPW β2 -0.002 0.357 0.348 0.942 1.784

End-point β1 -0.004 0.219 0.206 0.936 2.183
IPW β2 -0.007 0.303 0.303 0.947 2.477

BIAS: average bias of the estimates; SE: empirical standard error of the estimates; SEE: average

of the estimated standard errors; CP: empirical coverage probabilities of Wald-type confidence

intervals with 95% confidence level; RE: relative efficiency defined as the ratio of EGPS’s; Full-

cohort: maximum partial likelihood estimate using full cohort; Equal-probability IPW: inverse

probability weighted estimate under equal probability (case-control) design; End-point IPW:

inverse probability weighted estimate under the proposed end-point design.

estimates were generally close to the empirical ones, and the confidence intervals

had adequate coverage rates.

5. An Example

We applied the proposed sampling design to analyze the data from the South

Welsh nickel refiners study. In this study, men employed in a nickel refinery in

South Wales were investigated to determine the risk of developing carcinoma of

the bronchi and nasal sinuses associated with the nickel refining. The cohort

was identified by using the weekly payrolls of the company, and the full cohort

was followed from 1934 to 1981. The full cohort consists of the complete records

of 679 workers employed before 1925. There were 56 deaths from cancer of the

nasal sinus until 1981. The details of the data can be found in Appendix VIII in

Breslow and Day (1987).

Breslow and Day (1987) used the Cox model to fit the data. The survival time

they considered was the years since first employment to the death from cancer

of the nasal sinus. Three covariates, age at first employment (AFE), year at

first employment (YFE), and exposure level (EXP) were found to be significant

on the survival time. In the original data set reported in Breslow and Day

(1987), all covariates information were collected. However, since the event rate
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that under case-cohort and case-control designs, suggesting that using compara-

ble size of covariates ascertainment, the proposed deign was more efficient than

case-cohort and case-control designs. The MLE under the proposed design had

the highest relative efficiency defined from the EGPS, implying the merit of the

proposed design. All the estimated standard errors were close to the empiri-

cal standard errors, and the coverage probabilities were reasonably close to the

nominal level. The proposed EM algorithm possesses reasonable computational

efficiency. In our simulation, on average, the algorithm took around 9 steps to

converge for the proposed design and, in each iteration, the maximization was

solved efficiently since the objective function is concave.

4.2. Inverse probability weighting approach

Keeping the dimension of Z at 2, we considered two model setups. In

the first, Z1 and Z2 were independently generated as Binomial with success

probability 0.5 and uniform on (0, 1), respectively. β1 = 1, β2 = −1 and

λ(t) = 0.5. Here the covariates-dependent censoring was generated. Specifi-

cally, C = min{C̃, τ} with C̃ exponential with mean 0.6Z2, and τ = 0.7. This

gave about 89% censoring percentage. In the second setup, we kept the same

generating scheme for the two covariates. β1 = −0.5, β2 = 1 and λ(t) = t.

We set C = (1 − Z1) × Uniform(0, Z2) + Z1 × min{Uniform(Z2, 1.1), 1}, where
Uniform(a, b) stands for the uniform distribution from a to b. The censoring rate

was also around 89%.

We set n = 2, 000. For the proposed end-point sampling design, we set

p(y) = y for the first setup, and p(y) = 0.7y2 for the second setup. For the

purpose of comparison, we also considered the equal probability sampling with

p(y) a constant c. This can be treated as case-control sampling. In the first

setup c = 0.225, and in the second c = 0.245. The two values were chosen to

yield a comparable size of covariate ascertainment for the two sampling designs.

When calculating the inverse probability weighted estimates, we used the ‘fmin-

search’ function to find the optimum. Moreover, the maximum partial likelihood

estimates based on the full cohort were obtained. One thousand replicates were

done. For each estimate, we report the average bias, the empirical standard er-

ror, the average of estimated standard error, the coverage rate of 95% Wald-type

confidence interval, and the relative efficiency based on EGPS. The results are

given in Table 2.

