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Abstract: We propose a penalized approach for variable selection using a combina-

tion of minimax concave and ridge penalties. The method is designed to deal with

p ≥ n problems with highly correlated predictors. We call this the Mnet method.

Similar to the elastic net of Zou and Hastie (2005), the Mnet tends to select or drop

highly correlated predictors together. However, unlike the elastic net, the Mnet is

selection consistent and equal to the oracle ridge estimator with high probability

under reasonable conditions. We develop an efficient coordinate descent algorithm

to compute the Mnet estimates. Simulation studies show that the Mnet has better

performance in the presence of highly correlated predictors than either the elas-

tic net or MCP. We illustrate the application of the Mnet to data from a gene

expression study in ophthalmology.

Key words and phrases: Correlated predictors, minimax concave penalty, oracle

property, p > n problems, ridge regression.

1. Introduction

There has been much work on penalized methods for variable selection and

estimation in high-dimensional regression models. Several important methods

have been proposed, including estimators based on the bridge penalty (Frank

and Friedman (1993)), the ℓ1 penalty or least absolute shrinkage and selection

operator (lasso, Tibshirani (1996)), the smoothly clipped absolute deviation

(scad) penalty (Fan and Li (2001)), and the minimax concave penalty (mcp,

Zhang (2010)). These methods provide a computationally feasible way to carry

out variable selection in high-dimensional settings and much progress has been

made in understanding the theoretical properties.

While these methods have many attractive properties, they have some draw-

backs. For example, as pointed out by Zou and Hastie (2005), for a linear re-

gression model with p predictors and sample size n, the lasso can select at

most n variables; it tends to only select one variable among a group of highly

correlated variables; and its prediction performance is not as good as the ridge

regression if there exists high correlation among predictors. To overcome these

limitations, Zou and Hastie (2005) proposed the elastic net (Enet), which uses a

combination of the ℓ1 and ℓ2 penalties. Yuan and Lin (2007) obtained a result
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for the Enet to select the true model in the classical settings when p is fixed.

Jia and Yu (2010) studied the selection consistency property of the Enet esti-

mator when p ≫ n. They showed that under an irrepresentable condition and

certain other conditions, the Enet is selection consistent. Their results generalize

those of Zhao and Yu (2006) on the selection consistency of the lasso under

the irrepresentable condition. But the Enet estimator is asymptotically biased

because of the ℓ1 component in the penalty and it cannot achieve selection consis-

tency and estimation efficiency simultaneously. Zou and Zhang (2009) proposed

the adaptive Enet estimator and provided sufficient conditions under which it

is oracle. However, they require that the singular values of the design matrix

be uniformly bounded away from zero and infinity. Thus their results excludes

the case of highly correlated predictors and are only applicable to the situations

when p < n.

There is a need to develop methods that are applicable to p ≥ n regression

problems with highly correlated predictors and have the oracle property. Inspired

by the Enet and mcp methodologies, we propose a penalized approach that uses

a combination of the mcp and ℓ2 penalty. We call this the Mnet. Similar to the

Enet, the Mnet can effectively deal with highly correlated predictors in p ≥ n

situations. It encourages a grouping effect in selection, meaning that it selects

or drops highly correlated predictors together. Because the Mnet uses the mcp

instead of the ℓ1 penalty for selection, it has important advantages. The Mnet

is selection consistent under a sparse Riesz condition on the ‘ridge design ma-

trix’, which only requires a submatrix of this matrix to be nonsingular. This

condition is usually less restrictive than the irrepresentable condition, especially

in high-dimensional settings (Zhang (2010)). The Mnet estimator is equal to the

oracle ridge estimator with high probability, in the sense that it correctly selects

predictors with nonzero coefficients and estimates the selected coefficients using

ridge regression.

This article is organized as follows. In Section 2, we define the Mnet esti-

mator and discuss its basic characteristics. In Section 3, we present a coordinate

descent algorithm for computing the estimates. Results on the sign consistency

of Mnet and its equivalency to the oracle ridge estimator are presented in Section

4. In Section 5, we conduct simulation studies to evaluate its finite sample per-

formance and illustrate its application using a real data example. Final remarks

are given in Section 6. Proofs are provided in the Supplementary Materials.

2. The Mnet Estimator

Consider the linear regression model

y =

p∑
j=1

xjβj + ε, (2.1)
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where y = (y1, . . . , yn)
′ is the vector of n response variables, xj = (x1j , . . . , xnj)

′ is

the jth predictor vector, βj is the jth regression coefficient and ε = (ε1, . . . , εn)
′

is the vector of random errors. Let X = (x1, . . . , xp) be the design matrix.

We assume that the responses are centered and the covariates are centered and

standardized, so that the intercept term is zero and n−1
∑n

i=1 x
2
ij = 1.

2.1. Definition

We first provide a brief description of the mcp introduced by Zhang (2010).

The mcp is given by

ρ(t;λ1, γ) = λ1

∫ |t|

0
(1− x

γλ1
)+dx, (2.2)

where λ1 is a penalty parameter and γ is a regularization parameter that controls

the concavity of ρ. We require λ1 ≥ 0 and γ > 1. Here x+ = x1{x≥0}. The mcp

can be easily understood by considering its derivative, which is

ρ̇(t;λ1, γ) = λ1

(
1− |t|

γλ1

)
+
sgn(t), (2.3)

where sgn(t) = −1, 0, or 1 if t < 0,= 0, or > 0. It begins by applying the same

rate of penalization as the lasso, but continuously relaxes that penalization until,

when |t| > γλ1, the rate of penalization drops to 0. It provides a continuum of

penalties with the ℓ1 penalty at γ = ∞ and the hard-thresholding penalty as

γ → 1+.

