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Abstract: A partial correlation-based variable selection method was proposed for

normal linear regression models by Bühlmann, Kalisch and Maathuis (2010) as an

alternative to regularization methods for variable selection. This paper addresses

issues related to (a) whether the method is sensitive to the normality assumption,

and (b) whether the method is valid when the dimension of predictor increases at

an exponential rate in the sample size. To address (a), we study the method for

elliptical linear regression models. Our finding indicates that the original proposal

can lead to inferior performance when the marginal kurtosis of predictor is not close

to that of normal distribution, and simulation results confirm this. To ensure the

superior performance of the partial correlation-based variable selection procedure,

we propose a thresholded partial correlation (TPC) approach to select significant

variables in linear regression models. We establish the selection consistency of the

TPC in the presence of ultrahigh dimensional predictors. Since the TPC procedure

includes the original proposal as a special case, our results address the issue (b)

directly. As a by-product, the sure screening property of the first step of TPC

is obtained. Numerical examples illustrate that the TPC is comparable to the

commonly-used regularization methods for variable selection.

Key words and phrases: Elliptical distribution, model selection consistency, par-

tial correlation, partial faithfulness, sure screening property, ultrahigh dimensional

linear model, variable selection.

1. Introduction

Variable selection via penalized least squares has been extensively studied

during the last two decades. Popular penalized least squares variable selection

procedures include LASSO (Tibshirani (1996)), SCAD (Fan and Li (2001)), adap-

tive LASSO (Zou (2006)), and among others. See Fan and Lv (2010) for a selec-

tive overview on this topic and references therein for more such works.

As an alternative method to penalized least squares for variable selection,

Bühlmann, Kalisch and Maathuis (2010) proposed a variable selection procedure,

named PC-simple algorithm, which ranked the partial correlations (PC) between

the predictors and the response. The authors provided a stepwise algorithm for
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the linear regression models with partial faithfulness - where for each predictor, if

its partial correlation with the response given a certain subset of other predictors

is 0, then the partial correlation given all the other predictors is also 0. The PC-

simple algorithm possesses model selection consistency for such linear models,

thus is comparable to penalized least squares variable selection approaches. With

two schemes for variable selection in high-dimensional linear models, one has

elevated their confidence in the selected predictors when they are chosen by both

techniques.

We study two issues related to the PC-simple algorithm. The first is that

the procedure proposed in Bühlmann, Kalisch and Maathuis (2010) relies on a

normality assumption on the joint distribution of response and predictors, while

partial faithfulness does not require this. The second is that the results estab-

lished in Bühlmann, Kalisch and Maathuis (2010) require that the dimension of

the predictor vector increases at a polynomial rate in the sample size. We study

whether the results are valid with dimensionality increasing at an exponential

rate in the sample size.

In studying the normality assumption, we consider that the response and

the predictors in a linear regression model jointly follow an elliptical distribution

(Fang, Kotz and Ng (1990)). The elliptical distribution family contains a much

broader class of distributions than the normal distribution family, such as mix-

tures of normal distributions, the multivariate t-distribution, the multi-uniform

distribution on unit sphere, and the Pearson Type II distribution, among others.

It has been used as a tool to study the robustness of normality in the literature

of multivariate nonparametric tests (Mottonen, Oja and Tienari (1997); Oja and

Randles (2004); Chen, Wiesel and Hero (2011); Soloveychik and Wiesel (2015);

Wang, Peng and Li (2015)). Elliptical linear regressions have been proposed

in Osiewalski (1991); Osiewalski and Steel (1993); Arellano-Valle, del Pino and

Iglesias (2006); Fan and Lv (2008); Liang and Li (2009); Vidal and Arellano-

Valle (2010), and have received more and more attentions in the recent literature

(Arellano-Valle, del Pino and Iglesias (2006); Fan and Lv (2008); Liang and Li

(2009); Vidal and Arellano-Valle (2010)). The elliptical distribution family has a

variety of applications. For instance, it has been used for modeling finance data

(Mcneil, Frey and Embrechts (2005)) to accommodate tail dependence and the

phenomenon of simultaneous extremes, which are not allowed by the multivariate

normal (Schmidt (2002)).

