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Abstract: Nonparametric varying coefficient models are useful for studying the

time-dependent effects of variables. Many procedures have been developed for esti-

mation and variable selection in such models. However, existing work has focused

on the case when the number of variables is fixed or smaller than the sample size. In

this paper, we consider the problem of variable selection and estimation in varying

coefficient models in sparse, high-dimensional settings when the number of vari-

ables can be larger than the sample size. We apply the group Lasso and basis

function expansion to simultaneously select the important variables and estimate

the nonzero varying coefficient functions. Under appropriate conditions, we show

that the group Lasso selects a model of the right order of dimensionality, selects

all variables with the norms of the corresponding coefficient functions greater than

certain threshold level, and is estimation consistent. However, the group Lasso is

in general not selection consistent and tends to select variables that are not impor-

tant in the model. In order to improve the selection results, we apply the adaptive

group Lasso. We show that, under suitable conditions, the adaptive group Lasso

has the oracle selection property in the sense that it correctly selects important

variables with probability converging to one. In contrast, the group Lasso does not

possess such oracle property. Both approaches are evaluated using simulation and

demonstrated on a data example.

Key words and phrases: Basis expansion, group Lasso, high-dimensional data, non-

parametric coefficient function, selection consistency, sparsity

1. Introduction

Consider a linear varying coefficient model with pn variables

yi(tij) =
p∑

k=1

xik(tij)βk(tij) + εi(tij), i = 1, . . . , n, j = 1, . . . , ni, (1.1)

where yi(t) is the response variable for the ith subject at time point t ∈ T ,
T is the time interval on which the measurements are taken, εi(t) is the error
term, xik(t) is the covariate variable with time-varying effects, βk(t) is the corre-
sponding smooth coefficient function. Such a model is useful in investigating the
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time-dependent effects of covariates on responses measured repeatedly. One well
known example is longitudinal data analysis (Hoover et al. (1998)) where the re-
sponse for the ith experimental subject in the study is observed on ni occasions,
and the observations at times tij : j = 1, . . . , ni are correlated. Another impor-
tant example is the functional response model (Rice (2004)), where the response
yi(t) is a smooth real function, although only yi(tij), j = 1, . . . , ni are observed
in practice. In both examples, the response yi(t) is a random process and the co-
variate xi(t) = (xi1(t), . . . , xip(t))

′
is a p-dimensional vector of random processes.

In this paper, we investigate the selection of the important covariates and the
estimation of their relative coefficient functions in high-dimensional settings, in
the particular case p À n, under the assumption that the number of important
covariates is “small” relative to the sample size. We propose penalized methods
for variable selection and estimation in (1.1) based on basis expansion of the
coefficient functions, and show that under appropriate conditions, the proposed
methods can select the important variables with high probability and estimate
the coefficient functions efficiently.

Many methods have been developed for variable selection and estimation in
varying coefficient models (1.1). See, for example, Fan and Zhang (2000) and
Wu and Chiang (2000), for the local polynomial smoothing method; Wang and
Xia (2008) for the local polynomial method with Lasso penalty; Huang, Wu, and
Zhou (2004) and Qu and Li (2006) for basis expansion and the spline method;
Chiang, Rice, and Wu (2001) for the smoothing spline method; Wang, Li, and
Huang (2008) for basis function approximation with SCAD penalty (Fan and
Li (2001); Fan and Lv (2010)). In addition to these methods, much progress
has been made in understanding such properties of the resulting estimators as
selection consistency, convergence, and asymptotic distribution. However, in all
these studies, the number of variables p is fixed or less than the sample size n.
To the best of our knowledge, there has been no work on the problem of variable
selection and estimation in varying coefficient models in sparse, p À n situations.

There has been much work on the selection and estimation of groups of vari-
ables. For example, Yuan and Lin (2006) proposed the group Lasso, group Lars,
and group nonnegative garrote methods. Kim, Kim, and Kim (2006) considered
the group Lasso in the context of generalized linear models. Zhao, Rocha, and
Yu (2008) proposed a composite absolute penalty for group selection that can
be considered a generalization of the group Lasso. Huang et al. (2007) consid-
ered the group bridge approach which can be used for simultaneous group and
within group variable selection. However, there has been no investigation of these
methods in the context of high-dimensional varying coefficient models.

In this paper, we apply the group Lasso and basis expansion to simulta-
neously select the important variables and estimate the coefficient functions in
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(1.1). With basis expansion, each coefficient function is approximated by a linear
combination of a set of basis functions. Thus the selection of important variables
and estimation of the corresponding coefficient functions amounts to the selec-
tion and estimation of groups of coefficients in the linear expansions. It is natural
to apply the group Lasso, since it takes into account the group structure in the
approximation model. We show that, under appropriate conditions, the group
Lasso selects a model of the right order of dimensionality, selects all variables
with coefficient function `2 norms greater than a certain threshold level, and is
estimation consistent. In order to achieve selection consistency, we apply the
adaptive group Lasso. We show that the adaptive group Lasso can correctly
select important variables with probability converging to one based on an initial
consistent estimator. In particular, we use the group Lasso to obtain the initial
estimator for the adaptive group Lasso. This approach follows the idea of the
adaptive Lasso (Zou (2006)). An important aspect of our results is that p can
be much larger than n.

The rest of the paper is organized as follows. In Section 2, we describe the
procedure for selection and estimation using the group Lasso and the adaptive
group Lasso with basis expansion. In Section 3, we state the results on estimation
consistency of the group Lasso and the selection consistency of the adaptive group
Lasso in high-dimensional settings. Proofs are given in Section 6. In Section
4, simulations and data examples are used to illustrate the proposed methods.
Summary and discussion are given in Section 5.

2. Basis Expansion and Penalized Estimation

Suppose that the coefficient function βk can be approximated by a linear
combination of basis functions,

gk(t) =
dk∑
l=1

γklBkl(t), t ∈ T, k = 1, . . . , p, (2.1)

where Bkl(t), t ∈ T , l = 1, . . . , dk, are basis functions and dk is the number of
basis functions, which is allowed to increase with the sample size n.

Let Gk denote all functions that have the form
∑dk

l=1 γklBkl(t) for a given
basis system {Bkl, l = 1, . . . , dk}. For gk ∈ Gk, define the approximation error
by

ρk(t) = βk(t) − gk(t) = βk(t) −
dk∑
l=1

γklBkl(t), t ∈ T, k = 1, . . . , p.

Let dist(βk, Gk) = infgk∈Gk
supt∈T |ρk(t)| be the L∞ distance between βk and

Gk, and take ρ = max1≤k≤p dist(βk, Gk).



1518 FENGRONG WEI, JIAN HUANG AND HONGZHE LI

By the definition of ρk and (2.1), model (1.1) can be written as

yi(tij) =
p∑

k=1

dk∑
l=1

xik(tij)γklBkl(tij) +
p∑

k=1

xik(tij)ρk(tij) + εi(tij), (2.2)

for i = 1, . . . , n and j = 1, . . . , ni. In low-dimensional settings, we can minimize
the least squares criterion

1
2

n∑
i=1

ni∑
j=1

{yi(tij) −
p∑

k=1

dk∑
l=1

γklxik(tij)Bkl(tij)}2 (2.3)

with respect to γkl’s. The least squares estimator of βk is β̂k(t) =
∑dk

l=1 γ̂klBkl(t), t ∈
T , where γ̂kl’s are the minimizer of (2.3).