For λ = (λ1, λ2) with λ1 ≥ 0 and λ2 ≥ 0, consider the penalized criterion

M(b;λ, γ) =
1

2n
∥y −Xb∥2 +

p∑
j=1

ρ(|bj |;λ1, γ) +
1

2
λ2

p∑
j=1

b2j , b ∈ IRp . (2.4)

The Enet criterion uses the ℓ1 penalty in the first penalty term while here we use

the mcp. For a given (λ, γ), the Mnet estimator is defined as

β̂Mnet(λ, γ) = argmin
b

M(b;λ, γ). (2.5)

Our rationale for using the mcp in (2.4) is as follows. As discussed in Fan

and Li (2001), a good penalty function should result in an estimator with three

basic properties: unbiasedness, sparsity and continuity. The ℓ1 penalty produces

estimators that are sparse and continuous with respect to data, but are biased.

To remove the bias in the estimators resulting from the ℓ1 penalty and to achieve

oracle efficiency, they proposed the scad penalty for variable selection and es-

timation. In an in-depth analysis of the lasso, scad, and mcp, Zhang (2010)

showed that they belong to the family of quadratic spline penalties with sparsity

and continuity properties. The mcp is the simplest penalty that results in an
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estimator that is nearly unbiased, sparse and continuous. Further discussions

on the advantages of the MCP over other popular penalties can be found in

Mazumder, Friedman, and Hastie (2011).

2.2. Orthonormal designs

To gain some insights into the characteristics of the Mnet estimator, consider

the case where the design matrix is orthonormal. In this case, the problem

simplifies to estimation in p univariate models of the form

yi = xijθ + εi, 1 ≤ i ≤ n.

Let z = n−1
∑n

i=1 xijyi be the least squares estimator of θ (since n−1
∑n

i=1 x
2
ij =

1). The corresponding Mnet criterion can be written as

1

2
(z − θ)2 + ρ(θ;λ1, γ) +

1

2
λ2θ

2. (2.6)

When γ(1 + λ2) > 1, the minimizer θ̂Mnet of (2.6) is

θ̂Mnet =

{
sgn(z)γ(|z|−λ1)+

γ(1+λ2)−1 if |z| ≤ γλ1(1 + λ2),
z

1+λ2
if |z| > γλ1(1 + λ2).

(2.7)

This expression illustrates a key feature of the Mnet estimator. In most of the

sample space of z, it is the same as the ridge estimator. Specifically, for small

γλ1(1 + λ2), the probability of the region where θ̂Mnet is not equal to the ridge

estimator is also small. In Section 4, we show that this remains true for general

designs under reasonable conditions.

It is instructive to compare the Mnet with the Enet. The naive Enet (nEnet)

estimator is

θ̂nEnet = argmin
θ

1

2
(z − θ)2 + λ1|θ|+

1

2
λ2θ

2 = sgn(z)
(|z| − λ1)+
1 + λ2

.

The ridge penalty introduces an extra bias factor 1/(1+λ2). This ridge shrinkage

on top of the lasso shrinkage is the double shrinkage effect discussed in Zou and

Hastie (2005). They proposed to remove the ridge shrinkage factor by multiplying

the naive Enet by (1 + λ2) to obtain the Enet estimator

θ̃Enet = (1 + λ2)θ̂nEnet = sgn(z)(|z| − λ1)+.

Thus for orthonormal designs, the (rescaled) Enet estimator is the same as the

lasso estimator and is still biased.

Similarly, we can rescale θ̂Mnet to obtain the re-scaled Mnet estimator, writ-

ten as
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θ̃sMnet =

{
γ(1+λ2)

γ(1+λ2)−1 θ̂Enet if |z| ≤ γλ1(1 + λ2),

z if |z| > γλ1(1 + λ2).

It is equal to the unbiased estimator z when |z| > γλ1(1+λ2). As γ(1+λ2)→∞,

the Mnet converges to the Enet; as γ(1 + λ2) → 1, the Mnet converges to the

hard thresholding rule.

For orthogonal designs, re-scaling removes the bias due to the ridge shrinkage

without significantly inflating the variance. However, it can be demonstrated nu-

merically that for correlated designs, rescaling can substantially inflate the vari-

ance of the Mnet estimator and as a result, the mean squared error is increased.

Since we focus on the variable selection property of the Mnet and rescaling does

not affect selection results, we will not consider rescaling here.

2.3. Grouping effect

Similar to the Enet, the Mnet has a grouping effect. It tends to select or

drop strongly correlated predictors together, due to the ℓ2 penalty term. For

simplicity, we write β̂j for β̂Mnet,j .

Proposition 1. Let ρjk = n−1
∑n

i=1 xijxik be the correlation coefficient between

xj and xk. Suppose λ2 > 0. If

ξ =

{
max{2γ(γλ2 − 1)−1, (γλ2 + 1)(λ2(γλ2 − 1))−1, λ−1

2 } if γλ2 > 1,

λ−1
2 if γλ2 ≤ 1,

(2.8)

for ρjk ≥ 0, we have

|β̂j − β̂k| ≤ ξn−1/2
√

2(1− ρjk)∥y∥;

for ρjk < 0, we have

|β̂j + β̂k| ≤ ξn−1/2
√

2(1 + ρjk)∥y∥.

From this proposition, we see that the difference between β̂j and β̂k is

bounded by a quantity determined by the correlation coefficient. It shows that

highly correlated predictors tend to be selected together by the Mnet. In partic-

ular, β̂j − β̂k → 0 as ρjk → 1 and β̂j + β̂k → 0 as ρjk → −1.