We find from the results that all the estimates were essentially unbiased.

The inverse probability weighted estimates under the proposed design were more

efficient than those under the equal selection probability, as revealed by the

standard error and the relative efficiency comparisons. The plug-in variance
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Table 2. Summarized simulation results for different retrospective designs
with the inverse probability weighting approach.

Setup Method Parameter BIAS SE SEE CP RE

1 Full-cohort β1 0.003 0.149 0.150 0.955 1.000
β2 -0.009 0.266 0.283 0.966 1.000

Equal-probability β1 0.007 0.182 0.186 0.958 2.149
IPW β2 -0.024 0.351 0.361 0.956 1.855

End-point β1 0.009 0.166 0.167 0.952 2.604
IPW β2 -0.029 0.313 0.333 0.967 2.335

2 Full-cohort β1 0.006 0.185 0.179 0.943 1.000
β2 0.003 0.279 0.280 0.955 1.000

Equal-probability β1 0.002 0.236 0.222 0.938 1.880
IPW β2 -0.002 0.357 0.348 0.942 1.784

End-point β1 -0.004 0.219 0.206 0.936 2.183
IPW β2 -0.007 0.303 0.303 0.947 2.477

BIAS: average bias of the estimates; SE: empirical standard error of the estimates; SEE: average

of the estimated standard errors; CP: empirical coverage probabilities of Wald-type confidence

intervals with 95% confidence level; RE: relative efficiency defined as the ratio of EGPS’s; Full-

cohort: maximum partial likelihood estimate using full cohort; Equal-probability IPW: inverse

probability weighted estimate under equal probability (case-control) design; End-point IPW:

inverse probability weighted estimate under the proposed end-point design.

estimates were generally close to the empirical ones, and the confidence intervals

had adequate coverage rates.

5. An Example

We applied the proposed sampling design to analyze the data from the South

Welsh nickel refiners study. In this study, men employed in a nickel refinery in

South Wales were investigated to determine the risk of developing carcinoma of

the bronchi and nasal sinuses associated with the nickel refining. The cohort

was identified by using the weekly payrolls of the company, and the full cohort

was followed from 1934 to 1981. The full cohort consists of the complete records

of 679 workers employed before 1925. There were 56 deaths from cancer of the

nasal sinus until 1981. The details of the data can be found in Appendix VIII in

Breslow and Day (1987).

Breslow and Day (1987) used the Cox model to fit the data. The survival time

they considered was the years since first employment to the death from cancer

of the nasal sinus. Three covariates, age at first employment (AFE), year at

first employment (YFE), and exposure level (EXP) were found to be significant

on the survival time. In the original data set reported in Breslow and Day

(1987), all covariates information were collected. However, since the event rate
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is only around 8%, the retrospective sampling designs is preferred. Here we first

tried the case-cohort design and the end-point design with maximum likelihood

estimation. For the end-point sampling design, we considered the 150 covariates

ascertainment size of the censored individuals with the largest censoring times. In

order to make the case-cohort sampling comparable, the subcohort size was set to

165. Then, for the end-point design with inverse probability weighing approach,

we chose p(y) = 1.3 × 10−4y2, yielding a covariate ascertainment proportion

of about 24% (around 150 controls for covariates ascertainment). The so-called

equal-probability sampling was used for comparison, and the selection probability

of the controls was set to 0.24 to obtain a comparable covariate ascertainment

percentage. We took the same covariates transformation as Breslow and Day

(1987): log(AFE−10), (YFE−1915)/10, [(YFE−1915)/10]2, and log(EXP+1)

to fit the Cox model. For the MLE under the retrospective sampling designs,

the EM algorithm was applied to get the MLE’s, and the bootstrap method with

500 bootstrap samples was used to obtain the standard error estimates. For

the inverse probability weighting approach, we did the sampling 500 times and

report the average point estimates, standard error estimates and p-values. We

also report the full cohort results under the Cox model using maximum partial

likelihood. The results are summarized in Table 3.