When the number of variables p or
∑p

k=1 dk is larger than the sample size
n, however the least squares method is not applicable since there is no unique
solution to (2.3). In such case, regularized methods are needed. We apply the
group Lasso (Yuan and Lin (2006)),

arg min
γ

1
2

n∑
i=1

ni∑
j=1

(yi(tij) −
p∑

k=1

dk∑
l=1

xik(tij)γklBkl(tij))2 +
p∑

k=1

λ‖γk‖k, (2.4)

where λ is the penalty parameter, γk = (γk1, . . . , γkdk
)
′

is a dk-dimensional co-
efficient vector corresponding to the kth variable, and ‖γk‖2

k = γ
′
kRkγk. Here

Rk = (rij)dk×dk
is the kernel matrix whose (i, j)th element is

rij =
∫

T
Bki(t)Bkj(t)dt, for i = 1, . . . , dk, j = 1, . . . , dk, k = 1, . . . , p, (2.5)

it is a symmetric positive definite matrix by Lemma A.1 in Huang, Wu, and Zhou
(2004).

To express the criterion function (2.4), let

Y = (y1(t11), . . . , y1(t1n1), . . . , yn(tn1), . . . , yn(tnnn))
′
, X = (X1, . . . , Xp)

with Xk = (x1k(t11), . . . , x1k(t1n1), . . . , xnk(tn1), . . . , xnk(tnnn))
′
and define

B(t) =

B11(t) B12(t) . . . B1d1(t) 0 0 . . . 0
...

...
...

...
...

...
0 0 . . . 0 Bp1(t) Bp2(t) . . . Bpdp(t)

 ,

and γ = (γ
′
1, . . . , γ

′
p)

′
. Set U = (U11, . . . , U1n1 , . . . , Un1, . . . , Unnn)

′
with U

′
ij =

xi(tij)
′
B(tij) for i = 1, . . . , n, j = 1, . . . , ni. Then the group Lasso penalized
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criterion (2.4) can be rewritten as

γ̂ = arg min
γ

1
2
(Y − Uγ)

′
(Y − Uγ) +

p∑
k=1

λ‖γk‖k. (2.6)

The group Lasso estimator is β̂k(t) =
∑dk

l=1 γ̂klBkl(t), k = 1, . . . , p.
Let ω = (ω1, . . . , ωp)

′
be a given vector of weights, where 0 ≤ ωk ≤ ∞, 1 ≤

k ≤ p. Then a weighted group Lasso criterion is

γ̂∗ = arg min
γ

1
2
(Y − Uγ)

′
(Y − Uγ) +

p∑
k=1

λ̃ωk‖γk‖k. (2.7)

The weighted group Lasso estimator β̂∗
k(t) =

∑dk
l=1 γ̂∗

klBkl(t), k = 1, . . . , p, where
γ̂∗ is the minimizer of (2.7). When the weights are dependent on the data through
an initial estimator, such as β̂, then we call the resulting β̂∗

k an adaptive group
Lasso estimator.

3. Theoretical Results

In this section, we describe the asymptotic properties of the group Lasso
and the adaptive group Lasso estimators defined in (2.6) and (2.7) of Section 2
when p can be larger than n, but the number of important covariates is relatively
small.

In (1.1), without loss of generality, suppose that the first qn variables are
important. Let A0 = {qn+1, . . . , pn}. Here we write qn, pn to indicate that q and
p are allowed to diverge with n. Thus all the variables in A0 are not important.
Let |A| denote the cardinality of any set A ⊂ {1, . . . , pn} and dA =

∑
k∈A dk. For

any set A ⊂ {1, . . . , pn}, define

UA = (ukj : j = 1, . . . , dk; k ∈ A) and ΣAA = U
′
A

UA

n
.

Here UA is a n × dA dimensional submatrix of the ‘designed’ matrix U . Take
‖βk‖2 =

[∫
T β2

k(t)
]1/2

dt whenever the integral exists.
We rely on the following conditions.

(C1) There exist constants q∗ > 0, c∗ > 0 and c∗ > 0 where 0 < c∗ ≤ c∗ < ∞
such that

c∗ ≤
‖UAν‖2

2

n‖ν‖2
2

≤ c∗, ∀A with |A| = q∗ and ν ∈ RdA .

(C2) There is a small constant η1 ≥ 0 such that
∑

k∈A0
‖βk‖2 ≤ η1.
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(C3) The random errors εi(t), i = 1, . . . , n are independent and identically dis-
tributed as ε(t), where E[ε(t)] = 0 and E[ε(t)2] ≤ σ2 < ∞ for t ∈ T ;
moreover, the tail probabilities satisfy P (|ε(t)| > x) ≤ K exp(−Cx2) for
t ∈ T , x > 0, and some constants C and K.

(C4) There exists a positive constant M such that |xik(t)| ≤ M for all t ∈ T and
i = 1, . . . , n, k = 1, . . . , pn.

Condition (C1) is the sparse Riesz condition for varying coefficient models, which
controls the range of eigenvalues of the matrix U . This condition was formulated
for the linear regression model in Zhang and Huang (2008). If the covariate
matrix X satisfies (C1), then the matrix U also satisfies (C1) and c∗, c∗ ∼ O(d−1

a ).
See Lemma A.1 in Huang, Wu, and Zhou (2004). Condition (C2) assumes that
the varying coefficients of the unimportant variables are small in the `2 sense,
but do not need to be exactly zero. If η1 = 0, (C2) becomes βk(t) ≡ 0 for all
k ∈ A0. This can be called the narrow-sense sparsity condition (NSC) (Wei and
Huang (2008)). Under the NSC, the problem of variable selection is equivalent
to distinguishing nonzero coefficient functions from zero coefficient functions.
Under (C2), it is no longer sensible to select the set of all nonzero coefficient
functions, the goal is to select the set of important variables with large coefficient
functions. From the standpoint of statistical modeling and interpretation, (C2)
is mathematically weaker and more realistic. Condition (C3) assumes that the
error term is a mean zero stochastic process with uniformly bounded variance
function and has a sub-Gaussian tail behavior. Condition (C4) assumes that
all the covariates are uniformly bounded, which is satisfied in many practical
situations.

3.1. Estimation consistency of group Lasso

For the matrix Rk at (2.5), by the Cholesky decomposition there exists a matrix
Qk such that Rk = dkQ

′
kQk.