In exploring the limiting distribution of the sample partial correlation of el-

liptical distribution, which is of its own significance, we find that the PC-simple
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algorithm tends to over-fit(under-fit) the models whose marginal kurtosis is larger

(smaller) than that of the normal. To ensure the superior performance of par-

tial correlation based variable selection procedure for the elliptical distribution

family, we propose a thresholded partial correlation (TPC) approach to select sig-

nificant variables in linear regression models. In the same spirit of the PC-simple

algorithm, the TPC is a stepwise method for variable selection, constructed by

comparing each sample correlation and sample partial correlation with a given

threshold corresponding to a given significant level. The TPC approach relies

on the limiting distribution of the sample partial correlation, and coincides with

the PC-simple algorithm for the normal linear models. This enables us to study

the asymptotic property of the PC-sample algorithm under a broader framework

so as to address the issue of dimensionality increasing at exponential rate in the

sample size.

We systematically study the sampling properties of the TPC, first deriving

a concentration inequality for the partial correlations without model assumption

when the dimensionality of the covariates increases with the sample size at an

exponential rate. This enables us to conduct the TPC for ultrahigh-dimensional

linear models. The theoretical properties of the TPC allow us to broaden the

usage of this variable selection scheme. We develop the sure screening property

of the first-step TPC in the terminology of Fan and Lv (2008). The first step

of the TPC has the same spirit as the marginal screening based on the Pearson

correlation (Fan and Lv (2008)). And, as a by-product, we obtain the sure

screening property of the marginal screening procedure based on the Pearson

correlation under different assumptions from theirs.

This paper is organized as follows. In Section 2, we propose the TPC for

the elliptical linear models, and establish its asymptotic properties. Numerical

studies are conducted in Section 3. A brief conclusion is given in Section 4. The

proofs are in the supplemental materials.

2. Thresholded Partial Correlation (TPC) Approach

2.1. Elliptical linear model and its partial correlation estimation

Consider the linear model

y = xTβ + ϵ, (2.1)

where y is the response variable, x = (x1, · · · , xp)T is the covariate vector, β =

(β1, . . . , βp)
T is the coefficient vector, and ϵ is the random error with E(ϵ) = 0,

var(ϵ) = σ2. Throughout, it is assumed without loss of generality that E(x) = 0
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and E(y) = 0 so that there is no intercept in (2.1). In practice, it is common that

x and y are marginally standardized before performing variable selection. We

suppose that (xT
1 , y1), · · · , (xT

n , yn) are independent and identically distributed

(iid) random samples from an elliptical distribution ECp+1(µ,Σ, ϕ) that has the

characteristic function exp(itTµ)ϕ(tTΣt) for some characteristic generator ϕ(·)
(Fang, Kotz and Ng (1990)).

Bühlmann, Kalisch and Maathuis (2010) proposed a variable selection method,

PC-simple algrithm, based on the parital correlations for (2.1) with normal re-

sponse and predictors. We study the limiting distributions for correlations and

partial correlations under the elliptical assumption. Denote by ρ(y, xj) and

ρ̂(y, xj) the population and the sample correlations between y and xj , respec-

tively. Then, in Theorem 5.1.6 of Muirhead (1982), the asymptotic distribution

of ρ̂(y, xj) is
√
n {ρ̂(y, xj)− ρ(y, xj)} → N

(
0, (1 + κ){1− ρ2(y, xj)}2

)
, (2.2)

where κ = ϕ′′(0)/(ϕ′(0))2−1 with ϕ′(0) and ϕ′′(0) the first and second derivatives

of ϕ at 0. κ is the marginal kurtosis of the elliptical distribution of ECp+1(µ,Σ, ϕ)

and equals 0 for a normal distribution Np+1(µ,Σ).