Based on the full-cohort analysis results, three covariates, log(AFE − 10),

[(YFE − 1915)/10]2 and log(EXP + 1), had significant effect at the 0.05 signifi-

cance level. Using the case-cohort design with subcohort size 165, the maximum

likelihood estimation procedure failed to find the significant effect of [(YFE −
1915)/10]2 at the 0.05 significance level, while the end-point sampling design with

150 controls gave the same inferential results as that of the full-cohort analysis.

In most cases, the estimated standard errors of the MLE under the end-point

design were smaller than their counterparts under the case-cohort design. For

the inverse probability weighting approach, the average estimated standard er-

rors under the end-point sampling were slightly smaller than the counterparts

under the equal-probability sampling. Among the 500 samples, the percentages

of times the end-point sampling found the four covariates were significant at the

0.05 level were 100%, 0.2%, 84.6% and 100%, respectively, while the percentages

under the equal-probability sampling were 100%, 0.2%, 79.8% and 100%. These

findings suggest that the proposed end-point designs is more efficient than the

usual retrospective designs.

6. Concluding Remarks

Retrospective sampling designs, such as case-cohort and case-control designs,

are cost effective for large epidemiological cohort studies when the event time is

END-POINT SAMPLING 15

Table 3. Summarized results for the South Welsh nickel refiners study.

Method Parameter EST SE p-Value

Full-cohort log(AFE− 10) 2.2139 0.4319 < 0.0001∗

(YFE− 1915)/10 0.0761 0.3074 0.8045
[(YFE− 1915)/10]2 -1.3128 0.4942 0.0079∗

log(EXP + 1) 0.7873 0.1752 < 0.0001∗

Case-cohort MLE log(AFE− 10) 1.9318 0.5109 0.0002∗

(YFE− 1915)/10 -0.3672 0.4074 0.3675
[(YFE− 1915)/10]2 -1.1480 0.6665 0.0850

log(EXP + 1) 0.8625 0.2210 0.0001∗

End-point MLE log(AFE− 10) 3.1421 0.5937 < 0.0001∗

(YFE− 1915)/10 0.2523 0.3970 0.5251
[(YFE− 1915)/10]2 -1.4426 0.5975 0.0158∗

log(EXP + 1) 0.7241 0.2025 0.0003∗

Equal-probability IPW log(AFE− 10) 2.3638 0.5743 0.0005
(YFE− 1915)/10 0.0971 0.3923 0.6515

[(YFE− 1915)/10]2 -1.3710 0.5300 0.0404
log(EXP + 1) 0.8113 0.2097 0.0013

End-point IPW log(AFE− 10) 2.3347 0.5653 0.0009
(YFE− 1915)/10 0.0785 0.3778 0.6849

[(YFE− 1915)/10]2 -1.3428 0.5165 0.0330
log(EXP + 1) 0.8078 0.2036 0.0006

EST: estimate of regression parameter; SE: estimate of standard error; p-value: p-value of

the significance test; ∗ significant at 0.05 significance level; Full-cohort: full data; Case-

cohort MLE: MLE under the case-cohort design with subcohort of 165; End-point MLE: MLE

under the end-point design with 150 largest censoring subjects; Equal-probability IPW: inverse

probability weighting under the equal selection probability (case-control) design with p(y) =

0.24 (average for 500 repeated samples); Equal-probability IPW: inverse probability weighting

under the end-point design with p(y) = 1.3× 10−4y2 (average for 500 repeated samples).

the outcome of interest. We propose a novel retrospective sampling design, end-

point sampling, which samples all the event cases and controls with the larger

censoring times. Under the Cox model and the independent censoring assump-

tion, the maximum likelihood estimation is applied to estimate the regression

parameters. We adopt an EM algorithm to obtain the MLE. The MLE is shown

to be asymptotically normal and semiparametrically efficient. For conditionally

independent censoring, we use the inverse probability weighting procedure for

parameter estimation, and the resulting estimator is also asymptotically normal.