Let Qkb be the smallest eigenvalue of matrix Qk, Qb = mink Qkb, da =
maxk dk, db = mink dk, d = da/db, N =

∑n
i=1 ni and mn =

∑pn

k=1 dk. Thus
N is the number of total observations, mn is the number of all approximation
coefficients in the basis expansions. Note that for k = 1, . . . , pn, dk can increase
as n increases to give a more accurate approximation. For example, as in non-
parametric regression, we can choose dk = O(nτ ) for some constant 0 < τ < 1/2.
With c̄ = c∗/c∗, (C1), let

M1 = 2 + 4dc̄, M2 =
2
3

+
4
9
dc̄(7 + 4c̄), (3.1)

and consider the constraint

λ ≥ max{λ0, λn,pn}, (3.2)
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where λ0 = inf{λ : M1qn + 1 ≤ q∗}, inf ∅ = ∞, and
λn,pn = 2σρ

√
8(1 + c0)dad2q∗c̄Nc∗ log mn, c0 ≥ 0. Note that when q∗ is fixed,

λnpn = Op(ρ(N log mn)1/2).
Let Â = {k : ‖β̂k‖2 6= 0, 1 ≤ k ≤ pn} represent the set of indices of the

variables selected by the group Lasso. The cardinality of Â is

q̂ = |Â| = #{k : ‖β̂k‖2 6= 0, 1 ≤ k ≤ pn}. (3.3)

This describes the dimension of the selected model; if q̂ = O(qn), then the size
of the selected model is of the same order as the underlying model. To measure
the important variables missing in the selected model, take

ξ2
2 =

∑
k/∈A0

‖βk‖2
2I{‖β̂k‖2 = 0}. (3.4)

Theorem 1. Assume (C1)−(C4) and that η1 ≤ ρ. Let q̂ and ξ2 be defined as
in (3.3) and (3.4), respectively, for the model selected by the group Lasso from
(2.6). Let M1 and M2 be defined as in (3.1). If the constraint (3.2) is satisfied,
then, with probability converging to 1 and B2

1(λ) = λ2d2
bqn/c∗N ,

(i). q̂ ≤ M1qn,

(ii). ξ2
2 ≤ 2

(
M2ρq

3/2
n

nc∗
+ ρ

√
qn

)2

+ 2
M2B

2
1(λ)

c∗N
.

Part (i) of Theorem 1 shows that the group Lasso selects a model whose
dimension is comparable to the underlying model, regardless of the large number
of unimportant variables. Part (ii) implies that all the variables with coefficient

functions ‖βk‖2
2 ≥ 2

(
M2q

3/2
n ρ/(nc∗) + q

1/2
n ρ

)2
+ 2M2B

2
1/(c∗N) are selected in

the model with high probability.
Let β̃k(t) = E(β̂k(t)) be the mean of β̂k(t) conditional on X. It is useful

to consider the decomposition β̂k(t) − βk(t) = β̂k(t) − β̃k(t) + β̃k(t) − βk(t),
where β̂k(t) − β̃k(t) and β̃k(t) − βk(t) contribute to the variance and bias terms,
respectively. Let ‖β‖2 = (

∑pn

k=1 ‖βk‖2
2)

1/2, where β = β(t) = (β1(t), . . . , βpn(t))
′
.

Theorem 2 (Convergency of group Lasso). Let {c̄, c0, σ, d} be fixed and 1 ≤
qn ≤ n ≤ pn → ∞. Suppose that the conditions in Theorem 1 hold. Then, with
probability converging to one,

‖β̃ − β‖2 ≤
(M2qn

nc∗
+ 1

)√
qnρ + ρ,

‖β̂ − β̃‖2 ≤
2σ(M1 log mnqn)1/2

Qb

√
daNc∗

+
λ(dbM1qn)1/2

QbNc∗
.
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Consequently, with probability converging to one,

‖β̂ − β‖2 ≡

[
pn∑

k=1

(‖β̂k − βk‖2
2)

]1/2

≤ 2σ
√

M1qn log mn

Qb

√
daNc∗

+
λ
√

dbM1qn

QbNc∗
+ (

M2qn

nc∗
+ 1)

√
qnρ + ρ.

This theorem gives the rate of convergence of β(t) as determined by four
terms: the stochastic error and bias due to penalization (the first and second
terms, ‖β̂ − β̃‖2), the basis approximation error (the third and fourth terms,
‖β̃ − β‖2). Under the conditions of Theorem 1 and Theorem 2, the group Lasso
is estimation consistent in model selection.

Immediately from Theorem 2, we have the following corollary.

Corollary 1. Let λ = Op(ρ(N log mn)1/2). Suppose the conditions in Theorem 2
hold. Then Theorem 1 holds and, with probability converging to one, ‖β̃ − β‖2 =
Op((q

3/2
n da/n + q

1/2
n + 1)ρ) and ‖β̂ − β̃‖2 = Op((da + ρd

5/2
a )(qn log mn/N)1/2).

Consequently, with probability converging to one,

‖β̂ − β‖2 = Op

(
(da + ρd5/2

a )

√
qn log mn

N
+ (

q
3/2
n da

n
+ q1/2

n + 1)ρ

)
.

This corollary follows by substituting the given λ value into the expression in
the results of Theorem 2 and using Qb = O(d−1

a ) by Lemma A.1 in Huang, Wu,
and Zhou (2004). Note that β̃k(t) can be interpreted as the best approximation in
the estimation space Gk(t) to βk(t); under appropriate conditions, the bias term
‖β̃(t)−β(t)‖2 is asymptotically negligible to the variance ‖β̂−β̃‖2. For example, a
special extreme case: for k = 1, . . . , pn, if βk(t) is a constant function independent
of t, then (1.1) simplifies to a high-dimensional linear regression problem, ‖β̃ −
β‖2 ≡ 0. Thus by choosing appropriate λ, ‖β̂−β‖2 = Op(

√
qn log pn/n) which is

consistent with the result obtained in Zhang and Huang (2008). If we use B-spline
basis functions to approximate β(t), by Theorem 6.27 in Schumaker (1981), for
k = 1, . . . , pn, if βk(t) has bounded second derivatives and lim supn da/db < ∞,
then ρ = O(d−2

a ), thus ‖β̃ − β‖2 = Op((q
3/2
n da/n + q

1/2
n + 1)d−2

a ).

Corollary 2. Suppose B-spline basis approximation, for k = 1, . . . , pn, with
coefficient functions βk(t) having bounded second derivatives, lim supn da/db <

∞, and the conditions in Corollary 1. Then

‖β̂ − β‖2 = Op

(
da
√

qn log mn√
N

+ (
q
3/2
n da

n
+ q1/2

n + 1)d−2
a

)
.
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For the conditions given in Corollary 2, the number of covariates pn can be
as large as exp(o(N/(d2

aqn))), which can be much larger than n.

4. Selection Consistency of Adaptive Group Lasso

As just shown, the group Lasso has nice selection and estimation properties. It
selects a model that has the same order of dimension as that of the underlying
model. However, there is still room for improvement. To achieve variable selec-
tion accuracy and reduce the estimation bias of the group Lasso, we consider the
adaptive group Lasso given an initial consistent estimator β̄(t). Take weights

ωk =

{
(
√

dk‖β̄k‖2)−1, if‖β̄k‖2 > 0,

∞, if‖β̄k‖2 = 0,
(4.1)

so ωk is proportional to the inverse of the norm of β̄k(t). Here we define 0·∞ = 0.
Thus the variables not included in the initial estimator are not included in the
adaptive group Lasso. Given a zero-consistent initial estimator (Huang, Ma, and
Zhang (2008)), the adaptive group Lasso penalty level λk goes to zero when ‖γk‖2

is large, which satisfies the conditions given in Lv and Fan (2009) for a penalty
function having the oracle selection property.