For an index set S ⊆ {1, 2, · · · , p}, let Sc = {1 ≤ j ≤ p : j ̸∈ S}, |S| be
its cardinality, and xS = {xj : j ∈ S} be a subset of covariates with index set

S. Denote the truly active index set by A = {1 ≤ j ≤ p : βj ̸= 0}, with the

corresponding cardinality d0 = |A|.

Definition 1. (Partial Correlation) The partial correlation between xj and y

given a set of controlling variables xS , denoted by ρ(y, xj |xS), is defined as the

correlation between the residuals rxj ,xS and ry,xS from the linear regression of

xj on xS and that of y on xS , respectively. The corresponding sample partial

correlation between y and xj given xS is denoted by ρ̂(y, xj |xS).

Next, we study the asymptotic distribution of the sample partial correlation

when the sample was drawn from an elliptical distribution, which provides the

foundation of TPC variable selection procedure.

Theorem 1. Suppose that (xT
1 , y1), · · · , (xT

n , yn) are iid random samples from

an elliptical distribution ECp+1(µ,Σ, ϕ) with all finite fourth moments. For any

j = 1, · · · , p, and S ⊆ {j}c with cardinality |S| = o(
√
n), if there exists a positive

constant δ0 less than the smallest eigenvalue of the covariance matrix of xS , then
√
n {ρ̂(y, xj |xS)} − ρ(y, xj |xS)} → N

(
0, (1 + κ){1− ρ2(y, xj |xS)}2

)
. (2.3)
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To our best knowledge, this result is new; and its proof is given in the

supplemental materials. Let ∅ be the empty set, and ρ̂(y, xj |x∅) and ρ(y, xj |x∅)
be ρ̂(y, xj) and ρ(y, xj), respectively. Then (2.3) is also valid for S = ∅ by (2.2).

The limiting distributions of sample correlation and partial correlation given in

(2.2) and (2.3) provides insights into the impact of normality assumption on the

PC-simple algorithm through the marginal kurtosis under ellipticity assumption.

This enables us to modify the PC-simple algorithm by taking into account the

marginal kurtosis to ensure its superior performance.

Since the limiting distribution of ρ̂(y, xj |xS) in (2.3) involves ρ(y, xj |xS) in

the asymptotic variance, we consider the Fisher Z-transformation of ρ̂(y, xj |xS),
whose limiting distribution no longer depends on ρ(y, xj |xS). Specifically, let

Ẑ(y, xj |xS) and Z(y, xj |xS) be the Fisher Z-transformation of ρ̂(y, xj |xS)} and

ρ(y, xj |xS), respectively:

Ẑ(y, xj |xS) =
1

2
log

{
1 + ρ̂(y, xj |xS)
1− ρ̂(y, xj |xS)

}
, Z(y, xj |xS) =

1

2
log

{
1 + ρ(y, xj |xS)
1− ρ(y, xj |xS)

}
.

(2.4)

Then, it follows by the delta method and Theorem 1 that
√
n
{
Ẑ(y, xj |xS)− Z(y, xj |xS)

}
→ N(0, 1 + κ). (2.5)

The asymptotic distribution of Ẑ(y, xj |xS) no longer depends on ρ(y, xj |xS),
thus it is easier to derive the selection threshold for Ẑ(y, xj |xS) rather than for

ρ̂(y, xj |xS) directly.

2.2. A variable selection algorithm

Based on the partial faithfulness condition, one has for all j ∈ {1, . . . , p}
(Bühlmann, Kalisch and Maathuis (2010)),

ρ(y, xj |xS) ̸= 0 for all S ⊆ {j}c if and only if βj ̸= 0.