Under the same estimation procedure, the proposed sampling design is more ef-

ficient than the ordinary case-cohort and case-control designs with comparable

numbers of controls.
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is only around 8%, the retrospective sampling designs is preferred. Here we first

tried the case-cohort design and the end-point design with maximum likelihood

estimation. For the end-point sampling design, we considered the 150 covariates

ascertainment size of the censored individuals with the largest censoring times. In

order to make the case-cohort sampling comparable, the subcohort size was set to

165. Then, for the end-point design with inverse probability weighing approach,

we chose p(y) = 1.3 × 10−4y2, yielding a covariate ascertainment proportion

of about 24% (around 150 controls for covariates ascertainment). The so-called

equal-probability sampling was used for comparison, and the selection probability

of the controls was set to 0.24 to obtain a comparable covariate ascertainment

percentage. We took the same covariates transformation as Breslow and Day

(1987): log(AFE−10), (YFE−1915)/10, [(YFE−1915)/10]2, and log(EXP+1)

to fit the Cox model. For the MLE under the retrospective sampling designs,

the EM algorithm was applied to get the MLE’s, and the bootstrap method with

500 bootstrap samples was used to obtain the standard error estimates. For

the inverse probability weighting approach, we did the sampling 500 times and

report the average point estimates, standard error estimates and p-values. We

also report the full cohort results under the Cox model using maximum partial

likelihood. The results are summarized in Table 3.

Based on the full-cohort analysis results, three covariates, log(AFE − 10),

[(YFE − 1915)/10]2 and log(EXP + 1), had significant effect at the 0.05 signifi-

cance level. Using the case-cohort design with subcohort size 165, the maximum

likelihood estimation procedure failed to find the significant effect of [(YFE −
1915)/10]2 at the 0.05 significance level, while the end-point sampling design with

150 controls gave the same inferential results as that of the full-cohort analysis.

In most cases, the estimated standard errors of the MLE under the end-point

design were smaller than their counterparts under the case-cohort design. For

the inverse probability weighting approach, the average estimated standard er-

rors under the end-point sampling were slightly smaller than the counterparts

under the equal-probability sampling. Among the 500 samples, the percentages

of times the end-point sampling found the four covariates were significant at the

0.05 level were 100%, 0.2%, 84.6% and 100%, respectively, while the percentages

under the equal-probability sampling were 100%, 0.2%, 79.8% and 100%. These

findings suggest that the proposed end-point designs is more efficient than the

usual retrospective designs.

6. Concluding Remarks

Retrospective sampling designs, such as case-cohort and case-control designs,

are cost effective for large epidemiological cohort studies when the event time is
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Table 3. Summarized results for the South Welsh nickel refiners study.
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(YFE− 1915)/10 0.0761 0.3074 0.8045
[(YFE− 1915)/10]2 -1.3128 0.4942 0.0079∗
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(YFE− 1915)/10 -0.3672 0.4074 0.3675
[(YFE− 1915)/10]2 -1.1480 0.6665 0.0850

log(EXP + 1) 0.8625 0.2210 0.0001∗
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(YFE− 1915)/10 0.2523 0.3970 0.5251
[(YFE− 1915)/10]2 -1.4426 0.5975 0.0158∗

log(EXP + 1) 0.7241 0.2025 0.0003∗

Equal-probability IPW log(AFE− 10) 2.3638 0.5743 0.0005
(YFE− 1915)/10 0.0971 0.3923 0.6515

[(YFE− 1915)/10]2 -1.3710 0.5300 0.0404
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End-point IPW log(AFE− 10) 2.3347 0.5653 0.0009
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EST: estimate of regression parameter; SE: estimate of standard error; p-value: p-value of

the significance test; ∗ significant at 0.05 significance level; Full-cohort: full data; Case-

cohort MLE: MLE under the case-cohort design with subcohort of 165; End-point MLE: MLE

under the end-point design with 150 largest censoring subjects; Equal-probability IPW: inverse

probability weighting under the equal selection probability (case-control) design with p(y) =