3. Computation

3.1. The coordinate descent algorithm

We use the cyclical coordinate descent algorithm originally proposed for such

criteria with convex penalties as the lasso (Fu (1998), Friedman et al. (2007),
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Wu and Lange (2008)). It has been proposed to calculate the mcp estimates Bre-
heny and Huang (2011). The algorithm optimizes a target function with respect
to a single parameter at a time, iteratively cycling through all parameters until
convergence is reached. It is particularly suitable for problems that have a simple
closed form solution in a single dimension but lack one in higher dimensions. The
authors have implemented the algorithm described here in the R package ncvreg,
publicly available at http://cran.r-project.org/web/packages/ncvreg.

The problem, then, is to minimize M with respect to βj , given current values
for the regression coefficients β̃k. Take

Mj(βj ;λ, γ) =
1

2n

n∑
i=1

(yi −
∑
k ̸=j

xikβ̃k − xijβj)
2 + ρ(|βj |;λ1, γ) +

1

2
λ2β

2
j .

Let ỹij =
∑

k ̸=j xikβ̃k, r̃ij = yi− ỹij , and z̃j = n−1
∑n

i=1 xij r̃ij , where r̃ijs are the

partial residuals with respect to the jth covariate. Some algebra shows that

Mj(βj ;λ, γ) =
1

2
(βj − z̃j)

2 + ρ(|βj |;λ1, γ) +
1

2
λ2β

2
j +

1

2n

n∑
i=1

r̃2ij −
1

2
z̃2j .

Thus, if β̃j denotes the minimizer of Mj(βj ;λ, γ), (2.6) and (2.7) imply that

β̃j =

{
sgn(z̃j)

γ(|z̃j |−λ1)+
γ(1+λ2)−1 if |z̃j | ≤ γλ1(1 + λ2)

z̃j
1+λ2

if |z̃j | > γλ1(1 + λ2)
, (3.1)

for γ(1 + λ2) > 1.
Given the current value β̃(s) in the sth iteration for s = 0, 1 . . ., the algorithm

for determining β̂ is as follows.

(1) Calculate

z̃j = n−1
n∑

i=1

xij r̃ij = n−1
n∑

i=1

xij(yi − ỹi + xij β̃
(s)
j ) = n−1

n∑
i=1

xijri + β̃
(s)
j ,

where ỹi =
∑p

j=1 xij β̃
(s)
j is the current fitted value for observation i and

ri = yi − ỹi is the current residual. The calculation of z̃j is carried out using
the last expression in this equation.

(2) Update β̃
(s+1)
j using (3.1).

(3) Update ri ← ri − (β̃
(s+1)
j − β̃

(s)
j )xij for all i.

The last step ensures that ri’s always hold the current values of the residuals.
These three steps loop over all values of j and proceed iteratively until conver-
gence. The coordinate descent algorithm has the potential to be extremely effi-
cient, in that the above three steps require only O(n) operations, meaning that
one full iteration can be completed at a computational cost of O(np) operations.

http://cran.r-project.org/web/packages/ncvreg
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3.2. Pathwise optimization

Usually, we are interested in determining β̂ for a range of values of (λ, γ),

thereby producing a path of coefficient values through the parameter space. Con-

sider the reparametrization: τ = λ1+λ2 and α = λ1/τ . Using it, we can compute

solutions for decreasing values of τ , starting at the smallest value τmax for which

all coefficients are 0 and continuing down to a minimum value τmin, thereby

obtaining the unique coefficient path for which the ratio between λ1 and λ2 is

held constant at α/(1 − α). If p < n and the design matrix is full rank, τmin

can be 0. In other settings, the model can become excessively large or cease

to be identifiable for small τ ; in such cases, a value such as τmin = 0.01τmax is

appropriate.

From (2.7), τmax = max1≤j≤p |n−1x′jy|/α. Starting at this value, for which β̂

has the closed form solution 0, and proceeding along a continuous path ensures

that the initial values are reasonably close to the solution for all points along the

path, thereby improving the stability and efficiency of the algorithm.

3.3. Convexity of the objective function

The preceding remarks concerning unique solutions and continuous coeffi-

cient paths are only guaranteed for convex objective functions. Because the mcp

is nonconvex, this is not always the case for the Mnet objective function; it is

possible, however, for the convexity of the ridge penalty and the least-squares

loss function to overcome the nonconvexity of the mcp and produce a convex

objective function.

Proposition 2. Let cmin denote the minimum eigenvalue of n−1X ′X. Then the

objective function defined by (2.4) is a convex function of b on Rp if and only if

γ > 1/(cmin + λ2).

This establishes the condition necessary for global convexity on IRp. In p≫ n

settings, where highly sparse solutions are desired, we may be concerned only with

convexity in the local region of the parameter space consisting of the covariates

estimated to have nonzero coefficients. In this case, the above condition can be

relaxed by considering the minimum eigenvalue of n−1X ′
AXA instead, where XA

is a modified design matrix consisting of only those columns for which β̂j ̸= 0.

The issue of local convexity is explored in greater detail in Breheny and Huang

(2011).