Thus, xj is important (or βj ̸= 0) if and only if the partial correlations between

y and xj given all subsets S contained in {j}c are not zero. Extending the PC-

simple algorithm, we propose to identify active predictors by iteratively testing

the series of hypotheses

H0 : ρ(y, xj |xS) = 0 for |S| = 0, 1, . . . , m̂reach,

where m̂reach = min{m : |Â[m]| ≤ m}, and Â[m] is the chosen model index set in

the mth step with cardinality |Â[m]|. Based on (2.5), the rejection region at level

α is |Ẑ(y, xj |xS)| >
√
1 + κ̂Φ−1(1− α/2)/

√
n with κ̂ a consistent estimate of κ,

and Φ−1(·) the inverse of the cumulative distribution of the standard normal. In
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practice, the factor
√
n in the rejection region is replaced by

√
n− 1− |S| due

to the loss of degrees of freedom used in the calculation of residuals. Therefore,

an equivalent form of the rejection region with small sample correction is

|ρ̂(y, xj |xS)| > T (α, n, κ̂, |S|), (2.6)

where

T (α, n, κ̂, |S|) =
exp

{
2
√
1 + κ̂Φ−1(1− α/2)/

√
n− 1− |S|

}
− 1

exp
{
2
√
1 + κ̂Φ−1(1− α/2)/

√
n− 1− |S|

}
+ 1

. (2.7)

In this, κ is estimated by its sample counterpart

κ̂ =
1

p

p∑
j=1

{
1/n

∑n
i=1(xij − x̄j)

4

3{1/n
∑n

i=1(xij − x̄j)2}2
− 1

}
, (2.8)

where x̄j is the sample mean of the j-the element of x and xij is the j-th element

of xi. The sample partial correlations can be computed recursively: For any

k ∈ S,

ρ̂(y, xj |xS) =
ρ̂(y, xj |xS\{k})− ρ̂(y, xk|xS\{k})ρ̂(xj , xk|xS\{k})
[{1− ρ̂(y, xk|xS\{k})2}{1− ρ̂(xj , xk|xS\{k})2}]1/2

. (2.9)

We summarize the TPC variable selection by the following algorithm.

Algorithm 1 Algorithm for TPC variable selection.

Step 1: Set m = 1 and S = ∅, obtain the marginally estimated active set by

Â[1] = {j = 1, · · · , p : |ρ̂(y, xj)| > T (α, n, κ̂, 0)}.

Step 2: Based on Â[m−1], construct the mth step estimated active set by

Â[m] = {j∈Â[m−1] : |ρ̂(y, xj |xS)|>T (α, n, κ̂, |S|), ∀S⊆Â[m−1]\{j}, |S| = m−1}.

Step 3: Repeat Step 2 until m = m̂reach.

Algorithm 1 results in the sequence of estimated active sets

Â[1] ⊇ Â[2] ⊇ . . . Â[m] ⊇ . . . ⊇ Â[m̂reach].

Since κ = 0 for the normal, the TPC is the PC-simple algorithm under a nor-

mality assumption, and Theorem 1 shows that the PC-simple algorithm tends

to over-fit (under-fit) the models under those distributions where the kurtosis is

larger (smaller) than the normal kurtosis 0. Following Bühlmann, Kalisch and

Maathuis (2010), we apply the ordinary least squares approach to estimate the

coefficients of predictors in Â[m̂reach] after running Algorithm 1.
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2.3. Theoretical properties

We impose the following regularity conditions to establish the asymptotic

theory of the TPC.

(D1) The joint distribution of (xT , y) satisfies partial faithfulness.

(D2) (xT , y) follows ECp+1(µ,Σ, ϕ) with Σ > 0, and there exists s0 > 0, such

that for all 0 < s < s0,

E{exp(sy2)} < ∞, max
1≤j≤p

E{exp(sxjy)} < ∞,

and max
1≤j,k≤p

E{exp(sxjxk)} < ∞.

(D3) There exists δ > −1, such that the kurtosis satisfies κ > δ > −1.

(D4) For some cn = O(n−d), 0 < d < 1/2, the partial correlations ρ(y, xj |xS)
satisfy

inf {|ρ(y, xj |xS)| : j = 1, · · · , p,S ⊆ {j}c, |S| ≤ d0, ρ(y, xj |xS) ̸= 0} ≥ cn.