Consider the following additional conditions.

(C5) The initial estimator β̄(t) is zero-consistent with rate rn if

max
k∈A0

‖β̄k‖2 = op(1), rn max
k∈A0

‖β̄k‖2 = Op(1), rn → ∞

and there exists a constant ξb > 0 such that P (mink∈Ac
0
‖β̄k‖2 > ξbθb) → 1

as n → ∞, where θb = mink∈Ac
0
‖βk‖2.

(C6) If sn = pn − qn is the number of unimportant variables,√
da(log qn)√

Ndbθb

+
λ̃d

3/2
a qn

Nd2
bθ

2
b

+
√

Nd log sn

λ̃rn

+
dad

3/2q2
n

rnθb
→ 0.

(C7) All the eigenvalues of ΣAc
0Ac

0
are bounded away from zero and infinity.

Theorem 3. Suppose that (C3), (C5)−(C7) are satisfied. Under NSC,

P
(
‖β̂∗

k‖2 6= 0, k 6∈ A0 and ‖β̂∗
k‖2 = 0, k ∈ A0

)
→ 1.

Theorem 3 shows that the adaptive group Lasso is selection consistent if an
initial consistent estimator is available. Condition (C5) is critical, and is very
difficult to establish. It assumes that we can consistently differentiate between
important and unimportant variables. For fixed pn and dk, the ordinary least
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squares estimator can be used as the initial estimator. However, when pn > n,
the least squares estimator is no longer feasible. Theorem 1 and Theorem 2 show
that, under certain conditions, the group Lasso estimator is zero-consistent with
rate

rn =

(
(da + ρd5/2

a )(qn log
mn

N
)1/2 + (

q
3/2
n da

n
+ q1/2

n + 1)ρ

)−1

.

Thus if we use the group Lasso estimator as the initial estimator for the adaptive
group Lasso, we have the selection consistent property in Theorem 3. In addi-
tion, we reduce the dimensionality of the problem using this initial estimator.
Condition (C6) restricts the numbers of important variables and basis functions,
the penalty parameter, and the smallest important coefficient function (in the `2

sense). When d and θb are fixed constants and the ni, i = 1, . . . , n are bounded,
(C6) can be simplified to

log
qn

n
+

λ̃qn

n
+

√
n log sn

λ̃rn

+
q2
n

rn
→ 0,

which can be obtained by choosing appropriate λ̃ and initial estimator. Condition
(C7) assumes that the eigenvalues of ΣAc

0Ac
0

are finite and bounded away from
zero; this is reasonable since the number of important variables is small in a
sparse model.

Using the group Lasso result as the initial estimator for the adaptive group
Lasso, we then have the following theorem.

Theorem 4. Suppose the conditions of Theorem 1 hold, and θb > tb for some
constant tb > 0. Let γ̃ = O(Nα) for some 0 < α < 1/2. Then with probability
converging to one,

‖β̂∗ − β‖2 = Op

(
(

qn

daN
)1/2 + (

1
daN

)1/2 + (
q
3/2
n da

n
+ q1/2

n + 1)ρ

)
,

For k = 1, . . . , pn, if all βk(t) are constant functions, qn and the number
of observations ni for the ith subject are fixed, then the result of Theorem 4
is consistent with the well-known result for low-dimensional linear regression
problem, ‖β̂∗ − β‖2 = Op(n−1/2). Moreover, similar to Corollary 2, if B-spline
basis functions are used to approximate the regression coefficient functions, then
we have the following.

Corollary 3. Consider B-spline basis approximation and choose da = O(n1/5).
For k = 1, . . . , pn, the coefficient function βk(t) has a bounded second derivative,
lim supn da/db < ∞, and the conditions in Theorem 4 hold. If qn and ni are
fixed, then with probability converging to one, ‖β̂∗ − β‖2 = Op

(
n−2/5

)
.
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5. Numerical Studies

In this section, we derive a group coordinate descent algorithm to compute the
group Lasso and adaptive group Lasso estimates in varying coefficient models.
For the adaptive group Lasso, we use the group Lasso as the initial estimator.
We compare the results from the group Lasso and the adaptive group Lasso with
the results from the group SCAD (Antoniadis and Fan (2001); Wang, Li, and
Huang (2008)).

5.1. The group coordinate descent algorithm

The group coordinate descent algorithm is a natural extension of standard
coordinate descent, see for example, Fu (1998) and Friedman et al. (2007). Meier,
Van de Geer and Bülmann (2008) also used a group coordinate descent for se-
lecting groups of variables in high-dimensional logistic regression.

Let γ̃k = R
1/2
k γk and Ũk = UkR

−1/2
k for k = 1, . . . , pn, so (2.6) can be

rewritten as

γ̃∗ = arg min
γ̃

1
2
(Y − Ũ γ̃)

′
(Y − Ũ γ̃) +

pn∑
k=1

λ‖γ̃k‖2. (5.1)

The group Lasso estimates γ̂k of (2.6) can then be obtained as γ̂k = R
−1/2
k γ̃∗

k for
k = 1, . . . , pn.

Denote by L(γ̃) the objective function in (5.1). Suppose we have estimates
γ̃l for l 6= j and wish to partially optimize with respect to γ̃j . The gradient at γ̃j

only exists if ‖γ̃j‖2 6= 0, and then

∂L

∂γ̃j
= − 1

N
Ũ

′
j(Y − Ũ γ̃) + λ

γ̃j

‖γ̃j‖2
= − 1

N
Ũ

′
j(Y − Y (−j)) +

1
N

Ũ
′
jŨj + λ

γ̃j

‖γ̃j‖2
,

where Y (−j) =
∑

l 6=j Ũlγ̃l is the fitted value excluding the contribution from Ũj .
With Ũ

′
kŨk/N = Idk×dk

for k = 1, . . . , pn, simple calculus shows that the group
coordinate-wise update has the form

γ̃j = (1 − λ

‖zj‖2
)+zj ,

where zj = N−1Ũ
′
j(Y − Y (−j)) and (x)+ = xI{x≥0}. Then for fixed λ, the above

estimator γ̃∗ can be computed with the following iterative algorithm.

1. Center and standardize Y and Ũ , such that
∑N

i=1 Yi = 0, Ũ
′
jŨj/n = Idj×dj

for
j = 1, . . . , pn.

2. Initialize γ̃(0) = 0 and let m = 0, r = Y .
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3. Calculate zj = N−1Ũ
′
jr + γ̃

(m)
j .

4. Update γ̃
(m+1)
j = (1 − λ/‖zj‖2)+zj , for j = 1, . . . , pn.

5. Update r = r − Ũj(γ̃
(m+1)
j − γ̃

(m)
j ) and m = m + 1.

6. Repeat Steps 3-5 until convergence or a fixed number of maximum iterations
has been reached. The γ̃ at convergence is the group Lasso estimate γ̃∗ of
(5.1).

7. Change γ̃∗ to the original scale corresponding to original Y and Ũ before
centering and standardization, and γ̂k = R

−1/2
k γ̃∗

k .