4. Selection Properties

In this section, we study the selection properties of the Mnet estimator β̂Mnet

at (2.5). We provide sufficient conditions under which the Mnet estimator is sign

consistent and equals the oracle ridge estimator.
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For simplicity of notation, we write β̂ = β̂Mnet. Let Σ = n−1X ′X and, for

any A ⊆ {1, . . . , p}, takeXA = (xj , j ∈ A), ΣA = 1
nX

′
AXA. Let the true value of

the regression coefficient be βo = (βo
1 , . . . , β

o
p)

′. Denote by O = {j : βo
j ̸= 0}, the

oracle set of indices of the predictors with nonzero coefficients in the underlying

model. Let βo
∗ = min{|βj |, j ∈ O} and set βo

∗ = ∞ if O is empty. Denote the

cardinality of O by |O| and let do = |O|. Define the oracle ridge estimator by

β̂o(λ2) = argmin
b
{ 1

2n
∥y −Xb∥2 + 1

2
λ2∥b∥2, bj = 0, j ̸∈ O}. (4.1)

It is not a feasible estimator, as the oracle set is unknown.

4.1. The p < n case

We first consider the selection property of the Mnet estimator for the p < n

case. We require the following basic condition.

(A1) (a) The error terms ε1, . . . , εn are independent and identically dis-

tributed with Eεi = 0 and Var(εi) = σ2; (b) For any x > 0, P(|εi| > x) ≤
K exp(−Cxα), i = 1, . . . , n, where C and K are positive constants and 1 ≤ α ≤ 2.

Let cmin be the smallest eigenvalue of Σ, and let c1 and c2 be the smallest

and largest eigenvalues of ΣO, respectively.

Set

λn = αn
σ log1/α(p− do + 1)√

n
and τn = αn

σ
√
c2 log

1/α(do + 1)√
n(c1 + λ2)

, (4.2)

where αn = 1 if 1 < α ≤ 2 and αn = log n if α = 1. For error terms with double

exponential tails, there is an extra log n factor in these expressions.

Theorem 1. Suppose (A1) holds and γ > 1/(cmin + λ2). If

βo
∗ > γλ1 +

2λ2∥βo∥
(c1 + λ2)

and λ1 >
2λ2
√
c2∥βo∥

(c1 + λ2)
, (4.3)

then P
(
sgn(β̂) ̸= sgn(βo) or β̂ ̸= β̂o

)
≤ π1 + π2, where the sgn function applies

to a vector componentwise and

π1 =
2K1λn

λ1
and π2 =

2K1τn
(βo

∗ − γλ1)
. (4.4)

Here K1 is a positive constant that depends only on the tail behavior of the error

distribution in (A1b).

We note that the upper bound on the probability of selection error is

nonasymptotic. The condition γ > 1/(cmin+λ2) ensures that the Mnet criterion

is strictly convex so that the resulting estimate is unique. This condition also
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essentially restricts cmin > 0, which can only be satisfied when p < n. The first

inequality in (4.3) requires the nonzero coefficients not to be too small in order for

the Mnet estimator to be able to distinguish nonzero from zero coefficients. The

second inequality in (4.3) requires that λ1 should be at least in the same order

as λ2. This condition indicates that there is a trade-off between the grouping

effect and good theoretical properties. If λ2 is too big, the Mnet estimator is not

selection consistent due to the bias introduced by the ridge penalty; if λ2 is too

small, the grouping effect is diminished.

Corollary 1. Suppose that the conditions of Theorem 1 are satisfied. If λ1 ≥
anλn and βo

∗ ≥ γλ1 + anτn for an → ∞ as n → ∞, then P(sgn(β̂) ̸= sgn(βo) or

β̂ ̸= β̂o)→ 0.

By Corollary 1, β̂ behaves like the oracle ridge estimator and has the same

sign as the underlying regression coefficients with probability tending to one.

4.2. The p ≥ n case

We now consider the selection property of the Mnet estimator when p ≥ n.

In this case, the model is not identifiable without further conditions, since the

design matrix X is always singular. However, if the model is sparse and the

design matrix satisfies the sparse Riesz condition, or src (Zhang and Huang

(2008)), then the model is identifiable and selection consistency can be achieved.

Let

X̃ =

(
X√
nλ2 Ip

)
,

where Ip is a p × p identity matrix. This can be considered an ‘enlarged design

matrix’ from ridge regularization. The jth column of X̃ is x̃j = (x′j ,
√
nλ2e

′
j)

′,

where ej is the jth unit vector in IRp. For A ⊆ {1, . . . , p}, take

X̃A = (x̃j , j ∈ A), P̃A = X̃A(X̃
′
AX̃A)

−1X̃ ′
A. (4.5)

Denote the cardinality of A by |A|. We say that X̃ satisfies the sparse Reisz

condition (src) with rank d∗ and spectrum bounds {c∗ + λ2, c
∗ + λ2} if

0 < c∗ + λ2 ≤
1

n
∥X̃Au∥22 ≤ c∗ + λ2 <∞, ∀A with |A| ≤ d∗, u ∈ IR|A|, ∥u∥ = 1,

(4.6)

where c∗ and c∗ satisfy

0 ≤ c∗ ≤
1

n
∥XAu∥22 ≤ c∗, ∀A with |A| ≤ d∗, u ∈ IR|A|, ∥u∥ = 1.

We allow either c∗ = 0 or λ2 = 0, but require c∗ + λ2 > 0. Below, we simply say

that X̃ satisfies the src(d∗, c∗ + λ2, c
∗ + λ2) if (4.6) holds.
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(A2) The matrix X̃ satisfies the src(d∗, c∗ + λ2, c
∗ + λ2), where d∗ satisfies

d∗ ≥ do(K∗ + 1) with K∗ = (c∗ + λ2)/(c∗ + λ2) − 1/2, and do is the number of

nonzero coefficients.

Let m = d∗ − do. Write

λ∗
n = αn

σ log1/α(p− do + 1)√
n

√
c∗mαmax

{
1,

√
c∗

m
√
n(c∗ + λ2)2

}
, (4.7)

where mα = 1 if α = 2 and = m1/α if 1 ≤ α < 2. Let π1 and π2 be as in (4.4).