(D5) The partial correlations ρ(y, xj |xS) and ρ(xj , xk|xS) satisfy:
i). sup {|ρ(y, xj |xS)| : 1 ≤ j ≤ p,S ⊆ {j}c, |S| ≤ d0} ≤ τ < 1,

ii). sup {|ρ(xj , xk|xS)| : 1 ≤ j ̸= k ≤ p,S ⊆ {j, k}c, |S| ≤ d0} ≤ τ < 1.

Condition (D1) guarantees the validity of the TPC method as a variable se-

lection criterion. Condition (D2) is crucial when deriving the asymptotic distri-

bution of the sample partial correlation, and the sub-exponential tail probability

ensures that the difference between the population and sample partial correla-

tions degenerates at an exponential rate. Many elliptical distributions satisfy the

sub-exponential tail probability, such as multivariate normal and Pearson Type

II distributions (Fang, Kotz and Ng (1990)). Although (D2) is widely used as a

sufficient condition to facilitate the proof, it may not be the weakest condition

guaranteeing the validity of the TPC. (D3) puts a mild condition on the kurtosis,

and is used to control Type I and II errors. The lower bound on partial correla-

tions in (D4) is used to control Type II errors for the tests. This condition has

the same spirit as that of the penalty-based methods which requires the non-zero

coefficients to be bounded away from 0. The upper bound of partial correlations

in i) of (D5) is used to control Type I error, and the condition ii) of (D5) imposes

a fixed upper bound on the population partial correlations between the covariates

that excludes perfect collinearity between the covariates.

Since the TPC depends on the significance level α = αn, we write the final

chosen model as Ân(αn).
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Theorem 2. Consider the linear model in (2.1). Under (D1)-(D5), there exists

a sequence αn → 0 and a positive constant C, such that if d0 is fixed, then for

p = o(exp(nξ)), 0 < ξ < 1/5,

P{Ân(αn) = A} ≥ 1−O{exp(−nν

C
)}, (2.10)

where ξ < ν < 1/5; if d0 = O(nb), 0 < b < 1/5, then for p = o(exp(nξ)),

0 < ξ < 1/5− b, (2.10) still holds, with ξ + b < ν < 1/5.

The proof is given in the supplemental materials. The result implies that

TPC enjoys the model selection consistency property when dimensionality in-

creases at an exponential rate in the sample size. Following Bühlmann, Kalisch

and Maathuis (2010), a possible choice of the theoretical significance level αn is

αn = 2{1− Φ(cn
√

n/(1 + κ)/2)}.
Bühlmann, Kalisch and Maathuis (2010) utilized the tail probability of the

normal to control the upper bound of probabilities of Types I and II errors.

Thus, they have to assume that the model dimension grows at the polynomial

rate of the sample size. We take a different approach from Bühlmann, Kalisch

and Maathuis (2010) to establishing the model selection consistency in Theorem

2. We first derive the concentration inequality of the partial correlations as in

Step 1 of the proof of Theorem 2. In this step, we do not require assumption of

ellipticity. With the concentration inequality, we allow the dimensionality of the

covariates increases with the same size at an exponential rate. This enables us

to conduct the TPC for ultrahigh dimensional linear models.

The estimated active set from the first step of the TPC, denoted by Â[1]
n (αn),

can be viewed as a feature screening procedure, and is essentially equivalent to

the sure independence screening procedure proposed by Fan and Lv (2008). We

establish the sure screening property (Fan and Lv (2008)) of this first step of

TPC under a different set of assumptions. We need the following conditions on

the population marginal correlations:

(E4) inf {|ρn(y, xj)| : j = 1, · · · , p, ρn(y, xj) ̸= 0} ≥ cn, where cn = O(n−d), and

0 < d < 1/2.

(E5) sup {|ρn(y, xj)| : j = 1, · · · , pn, } ≤ τ < 1.