It can be seen that the idea of the group coordinate descent algorithm is
simple but efficient, every update cycle requires only O(Npn) operations and the
computational burden increases linearly with pn. If the number of iterations is
smaller than pn, the solution is reached with even less computational burden
than the Np2

n operations required to solve a linear regression problem by QR
decomposition.

For the adaptive group Lasso, we can use the same coordinate descent al-
gorithm by simple substitution, as in (2.6) and (5.1). We use the same set of
cubic B-spline basis functions for each βk. That is, d1 = · · · = dpn ≡ d0, and
Bkl = Bk

′
l for k 6= k

′
, 1 ≤ k, k

′ ≤ pn. In our application, we apply the BIC
criterion (Schwarz (1978)) to select (λ, d0) for the group Lasso and (λ̃, d0) for the
adaptive group Lasso. The BIC criterion is

BIC(λ, d0) = log(RSSλ,d0) + log N ·
dfλ,d0

N
,

where RSS is the residual sum of squares, df is the number of selected variables
for a given (λ, d0). We choose d0 from an increasing sequence of ten values,
starting from 5 to 14; for any given value of d0, we choose λ from a sequence of 100
values, starting from λmax to 0.001λmax with λmax = max1≤k≤pn ‖Ũ ′

kY ‖2/
√

d0,
where Ũk is the N × d0 submatrix of the “designed” matrix Ũ corresponding
to the covariate Xk. This λmax is the smallest penalty value that forces all the
estimated coefficients to be zero.

5.2. Monte Carlo simulation

We used simulation to assess the performance of the proposed procedures.
Because our main interest is in the case when pn is large, we focused on the case
pn > n. We consider the model

yi(tij) =
pn∑

k=1

xik(tij)βk(tij) + εi(tij).
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The time points tij for each individual subject are scheduled to be {1, . . . , 30},
each scheduled time point has some probability to be skipped, then the number
of actual observed time points ni for different subject is different. This generating
model is similar to the one in Wang, Li, and Huang (2008).

The first six variables xi1, xi2, xi3, xi4, xi5 and xi6, i = 1, . . . , 100, are the true
relevant variables, and were simulated as follows: xi1(t) was uniform [t/10, 2 +
t/10] at any given time point t; xij(t), j = 2, . . . , 5, conditioned on xi1(t), were
i.i.d. from the normal distribution with mean zero and variance (1+xi1(t))/(2+
xi1(t)); xi6, independent of xij , j = 1, . . . , 5, was normal with mean 3 exp(t/30)
and variance 1. For k = 7, . . . , 500, each xik(t), independent of others, was
multivariate normal distribution with covariance structure cov(xik(t), xik(s)) =
4 exp(−|t − s|). The random error εi(t) was Z(t) + E(t), where Z(t) had the
same distribution as xik, k = 7, . . . , 500, and E(t) were independent measurement
errors from N(0, 22) at each time point t. The coefficient functions were

β1(t) = 15 + 20 sin(
πt

15
), β2(t) = 15 + 20 cos(

πt

15
), β3(t) = 2 − 3 sin(

π(t − 25)
15

),

β4(t) = 2 − 3 cos(
π(t − 25)

15
), β5(t) = 6 − 0.2t2, β6(t) = −4 +

(20 − t)3

2000
,

β7(t) = · · · = β500(t) ≡ 0.

The observation time points tij for each individual were generated from scheduled
time points {1, . . . , 30}, each scheduled time point had a probability of 60% being
skipped, and the actual observation time tij was obtained by adding a random
perturbation from uniform [−0.5, 0.5] to the non-skipped scheduled time.

We consider the cases n = 50, 100, 200 with pn = 500, to see the performance
of our proposed methods as sample size increases. The penalty parameters were
selected using BIC. The results for the group Lasso, the adaptive group Lasso, and
the group SCAD methods are given in Tables 1 and 2 based on 200 replications.
The columns in Table 1 include the average number of variables (NV) selected,
model error (ER), percentage of occasions on which correct variables were in-
cluded in the selected model (%IN), and percentage of occasions on which the
exactly correct variables were selected (%CS), with standard error in parenthe-
ses. Table 2 summarizes the mean square errors for the six important coefficient
functions N−1

∑n
i=1

∑ni
j=1(β̂j(tij)−βj(tij))2, with standard error in parentheses.

Several observations can be obtained from Tables 1 and 2. The model that
was selected by the adaptive group Lasso was similar to the one selected by
the group SCAD, and better than the one selected by the group Lasso in terms
of model error, the percentage of occasions on which the true variables were
selected and the mean square errors for the important coefficient functions. The
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Table 1. Simulation study. NG, number of selected variables; ER, model
error; IN%, percentage of occasions on which the correct variables were in-
cluded in the selected model; CS%, percentage of occasions on which exactly
correct variables were selected, averaged over 200 replications. Enclosed in
parentheses are the corresponding standard errors.

Results for high dimension cases, p = 500

adaptive group Lasso group Lasso group SCAD

NG ER IN% CS% NG ER IN% CS% NG ER IN% CS%

n = 200 6.13 15.18 99 93 6.20 21.07 99 82 6.12 14.29 100 95

(0.38) (3.33) (0.01) (0.26) (0.64) (5.88) (0.01) (0.38) (0.37) (2.37) (0.00) (0.22)

n = 100 6.21 15.20 87 84 6.34 26.81 87 69 6.25 15.37 90 83

(0.72) (3.58) (0.34) (0.36) (1.25) (4.44) (0.34) (0.51) (0.78) (2.52) (0.10) (0.37)

n = 50 7.04 15.98 72 68 10.29 27.09 72 53 6.99 15.74 78 70

(1.43) (3.86) (0.48) (0.52) (5.64) (4.96) (0.48) (0.57) (1.38) (3.12) (0.42) (0.49)

Table 2. Simulation study. Mean square errors for the important coeffi-
cient functions based on 200 replications. Enclosed in parentheses are the
corresponding standard errors.

β1 β2 β3 β4 β5 β6

n = 200
adaptive group Lasso 6.49 4.46 2.28 1.36 1.49 7.72

(2.71) (1.21) (1.10) (0.95) (0.98) (3.58)
group Lasso 16.41 9.72 8.31 4.98 5.14 10.81

(9.09) (4.10) (3.08) (2.39) (3.92) (11.91)
group SCAD 6.46 4.44 2.27 1.34 1.45 7.59

(2.70) (1.20) (1.09) (0.93) (0.94) (3.31)
n = 100

adaptive group Lasso 8.19 7.65 3.97 2.02 2.14 9.10
(3.82) (2.17) (1.44) (1.30) (1.35) (5.27)

group Lasso 29.99 18.04 11.12 8.51 9.69 22.03
(15.95) (5.15) (3.96) (3.85) (5.09) (18.55)

group SCAD 8.20 7.65 3.95 2.01 2.12 9.70
(3.84) (2.17) (1.39) (1.28) (1.30) (6.05)

n = 50
adaptive group Lasso 9.08 8.20 4.49 3.41 3.86 9.72

(3.88) (3.84) (1.76) (1.73) (1.75) (5.56)
group Lasso 34.39 26.05 14.15 12.98 12.64 33.49