0.24 (average for 500 repeated samples); Equal-probability IPW: inverse probability weighting

under the end-point design with p(y) = 1.3× 10−4y2 (average for 500 repeated samples).

the outcome of interest. We propose a novel retrospective sampling design, end-

point sampling, which samples all the event cases and controls with the larger

censoring times. Under the Cox model and the independent censoring assump-

tion, the maximum likelihood estimation is applied to estimate the regression

parameters. We adopt an EM algorithm to obtain the MLE. The MLE is shown

to be asymptotically normal and semiparametrically efficient. For conditionally

independent censoring, we use the inverse probability weighting procedure for

parameter estimation, and the resulting estimator is also asymptotically normal.

Under the same estimation procedure, the proposed sampling design is more ef-

ficient than the ordinary case-cohort and case-control designs with comparable

numbers of controls.
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Data sampled from the proposed end-point sampling design can be easily
analyzed under some other semiparametric survival models, such as linear trans-
formation models and accelerated failure time models. Efficiency gain compared
with case-cohort or case-control design is expected. The idea of the proposed
sampling design is also possible to be extended to other two-phase cohort stud-
ies. These are topics of future research.
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Appendix

Regularity conditions for Theorems 1, 2, and 3 are these.

1. The distribution function F is strictly increasing with derivative f absolutely
continuous and β0 lies in the interior of a known compact set in Rp. The
covariate Z lies in a bounded set Z.

2. The baseline hazard function λ0(t) > 0 for t ∈ [0, τ ]. There exists a positive
constant c such that P (C > τ) > c.

3. (First Identifiability) Let

Ψi(β,Λ, F ) = exp
{
δiβ

⊤Zi − Λ(Yi) exp(β
⊤Zi)

}∆i

×
[∫

Z

{
λ(Yi) exp(β

⊤z)
}δi

exp
{
−Λ(Yi) exp(β

⊤z)
}
f(z)dz

](1−∆i)

.

If Ψi(β
∗,Λ∗, F ∗)λ∗(Yi)

δif∗(Zi)
∆i = Ψi(β0,Λ0, F0)λ0(Yi)

δif0(Zi)
∆i almost

surely, then β∗ = β0, Λ
∗ = Λ0 and F ∗ = F0.

4. (Second Identifiability) If

v⊤lβ(β0,Λ0, F0) + lΛ(β0,Λ0, F0)

{∫
pdΛ0

}
+ lF (β0,Λ0, F0)

{∫
qdF0

}
= 0

almost surely for some v∈Rp, p ∈ BV [0, τ ] and q ∈ BV [Z], then (v, p, q) =
0, where vT lβ , lH [g1] and lF [g2] denote the partial derivatives of l along
directions of v, g1, and g2, respectively.

The proof of Theorems 1 and 2 are similar to that in Yao (2015), which
is based on the argument on maximum likelihood estimators of Van der Vaart
(1998, pp.419-424). We give the rough steps here.
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Proof of Theorem 1. In the first step, the jump size of Λ̂M is shown to be finite

almost surely, otherwise the log-likelihood would diverge to −∞. In the second

step, Λ̂M is bounded almost surely, otherwise if a new estimator Λ̄M = Λ̂M/Λ̂M(τ)

were considered, it would contradict the maximum property of Λ̂M. Then Helly’s

selection theorem guarantees that for any subsequence of Λ̂M, there exists a

further subsequence that converges pointwise to some monotone function Λ∗.