Theorem 3. Consider the linear model in (2.1) and assume that (D1)-(D3),

(E4) and (E5) hold. For p = O(exp(nξ)), where 0 < ξ < 1, there exists a

sequence αn → 0 such that P{Â[1]
n ⊇ A} ≥ 1−O{exp(−nν/C∗)}, where C∗ is a

positive constant and ξ < ν < 1/5.

The proof is given in the supplemental materials.
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3. Numerical Studies

3.1. Simulation studies

In our simulation study, data were generated according to (2.1) with β1 = 3,

β2 = 1.5, β5 = 2, and βj = 0 if j ̸= 1, 2, 5. We took p = 200, 500, and 2, 000;

and sample size n = 200. The joint distribution of x and ϵ was taken to be

0.9N(0,Σ)+0.1N(0, 9Σ), where Σ is the (p+1)×(p+1) matrix with (i, j)th entry

ρ|i−j|. We took ρ = 0, 0.3, and 0.8 to correspond to uncorrelated, moderately

correlated, and strongly correlated. The estimated kurtosis of the mixture normal

is around 1.5, indicating a heavy-tailed situation. For each case, we conducted

1,000 simulations.

In our simulation, we compared the finite sample performance of LASSO

(Tibshirani (1996)) and SCAD The following criteria were used to evaluate the

performance of variable selection procedures.

1. Model error: Ex[{x(β̂ − β)}2] = (β̂ − β)T cov(x)(β̂ − β).

2. True positive number (TPN), the average number of predictors with nonzero

coefficients successfully detected in 1,000 simulation.

3. False positive number (FPN), the average number of predictors with zero

coefficients being erroneously selected into the model.

4. Underfit percentage (UF), the percentage of models that fail to identify at

least one important predictor in the 1,000 simulations.

5. Correct-fit percentage (CF), the percentage of models that exactly select

the truly important predictors in the 1,000 simulations.

6. Overfit percentage (OF), the percentage of models that identify all the

important predictors, but include at least one unimportant predictor in the

1,000 simulations.

Table 1 depicts the simulation results for the elliptical distribution. It shows

that the TPC performs significantly better than LASSO, SCAD and the PC-

simple algorithm in most situations, regardless of the low or high model dimen-

sionality. Thus, LASSO constantly over-fits the model under every scenario. The

models selected by SCAD are more conservative than those selected by the PC-

based methods. Since the PC-simple relies on normality, it fails to capture the

correct model with a high percentage; especially, when the x-variables are inde-

pendent, the correct-fit rates of the PC-simple are only 25% and 7% for p = 500
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Table 1. Simulation results for Example 1: Elliptical distribution.

p ρ Method MedME(Devi) TPN FPN UF CF OF
SCAD 0.050 (0.024) 3.00 4.52 0.00 0.51 0.49
LASSO 8.984 (0.219) 3.00 33.63 0.00 0.00 1.00

200 0 PC-simple 0.082 (0.050) 2.92 0.82 0.08 0.41 0.51
TPC 0.045 (0.032) 2.84 0.13 0.16 0.81 0.03
SCAD 0.046 (0.023) 3.00 3.90 0.00 0.50 0.50
LASSO 11.195 (0.216) 3.00 30.26 0.00 0.00 1.00

200 0.3 PC-simple 0.063 (0.036) 3.00 0.46 0.00 0.58 0.42
TPC 0.036 (0.024) 2.99 0.04 0.01 0.96 0.03
SCAD 0.044 (0.026) 3.00 2.51 0.00 0.50 0.50
LASSO 20.925 (0.158) 3.00 16.44 0.00 0.02 0.98

200 0.8 PC-simple 0.039 (0.026) 2.94 0.17 0.06 0.83 0.11
TPC 0.057 (0.040) 2.79 0.20 0.19 0.80 0.01

SCAD 0.041 (0.022) 3.00 5.57 0.00 0.41 0.59
LASSO 8.960 (0.212) 3.00 45.25 0.00 0.00 1.00

500 0 PC-simple 0.096 (0.051) 2.83 1.22 0.17 0.25 0.58
TPC 0.043 (0.031) 2.74 0.21 0.26 0.70 0.04
SCAD 0.043 (0.024) 3.00 7.05 0.00 0.40 0.60
LASSO 11.172 (0.230) 3.00 38.94 0.00 0.00 1.00