(20.25) (17.44) (4.92) (4.80) (6.66) (22.18)
group SCAD 9.05 8.22 4.51 3.38 3.82 9.73

(3.86) (3.91) (1.77) (1.64) (1.72) (5.64)

group Lasso included the correct variables with high probability. For smaller
sample sizes, the performance of both methods was worse. This is expected since
variable selection in models with a small number of observations is more difficult.
To examine the estimated time-varying coefficient functions from the adaptive
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Table 3. Yeast cell cycle study. Identified cooperative pairs of TFs involved
in the cell cycle process.

adaptive group
Lasso

group Lasso

MBP1-SWI6,
MCM1-NDD1,
FKH2-MCM1,

MBP1-SWI6,
MCM1-NDD1,
FKH2-MCM1,

FKH2-NDD1,
SWI4-SWI6,
FHC1-GAT3,

FKH2-NDD1,
SWI4-SWI6,
FHL1-GAT3

NRG1-YAP6,
GAT3-MSN4,
REB1-SKN7,

NRG1-YAP6,
GAT3-MSN4,
REB1-SKN7

ACE2-REB1,
GCN4-SUM1,
FKH1-FKH2,

ACE2-REB1,
GAL4-RGM1,
GCN4-SUM1

CIN5-NRG1,
SMP1-SWI5,
FKH1-NDD1,

FKH1-FKH2,
CIN5-NRG1,
SMP1-SWI5

ACE2-SWI5,
CIN5-YAP6,
STB1-SWI4,

FKH1-NDD1,
ACE2-SWI5,
CIN5-YAP6

ARG81-GCN4,
NDD1-STB1,
NRG1-PHD1.

STB1-SWI4,
ARG81-GCN4,
NDD1-STB1,
DAL81-STP1,
NRG1-PHD1.

No. of pairs 21 23

group Lasso, we plot them along with the true function components in Figure 1.
The estimated coefficient functions are from the adaptive group Lasso method
in one run when n = 200. From the graph, the estimators of the time-varying
coefficient functions βk(t), k = 3, 4, 5, fit the true coefficient functions well, which
is consistent with the mean square errors for the coefficient functions reported in
Table 2.

These simulation results have the adaptive group Lasso with good selection
and estimation performance, even when p is larger than n. They also suggest
that the adaptive group Lasso can better the selection and estimation results of
the group Lasso.

5.3. Identification of yeast cell cycle transcription factors

We apply our procedures to investigate the transcription factors (TFs) in-
volved in the yeast cell cycle, which is helpful for understanding the regulation
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Figure 1. Adaptive group Lasso method. The estimated coefficient functions
(dashed line) and true coefficient (solid line) functions in one run when
n = 200

of yeast cell cycle genes. The cell cycle is an ordered set of events, culminating
in cell growth and division into two daughter cells. Stages of the cell cycle are
commonly divided into G1-S-G2-M. The G1 stage stands for “GAP 1”. The S
stage stands for “Synthesis”; is the stage when DNA replication occurs. The
G2 stage stands for “GAP 2”. The M stage stands for “mitosis”, when nuclear
(chromosomes separate) and cytoplasmic (cytokinesis) division occur. Coordi-
nate expression of genes whose products contribute to stage-specific functions
is a key feature of the cell cycle (Simon et al. (2001), Morgan (1997), Nasmyth
(1996)). Transcription factors (TFs) have been identified that play critical roles
in gene expression regulation. To understand how the cell cycle is regulated and
how cell cycle regulates other biological processes, such as DNA replication and
amino acids biosynthesis, it is useful to identify the cell cycle regulated transcrip-
tion factors.

We apply the group Lasso and the adaptive group Lasso methods to identify
the key transcription factors that play critical roles in the cell cycle regulations
from a set of gene expression measurements which are captured at equally spaced
sampling time points. The data set we use comes from Spellman et al. (1998).
They measured the genome-wide mRNA levels for 6178 yeast ORFs simultane-
ously over approximately two cell cycle periods in a yeast culture synchronized
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by α factor relative to a reference mRNA from an asynchronous yeast culture.
The yeast cells were measured at 7-min intervals for 119 mins, with a total of
18 time points after synchronization. Using a model-based approach, Luan and
Li (2003) identified 297 cell-cycle-regulated genes based on the α factor synchro-
nization experiments. In our study, we consider 240 genes without missing values
out of these 297 cell-cycle-regulated genes. Let yi(tj) denote the log-expression
level for gene i at time point tj during the cell cycle process, for i = 1, . . . , 240
and j = 1, . . . , 18. We then use the chromatin immunoprecipitation (ChIP-chip)
data of Lee et al. (2002) to derive the binding probabilities xik for these 240 cell-
cycle-regulated genes for a total of 96 transcriptional factors with at least one
nonzero binding probability in the 240 genes. We assume the following varying
coefficient model to link the binding probabilities to the gene expression levels

yi(tj) = β0(tj) +
96∑

k=1

βk(tj)xik + εitj ,

where βk(tj) represents the effect of the kth TF on gene expression at time tj
during the cell cycle process. Our goal is to identify the TFs that might be
related to the cell cycle regulated gene expression.

We used BIC to select the tuning parameters in the group Lasso and adaptive
group Lasso. The selected tuning parameters were d0 = 7, λ = 0.89 and λ̃ = 1.07.
The group Lasso identified a total of 67 TFs related to yeast cell-cycle processes,
including 19 of the 21 known and experimentally verified cell-cycle related TFs.
The other two TFs, LEU3 and MET31, were not selected by the group Lasso
method. Using the result from the group Lasso as the initial estimator for the
adaptive group Lasso, adaptive group Lasso identified a total of 54 TFs, includ-
ing the same 19 of the 21 known and experimentally verified cell-cycle related
TFs. In addition, all of the identified TFs showed certain estimated periodic
transcriptional effects on the cell cycle regulated gene expression, for example,
MBP1, SWI4, SWI6, MCM1, FKH1, FKH2, NDD1, SWI5, and ACE2 (Simon et
al. (2001)). The transcriptional effects of these 9 TFs are shown in Figure 2 and
Figure 3 estimated by the group Lasso and the adaptive group Lasso methods,
respectively. MBP1, SWI4, and SWI6 control late G1 genes. MCM1, together
with FKH1 or FKH2, recruits the NDD1 protein in late G2, and thus controls
the transcription of G2/M genes. MCM1 is also involved in the transcription of
some M/G1 genes. SWI5 and ACE2 regulate genes at the end of M and early
G1 (Simon et al. (2001)).

Moreover, the identified key TFs from both the group Lasso and the adaptive
group Lasso include many pairs of cooperative or synergistic pairs of TFs involved
in the yeast cell cycle process reported in the literature (Banerjee and Zhang
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Figure 2. Application to yeast cell cycle gene expression data. The results
are from the group Lasso.

(2003), Tsai, Lu, and Li (2005)). Among the 67 TFs identified by the group
Lasso, 27 of them belong to the cooperative pairs of the TFs identified by Banerjee
and Zhang (2003), including 23 out of 31 significant cooperative TF pairs. For
the 54 TFs identified by the adaptive group Lasso, 25 of them belong to the
cooperative pairs of the TFs, including 21 out of 31 significant cooperative TF
pairs. The results are summarized in Table 2.