Set

π∗
1 = K1λ

∗
n/λ1 and π3 = K1αn

8σc∗λ2

√
do log1/α(do + 1)

mn(c∗ + λ2)
. (4.8)

Theorem 2. Suppose that (A1) and (A2) hold. If

γ ≥ (c∗ + λ2)
−1

√
4 +

c∗ + λ2

c∗ + λ2
, (4.9)

λ1 > 2λ2
√
c2∥βo∥/(c1 + λ2) and βo

∗ > γλ1 + 2λ2∥βo∥/(c1 + λ2),

P
(
sgn(β̂) ̸= sgn(βo) or β̂ ̸= β̂o

)
≤ π1 + π∗

1 + π2 + π3.

Corollary 2. Suppose that the conditions of Theorem 2 are satisfied. If λ1 ≥
anλ

∗
n and βo

∗ ≥ γλ1 + anτn for an →∞ as n→∞, then

P
(
sgn(β̂) ̸= sgn(βo) or β̂ ̸= β̂o

)
→ 0 as n→∞.

Theorem 2 and Corollary 2 provide sufficient conditions for sign consistency

and the oracle property of the Mnet estimator in p ≥ n situations. Again,

the probability bound on the selection error in Theorem 2 is nonasymptotic.

Comparing with Theorem 1, here the extra terms π∗
1 and π3 in the probability

bound come from the need to reduce the original p-dimensional problem to a d∗-

dimensional problem. Condition (4.9) ensures that the Mnet criterion is locally

convex in any d∗-dimensional subspace. It is stronger than the minimal sufficient

condition γ > 1/(c∗+λ2) for local convexity. This reflects the difficulty and extra

efforts needed in reducing the dimension from p to d∗. The src in (A2) guarantees

that the model is identifiable in any lower d∗-dimensional space, which contains

the do-dimensional space of the underlying model, since d∗ > do. The difference

d∗ − do = K∗d
o depends on K∗, which is determined by the spectrum bounds in

the src. In the proof of Theorem 2 given in the Supplementary Materials, the

first crucial step is to show that the dimension of the Mnet estimator is bounded

by d∗ with high probability. Then the original p-dimensional problem reduces

to a d∗-dimensional problem. The other conditions of Theorem 2 imply that the

conditions of Theorem 1 are satisfied for p = d∗. After dimension reduction is
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achieved, we can use the same argument as in Theorem 1 to show sign consistency.

The role of λ∗
n is similar to λn in (4.2). However, the expression of λ∗

n has an

extra term that which arises from the need to reduce the dimension from p to

d∗. If 1 < α ≤ 2, c∗ is bounded away from zero and c∗ is bounded by a finite

constant, then for sufficiently large n we have λ∗
n = λn

√
c∗. Finally, We note

that our results allow c∗ → 0 and c∗ →∞ as long as the conditions in Theorem

2 are satisfied. Thus Theorem 2 and Corollary 2 are applicable to models with

highly correlated predictors. Finally, we allow p≫ n in Theorem 2 Corollary 2.

For example, in the simplest case of an error distribution with sub-gaussian tails

(α = 2) and
√
c∗/(m

√
n(c∗ + λ2)

2) ≤ 1 in (4.7) for sufficiently large n, we can

have p− do = exp(o(n)), where o(n)/n→ 0.

5. Simulation Studies

In principle, the Mnet estimator has three parameters one may consider

tuning: τ , α, and γ, with τ = λ1 + λ2 and α = λ1/τ . However, optimizing

the performance of the method over a three-dimension grid can be rather time-

consuming. It is of practical importance to know whether it is necessary to tune

all three parameters or whether it is possible to, say, set γ = 3 and retain robust

performance over a range of possible scenarios. To investigate this question, we

organize the section as follows: Section 5.1 fixes both α and γ, so that the Mnet

estimator has only a single tuning parameter, similar to the lasso. Section 5.2

tunes α, so that Mnet (and Enet) carry out tuning parameter selection in two

dimensions. Finally, Section 5.3 tunes α and γ, so that Mnet tunes all three of

its parameters. We compare the proposed Mnet estimator with the elastic net,

lasso, and mcp. The ncvreg package was used to fit all models.

The basic design of our simulations in these sections is as follows: all covari-

ates {xj} marginally follow standard Gaussian distributions, but are correlated

with a common correlation ρ between any two covariates. The outcome y is gen-

erated according to model (2.1), with errors drawn from the standard Gaussian

distribution. For each independently generated data set, n = 100 and p = 500,

with 12 nonzero coefficients equal to s and the remaining 488 coefficients equal to

zero. Throughout, we consider varying the correlation ρ between 0.1 and 0.9 and

the signal strength s between 0.1 and 1.5. For all methods, tuning parameters

are selected on the basis of mean-squared prediction error on an independent

validation data set also of size n = 100.

We focus primarily on the estimation accuracy of β̂, as measured by mean

squared error (MSE) relative to lasso. Plots of the absolute MSE are domi-

nated by the high-correlation and high-signal scenarios, which are not necessarily

the most interesting. The lasso, as the most widely used penalized regression
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method, is an obvious choice as a baseline for measuring relative estimation effi-

ciency.

For the simulations in Sections 5.1 and 5.2, we also present results concerning

variable selection accuracy, although due to space limitations, these are presented

in a separate Supplementary Materials document. Comparing variable selection

accuracy among methods is less straightforward than comparing estimation ac-

curacy, due to the fact that incorrect selection are of two types: failure to select

import variables and selection of unimportant variables. The lasso, for example,

tends to select more variables, both important and unimportant, than mcp and

Mnet. Overall, however, the variable selection results are generally in accordance

with the estimation accuracy results in terms of which methods perform well in

which settings.