500 0.3 PC-simple 0.077 (0.043) 3.00 0.83 0.00 0.35 0.65
TPC 0.030 (0.018) 2.98 0.08 0.02 0.91 0.07
SCAD 0.042 (0.026) 3.00 4.07 0.00 0.40 0.60
LASSO 20.879 (0.187) 3.00 20.86 0.00 0.00 1.00

500 0.8 PC-simple 0.049 (0.031) 2.91 0.37 0.09 0.69 0.22
TPC 0.044 (0.032) 2.73 0.26 0.25 0.75 0.00

SCAD 0.051 (0.032) 3.00 10.13 0.00 0.40 0.60
LASSO 9.140 (0.179) 3.00 66.84 0.00 0.00 1.00

2,000 0 PC-simple 0.112 (0.056) 2.90 1.73 0.10 0.07 0.83
TPC 0.050 (0.037) 2.83 0.35 0.17 0.67 0.16
SCAD 0.045 (0.028) 3.00 8.58 0.00 0.33 0.67
LASSO 11.345 (0.189) 3.00 61.97 0.00 0.00 1.00

2,000 0.3 PC-simple 0.105 (0.044) 2.99 1.36 0.01 0.17 0.82
TPC 0.039 (0.026) 2.97 0.18 0.03 0.83 0.14
SCAD 0.049 (0.030) 3.00 7.33 0.00 0.28 0.72
LASSO 20.960 (0.136) 3.00 37.81 0.00 0.00 1.00

2,000 0.8 PC-simple 0.077 (0.046) 2.96 0.59 0.04 0.48 0.48
TPC 0.045 (0.034) 2.82 0.24 0.17 0.81 0.02

∗ The numbers in the parentheses are median absolute deviations over 1,000 simulations.

and 2, 000, respectively. Thus, when p = 500, the over-fit rates (OF) of PC-

simple are 0.58, 0.65, and 0.22 for ρ = 0, 0.3, 0.8, respectively, the OF of TPC

are 0.04, 0.07, and 0.00. The times for 1,000 simulations with p = 2, 000 are

reported in Table S.1 in the supplemental material to save space. In terms of the
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computational cost, TPC converges much faster than the PC-simple algorithm

and the SCAD, and is comparable to the LARS algorithm for LASSO.

The results for normal distribution are in Table S.2 in the supplemental

material. The median model errors are comparable for all the methods except for

LASSO, which yields much larger models than necessary. Overall, both LASSO

and SCAD tend to provide more conservative models, and to over-fit, compared

with the partial-correlation-based methods for variable selection.

The model selection consistency of the TPC does not require the elliptical

distribution for the response and the predictors. To illustrate this, we consider

a simulation example in which discrete predictors are involved. Specifically, the

x’s with even-subscript are generated in the same fashion as before, where the

x’s with odd-subscript take discrete values 0, 1, 2 with probabilities 0.25, 0.5 and

0.25, respectively. The results are in Table S.3 in the supplemental material.

From Table S.3 that the TPC outperforms other methods, especially in terms of

the correct-fit rate.

3.2. An application

We demonstrate the proposed methodology by an empirical analysis of the

microarray data set that was studied by Scheetz et al. (2006) and Huang, Ma and

Zhang (2008). This dataset contains 120 12-week-old male rats, and, for each

rat, 3,000 sufficiently expressed gene probes with enough variation were studied.

The purpose of the analysis is to identify the probes that are most relevant to

the response – the expression level of probe TRIM32, recently proved to cause

Bardet-Biedl syndrome (Chiang et al. (2006)).