Without loss of generality, assume that F̂M converges to F ∗ and β̂M converges to

β∗ for the same subsequence. In the third step, we show that Λ∗ = Λ0, F
∗ = F0

and β∗ = β0 with probability one. Note that

Λ̂M(t) =
n∑

i=1

∫ t

0
λ̂M(u)dNi(u) = −

n∑
i=1

∫ t

0

dNi(u)
∑n

j=1
ΨjΛ(β̂M,Λ̂M,F̂M)[I{Yj�u}]

Ψj(β̂M,Λ̂M,F̂M)

,

where ΨjΛ[I{· � u}] is the partial derivative of Ψj with respect to Λ along

Λ + ϵ[I{· � u}].
Construct

Λ̃(t) = −
n∑

i=1

∫ t

0

dNi(u)∑n
j=1ΨjΛ(β0, H0, F0)[I{Yj � u}]/Ψj(β0,Λ0, F0)

,

which converges to Λ0(t) almost surely by some careful calculation and repeated

use of the Glivenko-Cantelli Theorem.

By the strictly increasing and smoothness condition of Λ0, one can show that

lim
n→∞

dΛ̂M(t)

dΛ̃(t)
=

λ∗(t)

λ0(t)

uniformly, where λ∗ is the derivative of Λ∗. Similar construction of F̃ and a

similar argument yield

lim
n→∞

dF̂M(z)

dF̃ (z)
=

f∗(z)

f0(z)

uniformly.

Letting n → ∞, the inequality l(β̂M, Λ̂M, F̂M) � l(β0, Λ̃, F̃ ) yields

E

(
log

Ψj(β
∗,Λ∗, F ∗)λ∗(Yj)

δjf∗(Zj)
∆j

Ψj(β0,Λ0, F0)λ0(Yj)δjf0(Zj)∆j

)
� 0.

The left-hand side here is the negative Kullback-Leibler distance, therefore Con-

dition 3 requires that β∗ = β0, Λ
∗ = Λ0 and F ∗ = F0 with probability one.

Further, the continuity of Λ0 and F0 ensures that the convergence is uniform

for Theorem 1.
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Data sampled from the proposed end-point sampling design can be easily
analyzed under some other semiparametric survival models, such as linear trans-
formation models and accelerated failure time models. Efficiency gain compared
with case-cohort or case-control design is expected. The idea of the proposed
sampling design is also possible to be extended to other two-phase cohort stud-
ies. These are topics of future research.
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Proof of Theorem 2. Let

L(β,Λ, F ) = logΨj + δj log λ(Yj) + ∆j log f(Zj),

Φn(β,Λ, F ) = Pn

[
vTLβ + LH

{∫
pdΛ

}
+ LF

{∫
qdF

}]
,

Φ(β,Λ, F ) = P
[
vTLβ + LΛ

{∫
pdΛ

}
+ LF

{∫
qdF

}]
,

where (v, p, q) ∈ Rp × l∞(Q1) × l∞(Q2). We use vTLβ , LΛ{g1}, and LF {g2} to

denote the partial derivatives of L along direction of β+ ϵv, Λ+ ϵg1, and F + ϵg2,

respectively, and let Pn denote the empirical measure based on n observations

and P be its expectation.

By some careful calculation and Donsker’s Theorem, we can show that
√
n(Φn − Φ)(β̂M, Λ̂M, F̂M)−

√
n(Φn − Φ)(β0,Λ0, F0) = op(1)

when n is large enough and further calculation shows

√
n(Pn − P)

[
vTLβ(β0,Λ0, F0)

+LΛ(β0,Λ0, F0)
{∫

pdΛ0

}
+ LF (β0,Λ0, F0)

{∫
qdF0

}]

=
√
n(Pn − P)

[
vTLβ(β̂M, Λ̂M, F̂M) + LΛ(β̂M, Λ̂M, F̂M)

{∫
pdΛ̂M

}

+LF (β̂M, Λ̂M, F̂M)
{∫

qdF̂M

}]
+ op(1)

= −
√
nP

[
vTLβ(β̂M, Λ̂M, F̂M)− vTLβ(β0,Λ0, F0) + LΛ(β̂M, Λ̂M, F̂M)