Zou and Hastie (2005) advocated a rescaling factor to be applied to the elastic

net in order to decrease bias. We investigated the rescaling issue for the Enet

and Mnet estimators, but found it to make little difference in terms of the MSE.

Scaling up the estimator does decrease bias, but increases variance with little to

no net benefit for either the Mnet or Enet estimators. As we found the difference

between the original and rescaled estimators to be minuscule compared with

the difference between Mnet and Enet themselves, we focus only on the original

estimators here, as defined in Section 2.

5.1. Fixed α and γ

In this section, we fix the α parameter for Mnet at various values in the set

{0.5, 0.7, 0.9} and the γ parameter at γ = 3. By fixing both tuning parameters,

the Mnet estimator, like lasso, has just a single parameter τ to select. We

compare these fixed-α versions of Mnet with the lasso and present the results

in Figure 1. For both methods, τ was selected using external validation.

Figure 1 illustrates the fact that no single value of α can ensure robust per-

formance of the Mnet estimator over a variety of signal and correlation strengths.

For example, when ρ = 0.3 and s = 1.5, Mnet (α = 0.9) is far more accurate

than the lasso, which in turn is quite a bit more accurate than Mnet (α = 0.5).

However, when ρ = 0.7 and s = 0.8, the rankings are reversed: Mnet (α = 0.5)

is more accurate than lasso, and lasso is more accurate than Mnet (α = 0.9).

The primary message then is that any fixed-αMnet estimator is vulnerable to

poor performance in certain scenarios. When estimation is relatively easy (high

signal strength, low correlation), Mnet estimators with substantial weight on the

L2 penalty suffer from shrinkage-induced bias and have much higher MSE than

estimators which place most of their weight on the MCP portion of the penalty.

Conversely, when estimation is relatively difficult (low signal strength, high cor-

relation), Mnet estimators with α near 1 suffer from large variance relative to
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Figure 1. Relative (to the lasso) MSE for the variable-α Mnet (with α
selected by external validation) and various fixed-α Mnet estimators. mse
was calculated for each method on 100 independently generated data sets;
the relative median mses at each point are displayed.

estimators that provide additional L2 shrinkage. Given this clear dependence of

the optimal α value on correlation, and the considerable difficulty of even es-

timating the correlation matrix of the coefficients in high dimensions, let alone

using that estimate to determine an optimal α, empirical tuning of α seems to

be warranted.

The Mnet (α̂) line in Figure 1 depicts the performance of a variable-α Mnet

estimator in which the α has been tuned over a grid of reasonable values (see

Section 5.2 for details). By allowing α to vary, we avoid the vulnerabilities of the

fixed-α Mnet estimators, as certain α values are rarely chosen in scenarios where

they perform poorly. For example, with ρ = 0.3 and s = 1.1, α = 0.9 or α = 1

was selected in 98% of the simulations. When ρ = 0.7 and s = 0.7, α = 0.9 or

α = 1 was selected in only 10% of the simulations, with α = 0.5 being the most

commonly selected value, chosen in 42% of simulations. We explore variable-α

Mnet estimators further in Section 5.2.

5.2. Select α, fixed γ

In this section, we compare variable-α versions of the Mnet and elastic net

estimators with mcp and lasso. For the Mnet and Enet, the α parameter was

allowed to vary among {0.1, 0.3, . . . , 0.9}, with the optimal value selected by

external validation.

A comparison of the lasso, mcp, Enet, and Mnet estimators is given in

Figure 2. Here we see that the variable-α Mnet is able to achieve what the fixed-

α Mnet cannot; namely, robust accuracy over the full spectrum of correlation and

signal strengths. The Mnet estimates are the best or virtually identical to the

best in all situations, sometimes dramatically so. In particular, for the medium
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Figure 2. Relative (to the lasso) MSE for the mcp, elastic net (Enet) and
Mnet estimator. mse was calculated for each method on 100 independently
generated data sets; the relative median mses at each point are displayed.

correlation (ρ = 0.7), medium signal (s = 1) case, Mnet is more than twice as

efficient as the other three methods.

Indeed, as was seen in Figure 1, the variable-α Mnet performs roughly as

well as the best fixed-α Mnet estimator in all scenarios, indicating that little

performance is lost in the model selection process of estimating the optimal value

of α. There is no scenario in Figures 1 or 2 in which the variable-αMnet estimator

does poorly; notably, it always attains an estimation accuracy as good or better

than that of the lasso.

In addition, Figure 2 illustrates that the addition of an L2 penalty has a far

bigger impact on mcp than on lasso. Indeed, although there are small benefits

of the elastic net over lasso to be seen in each panel, these differences are minute

compared with the differences between mcp and Mnet, as well as the differences

between Mnet and Enet.

5.3. Select α and γ

Here we tune the τ , α, and γ parameters for the Mnet estimator, again

investigating performance relative to lasso and Enet. The γ parameter for

Mnet was allowed to vary among {2, 4, 8, 16, 32}, with the optimal value selected

by external validation. The results of the simulations are shown in Figure 3.

In contrast to Figure 2, Figure 3 indicates little benefit to tuning both α and

γ; the performance of Mnet (α̂) and Mnet (α̂, γ̂) are quite similar. Overall, the

simulation results suggest that tuning γ is likely not worth the additional time

and effort required.