We applied the SCAD, LASSO, PC-simple algorithm, and TPC to this data

set with one outlier deleted. Table 2 provides the information on the chosen gene

probes by different methods. As LASSO yields a much larger model leading to

the difficulty of interpretation, we only report the six probes selected by SCAD,

the PC-simple algorithm, and TPC, and indicate whether they are included in the

20 chosen probes by LASSO. We calculated the adjusted R2 for each model and

prediction error (PE) by the leave-one-out cross-validation (LOOCV) method

for each model. From Table 2, the models selected by SCAD, LASSO and TPC

have very similar performance in terms of adjusted R2 and predictor error. The

TPC method improves the PC-simple algorithm by including the probes x5 and

x6. These probes lead to about 9% predictor error reduction from the model

selected by PC-simple to the model selected by TPC. The probe 1389584 at (x1)

and 1383996 at (x2) are selected by all four approaches, and also identified by
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Table 2. Results for real data example.

Selected SCAD LASSO PC- TPC M6 M4
Probes simple Est(& SE) Est(& SE)
Intercept Yes Yes Yes Yes 0.0147 (0.0465) 0.0164 (0.0467)

1389584 at(x1) Yes Yes Yes Yes 0.3669 (0.0823)*** 0.4098 (0.0710)***
1383996 at(x2) Yes Yes Yes Yes 0.1400 (0.0595)* 0.1583 (0.0590)**
1382452 at(x3) Yes Yes / / 0.2450 (0.0606)*** 0.2279 (0.0547)***
1370429 at(x4) / / Yes Yes 0.0464 (0.0815)
1383110 at(x5) / Yes / Yes 0.1543 (0.0840)
1374106 at(x6) / Yes / Yes 0.2203 (0.0727)** 0.2580 (0.0688)***
15 more probe / Yes / /

Size 4 21 4 6 7 5
Adjusted-R2(%) 69.37 69.55 66.64 69.10 74.60 74.38

PE 0.297 0.298 0.326 0.301 0.275 0.270
The 15 probes selected only by LASSO are omitted. “Yes” means the probe is selected by this method.

M6 stands for the linear model with six probes x1-x6; M4 for the model with four probes x1, x2, x3

and x6. ‘*’ stands for significant at level 0.05, ‘**’ for level 0.01, and ‘***’ for level 0.001.

Huang, Ma and Zhang (2008). The results from TPC are more consistent with

Huang, Ma and Zhang (2008) than these of the other methods.

We further conducted some exploratory analysis. We compared the model

with 20 probes selected by LASSO with the model with the six probes listed

in Table 2 (denoted by M6 in the table) by the likelihood ratio test (LRT).

The p-value of the corresponding LRT is 0.058. This implies that the model

with the six probes fits the data well enough. The corresponding estimates and

standard errors of regression coefficients are listed in the second-last column in

Table 2. The adjusted R2 and the predictor error calculated by the LOOCV

method has much improvement over the model selected by the SCAD, LASSO,

PC-simple and TPC methods. For example, the predictor error has about 10%

reduction. The coefficients of x4 and x5 seem not to be significant at level 0.05.

We refit the data to the model with only four probes x1, x2, x3 and x6, and their

estimates and standard error are reported in the last column of Table 2. The

adjusted R2 and predictor error of this model is very close to the one with six

probes. This empirical analysis implies that two comparable schemes for variable

selection (i.e., regularization methods such as the SCAD and the LASSO, and

partial correlation based methods such as PC-simple and TPC) can be used to

improve each other. Thus, the regularization method would miss probe x6, while

the TPC would miss probe x3. Confidence in the selected probes x1 and x2 could

increase since they are chosen by both techniques.
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4. Conclusion

In this paper, we proposed the variable selection procedure via the thresh-

olded partial correlation (TPC) and established its model selection consistency

and sure screening property in the presence of ultrahigh-dimensional predictors.

Our simulation and empirical analysis of a real data example illustrate that the

TPC may serve as a potential alternative to the commonly-used regularization

methods for high or ultrahigh dimensional regression models.

Supplementary Materials

Proofs, as well as the additional simulation results, are included in the online

supplemental materials.
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