For this data set, the binding data are only available for 96 TFs. The sample
size is larger than the number of variables. In order to see the performance of
our proposed method with p > n, we artificially added 200 more variables to this
data set. We randomly chose 200 values from the whole binding data set without
replacement to add those 200 additional variables to each gene. We repeated this
process 100 times. We first looked at the results concerning the 21 known TFs,
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Figure 3. Application to yeast cell cycle gene expression data. The results
are from the adaptive group Lasso.

since this is the only ‘truth’ we know about this data set. The average number
of the 21 known important TFs identified was: the group Lasso 17.0 (standard
deviation 0.12), the adaptive group Lasso 14.2 (standard deviation 0.42). The
group Lasso tended to have a much higher false positive rate. The selected TFs
sets after we artificially added 200 variables had a large intersection with the
ones selected using only the data set itself. This suggests our method works well
with many noisy variables in the model.

Finally, to compare the group Lasso and the adaptive group Lasso with
simple linear regression with lasso penalty, we performed simple linear regression
with binding probability as the predictors and the gene expression at each time
point as the response with lasso penalty. We found only 1 TF significant related
to cell cycle regulation. The result is not surprising, since the effects of the
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TFs on gene expression levels are time-dependent. Overall, our procedures can
effectively identify the important TFs that affect the gene expression over time.

6. Concluding Remarks

In this article, we studied the estimation and selection properties of the
group Lasso and adaptive group Lasso in time varying coefficient models with
high dimensional data. For the group Lasso method, we considered its properties
in terms of the sparsity of the selected model, bias, and the convergence rate of
the estimator, as given in Theorems 1 and 2. An interesting aspect in our study
is that we can allow many small non-zero coefficient functions as long as the sum
of their `2 norm is below a certain level. Our simulation results indicate that the
group Lasso tends to select some non-important variables. An effective remedy
then is to use the adaptive group Lasso. Compared with the group Lasso, the
advantage of the adaptive group Lasso is that it has the oracle selection property.
Moreover, the convergence rate of the adaptive group Lasso estimator is better.
In addition, the computational cost is the same as the group Lasso. The adaptive
group Lasso that uses group Lasso as the initial estimator is an effective way to
analyze varying coefficient problems in sparse, high-dimensional settings.

In this paper, we have focused on the group Lasso and the adaptive group
Lasso in the context of linear varying coefficient models. These methods can be
applied in a similar way to other nonlinear and nonparametric regression models,
but more work is needed.
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Appendix: Proofs

This section provides the proofs of the results in Sections 3 and 4. For simplicity,
we often drop the subscript n from certain quantities, for example, we simply
write p for pn, q for qn. Let ỹ = E(y) = X(t)β(t), γ̃ = minγ=(γAc

0
,0)′ (ỹ−Uγ)

′
(ỹ−

Uγ), then β̃(t) = B(t)γ̃. We write β̂ − β = (β̂ − β̃) + (β̃ − β), and find the rates
of convergence of ‖β̃ − β‖2 and ‖β̂ − β̃‖2.

For any two sequences {an, bn, n = 1, 2, . . .}, we write an ³ bn if there are
constants 0 < c1 < c2 < ∞ such that c1 ≤ an/bn ≤ c2 for all n sufficiently large,
and write an ³p bn if this inequality holds with probability converging to one.
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Lemma A.1. ‖β̃ − β‖2 = Op(ρq3/2/(nc∗) + ρq1/2 + ρ).

Proof of Lemma A.1. By the properties of basis functions and (C2), there ex-
ists g∗(t) = (g∗1(t), . . . , g

∗
q (t), 0, . . . , 0) for g∗k ∈ Gk(t), k = 1, . . . , q such that ‖g∗−

β‖∞ = ρ. Thus ∃ γ∗ = (γ∗
1

′
, . . . , γ∗

p

′
)
′
= (γ∗

Ac
0

′
, γ∗

A0

′
)
′

with γ∗
k = (γ∗

k1, . . . , γ
∗
kdk

)
′

for k /∈ A0 and γ∗
k = (0, . . . , 0)

′
for k ∈ A0, such that g∗(t) = B(t)γ∗.

By the definition of ỹ, γ̃ and Lemma A.3 in Huang, Wu, and Zhou (2004),
we have

γ̃ =
(

(U
′
Ac

0
UAc

0
)−1U

′
Ac

0
ỹ

0

)
=

(
γ̃Ac

0

γ̃A0

)
.

Thus γ̃Ac
0
−γ∗

Ac
0

= (U
′
Ac

0
UAc

0
)−1U

′
Ac

0
ỹ−(U

′
Ac

0
UAc

0
)−1U

′
Ac

0
UAc

0
γ∗

Ac
0

= (U
′
Ac

0
UAc

0
)−1U

′
Ac

0
(ỹ−

UAc
0
γ∗

Ac
0
). By Lemma 1 in Zhang and Huang (2008),

‖γ̃Ac
0
− γ∗

Ac
0
‖2
2 ≤

‖U ′
Ac

0
(ỹ − UAc

0
γ∗
(1))‖

2
2

n2c2
∗(|Ac

0|)
.

By (C4),

|ỹi − UAc
0i

γ∗
Ac

0
| = |x′

iβ(ti) − x
′
iBAc

0
(ti)γ∗

Ac
0
| = |x′

iβ(ti) − x
′
iB(ti)γ∗|

= |x′
i(β(ti) − g∗(ti))| ≤ Mqρ.

It follows that

‖γ̃Ac
0
− γ∗

Ac
0
‖2
2 ≤

1
n2c2

∗(|Ac
0|)

(
q∑

k=1

dk∑
l=1

(
n∑

i=1

xikBkl(ti)(ỹi − UAc
0i

γ∗
Ac

0
))2)

≤ M2q2ρ2

n2c2
∗(|Ac

0|)
(

q∑
k=1

dk∑
l=1

(
n∑

i=1

xikBkl(ti))2) ≤
(M2qρ)2(

∑q
k=1 dk)

n2c2
∗(|Ac

0|)

≤ (M2qρ)2qda

n2c2
∗(|Ac

0|)
.

By Lemma A.1 in Huang, Wu, and Zhou (2004),

‖β̃ − g∗‖2 = ‖Bγ̃ − Bγ∗‖2 ³p
‖γ̃ − γ∗‖2√

da
≤ M2ρq3/2

nc∗(|Ac
0|)

.

Since ‖β̃ − β‖2 = ‖β̃ − g∗ + g∗ − β‖2 ≤ ‖β̃ − g∗‖2 + ‖g∗ − β‖2 and η1 ≤ ρ,

‖β̃ − β‖2 ≤ M2q3/2ρ

nc∗(|Ac
0|)

+
√

qρ + ρ.

This completes the proof of Lemma A.1.
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Proof of Theorem 1. The proof of Theorem 1 is similar to the proof of the rate
consistency of the group Lasso in Wei and Huang (2008). The only difference is in
Step 3 of their proof of Theorem 1, where we need to consider the approximation
error of the regression coefficient functions by basis expansion. Thus we omit the
other details of the proof here.