The reason for this is likely that, to some extent, α and γ play similar roles

in terms of shrinkage and balancing the bias-variance trade-off. If signal is small

and heavy shrinkage is desirable, we can achieve that by increasing γ, but we
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Figure 3. Relative (to the lasso) MSE for the elastic net (Enet) and Mnet
estimators. For Mnet (α̂, γ̂), γ was selected by external validation; for Mnet
(α̂), γ was fixed at 3. mse was calculated for each method on 250 inde-
pendently generated data sets; the relative median mses at each point are
displayed.

can also increase shrinkage by lowering α, which puts more weight on the L2

penalty. Thus, although there are scenarios where mcp does poorly relative to

lasso, and therefore where we would benefit from tuning γ, we can achieve the

same benefits, if not more, by tuning α.

Figure 2 provides a nice illustration of this. For s = 0.7 and ρ = 0.9, we

see that lasso performs considerably better than mcp. We would therefore

benefit from tuning γ (increasing γ to make the mcp estimates more lasso-like).

However, the Mnet results show that we obtain even better performance by fixing

γ = 3 and tuning α. Specifically, at this setting, the MSE of mcp is 39% higher

than that of lasso, while the MSE of Mnet is 33% lower than that of lasso.

Thus, α is not necessarily intrinsically more important than γ; it is more the

case that two-dimensional tuning is not substantially better than fixing one and

tuning the other. Here α is somewhat easier to tune since it falls within a finite

range [0, 1], whereas the range of γ is [1,∞), with γ ≈ 1 resulting in instability

and multiple local minima (Breheny and Huang (2011)).

5.4. Grouping

Sections 5.1−5.3 describe the basic properties of the Mnet estimator in terms

of its performance relative to mcp, lasso, and elastic net. In this section, we

report on a small simulation study to illustrate the consequences of the grouping

phenomenon described in Section 2.3.

The covariates were standard normal marginally, but their correlation struc-

ture was now block-diagonal. Specifically, the p = 1, 000 covariates consisted of

100 blocks; each block consisted of 10 covariates, all of which shared a common
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Table 1. Grouping simulation: Median values over 100 replications.

Variables Blocks
MSE MSPE wSD Selected True Selected True

Concentrated
mcp 0.0190 3.12 0.43 7 4 5 2
Mnet 0.0022 1.47 0.21 18 16 3 2

Scattered
mcp 0.0069 3.87 0.10 25 4 25 16
Mnet 0.0064 3.15 0.08 36 5 36 19

within-block pairwise correlation of 0.9. The blocks themselves were indepen-

dent. The β coefficients for block one were all equal to 0.5; the coefficients for

block two are all equal to -0.5; the coefficients in the other 98 blocks are all

zero. We refer to this setting as “concentrated”, since the nonzero coefficients

are concentrated with respect to the blocks. We also considered a “scattered”

setting, in which 20 blocks had one zero coefficient and 9 nonzero coefficients; the

coefficients in the other 80 blocks were all equal to zero. The distribution of the

covariates as well as the values of the regression coefficients were the same in the

two settings; the only difference was the arrangement of the nonzero coefficients

with respect to the correlation structure.

Table 1 presents the results of this simulation for mcp and Mnet (α = 0.5).

Here we consider two basic measures of model accuracy: mean squared estimation

error (MSE) and mean squared prediction error (MSPE). We also report the

number of variables and blocks selected by each method and of those, the number

that were truly nonzero in the generating model. Finally, as a measure of the

grouping effect, we calculated the within-group standard deviation of β̂ among

the nonzero groups (wSD).

As the table shows, the advantages of Mnet over mcp are amplified when

the coefficient values reflect the correlation structure. In particular, the MSE

of mcp is over 8 times larger than that of Mnet when the nonzero coefficients

are concentrated in blocks. Furthermore, the selection properties of Mnet are

desirable here: although Mnet selects a larger number of variables, it actually

selects fewer blocks, concentrating those selections into correlated groups and

thereby detecting far more individual nonzero coefficients.

Even when there is no relationship between the coefficient values and the

correlation structure, there are still advantages to using Mnet, although the gains

in efficiency are not nearly as dramatic. In addition to all the results from

Sections 5.1−5.3, we can also see evidence for this in the “Scattered” section

of Table 1. Mnet still yields more accurate estimates, but the improvement is

only 8%. In this setting, both Mnet and mcp performed reasonably well at
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Table 2. Cross-validated R2 for Scheetz data.

α = 1 α = 0.75 α = 0.5 α = 0.25
Enet 0.49 0.50 0.51 0.52
Mnet 0.54 0.47 0.60 0.57

detecting the nonzero blocks, but the methods struggled to select the single

correct predictor from the block of highly correlated choices.

6. Application to Gene Expression Data

We use the data set reported in Scheetz et al. (2006) to illustrate the applica-

tion of the proposed method in high-dimensional settings. For this data set, 120

twelve-week-old male rats were selected for eye tissue harvesting and microarray

analysis. The microarrays used to analyze eye tissue RNA from these animals

contain over 31,042 different probe sets (Affymetric GeneChip Rat Genome 230

2.0 Array). The intensity values were normalized using the robust multi-chip

averaging method (Irizarry et al. (2003)) to obtain summary expression values

for each probe set. Gene expression levels were analyzed on a logarithmic scale.

The goal of the analysis is to detect genes whose expression patterns exhibit

a reasonable degree of variability and which are most correlated with that of gene

trim32. This gene has been found to cause Bardet-Biedl syndrome (Chiang et al.

(2006)), a genetically heterogeneous disease of multiple organ systems including

the retina. We apply regularized linear regression using the Enet/Mnet penalties,

with trim32 expression as the response and restricted our attention to the 5,000

genes with the largest variances in expression (on the log scale). Thus, this data

set had n = 120 and p = 5, 000. Ten-fold cross-validation was used to select τ

and α, with γ for the Mnet fixed at 3.