{∫
pdΛ̂M

}

−LΛ(β0,Λ0, F0)
{∫

pdΛ0

}
+ LF (β̂M, Λ̂M, F̂M)

{∫
qdF̂M

}

−LF (β0,Λ0, F0)
{∫

qdF0

}]
+ op(1). (A.1)

One can show that there exists continuous invertible linear operator (B1, B21, B22)

on the space Rp × l∞(Q1) × l∞(Q2), such that the right side of (A.1) has the

same limit as

= −
√
n

{
B1[v, p, q]

T (β̂M − β0) +

∫
B21[v, p, q]d(Λ̂M − Λ0)

+

∫
B22[v, p, q]d(F̂M − F0)

}

+op

(√
n|β̂M − β0|+

√
n|Λ̂M − Λ0|+

√
n|F̂M − F0|

)
.
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Now with (ṽ, p̃, q̃) = (B1, B21, B22)
−1(v, p, q),

√
n

{
vT (β̂M − β0) +

∫
pd(Λ̂M − Λ0) +

∫
qd(F̂M − F0)

}

= −
√
n(Pn − P)

[
ṽTLβ(β0,Λ0, F0) + LΛ(β0,Λ0, F0)

{∫
p̃dΛ0

}

+LF (β0,Λ0, F0)
{∫

q̃dF0

}]

+op

(√
n|β̂M − β0|+

√
n|Λ̂M − Λ0|+

√
n|F̂M − F0|

)
+ op(1). (A.2)

Since the first term on the right side of (A.2) is Op(1), one can see that

√
n|β̂M − β0|+

√
n|Λ̂M − Λ0|+

√
n|F̂M − F0| = Op(1).

Thus, the last two terms in the right side of (A.2) are op(1).

Because the right side of (A.2) converges to a normal distribution by the Cen-

tral Limit Theorem, we have proved that
√
n(β̂M−β0, Λ̂M−Λ0, F̂M−F0) converges

weakly to a zero-mean Gaussian process. Thus β̂M is an asymptotically linear

estimator with influence function ṽTLβ(β0,Λ0, F0) + LΛ(β0,Λ0, F0){
∫
p̃dΛ0} +

LF (β0,Λ0, F0){
∫
q̃dF0}, which lies in the linear space spanned by the score func-

tions {ṽTLβ+LΛ{
∫
p̃dΛ}+LF {

∫
q̃dF} : ṽ ∈ Rp, p̃ ∈ Q1, q̃ ∈ Q2}. By proposition

1 in Bickel et al. (1993, p.65), β̂M is semiparametrically efficient.

Proof of Theorem 3. The inverse probability weighted estimating equation

can be written as

SIPW(β) =

n∑
i=1

∫ {
Zi −

∑n
j=1(∆j/πj)Zj exp(β

⊤Zj)I{Yj � t}∑n
j=1(∆j/πj) exp(β⊤Zj)I{Yj � t}

}
dNi(t) = 0.

Let

µn(t) =

∑n
j=1 Zj exp(β

⊤
0 Zj)I{Yj � t}∑n

j=1 exp(β
⊤
0 Zj)I{Yj � t}

, a(t) =
n∑

j=1

Zj exp(β
⊤
0 Zj)I{Yj � t},

b(t) =
n∑

j=1

exp(β⊤
0 Zj)I{Yj � t}, µ̂n(t) =

∑n
j=1(∆j/πj)Zj exp(β

⊤
0 Zj)I{Yj � t}∑n

j=1(∆j/πj) exp(β⊤
0 Zj)I{Yj � t}

,

â(t) =
n∑

j=1

∆j

πj
Zj exp(β

⊤
0 Zj)I{Yj � t}, b̂(t) =

n∑
j=1

∆j

πj
exp(β⊤

0 Zj)I{Yj � t}.

For simplicity, we use a, b, â, b̂ instead of a(t), b(t), â(t), b̂(t) in these calculations.
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q̃dF} : ṽ ∈ Rp, p̃ ∈ Q1, q̃ ∈ Q2}. By proposition

1 in Bickel et al. (1993, p.65), β̂M is semiparametrically efficient.