From (2.6) and the definition of γ̃, we know

γ̂ = arg min
γ̃

(y − Uγ̃)
′
(y − Uγ̃) +

p∑
k=1

λ‖γ̃k‖k. (A.1)

If γ̃∗
k = Qkγ̃k, U∗

k = UkQ
−1
k , then (2.6) can be rewritten as

γ̂∗ = arg min
γ̃∗

(y − U∗γ̃∗)
′
(y − U∗γ̃∗) +

p∑
k=1

λ
√

dk‖γ̃∗
k‖2, (A.2)

and the estimator of (A.1) can be approximated by γ̂k = Q−1
k γ̂∗

k where γ̂∗ is the
estimator of (A.2).

By the definition of γ̃, we have NSC on the regression coefficient γ̃, namely,∑
k∈A0

‖γ̃k‖2 = 0. From Lemma A.3 in Huang, Wu, and Zhou (2004), the matrix
U∗ satisfies (C1). Compared with the sufficient conditions for the group Lasso
problem given in Wei and Huang (2008), the only change is in the error terms in
our (A.2). From (2.2), we have

yi(tij) =
p∑

k=1

dk∑
l=1

xik(tij)γklBkl(tij) +
p∑

k=1

xik(tij)ρk(tij) + εi(tij).

Define

δn(ij) =
p∑

k=1

xik(tij)ρk(tij) + εi(tij) = ρn(ij) + εn(ij),

for i = 1, . . . , n, j = 1, . . . , ni. Let δn = (δn(11), . . . , δn(nnn))
′
, εn = (εn(11), . . .,

εn(nnn))
′
and ρn = (ρn(11), . . . , ρn(nnn))

′
. By (C4), we have ‖ρn‖2 ≤ C1

√
Nρ2

for some constant C1 > 0. Define

xm = max
|A|=m

max
‖bAk

‖2=1,k=1,...,m
|δ′

n

VA

‖VA‖2
| and

x∗
m = max

|A|=m
max

‖bAk
‖2=1,k=1,...,m

|ε′n
VA

‖VA‖2
|,

(A.3)

where VA = U∗
A(U∗

A

′
U∗

A)−1S̄A − (I − PA)U∗γ∗, Ak ∈ A, S̄Ak
= λ

√
dAk

bAk
, and

bAk
is a dAk

-dimensional unit vector. For a sufficiently large constant C2 > 0,
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also define, as Borel sets in Rn×mn × Rn,

Ωm0 = {(U∗, ε) : xm ≤ σρC2

√
(mdb ∨ db) log mn,∀m ≥ m0},

Ω∗
m0

= {(U∗, ε) : x∗
m ≤ σρC2

√
(mdb ∨ db) log mn,∀m ≥ m0},

where m0 ≥ 0. As in the proof of Theorem 1 of Wei and Huang (2008), (U∗, ε)) ∈
Ωq ⇒ |Â| ≤ M1q. By the triangle and Cauchy-Schwarz inequalities,

|δ′
nVA|

‖VA‖2
=

|ε′nVA + ρ
′
nVA|

‖VA‖2
≤ |ε′nVA|

‖VA‖2
+ ‖ρn‖2.

In the proof of Theorem 1 of Wei and Huang (2008), it is shown that P
(
(U∗, εn)

∈ Ω∗
0

)
→ 1. Since |ρ′

nVA|/‖VA‖2 ≤ ‖ρn‖2 ≤ C1

√
Nρ2, we have for all m ≥ 0

and p sufficiently large that ‖ρn‖2 ≤ C1

√
Nρ2 ≤ σρC2

√
(m ∨ 1)db log mn. Then

P ((U∗, εn) ∈ Ωm0) → 1. By the definition of λn,p, and x∗
m we have

(U∗, ε) ∈ Ωm0 ⇒ |u′
ε|2 ≤ (x∗

m)2 ≤ (σ2ρ2C2
2(mdb ∨ db) log mn)

≤
(|A1| ∨ db)λ2

bdb

4daNc∗
, for|A1| ≥ m0 ≥ 0, (A.4)

where u is defined as in the proof of Theorem 1 of Wei and Huang (2008). Since
ε1(t), . . . , εn(t) are iid with Eεi(tij) = 0, by (C3) and the proof of Theorem 1 of
Wei and Huang (2008), we have q̂ ≤ M1q and∑

k/∈A0

‖γ̃k‖2
2I{‖γ̂k‖2 = 0} ≤ M2B

2
1

c∗N
. (A.5)

From Lemma A.1 in Huang, Wu, and Zhou (2004) and (A.5), we have,∑
k/∈A0

dk‖β̃k‖2
2I{‖β̂k‖T = 0} ≤ M2B

2
1

c∗N
. (A.6)

By the definition of ξ2 and the triangle inequality,

ξ2
2 =

∑
k/∈A0

‖βk‖2
2I{‖β̂k‖2 = 0}

≤
∑
k/∈A0

(‖β̃k − βk‖2 + ‖β̃k‖2)2I{‖β̂k‖2 = 0}

≤ 2
∑
k/∈A0

‖β̃k − βk‖2
2I{‖β̂k‖2 = 0} + 2

∑
k/∈A0

‖β̃k‖2
2I{‖β̂k‖2 = 0}.

From Lemma A.1, (A.6) and dk ≥ 1, we have

ξ2
2 ≤ 2

(
M2ρq3/2

nc∗
+ ρ

√
q

)2

+ 2
M2B

2
1

c∗N
.
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This completes the proof of Theorem 1.

Proof of Theorem 2. From the proof of Theorem 1 and Theorem 2 of Wei and
Huang (2008),

‖γ̂ − γ̃‖2 = (
p∑

k=1

‖Q−1
k (γ̂∗

k − γ̃∗
k)‖2

2)
1/2 ≤ 2σ

√
M1 log mnq

Qb

√
Nc∗

+
λdb

√
dM1q

QbNc∗
.

By Lemma A.1 in Huang, Wu, and Zhou (2004), we know that, ‖β̂ − β̃‖2 =
‖γ̂ − γ̃‖k ³ ‖γ̂ − γ̃‖2/

√
da. Then

‖β̂ − β̃‖2 ≤ 2σ
√

M1 log mnq

Qb

√
daNc∗

+
λdb

√
dM1q

Qb

√
daNc∗

.

By Lemma A.1, we know that ‖β̃ −β‖2 ≤ M2ρq3/2/(nc∗(|Ac
0|)) +

√
qρ + ρ. Thus

‖β̂ − β‖2 ≤ ‖β̂ − β̃‖2 + ‖β̃ − β‖2 ≤
2σ

√
M1 log mnq

Qb

√
daNc∗

+
λ
√

dbM1q

QbNc∗
+ (

M2q

nc∗
+ 1)

√
qρ + ρ.

This completes the proof of Theorem 2.

Proof of Theorems 3 and 4. Theorems 3 and 4 can be obtained directly from
Theorems 3 and 4 of Wei and Huang (2008) and Lemma A.1 in Huang, Wu, and
Zhou (2004); we omit the proofs here.
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