To compare the predictive ability of various Enet and Mnet estimators, we

examine the cross-validated prediction error:

PE =

∑
i(yi − ŷ(−i))

2

n
,

where, for each observation i, ŷ(−i) is the estimated value of E(Yi|xi1, . . . , xip)
based on the estimates β̂ from the model fit based on the cross-validation fraction

of the data leaving out observation i. Table 2 presents the prediction error of the

Enet and Mnet methods, presented as the proportion of variance explained by

the model: R2 = PE/V̂ar(y), where V̂ar(y) denotes the sample variance of the

response.

Table 2 again shows that tuning α has a much larger effect for the Mnet

estimators than the elastic net estimators. Here the best Mnet model outperforms

the best Enet model, with Mnet (α = 0.5) explaining 60% of the variability in
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Table 3. Genes estimated to have nonzero effect using the Enet and Mnet approaches.

Probe ID Gene Enet Mnet
1382452 at Sdpr 0.01
1383110 at Klhl24 0.01
1383749 at Phospho1 -0.01
1383996 at Med26 0.03
1376267 at 0.04
1382673 at 0.04 0.10
1393736 at 0.01
1375872 at 0.02
1376747 at 0.09 0.24
1390539 at 0.04
1379835 at -0.02
1379600 at -0.01
1387929 at Pmf31 0.01
1379094 at 0.01
1386358 at -0.01
1384860 at Zfp84 0.01
1381902 at Zfp292 0.06 0.16
1377792 at 0.03
1378485 at -0.01
1378847 x at H2afx -0.01
1375577 at -0.01 -0.03
1395888 at -0.01

trim32 expression and Enet (α = 0.25) explaining 52%. It is not the case that

Mnet is always superior to Enet regardless of α: an analyst who decided on

α = 0.75 a priori, not an unreasonable choice, would only be able to explain 47%

of the variability in the response – a worse performance than lasso. Tuning α

is essential for obtaining the best performance from Mnet.

In addition to superior prediction accuracy, Mnet also identifies a consid-

erably more sparse model. Mnet (α = 0.5) is able to explain 60% of trim32

using only 5 genes, compared to 21 genes selected by elastic net (including four

of the five Mnet genes). The genes selected by each method appear in Table 3

along with their corresponding coefficient estimates. In addition to the sparser

Mnet estimates, the other salient feature in the table is that the sizes of the

Mnet estimates are much larger than their corresponding Enet estimates. In

particular, both Enet and Mnet estimate that the transcript 1376747 at is most

closely associated with trim32 expression, but the size of the Mnet coefficient is

almost three times larger than the Enet coefficient. The heavy bias towards zero

displayed by the elastic net cannot be meaningfully alleviated by Zou and Hastie

(2005)’s rescaling proposal: the rescaling adjustment here is only 4.6%, and the

rescaled estimate is still 0.09 when rounded to the nearest hundredth.
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The bias reduction achieved by the Mnet in comparison with the elastic

net is particularly relevant in practice, as an important goal of studies like this

one is to estimate the effects of the most important genes, here 1376747 at and

Zfp292. The elastic net systematically underestimates the contribution of such

genes with respect to Mnet. In addition, the parsimony of the Mnet models is of

considerable practical importance, not only for ease of interpretation but also to

reduce the time and cost of confirmatory follow-up studies.

7. Discussion

Although we have focused on linear regression, the Mnet approach can be

extended in a straightforward manner to the regression problems

1

2n

n∑
i=1

ℓ(yi, β0 +
∑
j

xijβj) +

p∑
j=1

ρ(|βj |;λ1, γ) +
1

2
λ2∥β∥2,

where ℓ is a given loss function. This formulation includes generalized linear

models, censored regression models and robust regression. For instance, for gen-

eralized linear models such as logistic regression, we take ℓ to be the negative

log-likelihood function. For Cox regression, we take the empirical loss function

to be the negative partial likelihood. For loss functions other than least squares,

further work is needed to study the computational algorithms and theoretical

properties of the Mnet estimators, although we note that the ncvreg package

has already been extended to fit Mnet-penalized logistic regression and Cox re-

gression models.

Our results provide insight into the strengths and weaknesses of mcp and

how minimax concave penalized regression can be stabilized through the incor-

poration of an addition L2 penalty to produce a new procedure similar in spirit

to the elastic net. Our simulation results show that mcp alone often fails to out-

perform the lasso in the presence of correlated features but that, provided one

selects the α parameter empirically, the proposed Mnet estimator achieves robust

performance gains over the lasso over a wide range of settings. Furthermore,

our theoretical results show that Mnet has the oracle selection property under

reasonable conditions.

Although in principle, the proposed method has three tuning parameters,

our simulation results indicate that there is little benefit in tuning both γ and

α. Efficient estimation across a wide range of settings is achieved by fixing γ

(for example γ = 2.7 as suggested in Zhang (2010), for models with standardized

predictors) and selecting only τ and α. Following this approach, the selection

of tuning parameters with Mnet is no more complicated than that of the elastic

net.
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The prediction performance of Mnet is typically similar to that of the elastic

net. The main advantage of Mnet over Enet is that it achieves this prediction

performance using a smaller set of features. This is advantageous for several rea-

sons, including a lower false discovery rate and a lower cost of follow-up analyses

and assays studying the selected features, in addition to the more straightforward

benefit of obtaining a simpler and more parsimonious model.

Supplementary Materials

Additional results concerning variable selection accuracy from the simulation

studies of Section 5, as well as proofs of Proposition 1 and Theorems 1 and 2,

are included in the Supplementary Materials.
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