Proof of Theorem 3. The inverse probability weighted estimating equation

can be written as

SIPW(β) =

n∑
i=1

∫ {
Zi −

∑n
j=1(∆j/πj)Zj exp(β

⊤Zj)I{Yj � t}∑n
j=1(∆j/πj) exp(β⊤Zj)I{Yj � t}

}
dNi(t) = 0.

Let

µn(t) =

∑n
j=1 Zj exp(β

⊤
0 Zj)I{Yj � t}∑n

j=1 exp(β
⊤
0 Zj)I{Yj � t}

, a(t) =
n∑

j=1

Zj exp(β
⊤
0 Zj)I{Yj � t},

b(t) =
n∑

j=1

exp(β⊤
0 Zj)I{Yj � t}, µ̂n(t) =

∑n
j=1(∆j/πj)Zj exp(β

⊤
0 Zj)I{Yj � t}∑n

j=1(∆j/πj) exp(β⊤
0 Zj)I{Yj � t}

,
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Now

SIPW(β0) =

n∑
i=1

∫
{Zi − µn(t)}dNi(t)−

∫
{µ̂n(t)− µn(t)}dNi(t)

=

n∑
i=1

∫
{Zi − µn(t)}dMi(t)−

n∑
i=1

∫ (
â

b̂
− a

b

)
dNi(t)

=
n∑

i=1

∫
{Zi − µ(t)}dMi(t)−

n∑
i=1

∫ {
1

b
(â− a)− a

b2
(b̂− b)

}
dMi(t)

+op(
√
n)

=

n∑
i=1

∫
{Zi − µ(t)}dMi(t)

−
n∑

i=1

(
∆i

πi
− 1

)∫
{Zi − µ(t)} exp(β⊤

0 Zi)I{Yi ≥ t}λ0(t)dt+ op(
√
n)

=

n∑
i=1

ξi +

n∑
i=1

ηi + op(
√
n),

where Mi(t) = Ni(t)−
∫ t
0 I{Yi � u}λ0(u) exp(β

⊤
0 Zi)du, ξi =

∫
{Zi − µ(t)}dMi(t)

and ηi = (∆i/πi − 1)
∫
{Zi − µ(t)} exp(β⊤

0 Zi)I{Yi ≥ t}λ0(t)dt, i = 1, . . . , n.

Now β̂I satisfies the estimating equation SIPW(β̂I) = 0, and it can be shown

that β̂I is a consistent estimator of β0. For any random vector ζ, let V ar(ζ)

denote its variance-covariance matrix. It follows by Taylor expansion, Slutsley’s

Theorem, and Central Limit Theorem that
√
n(β̂I − β0) converges to a normal

distribution with mean zero and variance-covariance matrix

V ar(ξi)
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−1
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where Σ1 and Σ2 are as defined in Section 3.2.
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Now
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∫
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∫
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=
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∫
{Zi − µn(t)}dMi(t)−
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â

b̂
− a

b

)
dNi(t)

=
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i=1

∫
{Zi − µ(t)}dMi(t)−

n∑
i=1

∫ {
1

b
(â− a)− a

b2
(b̂− b)

}
dMi(t)

+op(
√
n)

=

n∑
i=1

∫
{Zi − µ(t)}dMi(t)
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n∑

i=1

(
∆i

πi
− 1
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{Zi − µ(t)} exp(β⊤

0 Zi)I{Yi ≥ t}λ0(t)dt+ op(
√
n)

=

n∑
i=1

ξi +

n∑
i=1

ηi + op(
√
n),
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⊤
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{Zi − µ(t)}dMi(t)
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0 Zi)I{Yi ≥ t}λ0(t)dt, i = 1, . . . , n.
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√
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